
REDESIGN OF FREENEST WEB INTERFACE

Riku Hokkanen

Thesis

November 2012

Degree Programme in Information Technology

Technology, communication and transport

OPINNÄYTETYÖN

KUVAILULEHTI

Tekijä(t)
HOKKANEN, Riku

Julkaisun laji
Opinnäytetyö

Päivämäärä
30.11.2012

Sivumäärä
33

Verkkojulkaisulupa
myönnetty
(X)

Työn nimi
Redesign of FreeNest Web Interface

Koulutusohjelma
Ohjelmistotekniikka

Työn ohjaaja(t)
PELTOMÄKI, Juha

Toimeksiantaja(t)
RINTAMÄKI, Marko

Tiivistelmä

 FreeNest on selaimella verkossa toimive ohjelmistonkehitysympäristö joka on
kehitetty SkyNest – projektissa Jyväskylän Ammattikorkeakoulussa. FreeNestiin
kuuluu useita selainkäyttöisiä avoimen lähdekoodin ohjelmistoja jotka ovat
yhdistetty yhteen kokonaisuuteen sivuihin lisätyllä yhtenäisellä käyttöliittymällä,
automatisoidulla asennuksella ja yhdistetetyillä käyttäjätunuksilla.

FreeNestin lisäämässä käyttöliittymässä on muokattava navigointivalikko ja muita
ominaisuuksia kuten yksinkertainen viestintäjärjestelmä. Opinnäytetyön
tarkoituksena on suunnitella eri sovelluksia yhdistävä käyttöliittymä uudestaan niin
että sitä on helpompi ylläpitää ja että siihen olisi helpompi lisätä uusia
ominaisuuksia. Lisäksi opinnäytetyö tarjoaa muita parannusehdotuksia.

Opinnäytetyössä ei toteuteta uutta versiota käyttöliittymästä eikä suunnitella sitä
yksityiskohtaisella tasolla, vaan tarjotaan yleisemmän tason ohjeita uuden
käyttöliittymän suunnitteluun. Opinnäytetyö perustuu kirjoittajan kokemuksiin
SkyNest – projektissa ja erilaisten JavaScript – ratkaisuiden tutkimiseen.
Opinnäytetyössä käydään läpi käytettyjä teknologioita ja ehdotetaan MVC –
rakennetta joka perustuu tiettyjen JavaScript – kirjastojen käyttöön.

Avainsanat (asiasanat)

FreeNest, SkyNest, JavaScript, AJAX, HTML

Muut tiedot

OPINNÄYTETYÖN

KUVAILULEHTI

Author(s)
HOKKANEN, RIku

Type of publication
Bachelor´s / Master’s Thesis

Date
30.11.2012

Pages
33

 Permission for web
publication
(X)

Title
Redesign of FreeNest Web Interface

Degree Programme
Software Engineering

Tutor(s)
PELTOMÄKI, Juha

Assigned by
RINTAMÄKI, Marko

Abstract

FreeNest is a web-based software development environment developed by SkyNest
project at Jyväskylä University of Applied Sciences. It consists of open source tools
combined with a web interface that is attached to most pages on FreeNest. The
interface's main feature is an editable navigation menu, and it has other features such
as simple chat system. The aim of the thesis is to redesign the interface to make it
easier to maintain, add new features to, and to offer other possible improvement
suggestions.

The thesis does not implement the redesign nor go very deeply into architecture, but
gives general guidelines on how the interface could be improved. It is based on the
author's experiences on SkyNest project writing some parts of the current version of
the web interface, and research on JavaScript web solutions. The thesis covers the
technologies used, and proposes a MVC framework based on a set of JavaScript
libraries. It also contains other suggestions on new features and generic fixes.

Keywords
FreeNest, SkyNest, JavaScript, AJAX, HTML

Miscellaneous

1

Contents

1. INTRODUCTION..5

1.1 FreeNEST..5

1.2 FreeNEST web interface...5

1.2. History...6

2 CONCEPTS...7

2.1 REST..7

2.2 HTML..8

2.3 AJAX..9

2.4 HTML DOM...9

2.5 jQuery Core..10

2.6 MVC with Backbone and Backbone.Marionette..10

2.7 Application Lifecycle Management (ALM)...12

3. GOALS OF THE REWORK..12

3.1 REST interface...12

3.2 Modularity..13

3.3 Clear file and code structure..13

3.4 Documentation ..14

4. PLAN FOR NEW INTERFACE ARCHITECTURE...14

4.1 General idea...14

4.2 Main Application..14

4.3 Modules and add-ons..16

4.4 Addon management..17

4.5 MVC model...18

4.6 Themes...20

4.7 File structures and interfaces...21

4.8 Libraries..22

5 SUGGESTED MODULES..24

5.1 Navigation menu..24

5.2 Webchat...25

5.3 WikiWord..26

5.4 Other modules...27

2

6. DOCUMENTATION..27

6.1 Comments in code...27

6.2 Wiki pages..28

7. SUMMARY..29

REFERENCES...30

Figures

Figure 1: Part of the current FreeNest interface (old theme)..6

Figure 2: Accessing resources via REST interface...8

Figure 3: MVC model with Marionette..11

Figure 4: Example file structure...21

3

Terminology

AJAX

Asynchronous JavaScript and XML. A technique used in web applications that makes

it possible for clients (browsers) to communicate with servers asynchronously, i.e

without reloading the page. (Mozilla Developer Network)

ALM

Application Lifecycle Management is a way to manage software development process

from the initial idea to post-release maintenance and publishing using ALM tool

collections. (Chappell, 2008)

API

Application Programming Interface. API is an interface that specifies how software

components communicate with each other on source code level. (Wikipedia)

DOM Core

Document Object Model. DOM Core is an API used to navigate and manipulate

mainly HTML and XML – documents. It is extended by HTML and XML DOM that add

more specific descriptions of the corresponding language structures. (W3C)

FreeNest

FreeNest is a product development platform that consists of many open-source

products integrated together via an interface overlay and underlying solutions such

as shared user information.

