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1 Introduction 

When writing  software,  there  are  many ways  to  avoid  doing the  same work  multiple  

times by reusing the produced code in different ways. Sometimes, complete 

functionalities can be used in many different programs. Because of this, the best way 

for an organization to develop software is to share all the software in a depository that 

all the programmers have access to. However, to be useful, this would require a lot of 

organising and resources, and co-operation between the programmers. Currently, 

many programmers work independently, with no common libraries for potentially 

reusable software components nor rules to maintain such libraries.  

Vaisala Oyj is planning on improving on the reusability of their small embedded 

systems software. Currently each developer has created their software on their own, 

causing that many functionalities are created multiple times, and sometimes behaving 

differently in some situations. This could be solved with a common library including the 

shared functionalities, and a set of rules to maintain the library.  

The purpose of this project was to test the implementation process of the library in a 

small scale. This was done by analyzing the source code of a small number of devices 

selected by Vaisala software designers, and then selecting two suitable functionalities 

for further analysis. With the gained information, two universal components were 

created to  suit  the  needs  of  all  the  analyzed devices.  Also,  rules  for  maintaining the  

created library were established. 

When finished, the project will optimally provide Vaisala Oyj with two useful software 

components which can be used without modifications in a majority of devices needing 

the components in question. Additionally, the thesis will provide information about the 

difficulty and length of the library implementation process, ultimately determining  if 

establishing of a common library is possible in a practical way. 
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2 Scope of the Project 

The project consisted of four phases: information gathering, source code analysis, 

library implementation and testing, and maintenance rule establishment. They can be 

seen in  

Figure 1 - Work phases and results 

 

 which roughly describes the work and results associated with each phase: The results 

after each phase are on green and the work associated with each phase is on yellow 

background. 
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Figure 1 - Work phases and results 

 

In  the  first  phase,  six  Vaisala  developers  were  interviewed to  gain  information about  

the devices and software components needed in the project. The developers selected 

five  products  which  were  used  in  this  project,  and  they  provided  information  about  

different software components. This information was then compared and analyzed, and 

based  on  this,  two  software  components  were  selected  for  the  library.  The  qualities  

estimated for this selection included difficulty of implementation, size of the component 

and frequency of appearance in devices. 
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At the analysis phase, the implementation of the software components on different 

devices was compared and analyzed. The purpose of this was to determine the 

requirements and limitations for the common component, and to compare different 

implementation methods. In practice, the analysis was done by selecting a well written 

source code as the base, analyzing the general structure, and then comparing the 

other devices to this.  

Based on the analysis, the common library component was outlined. This included 

pointing out the structure and based on this, the rules for updating the component, 

establishing the interfaces and correct use and explaining all the functionality provided 

by the library component. Based on this, the components were assembled from the 

existing source code, modified as needed, and tested. Then the source code was 

reviewed by Vaisala software developers and updated when needed. 

The final phase was to establish the policy for library maintenance. When the project 

was completed it provided Vaisala with  strict rules on who can update the library, and 

how they must document the update. The final phase also included the completion of 

the documentation process, which consists of this document, and a how-to-use 

document for each software component (not provided here). 
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3 Gathering Information 

The project started with a series of interviews with Vaisala software designers. These 

interviews were used to gain information about different devices in the scope of this 

project and about different software components  suitable for the project. Five devices 

were selected for the project and five software components were selected for a 

preliminary analysis. This chapter describes the devices and software components, and 

givesinsight about the component selection. 

3.1 Devices 

3.1.1 XMW90 

XMW90 is a generic piece of software for different devices, for example the wall-

mounted humitidy transmitter HMW90. HMW90 is designed to measure relative 

humidity and temperature in indoor environments, focusing on high accuracy, stability 

and reliability. HMW90 can calculate many parameters from the initial values, such as 

dew point, mixing ratio and absolute humidity. [1,1.] 

XMW90 is one of the newest devices studied in this project, and its software is clear 

and  organized.  The  programming  language  used  in  XMW90  software  is  C++  and  it  

uses a commercial EmbOS operating system.  

3.1.2 HMT330 

HMT330 is a humidity and temperature transmitter series for industrial applications 

focusing on wide customization and stable measurement. HMT330 software is 

programmed in C and it uses Tiny Simple Fast Un-Commercial Kernel (TSFUCK), which 

is a Vaisala proprietary non-commercial operating system.  [2,1.] 