HTML

HyperText Markup Language is a language used to describe structure of a document,

such as links to other documents, headers and tables. It is the language used on web

pages. (W3C)

4

JavaScript

A scripting language commonly used to improve web page functionality – especially

with AJAX.

MVC

Model View Controller. A common programming architecture that describes a

separation of program into the namesake parts to separate data, data display and

user interaction to achieve better code reusability, easier maintenance and other

benefits.

Python

A programming language that is commonly used both for independent programs and

as a scripting language.

Server

A platform used to share resources and services, such as a computer running server

software to host web pages.

SkyNest

SkyNest is a team that develops FreeNest and cloud software solutions.

URI

Uniform Resource Identifiers are strings that identify resources. URIs can be Uniform

Resource Locators (URL) that specify the location and method of accessing the

resource, or Uniform Resource Names (URN) that identify the resource without

telling how it can be accessed. (W3C)

Web client

An application that accesses a server, such as web browser.

5

1. INTRODUCTION

1.1 FreeNEST

FreeNEST Portable Project Platform is a product of JAMK SkyNEST Project, and it is

essentially a web-based project environment. It combines multiple open-source tools

under a single package that is easy to install and can be customized for the needs of

different project groups. While currently FreeNEST has mostly tools for IT projects, its

purpose is to cater for a wider variety of fields. A great deal of the work is aimed

towards ease of use, so that users can focus on their own projects and and learn to

use the FreeNEST tool set naturally.

While the tools come from different developers, FreeNEST core package combines

them under a single user management and inserts a top bar menu which eases

navigation between tools and makes the project work flow more coherent. FreeNEST

also adds web tools of its own, such as project dash board, control panel and Git

administrator tools.

1.2 FreeNEST web interface

The web interface, which is the focus of this thesis, refers to the top bar that is

present on most FreeNEST's tools. At the very basics it is a navigation menu

containing links to all installed FreeNEST features. It does contain other features,

however. At the time of writing it also contains a basic messaging system, team mood

gallup and a script that turns keywords to links to FreeNEST wiki's corresponding

topic. There is also an editing feature for simple changes to the menu.

This thesis aims on improving the core web features of FreeNEST - the top bar and

other basic functionalities included in every installation. The focus is not on the

visible interface, but on easing the upkeep and continued development by making

the underlying code more modular and clearer. This thesis will not create a final

product, but the framework and plans for continued development.

The current FreeNEST web interface is focused on the visible top bar, with the other

features heavily depending on it and tied on a code level – most of the JavaScript is in

6

a single file, and would be hard to separate. This thesis aims for a more flexible

approach where it is possible to easily add and remove features from the interface.

1.2. History

The basic idea behind FreeNEST has been the same since it first started, originally

under the name Nest – a collection of open source tools that cover a software

project's management needs. The original version was mostly created by one man,

Marko Rintamäki, with help from friends and colleagues, while working at Ixonos.

During that time Nest was developed to a point where it had most of the open source

tools that the current one uses, only with less ease of use and integration.

(Rintamäki, 2012)

Later on JAMK started a project called SkyNest, which at the time was mainly focused

on improving Nest. At first the project consisted of just a few students, which grew

later on. A significant improvement happened early on, as one student created a top

bar for Nest, which made it easier to grasp the project environment and navigate

between tools. Many bug fixes and integration improvements followed, and by the

end of a busy summer Nest 1.3 was released under the name of FreeNest. Among

other new features FreeNest also had an installer script and user management.

Another significant improvement from the original Nest has been a packaging system.

Originally Nest was used from a virtual image, which made development difficult as

all the changes had to be moved to a single image file, which acted as a bottleneck

between testing and release cycles and was liable to corruption. With packaging Nest

could be installed and updated piece by piece without having to rely on virtual

machines. This greatly helped both end users for more convenient usage and

installation, and development for more flexibility, speed and convenience for

changes.

Figure 1: Part of the current FreeNest interface (old theme)

7

The author of this thesis was involved in FreeNest development mostly during the

first SkyNest summer project. Much of the early work involved fixing various bugs

and browser compatibility issues. As the author received multiple tasks involving

improvements and changes to top bar, it became clear that the top bar had

fundamental problems related to code maintenance as even the smallest changes

could be hard to make because of the way the code was constructed. As a solution,

the author took on the task of writing the top bar again.

While the new version of top bar fixed some of the problems of the old one, and

even added a new feature for easy menu editing, in the view of the current state of

the project it does not seem enough. The design of the new top bar was flawed in the

idea that the purpose was to create a simple navigation menu. As it first became

apparent when the editing feature was added, the design was not flexible enough, in

addition to having other code-related problems. This leads to the topic of this thesis,

which is a kind of third incarnation of the top bar, under a slightly different focus.