3.1.3 DMT143  

DMT143 is a miniature dew point transmitter that can be installed directly into 

pressurized systems. The sensor performs well long-term and is very resistive to 
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different kinds of conditions such as getting wet. DMT143 is programmed using C and 

it uses the TSFUCK operating system. [3,1.] 

3.1.4 HMP155 

HMP155 is a humidity and temperature probe for reliable measurement. The probe is 

designed to be very resistant against different conditions. The software of HMP155 is 

in C and it uses the TSFUCK operating system. [4,1.] 

3.1.5 MI70 

MI70 is a generic piece of software used in different hand-held meters such as the 

humidity and temperature meter HM70. The hand-held meter is designed for 

spotchecking humidity and temperature, and it is also ideal for calibration of other 

humidity instruments. The MI70 software is done in C and it uses the TSFUCK 

operating system. [5,1.] 

3.2 Software Components 

To limit the project to a small scale test, two software functionalities were chosen for 

this  project.  This  was  to  get  a   view  on  the  difficulty  of  making  a  complete  library.  

Because of this, the first criterion for the software components was that the estimated 

implementation processes of the components had to be of variable difficulty. Secondly, 

both components needed to have a clear outline about the universal implementation to 

speed up the process. Thirdly, the usefulness of the universal components was 

considered. 

The following software components were selected by Vaisala designers for further 

analysis,  and  two  of  them  were  selected  for  this  thesis  project.  The  analysis  of  the  

components and the rationale behind the selection are presented in the following 

chapters. 
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3.2.1 Non-volatile Parameter Handling 

Most devices require that some variables are stored in non-volatile memory, so that 

some information persists over shutdowns. Since this data needs to be preserved even 

in  case  of  power-outages  and  system  failures,  the  handling  process  needs  to  be  

implemented with care. 

Non-volatile information handling is mostly device-independent and could be formed in 

a standard library to save working time and to improve safety and quality of parameter 

handling, so that information is not lost in error situations and new parameters can be 

added efficiently.  

Almost every device, and each device in the scope of this project, needs parameter 

handling, and since doing it right is both important and time-consuming, parameter 

handling as a universal library component would be very useful. 

Vaisala has a draft standardization document defining the parameter handling, so 

based on this, the definition could be finished and built into a library component. One 

of the devices, XMW90, has a parameter handling implementation based on this 

document, so implementing parameter handling could be, while time-consuming, quite 

straight-forward. 

3.2.2 Command Interface 

All the devices in the scope of the  project can be commanded via a serial port with the 

UNICOM command script language. Standardization of the command parsing process 

and defined interfaces for different commands could be useful in decreasing the 

amount of work needed in software creation. However, some designers questioned the 

usefulness of such a universal component, since the device variations of the UNICOM 

command language, and the interpreter would have to be tailored for each device 

independently.  

3.2.3 Error Codes and Logging 

Currently, systematic error logging is not included in every device, and error codes can 

be inconsistent, despite the fact that some industries can have the need to know 
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exactly the error history of the measurement devices. Because of this, standardization 

of error codes and logging of them could be useful. Difficulties include the difficulty of 

defining all possible error types, but this could be circumvented by implementing just 

the logging functionality.  

3.2.4 Humidity Calculation 

The standardization of humidity calculation has the concrete purpose that all the 

devices would yield the same results. Currently, calculation formulas may vary and two 

devices may give slightly different results with the same input. While some devices 

may have specialized versions for efficiency purposes, most devices should be able to 

use the same formulas, and the special cases can be easily included in the component. 

All in all, implementation of the humidity calculation library component would be very 

useful and relatively easy. 

3.2.5 Miscellaneus Protocols 

Information transfer protocols are a good generic example of an easily standardizable 

component. The implementation of a protocol can be time-consuming, but usually the 

device-independent  software,  the  protocol  stack,  is  a  large  part  of  the  work,  and  if  

implemented as a library, it could be used in all future devices.  

3.3 Decision 

Based on the analysis above, the two software components selected were non-volatile 

parameter handling and humidity calculations. These are included in almost all of the 

example devices, and they should be very useful components. Furthermore, both have 

reasonably new implementations on XMW90, so starting the analysis was estimated to 

be quite simple. 
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4 Software Analysis 

4.1 Humidity Calculations 

In  XMW90,  humidity  calculations  define  a  Humicalc  object  class  to  contain  values  of  

humidity, pressure and temperature so additional values such as dew point and 

saturation pressure can be calculated. To accomplish this, two additional classes are 

defined: Gas, which contains information about the gas from which the measurements 

are taken, and Func, which defines a model for a single-input function. This is needed 

in some calculations to determine the zeros of the function; for this,  the library uses 

three different functions to optimize the calculations. The mathematical basis of these 

functions is not important for this project so they are not documented here. 