2 CONCEPTS

2.1 REST

REST - short for Representational State Transfer – is an architectural style that defines

how client and server should communicate. As the name implies, REST deals with

representation of resources – resources being any information or service a server

wishes to provide. The client does not interact directly with a resource, but rather

with its representation, and REST defines constraints for such interactions. A

representation contains the actual data and metadata such as media type, control

data like cache control and so on. (Fielding, 2000)

The resources that a service wishes to provide are given an ID that can be used to

access the resource's REST representation – naturally with the full URL. A resource

may have multiple representations, so it can be accessed in different formats and by

different clients. Representations should also be accessed using standard methods,

which means that at least within a particular REST implementation all resources

should support similar methods such as HTTP's GET, POST, DELETE and so on. Another

8

important REST constraint is statelessness, which in practise means that the server

does not store any information on the previous communications with a client and

each request has to contain all relevant information. (Tilkov, 2007)

In practise this means - in the context of this thesis – that the client does not refer to

server's script files or other resources directly, but rather to an url address which has

functions attached to different HTTP methods. For example, sending a GET request to

http://example.x/users/userX, the server returns all available data about userX, while

sending a POST request to http://example.x/users could add a new user to a data

storage.

2.2 HTML

HyperText Markup Language is the primary publishing language in WWW. It is meant

to be an universally understood language, which is accomplished by an assumption

that HTML authors and clients adhere to the same specification. HTML is used to

define the structure of data, such as headers, tables and most importantly hypertext

links. Originally developed by Tim Berners-Lee at CERN during on early 1990, the

most widely used version is currently 4.01(W3C)

While HTML 4.01 is still the currently most used version, the next big thing is HTML5.

Unlike HTML 4.01 and earlier versions, HTML5 specification does not originate from

W3C, but from a group called Web Hypertext Application Technology Working Group

(WHATWG) in response to W3C developing towards XHTML – a HTML specification

Figure 2: Accessing resources via REST interface

9

that would have strictly followed XML standards and so broken backwards

compatibility with older tools and sites, among other faults. Currently HTML5 is being

developed by HTML Working Group, with a stable version of specification maintained

by W3C. HTML5 is a direct improvement on HTML 4.01, adding semantic elements

for defining page structure, support for video and audio and many other powerful

features. (Millis, 2011)

2.3 AJAX

AJAX is a way HTML page can communicate with server asynchronously, as the name

implies. Normally in order to send or receive data from a server the page has to be

reloaded. With the use of JavaScript's XMLHttpRequest – object it is possible to do

the same without disruptive page reloads. The object sends a request to server in

XML format, which carries various info such as content type and encoding, and any

data the client script wishes to send. The server responds to this similarly, content

depending on installed web services and scripts. (Mozilla Developer Network)

AJAX is heavily used in the FreeNest web interface, some examples being saving and

loading of the navigation menu, checking if the user is administrator and so on. It is

especially important because the interface needs to be non-obstructive, and

reloading the page for some interface changes would not be feasible. However, if one

should look at the current – or future - code, he would hardly find a mention of

XMLHttpRequest. This is because the object is only used indirectly via jQuery's

jQuery.get(), jQuery.post() and similar shorthand methods. Backbone also uses this

method in fetching model contents from server.

2.4 HTML DOM

HTML DOM is an extension of Core DOM, Document Object Model. DOM is a

language-neutral interface that describes documents and can be used to update and

otherwise interact with them. On the most basic level a DOM structure of a

document is a collection of nested nodes such as HTML's <div>, that have contents

and attributes. The node tree can be walked to find desired data, and nodes can be

added, changed removed. (Quirksmode.org)

10

HTML DOM adds more specific elements to the Core DOM to describe the contents

and how they should be accessed. It also adds restrictions on where certain element

types may appear. HTML DOM is used by browsers to display HTML pages, and it is

most often manipulated by JavaScript. (Mozilla Developer Network)

2.5 jQuery Core

jQuery is a fast and concise JavaScript Library that simplifies HTML
document traversing, event handling, animating, and Ajax
interactions for rapid web development. jQuery is designed to
change the way that you write JavaScript. (jQuery.com website)

jQuery is a commonly used and very powerful JavaScript library. It significantly

simplifies common operations such as DOM manipulation and traversing, AJAX and

animations. It accomplishes this with a jQuery object, which contains all of jQuery's

methods. The object can be used to select a DOM element or elements, and the

jQuery methods can then be used to modify or access the element contents. The

objects can also be chained:

var addButton =
$j(ui.tab).parent().addClass('tabButton').siblings('.ad
dButton').detach();

The above sample is from the current top bar's code. It selects a menu tab's parent

element, adds 'tabButton' – class to it, then selects all elements with 'addButton' –

class that are siblings to the previous selection (meaning they are on the same level),

and detaches them from the DOM tree. The detached selection is added to

addButton - variable - in this case there can only ever be one button of that type in

that location, so not 'var addButtons'.

jQuery is very well suited to creating user interfaces, which is where DOM

manipulation is most useful. Another useful facet of jQuery for this purpose are easy

to use events, such as .click(), .hover() and .change(), which are called in the context

of the invoking element . Also, jQuery handles browser compatibility well, which is

often relevant DOM manipulation. (Strahl, 2008)

2.6 MVC with Backbone and Backbone.Marionette

Model View Controller is a common programming architecture where the code is

11

separated to the namesake parts. Models store data and deal with data manipulation

and storage, views are used to display the data, or part of it in the desired manner,

and the controller associates user interactions to actions with views and models. The

separation of those concepts on a code level enables code that is more flexible and

easy to maintain, as they can be relatively independent of each other and thus can be

modified separately, and reused. (Osmani, 2012)

Backbone is a JavaScript library that adds a framework for implementing MVC model

to JavaScript. It has Models and Collections to store data and the related functions,

and Views that can be associated with Models and Collections to display the data.