The  correct  use  of  the  library  is  not  documented  but  it  can  be  discovered  that  only  

certain functions are called from outside the library. Thus, it can be said that those 

functions are the user interface of the library and all the others are just to accomplish 

the functionality. Based on this information-gathering method, it can be said that the 

correct use of the library is to create a Humicalc object, set values for it, and call the 

needed methods. This implementation seems to be quite modular because new 

functions do not need to input all the data, and because the Func implementation 

allows for easy search of zero-points of a function.  

Weaknesses in the code consist of incomplete comments and documentation. 

Furthermore, some class implementations are hard to follow, mainly because of the 

split to source code and header files. Thus, the definition of user interface and proper 

documentation will be the most important improvements that the XMW90 software 

needs. 

 

A general challenge in the humidity calculations is the need for different versions of a 

same function. For example, a function called pws calculates the saturation pressure in 

a given temperature. In XMW90, the calculation is done with a simple polynomial 

model, except that every 20 degree temperature fork has its own model. In contrast, 

HMT330 has a single model over the whole temperature range, and its model is much 
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more complicated. After testing, it could be said that both of these implementations 

have their benefits; the XMW90 implementation performs several times faster while 

HMT330 takes less codespace. The accuracy of calculations is much harder to 

evaluate; the results seem to differ in the magnitude of 10^-3. 

XMW90 has multiple ways of calculating dew and frostpoints. The guess_tdf-function is 

documented to provide an estimation, while the tdfp-function should provide a better 

result.  The  latter  uses  an  algorithm  to  find  a  function  zero-point,  using  a  value  

provided by the guess_tdf-function as a starting point. 

XMW90 seems to lack calculation of relative humidity from capacitance, a feature 

which can be found  in other devices. The possibility of implementing this feature in 

the common library was discussed with Vaisala software developers, but was dismissed 

because of a high amount of calibration parameters needed for the calculation. 

The programmer interface is not made clear; while data seems to be set to a global 

Humicalc  class  by  the  RH,  T  and  P  functions,  the  calculations  are  accessed  by  two  

methods: direct function calls, and by calling functions metric() and nonmetric(), which 

take a constant value that presents the desired quantity as a parameter, and then call 

the low-level functions to get the data and then convert it if needed. 

XMW90 uses C++ as the programming language while other devices use C. This is 

important in humidity calculations, because implementation in XMW90 is strongly 

based on the Humicalc object class, which is useful because the measurement data is 

only entered once to an object, and then all the methods have access to it. This is in 

contrast to the more traditional approach where each function is individually given the 

needed data. Because of this difference, decision about the programming language has 

to be made. 

While C++ makes the use of code easier, there are more issues to consider, the most 

important one being software compatibility. C++ as a language is almost fully 

backwards compatible, meaning that C code can be used in a C++ program, making 

C++ a good choice because the existing C functions can be used as they are, or with 

minor changes, to maintain the object-oriented modularity in the software. However, 
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this same quality can be used as an argument for C: if the library is made with C it can 

be used as it is in C++ programs.  

Due  to  the  well  planned  object  model  of  XMW90,  C++  was  chosen  as  the  

programming language for this project. However, it should be quite straightforward to 

convert the calculation functions to C if needed.  

4.2 Parameters 

As with the humidity calculations, the first non-volatile parameter handling software 

component that was analyzed was from XMW90. In the following paragraphs the 

results of the analysis are described.  

Parameter  blocks  are  stored  in  Flash.  There  are  two  parameter  blocks  to  minimize  

erasing needs, since Flash has a limited amount of erase cycles. The blocks are stored 

in defined locations, and the parameters can be accessed via a lookup table (LUT). The 

LUT is genenerated on the start-up and  located in RAM. 

The two-block parameter implementation is done in the following way: first, the block 

with a larger write cycle count is selected as the parameter table, and the LUT is 

generated from the parameters. When parameters need to be updated, they are 

written at the bottom of the table and the LUT is updated. When the block is running 

out of space, a swap is performed: the parameters are transferred to the other table, 

the LUT is updated and the previous table is erased. 

ParameterData.cpp contains predefined information about the default parameters, 

such as default, minimum and maximum values. While these are not useful in the 

library, the file can be used as a base for entering the default parameter data. 

Parameter handling in XMW90 contains the following class structures: The Parameter 

Class provides functions for parameter input and output. The ParameterItem Class 

provides a model for parameter data. The ParameterTable class provides a model for 

data tables and the LUT. The ParameterTypes class contains type definitions for all 

data used in the software component. 
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The most serious limitation of the XMW90 software seems to be that parameters have 

to be in the universal address space. It remains unclear if the library is needed in other 

circumstances, and if it is, what these circumstances would be. However, the situation 

could be solved with the writing method implemented as a virtual function, and it is left 

to the programmer to implement it. The use of device-dependent functions is almost 

non-existent, save for instructions to allow and disallow writing (these can be included 

in the interfaces, and if the memory type does not require these, they can be 

implemented as empty functions).  

4.2.1 Comparison of Devices 

In  DMT143,  parameters  are  generated  to  the  non-volatile  memory  from  a  definition  

file. This causes them to be in the normal address space, so the XMW90 software 

should function in DMT143. Unlike in XMW90, a lot of functionality in DMT143 focuses 

on different types of input for the parameters. This seems to be unmodular design, 

since type-conversions could be done at higher level. In XMW90, all data is treated as 

string when saved in memory, and metadata contains information about the data-

types. In DMT143, it seems that command-parsing is partially integrated to parameter-

handling, which is a non-modular solution. Metadata in DMT143 seems to be the same 

as in XMW90. DMT143 does not use a LUT because the parameters are in the memory 

in a specific order.  

In HMT330 data is stored in separate address space accessed by functions. This could 

be  solved  in  the  general  library  by  separating  the  actual  writing  functionality  to  a  

separate class which would have to be implemented in the application level. 

4.2.2 EEPROM and Flash 

One of the design issues to be solved is that EEPROM and Flash memory need different 

handling. XMW90 parameter implementation is designed strictly for Flash, and there 

are  multiple  ways  to  accommodate  it  for  EEPROM.  The  simplest  way  is  to  keep  the  

data format exactly the same, using two data blocks for the parameters and writing to 

them as when writing to Flash. The downside of this is that this uses twice as much 

memory  as  is  needed  for  the  parameters.  Thus,  an  alternate  solution  would  be  to  

modify the memory accessing functions so that data is directly inserted to the right 
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place in the memory, keeping the amount of memory used constant and making the 

LUT and second parameter block needless. However, this would require a lot of work 

with the library.  
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5 Implementation and Testing  

5.1 Definitions 

For this section, the following definitions are used. “Library level” will refer to the 

reusable  software  produced  by  this  thesis  project,  and  will  be  common  for  all  the  

devices. “Library component” refers to a specific part of the library, like humidity 

calculations or non-volatile parameter handling. “Application level” will refer to the 

device-specific software that uses the library, and “user” will be the programmer 

implementing the application level and using the library. 

5.2 Humidity Calculations 

5.2.1 Correct Use 

  

Based on the analysis of the XMW90 source code in chapter 4.1, the structure of the 

library component is determined as presented in Error! Reference source not 

found., with Humicalc class marked in red. The correct use of the library is as follows: 

a Humicalc object is created and the measurement data (temperature, pressure and 

relative humidity) is entered to it via appropriate functions. Then, the metric and 

nonmetric functions can be used to calculate and output data from the Humicalc 

object. 
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Inner functionality

Programmer Interface

Set FunctionsOutput functions 
(Metric & Non-metric)

Func Classes 

Gas class

Zero-solving functions

Calculation functions
Calculation data

 

Figure 2 - Structure of the library component for humidity calculations  

 

The programming interface will be defined as presented in Figure 2: the Humicalc class 

functions RH, T and P will be used to set values for, respectively, relative humidity, 

temperature and pressure. All output will be done with the functions metric, nonmetric, 

and si and q if needed; these functions require an indentifier of the quantity needed 

(listed in convert.cpp) and will return the desired value in desired unit. This definition 

will make the interface to Humicalc class simple and easy to control. Since the software 

will be used in embedded systems, the Humicalc object itself is created as a global 

object so that all functionalities have access to it. 

5.2.2 Updating the Library 

 

When creating new functionalities for the library, the interfaces defined in the previous 

chapter  should  be  maintained.  That  is  to  say,  new  methods  should  be  added  to  the  
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Humicalc class, so that they use the Humicalc object data instead of call parameters. 

This has a number of benefits: a Humicalc class is created so that it recalculates values 

only when one of the fundamental parameters is changed; this way, methods can be 

efficiently called each time values are needed, so the programmer does not have to 

worry whether the values have changed. Also, using the functions is simpler without a 

large amount of parameters; this is simply an advantage of the object model.  