The controller as such does not exist in Backbone's framework, but Views can be

considered to fill that purpose also, as they are the part of the code containing user

interaction. Backbone also manages attaching client's data to server via REST, which

eases saving and loading data. The framework offered by Backbone is just that, a

framework, and it is up to the developer to actually implement the model offered.

(Backbone.js website)

As Backbone is rather bare bones, it requires much code to work in a more complex

application – though the basic usage is very simple. As the author noticed when

Figure 3: MVC model with Marionette

12

testing the libraries, there are many common problems in a Backbone application

that have to be solved, and there are also many coders who have created answers for

these - just as Backbone is an answer to a common problem, and in fact all libraries

are. Marionette adds flesh on Backbone's bones by adding an event aggregator,

different types of Views and ways to manage Views and an approach where codes

can be separated into Applications and Modules. (Bailey, 2010)

With Backbone.Marionette one can have an MVC application with separation both

between Models and Views, but also between different parts of the larger

application, Modules.

2.7 Application Lifecycle Management (ALM)

As the name implies, this is a process of managing an application from the early idea

to the end of customer support. It covers all aspects of a (software) development

project, governance, development and operations as an interconnected process that

lasts for the project's lifetime. Governance starts from the idea of the application and

consists of all the decision making and the managing of the project as a business.

Development is the actual creation and continued maintenance of the application.

Operation means the initial and later deployments of the application and its

monitoring. (Chappell, 2008)

FreeNest is an ALM solution - as it currently advertises on its web page: "Application

Lifecycle Management for human beings". It has tools for tasking, testing, source

control and generic team collaboration and the tools are combined in such way that it

is possible to manage most if not all facets of ALM using it.

3. GOALS OF THE REWORK

This redesign of FreeNEST web interface takes a wider view on the subject. Instead of

being another rewrite of top bar it views top bar as a single part of the whole, which

includes all functionality that will be added on top of the individual tools.

3.1 REST interface

Most of the communication between server and client should take place via a REST

13

interface. This way both sides are independent of each other and the

implementations can be easily changed as long as the common interface is used. The

goal is, naturally, to implement this as fully REST; however this should not be treated

as a limitation to prevent implementation of features that contradict REST, as long as

it is justified.

3.2 Modularity

Each part of the web interface should be as independent of the others as possible, in

order to be updated, removed and added separately. This makes upkeeping of the

code easier, as one only needs to know about the particular portion of the code he is

working on, instead of having to know if it depends on other parts of the whole.

This is achieved by separating each separate portion of the code in its own logic. For

the prototype Marionette.js was chosen to help this, and the separate modules are

referred to as applications within Marionette.

Communication between different applications take place by the way of events. A

change or action triggers an event, which triggers any calls in applications that care

about that particular event. As the services do not directly know about each other, it

is significantly easier to maintain them separate of each other.

3.3 Clear file and code structure

The old web interface suffers from somewhat messy code, which is separated into

files that care about each other, however there is no clear way to know which files

use others. Indeed, there are some files that are not - and could not be - used,

because it has not been clear whether they are safe to remove or not. The actual

code has DOM manipulation, animations and other visual code alongside actual logic,

and there are some dirty solutions without real explanation.

With the rework comes a change to start with a clean slate. All separate files should

have a clear purpose, and the actual code ordered into a logical structure. Everything

should be as self-documenting as possible, so that future developers do not have to

waste time reading irrelevant portions of the code just to change one part.

14

3.4 Documentation

This ties with the previous chapter – while the work should be self-documenting, it

should also be documented. This means code should have comments describing what

a function or class does, what kind of arguments it takes and what it returns. Any

other non-obvious parts should also be explained, such as any cross-browser

compatibility fixes. An actual documenting tool such as JSDoc might also be useful.

There should also be documentation outside of the code, explaining in plain language

how the whole interface works, and what the classes do.

4. PLAN FOR NEW INTERFACE ARCHITECTURE

4.1 General idea

The most important part of the interface is implemented using JavaScript, and can be

treated as the 'main loop', so to say. The server side scripts are important, but the

client side interface can be considered to use those, and their implementation can

vary – as long as they support the REST interface.

The 'main loop' itself should be as bare bones as possible and only maintain the

event aggregator (or similar) and load/call the modules. The modules themselves

should each perform a single function per module as much as reasonably possible.

Much of this uses Marionette as an assumption and example, but it is not necessary

to use it. It is simply useful for explanation purposes, as it contains most of the

concepts that the new interface should have as classes, and so it reduces the length

of examples. This thesis also recommends Marionette be used for the final

implementation, as when using Backbone there is much code that has to be created

that is already implemented in Marionette. The main argument against using it would

be it adding another library dependency, and a possible overhead for a relatively

small project.

4.2 Main Application

The main application is the starting point of the interface. It loads all modules and

15

manages the events or similar methods the modules use to communicate. The main

application itself should not contain anything besides the framework for managing

the actual features, as it can easily end up bloated otherwise.

An example of main application using Marionette.js:

NestApp = new Backbone.Marionette.Application();

//get and append html templates for Marionette to use

$.get('topbarTemplates.html, 0, function() {

$('#topbar').append();

}

//Add regions, which are Marionette's feature for
managing VIews

NestApp.addRegions({

topRegion: '#topbar',

overlayRegion: '#overlay',

bottomRegion: '#bottom',

..

});

This simply creates a Marionette application, uses jQuery to load a template html file

and append it to the DOM structure under #topbar – which is a placeholder that tells

where the topbar should be placed – and defines some divs as regions for the

application. The template file should include templates for Marionette Views to use,

or otherwise the basic html structure for all core elements of the interface. Also one

should note that any optional modules (addons) may want to add new templates.