Due to the multi-class structure of the library and after a failed test, it was decided not 

to try to make all the possible functions private, since they are used by majority of the 

classes, and this kind of abstraction would do more harm than good. 

5.2.3 Contents of the Library Component 

The calculation functions to be included in the programmer interface will consist of 

XMW90 functions which are called outside the library file; this is because XMW90 

seems  to  have  nearly  the  same  functions  as  the  other  devices,  with  next  to  no  

differences. Some functions can have multiple implementations due to the 

specialization need of embedded devices (space versus calculation power), with the 

desired version selected with a #define. While the device library lacks functions to 

calculate relative humidity from sensor capacitance, these will not be imported from 

other devices since the implementations seem to rely on sensor data which is usually 

not located in the library. 

5.2.4 Testing 

Test Conditions 

The implemented library component was tested in a 32-bit Windows PC environment 

using the GNU g++ compiler version 4.6.3 and the CodeBlocks programming 

environment version 10.04. This required some changes that are all documented here, 

and  none  of  them  should  have  any  effect  on  the   performance  of  the  software  on  

Vaisala’s IAR  cross compilers, which are used to compile the actual product binaries. 
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Based  on  the  definition  in  the  previous  chapter,  the  library  was  formed  and  tested  

according  to  the  test  conditions  stated  above.  The  main  problem with  the  testing  is  

compiling. This consists of two main problems: overloading and scope calls. For some 

reason, the library seemed to be unable to reach some calculation functions defined in 

the  cmath  standard  library,  despite  the  fact  it  was  included  in  the  file.  The  other  

problem was that the library uses overloading, that is, using the same function name 

with a different type and amount of parameters to create different functions. For some 

reason, the compiler had trouble understanding this concept. At this point, the testing 

was postponed until information about the compiler was gathered. 

The library seems to have two major problems related to compiling, mainly caused by 

definitions of FLT_EVAL_METHOD and GLIBCXX_USE_C99_MATH. The first definition is 

done by the preprocessor and it selects types for keywords float_t and double_t, which 

are  used  in  the  library  to  enable  greater  portability.  For  some  values  of  

FLT_EVAL_METHOD,  keywords  float_t   and  double_t  are  defined  to  be  of  the  same  

type, causing errors with functions overloaded with these types. When investigating 

this,  there  seemed to  be  no simple  method to  set  FLT_EVAL_METHOD value  for  the  

preprocessor, so this issue was resolved by setting the value in source code. This 

solution is for testing only, and the definition will be removed for the final version. 

C and C++ languages have separate standard libraries; for example, the library file 

providing math functionality is math.h in C and cmath in C++. Cmath includes math.h 

but removes definitions for certain macros, like the functions isfinite and isnormal that 

are used in the project, if a certain statement, GLIBCXX_USE_C99_MATH, is true. Then 

cmath redefines these macros inside std-namespace. The problem using this 

namespace is that with the compilers used in Vaisala, the namespace is not used, 

causing  compatibility  errors  with  the  software.  To  resolve  this,  the  value  of  

GLIBCXX_USE_C99_MATH was changed from C++ config header.  

After these changes, the library was successfully compiled in a PC environment. The 

details above should allow others to test the library on a PC without difficulty.  

After compiling, the library seems to work fine. Validity of the calculations is not 

certain, so this should be tested when using this library.  
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5.3 Parameters 

As  in  humidity  calculations,  the  XMW90 source  code was  chosen as  the  basis  of  the  

parameter library component because of its good readability and emphasis on modular 

design.  

Parameter Class

ParameterFlashManager

Device-specific 
memory functions

Device memory

Look-up Table

ParameterBlock

ParameterBlock

ParameterItem

parameter_table

 

Figure 1 - Parameter structure 

 

As seen in Figure 1, the main programmer interface is the Parameter class, which is 

used to access parameters in the memory. The memory structure is designed for Flash 

to minimize write cycles but should also be usable on EEPROM. To allow use in both 

normal and separate address space, memory access functions will be written as virtual 

functions, to be implemented by the programmer. Also, the programmer needs to write 

a data structure named parameter_table, which will contain the ParameterItem 

structures for all device parameters. This will be used by the ParameterFlashManager 

to check if  a parameter exists. The programmer will  also make Parameter objects for 

each ParameterItem; these are used to access parameter data and metadata. 

 

Since improving on EEPROM efficiency would basically mean rewriting 

ParameterFlashManager.cpp file (discussed in 4.2.2), parameters will be saved in 

EEPROM using the same format as with Flash. In case a device using the library does 
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not have enough memory, then a more EEPROM-friendly version of the library should 

be created. This, however, was left outside the scope of this project. 

5.3.1 Implementation 

The most important modification to be done was to remove the memory dependency 

of the component. This was done in two parts: First, the memory dependent functions 

had to be identified and replanned so that the programmer can easily implement them 

for the needed memory type. This implementation should happen in the same file as 

the  memory  sizes  and  addresses  are  set,  so  that  there  would  be  a  single  memory  

definition file to be written by the programmer. After this, the memory dependent code 

was successfully replaced from the source code. 

In XMW90, the memory access is done with a direct memory referencing, since the 

flash memory is defined to be part of the normal address space. However, since this is 

not always possible, the references had to be replaced with functions that either are 

directly  defined  by  the  programmer  or  they  have  to  call  functions  defined  by  the  

programmer. 

The memory functionality described is mostly based on the current implementation of 

the XMW90 library, so that the library can function with as small changes as possible. 

These functions include reading a single byte, reading and writing a larger space, 

enabling and disabling writing, setting and getting the flash header and getting the 

data table address. To limit the amount of needed functions, all the memory access 

functions use relative memory beginning from the data table of a memory block, and 

this is resolved inside the functionality into absolute memory address. 

While implementing the memory independence, a problem related to the design 

philosophy emerged. When writing in C++, the correct way to implement an interface 

that is to be implemented by the programmer is to create an object class and to create 

a  set  of  virtual  functions  that  the  programmer  has  to  overload  later  with  a  derived  

class.  The problem with  this  approach is  that  ParameterFlashManager  is  not  used at  

the  programmer  interface,  so  it  would  require  changes  to  the  architechture  to  allow  

setting the memory functions. Also, it is used as a static class, so the constructor 

cannot be used to set the memory handler. Secondly, most of the functionality 
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described in the last paragraph can be done without objects, so using objects might 

cause needless work. However, despite it not being part of the programmer interface, 

the function ParameterFlashManager.initialize is called at the programming level, the 

main.cpp file to be exact. Because of this, the initialize function could be used to pass 

the memory-specific read-/write-object to the Flash Manager to be stored in a static 

variable.  

The alternative is to introduce the functions in a normal library file, but then instruct 

the programmer to implement these functions in a specific file. This file could be also 

used  to  set  the  memory  addresses;  this  is  currently  done  in  the  parameter  handler,  

which is not good since they need to be set specifically for the memory used. This 

approach would retain the XMW90 software architecture, but might be considered to 

be an obsolete solution more fitting for the C-style programming, not for the object-

oriented architecture. 

Parameter Flash Manager

Progmammer

MemoryBlock

Inherits

Device-dependent
MemoryBlock class

Array of D. D. Memory Objects

instances of

initialize()

Physical memory

 
Figure 2 - Device independent memory handling 

 

After careful analysis of the situation, the problem was resolved as Figure  2 

illustrates. The memory functionality was formed into a class called MemoryBlock, 

which consists of information about the memory block, and functions to write and read 

memory. Most of these functions were pre-implemented. The programmer then creates 

a class which inherits the MemoryBlock, with functions _writeByte, _readByte, 
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enableWrite and disableWrite implemented, and passes objects of this type to the 

Parameter Flash Manager via the initialize function. The Flash Manager stores these 

objects to static variables and uses them one at a time to access a particular block. 

 

As it was established in the previous paragraph, the memory functionality was 

abstracted into four device-dependent functions, which are _writeByte(int address, 

char byte), _readByte(int address), enableWrite() and disableWrite(). WriteByte writes 

the desired byte in the desired memory location; this function is then used by other 

functions in the class to allow writing according to an offset of a data table, or to allow 

writing a large amount of data at once. ReadByte functions similarly. EnableWrite and 

DisableWrite are included in case the memory type requires some actions before 

reading and writing; if not, these can be left empty.  