This could be managed by either providing the template file via REST by returning a

single file containing all the required templates from different files, or each module

loading their own template. The main templates should cover as much as possible to

reduce need for additional ones.

The regions are Marionette's way of managing Views, and even if Marionette is not

used it should be useful to identify different regions of page for modules and addons,

so that interface element locations are easier to manage. The main identified regions

are:

16

• Top, which is the (default) area for the main navigation menu

• Bottom, which could be used for any smaller and preferably temporary

elements. Also if chat feature is implemented, it should primarily reside here

• Overlay, which corresponds to a div that is defined in CSS to cover the rest of

the page. Some suggested uses are tutorial/help information and movable

elements like a notepad tool.

• Possibly sides, though one should note that these scale less well with different

display resolutions etc.

4.3 Modules and add-ons

Modules form the actual meat of the interface. Some modules, primarily main

navigation menu, can be considered core parts of the interface, while others are

optional addons. Regardless they should function similarly, and the distinction should

be a matter of hierarchy – i.e. addons work around core components. Modules in

general should be as independent of each other as possible, and any interaction

between them should take place via events:

NestApp.module('Topbar') {

Topbar.addInitializer(function() {

NestApp.vent.trigger('global:newAddon');

NestApp.vent.on('global:redButton',
selfdestruct());

..

}

..

});

In the example module called Topbar is created for NestApp main application. The

function addInitializer contains everything that is run once the module is started. In

this case the module triggers an event on NestApp's event aggregator, and starts

listening to redButton. If redButton – event happens, it will trigger selfDestruct() -

function of Topbar. By using events modules do not depend on each other and can be

removed without breaking other modules, yet they can communicate when needed.

17

Modules may also need to store data. While it is possible to leave it up to individual

modules to take care of their own data storage needs, this may make module

installation more inconvenient – it would be best if modules could be installed by

simply copying the module folder and enabling the module via a configuration utility.

For this purpose the server's REST interface should support creation of tables for

modules, so that if a module attempts to POST data via REST and the corresponding

tables do not exist they are created. It is very possible that this is not the best way to

handle all data storage, but it is a good option to have.

4.4 Addon management

For a system with addon support, there is also a need for convenient add-on

management. This can be made remarkably simple with some server side support.

There should be a separate folder for addons, and each addon should fulfill certain

conditions: they should be contained in a folder with the name of the addon, and

each addon should implement an addon interface, such as Marionette.Module.

With these conditions, a simple Python script can read all the addon files and then

return them as a single .js. This is important so one can be sure all the relevant files

are loaded before their contents get called. There are JavaScript libraries and

functions for this same purpose, but that dependency (and additional work) can be

avoided with few drawbacks, when the addons are assumed to only work in the Nest

context in any case.

It would be also good to have a tool for managing addons, so that it is possible to

manage addons – toggle on and off for example - without having to physically move

files around. This same tool could also be used to manage addon settings – an addon

could provide a set of settings available for configuration, which would automatically

be shown in this tool. As the core parts of the web interface should be similar to

addons, this same tool doubles as a generic configuration utility.

18

4.5 MVC model

As there is an assumption that Backbone.js is used to implement the interface, MVC

separation should happen naturally. It is important to keep all DOM manipulation –

which would be the view – separate from the rest, so the code is easier to read and

maintain.

As mentioned, Backbone.js already covers this with its Backbone.Model and

Backbone.View classes. Models contain all data manipulation relevant functions,

while views are responsible for how the data is actually displayed. Perhaps the most

important functionality granted by Backbone.Model is how it can be used to fetch

and update data via REST interface. This can greatly simplify all client-server data

storage interactions as long as the server supplies proper REST interface – which is

part of this thesis.

Views describe how the user interacts and sees the data. Backbone views have a

render() - function that is called to display the DOM, and an event support for user

interactions such as click, doubleclick etc. A good rule is, if one considers using jQuery

for something, the code probably belongs to a view. An example use of

Backbone.Model:

var Addon = Backbone.Model.extend({

defaults: {

name:'test',

enabled:'false',

description: 'test'

},

url: function() {

return restAddress + '/' +
this.get('name');

}

});

In the above example a model of an addon (which could be used for an addon control

panel, for example) is created. It has some default values, and the url – variable is

path that is used to populate this model via REST. The models often belong to a

19

Collection. To actually display (render) the data to user, the Model or Collection

needs to have a View:

var AddonsView = Backbone.View.extend({

tagname: 'div',

classname: 'addonsViewTest'

initialize: function() {},

render: function() {

$.each(this.collection.models,
function(key, value){

console.log(value);

});

return this;

}

});

The AddonsView describes how Addons – collection should be rendered. Tagname

tells it should be inside a div, classname tells the div's class. In this case it outputs all

of the models' data to browser's console, but in practise render should contain code

that describes what information is shown and how. It is possible to chain the

render()s - which is why the function should return this - so that a single model's

render describes how that model is rendered, and collection then renders those

while creating the container. This way it is possible to separate the visual code of

each object neatly, and the code should be independent of what other visual

elements do – and even more so of models. Once model and view are created, the

model has to be populated and coupled to a view so the user can view the data:

var allAddons = new Addons();

allAddons.reset({{GetAddons()}}); //or
allAddons.fetch();

var addons_view = new AddonsView({

collection: allAddons,

el: $('#addonsList')

});

addons_view.render();

20

Here allAddons is an instance of the Addons – collection. Reset() is used to populate

the collection on page load, and this assumes the data is available by time reset() is

called. In this case the JavaScript file is returned via a python script that has a

GetAddons() function - which in turn gets the addons from database and returns a

table. This way when the JavaScript file is loaded, reset() already has all the data as

an argument. Alternatively one could use fetch(), which loads the data via the REST

url, but if the data is viewable immediately on page load it should also be available

right away. As recommended by Backbone.js documentation:

"Note that fetch should not be used to populate collections on page
load — all models needed at load time should already be
bootstrapped in to place. fetch is intended for lazily-loading models
for interfaces that are not needed immediately: for example,
documents with collections of notes that may be toggled open and
closed." (Backbone.js website, 2012)

After the model is populated, it is associated with a view, which can then be

rendered.

While the above code is a greatly simplified example of a single case, it should show

the basic idea behind Backbone.js Models and Views. It is recommended to use

these, or another similar solution to when implementing the interface. This is

another area where Marionette offers good benefits by offering extended Views for

different purposes and the aforementioned Regions and Layouts for further

organization. Actual usage of Backbone Views would require similar code in any case,

and it makes sense to use an already tried and tested solution.

4.6 Themes

Theme support is another issue that the current instance of the Nest web interface

lacks. This should be implemented so that theme configuration and creation of new

themes is as simple as possible. A question here is how much a theme should do. It

should be taken as granted that a theme does cover fonts, colours and images, but

does it also include menu animations, or even how the menus are displayed?

Since the views will be separate, it is possible to have them in different files from the

models, and so they are easily replaceable by a theme, and this does make it possible

21

to alter basically anything the user sees with a theme. A function could, for example,

change the names of the views used. Or even simpler, load different view files.

Related to themes, it would be a good idea to have a set of re-usable templates,

views and other visual elements – that is, it would be good to create the elements

generic enough that they can be re-used. There are naturally libraries for this too,

such as jQueryUI, but they should be flexible and light. jQueryUI for example should

not be used, as it is not, in fact, very flexible as it depends on its own CSS files and

images.

4.7 File structures and interfaces

 It should be clear where different types of files are located, and what the files

contain. Below is an example, though naturally the final structure may not be similar:

That example is rather basic, but it is worth noting few things. All modules should be

in their own folders, with a single file (init.js in the example) that is always similarly

named so it can be easily found by either a server or client side script, depending

how the modules are loaded. Similarly for themes, it should be easier to install

themes if all the relevant files are in a single folder. The lib folder of the example is for

Figure 4: Example file structure

22

any third party libraries, such as jQuery and Backbone – of course it may make more

sense to have separate library folders for FreeNest code and for third party libraries,

the example is made with the assumption that all of the web interface code is found

either in the main.js or in the addons.

The REST interface should be similarly planned, to make clear what services are

available. The interface should be as generic as possible, so that any available data

can be retrieved easily not only for the current purposes, but any future needs also -

which of course simply means the interface should follow REST guidelines. How the

exact interfaces are implemented is again left open, but basically whenever the client

web interface needs to interact with the FreeNest server it should be via REST if

reasonably possible – that is, all direct references to certain files or ports should be

avoided. Backbone assumes by default that collections and individual models are

stored in certain URLs, but it is very flexible in this regard. The default is a very good

place to start with, however.

An important matter to note is that this thesis is written with an assumption that

certain libraries are used. It is naturally possible to use different libraries for

implementing this, but the model offered by Backbone (and Marionette) seems to fit

well with the aims of this thesis, and they are certainly convenient for the sake of

examples.

4.8 Libraries

Some of the JavaScript libraries used are very obvious, and basically mandatory

choices. jQuery is already commonly used inside FreeNEST, and not picking it would

require rather good reasons. It is a well-known and powerful tool for managing DOM

structure, and the other libraries used here have a light dependence on it – they do

not require jQuery, but many other libraries assume it is used in their documentation.

Underscore is an equally obvious choice, also being already being used in some

FreeNEST solutions. It offers lots of utility tools that simplify common coding

structures and add to JavaScript functionalities already available in many common

coding languages. It is also not very intrusive, as its functions are stored neatly

behind its namesake _ symbol. (Siddhart, 2012)

23

Backbone is a library that depends on Underscore. This choice too is based on tools

already used in FreeNEST. It is a rather lightweight library that adds MVC functionality

to JavaScript. It offers Models for storing data, and Views as a template for displaying

those models – keeping all DOM manipulation and interface separate from actual

logic. There are also Collections for managing and sorting multiple items, and Router

for address handling, but on the whole it is a barebones library that offers a

framework for cleaner JavaScript code. It is also worth mentioning that it uses REST

as a default method of storing objects on server, which is very convenient for this

work. (Joreteg, 2010)

Marionette is more of an optional library. This choice comes from realization that

there is much boilerplate code that would have to be placed on top of Backbone,

which in itself offers only a framework for the actual code. Another reason for

choosing this was a desire to have a framework for managing the web interface as a

whole application, rather than as a collection of separate functions and calls.

Marionette is also useful for modeling the add-on feature, as one of the keystones of

Marionette is a composite structure. This way not only can the default features be

implemented as independent applications, but any addons can be managed as such

too. (Bailey, 2010)

Here again are choices that stem from pre-existing FreeNEST solutions. Python itself

was chosen because of this, as well as SQLAlchemy. Beyond that there were choices

to make, however the backend could be implemented with many languages and

frameworks, as all that matters is that the end product implements the provided

REST interface.

Bottle is a web framework for Python. It is used mainly for the routing functionality

to implement a REST interface, and to manage returned data types. This could easily

be replaced with Flask or many other Python web frameworks, Bottle is again mainly

chosen because it is a very lightweight and focused library. Lack of multi-line

templates may be a drawback that may necessitate choosing another framework.