5.3.2 Correct Use 

The structure of the class Parameter is represented in Figure 5. The class is used to 

access the permanent memory. When a parameter has to be accessed, a parameter 

object has to be created with a parameter item as a constructor parameter. This object 

can then be used to  access  parameter  data  and metadata.  The only  function  that  is  

part of the programming interface besides the Parameter class is the parameter flash 

manager initalization function, which needs to be called at start-up. This function 

needs to have the programmer-made MemoryBlock-object to gain access to the 

permanent memory. 
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Figure 3 - Parameter class structure 

 

ParameterData  is  not  part  of  the  library  because  it  contains  default  values  for  the  

parameters. This needs to be set by the programmer.  
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ParameterItem

ParameterItem

ParameterItem

ParameterItem

parameter_table

 

Figure 4 - Parameter metadata table 

 

As presented in Figure 4, the programmer has to create constant ParameterItem for 

each parameter. The contents of ParameterItem will be explained later. Then, the 

programmer creates parameter_table which will point to each of the items, so it can be 

used by ParameterFlashManager to check if the parameters exist.  

 

 
Figure 5 - Parameter and ParameterItem 

 

Figure 5 presents the Parameter object and ParameterItem structure. As was 

suggested in the previous chapter, the programmer creates ParameterItem for each 

device parameter. Then, a Parameter object must be created for each ParameterItem. 

The object is then used to access and save the parameter data. 
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As discussed in 5.3.1, the user needs to implement a class derived from MemoryBlock, 

with the functions _writeByte, _readByte, enableWrite and disableWrite. When using 

memory in normally addressable memory space, the implementation can be very 

straightforward: _writeByte writes the parameter byte to the parameter address, while 

_readByte  returns  a  read  byte  from  the  parameter  address.  EnableWrite  and  

disableWrite can be implemented when needed.  

 

The MemoryBlock class was programmed to use 16-bit addresses. These can be 

replaced  with  a  type  defined  in  a  separate  definition  file  in  a  future  version  of  this  

library, but in the current version the MemoryBlock can be used in a 32-bit system by 

keeping the whole address in two variables and handling the less significant variable to 

the default MemoryBlock constructor. Then, _readByte and _writeByte can assemble 

the whole address and check if the low address rolls over and then they just increment 

the more significant variable by one.  

 

Another possible issue is that it may be faster to write several bytes simultaneously 

rather  than  writing  a  single  byte.  This  can  be  accomplished  in  the  limits  of  the  

interface. For example, enableWrite can be used to create a data buffer, and 

_writeByte  would  add  data  to  the  buffer  instead  of  directly  writing  it.  Then,  

disableWrite would write the whole buffer to the memory using the most efficient way 

possible. 

5.3.3 Testing 

Test Conditions 

The  parameter  library  component  was  tested  using  the  same  test  conditions  as  was  

used in humidity calculations library component testing (specifications found in 5.2.4). 

The primary test case was to implement a class derived from MemoryBlock, so that the 

class would read and write to the addressable memory space, and test this by writing a  

parameter value and reading it. As when testing the humidity calculations, it was 

assumed that most of the functionality is unaffected by changes and is not in need of 

testing. 
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Changes 

While testing the library component, two compiler-dependent problems emerged. First, 

the parameter metadata initialization in the original implementation uses a structure 

called designated initializer, in which a struct is initialized with a list containing the 

names of the variables. This is supported by GNU C compiler but not the C++ version. 

Since the structure in question contains other structures and unions, the initialization 

with exactly the same result (the contents stored in flash) may be impossible. 

However, since this is not part of the library, it is not a problem. For this test case, a 

function was made for the initialization purpose and then called in the main.cpp file. 

 

The other problem involved the Flash header that is written for each memory block. 

The header is a structure consisting of a union of three variables (two 8-bit integers 

and  one  32-bit  integer)  and  a  byte  array  with  a  length  same  as  these  variables  

combined, and an integer for the CRC value. The purpose of this implementation is to 

enable  writing  the  individual  variables  to  the  header  and  to  use  the  array  to  quickly  

read and write the whole header. The problem with this solution is that some compilers 

add padding to the data stored to the memory so that it forms 32-bit blocks. This way, 

there were two excess bytes of data between the two bytes and the 32-bit integer, and 

these influenced the CRC calculation. This was solved by changing the order of the 

integers so that the 32-bit one is before 8-bit ones, so the padding bytes will be after 

the real data. This way, the array can be used with a length of six bytes so the excess 

bytes will never need to be considered.  

Results 

After the above changes and a number of bug fixes, the library was successfully tested 

in PC environment. The MemoryBlock class was derived and implemented as described 

in 5.3.2, and the interface was found to be versatile enough to support the variations 

discussed there. At this point, no critical problems affecting the use of the library 

component were detected. 
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6 Establishing Maintenance Policy and Version Control 

There  were  several  issues  to  be  resolved  about  maintaining  the  library.  First,  there  

must be someone responsible for maintaining the library. Second, there must be rules 

on who can submit changes to the library. Third, information about library versions 

must be accessible by the users. Fourth, there must be rules about the compilers on 

which the software must compile. Last, if individual changes are needed on the library 

on specific devices, there need to be rules about handling these situations. 