SQLAlchemy is simply a commonly used ORM library for Python. A SQLAlchemy

plugin for Bottle is also used for a bit simpler session managing.

24

5 SUGGESTED MODULES

5.1 Navigation menu

This is the most important module of the web interface, though arguably also one

that by itself would not need particularly much coding nor planning, and should be

the first one to be implemented. This is basically the original FreeNEST Topbar, but

the distinction here is that navigation menu only refers to the menu and the relevant

visual elements, and excludes all other features.

At its very basics the navigation menu is a collection of links organised under

categories. The challenge is that this menu has to be easily editable, look the same on

all browsers - though this goes for all of the web interface, have certain animations

and the theme should also be easy to change.

The current navigation menu is edited by clicking a button that puts the menu into

the edit mode, where the administrator can drag and drop links and categories to

desired places, delete those and create new ones. There is no real need to change

how this works. What is suggested however is that the edit mode should also open a

configuration page with additional customisation options:

• Change theme

• Change fonts, colours and other visuals on top of the theme

• Add more pages to a category. As the navigation menu category tab should

always be opened on the category the current page belongs to on default.

This association of categories and pages could also be used for other things.

The current version saves the menu structure as an XML file and it may be worth

considering the advantages of using JSON or a database instead. The author

recommends switching to JSON, as the menu will be manipulated using JavaScript in

any case. The menu file was saved as XML originally mainly because there was no

editor and XML files were somewhat easier for manual editing compared to JSON. It

is probably simpler and cleaner to use JSON in JavaScript in any case. The saving and

25

loading of the navigation menu structure should be done via REST, so how the server

saves the data depends on which is most convenient way, as long as it can send and

receive the menus in JSON format – using a database is also a good option.

5.2 Webchat

Webchat is meant to replace the current interface's ShoutBox. The most important

features - that are currently lacking - are support for multi-user chat, chat bots (for

functionalities such as easily referring to bugs), chat log and more convenient user

interface so one can have actual conversations instead of sending single messages.

The proposed way to implement this is to use XMPP (Extensible Messaging and

Presence Protocol). It is a very flexible and well-supported protocol with many

existing client and server solutions for different platforms. It offers support for all

features the webchat needs and more with its great number of extensions and its

XML-based nature makes it convenient for web applications.

The server choice is important, as while the protocol itself is very flexible it is in no

way guaranteed that a server implements all the extensions. One should also pay

attention to the license, as there are commercial or otherwise limited servers which

should naturally be ruled out. The author recommends either OpenFire or ejabberd,

as both of them should cover the needed features. OpenFire is more user friendly

with easily usable web interface that covers most settings, while configuring

ejabberd's configuration is based on text files. While this should not heavily weight

the choice in either direction, an easy user interface is much preferable if the

intention is that the end user group's administrator can also manage users, chat

rooms and other features easily. In ejabberd's favour, at the time the author tested

the different servers it supported message delivery to all of user's clients at the same

time, while OpenFire needed an user-made modification.

There are also many possible choices of library for the client implementation, and it is

again recommended that a ready library is used. The library should preferably

depend on languages already used in FreeNEST, which basically means that if it has a

server-side component it should preferably be in Python. Also any Flash-based clients

should be excluded. A good recommended library would be Strophe, written in

26

JavaScript with optional - though in case of this webchat, quite needed - server-side

components in Python.

The suggested chat features are:

• A private chat (between two persons)

• Group chat rooms

• Online user and user status list

• User can be logged in from multiple locations

• Messages delivered to every user's client where user is online – both received

and sent preferably.

• Chat history / log

• Default chat rooms for a project

• Chat bot + integration with other tools

• Web based chat management (configuration) – administrators should also be

able to disable features such as user rooms etc.

5.3 WikiWord

Wikiword is another feature of the old web interface, this could be re-designed as a

module. The basic functionality of this feature is simple: it finds any words that exist

on that FreeNEST instance's wiki as topics, and changes those words to links to the

relevant topics. While this feature has been problematic due to it working on third

party sites (the FreeNEST tools), its idea is still solid and if the new version has a solid

configuration tool it is worth implementing. Suggested features:

• Find words written in WikiWord format, replace with links

• Blacklist pages and page elements – areas that should be ignored when

searching

• Web based configuration that can:

• Change the used regexp, both with a wizard or a pool of different options,

27

and a custom regexp

• Edit the page/element blacklist

• Add options for external link creation

5.4 Other modules

There are also other already existing features that have to be, or should be turned

into modules, and possible new features that should be implemented as such. Log in

screen could be a module, or it could stay as it is, a separate screen. Since the page

has to be reloaded in any case, and the screen is relatively simple, there are not any

huge benefits to be gained, except the usage of (possible) themes can be extended to

log in screen. The same goes for user configuration and other tools that currently use

their own pages in any case. Team mood meter is a feature that is included on the

current top bar, so it has to be reimplemented as a module.

A possibly useful feature that has been talked about would be a help and tutorial

tool, that could use the overlay region to display tips on how to use the current page.

Similarly it could be possible to implement an improvement on WikiWord – feature

that could show short descriptions of the topics when moving mouse cursor on them.

6. DOCUMENTATION

This is another important part that is mostly missing from the current version of the

web interface. The documentation should be comprehensive and clear so that new

developers can easily continue developing instead of wasting time delving through

the files and code – and it helps the old developers too, when dealing with older

code.