The solutions presented in this chapter were discussed with Vaisala designers and 

were deemed the best options. The rationale for this and the alternatives for the 

solutions are also discussed in this chapter.  

Vaisala will assign a person who has the main responsibility for maintaining the library. 

This person will review suggestions for improvements and accept or deny them. The 

process is meant to be flexible and unofficial so that suggestions can be made easily 

and the library can be expanded and improved relatively easily.  

Vaisala already uses Confluence to share information, so it will be used to share the 

documentation and version history of the library. Confluence is a wiki designed for 

enterprises to enable information sharing for teams and units [6]. Confluence will be 

used to keep the programmers up to date on version updates and current 

documentation. 

Vaisala uses Apache Subversion for version control, so it will be used to maintain the 

version control of the library. Apache Subversion is anopen source version control 

system which is needed here to provide control over software updates and parallel 

versions, and to keep track of all the changes [7]. 

The  software  must  work  on  both  ARM  and  MCP  430  (manufactured  by  Texas  

Instruments) microcontroller IAR compilers, since these are used in Vaisala products. 

Also,  the  software  must  work  on  the  GNU  g++ compiler  for  testing  purposes  on  PC  

environment. 

The primary  way of  making customizations  to  the  library  should  be  a  custom header  

file that can be edited by the programmer, and if something has to be configured, the 
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primary solution should be to make a general change to the library so that the header 

file  can  be  used  to  change  the  behaviour  if  needed.  If  such  a  general  change  is  

impossible, then device-specific changes to the library are allowed, but they must be 

documented to confluence, and a separate Subversion branch must be made of the 

software.  
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7 Conclusion 

After four months of work, the two software components were assembled and tested. 

This section will discuss the success of the thesis work and analyze possible ways to 

make the library making process faster, and to improve the components made in this 

thesis work.  

The software components were assembled using the Vaisala software as a base, with 

only small changes, so they should be usable on Vaisala platforms. However, testing of 

this was not included in this thesis work because of the time it would take. Since the 

software was only tested in PC environment (details in 5.2.4 and 5.3.3), it is not 

certain that the library will work on Vaisala devices. Therefore, a possible follow-up 

project would be to test the library in different Vaisala devices and then document the 

deficiencies in the library. Part of this work was done in the analysis phase, but without 

any actual testing, it is impossible to say if the software would actually work.  

The standards of success for the components were that they would work in different 

platforms. This task was time-consuming, so some things like fine-tuning the software 

architechture  for  the  sake  of  clarity  alone  was  not  in  the  scope  of  the  thesis.  For  

example, the Parameter class of the parameter handling library component could be 

rewritten with derived classes instead of the current solution using the Template 

structure  in  C++;  however,  this  does  not  affect  functionality  so  it  has  been  left  for  

future projects. Similarly, the scope of methods inside classes was deemed an 

unimportant issue; this too can be fixed in library update projects. 

The library  making process  could  be  improved.  If  the  person making the  library  was   

one of Vaisala designers, the analysis phase would be almost completely removed, 

since the designer would already know the structure of the component that he/she 

would work on, and the main design issues when using the component on different 

devices. In this project the analysis phase concentrated mostly on analysing the 

XMW90 software, and the information gained from comparing it to the software of the 

other  devices  was  modest  at  best,  since  it  was  very  difficult  to  find  the  important  

design  issues  in  the  code.  The  use  for  the  comparisons  was  mostly  verifying  the  

existence of some issues. If Vaisala decides to use trainees to expand and improve 

upon this library, the analysis should consist of another round of interviews, because 
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this  way  the  design  issues  with  a  component  can  be  found,  and  then  they  can  be  

verified by checking the code.  

The implementation process took approximately four months to finish, with estimated 

60% work  time.  For  a  Vaisala  designer,  the  implementation  time  is  estimated  to  be  

less due to the reasons stated in the previous paragraph and because of overall higher 

experience, so it should be possible to add a single software component to the library 

in two to three weeks when working full-time. The total amount of components and 

the difficulty of individual components are impossible to estimate here, so the total 

time of implementation is to be resolved by Vaisala, if they decide to implement the full 

library. 
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