6.1 Comments in code

There are tools for automatically generating documentation for JavaScript, such as

JsDoc Toolkit, but it is likely that they will not work well with the different libraries

used in the project, and it is better to just comment the code normally. The

commenting style used in Backbone.js annotated source is a good example to follow,

28

with each code block described on a general level – it is not necessary to mention

routine variables, but anything that is not immediately obvious or that refers to

another function should be described. (backbonejs.org)

While automated document generation using JsDoc or similar tools that rely on code

syntax may not be practical, Docco is a viable alternative. It is a document generator

that creates a HTML document with syntax highlighted code and the relevant

comments separated alongside the code in a different paragraph. It does not rely on

comment annotations nor does it try to recognize objects and other code patterns,

and instead takes both as is and outputs them in a easy to read format. Docco does

support Markdown for advanced comment styling such as emphasis and code block

tags, but the user can also just use normal single-line JavaScript comments and get

good results. (Bailey, 2011)

While the above concerns JavaScript code, the server side code should be similarly

commented. Unlike with JavaScript, it is possible to use automated document

generator with Python, and there is a multitude of options to choose from. For sake

of consistency it might be a good idea to use Pocco, which is a Python port of Docco

with the same features – and limitations. For more heavy-weight document

generation a good option would be Sphinx, which is a generator used by Python itself,

and many other projects.

6.2 Wiki pages

Besides code comments a good way to document a feature is to create a Wiki page.

The page should contain a description of the feature how it works on a more generic

level. It should also act as a guide on how to use and configure the feature, what the

different options do. There are already existing guidelines on Wiki documentation

inside Nest project groups, which will be more up to date, so it is only really worth

saying here that the Wiki pages should used in addition to other documentation.

29

7. SUMMARY

This thesis describes the desired future version of the web interface on a very generic

level, and does not go into specifics of architecture or implementation. This is

because it is meant to be more of a description of how the current state of the

interface could be improved, and not design whole of the architecture. How – and of

course, if – the actual next version of the web interface will be implemented depends

heavily on the resources available at the time, and how much of the suggested

changes are actually needed.

While this thesis on some level stays rather generic, it does lean rather heavily on

certain libraries being used. This is because especially Backbone is very useful for

most kinds of JavaScript solutions. Marionette offers a more specific model, but it

was chosen because the author feels that the same model is a very good one for the

redesigned interface. Marionette is not at the moment that commonly used, and is a

smaller project, so there is a risk that it will not be updated regularly. Nevertheless, it

is good for example's sake even if it is not used otherwise.

An issue that rises from the proposed model of using a single framework to cover all

of the web interface means that pretty much everything will have to be rewritten. In

the author's opinion this would be needed in any case, as especially the older parts

of the current web interface can not be fixed without more or less full rewrite: The

old topbar certainly has to be done over again, WikiWord's core logic can be used but

it needs configuration and refactoring, and ShoutBox cannot be used in any form.

There are other features that will need to be refactored to use the new interface

also.

The question that naturally follows is: is it worth it? In the authors opinion, yes, in the

long run it is worth it. The current web interface is in well functioning state at the

moment, and does not really need much resources to upkeep – by and large it works.

Any further improvements on the old interface would be built on a rather fragile

platform, and it is instead better to spend resources to build a more stable platform

before adding new features. It is a lot of work, but in the long run it should save more

work. A huge benefit of a modular framework is also that it will be much easier for

30

third party developers to create modules.

REFERENCES

Backbone.js. n.d. Javascript library. Referred to on September 13, 2012.
http://backbonejs.org

Backbone.js, 2012. Backbone annotated source code. Referred to on November 13,
2012. http://backbonejs.org/docs/backbone.html

Bailey, Derick. 2010. Composite Javascript Applications with Backbone and
Backbone.Marionette. Referred to on September 13, 2012.
http://lostechies.com/derickbailey/2011/12/16/composite-javascript-applications-
with-backbone-and-backbone-marionette/

Bailey, Derick. 2011. Annotated Source Code as Documentation with Docco. Referred
to on November 13, 2012.
http://lostechies.com/derickbailey/2011/12/14/annotated-source-code-as-
documentation-with-docco/

Chappell, David. 2008. What is Application Lifecycle Management? Referred to on
November 5, 2012. http://www.davidchappell.com/WhatIsALM--Chappell.pdf

Fielding, Roy T. 2000. Representational State Transfer (REST). Referred to on
September 18, 2012.
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Joreteg , Henrik. 2010. Building a single page app with Backbone.js, underscore.js and
jQuery. Referred to on September 13, 2012.
http://andyet.net/blog/2010/oct/29/building-a-single-page-app-with-backbonejs-
undersc/

Mozilla Developer Network, n.d. Ajax: Getting Started. Referred to on November 13,
2012. https://developer.mozilla.org/en-US/docs/AJAX/Getting_Started

Mozilla Developer Network, n.d. Javascript Technologies Overview. Referred to on
November 13, 2012. https://developer.mozilla.org/en-
US/docs/JavaScript_technologies_overview

Osmani, A. Journey Through the JavaScript MVC Jungle, 2012. Referred to on
November 13, 2012. http://coding.smashingmagazine.com/2012/07/27/journey-
through-the-javascript-mvc-jungle/

Quirksmode, n.d. W3C DOM – Introduction. Referred to on November 13, 2012.
http://www.quirksmode.org/dom/intro.html

Rintamäki, M. FreeNest Concept Owner. A Presentation to on FreeNest 9.11.2012.

Mills, C. 2011. A Developer's Introduction to HTML5. Referred to on November 13,

2012. http://www.developerfusion.com/article/123608/a-developers-introduction-

to-html5/

31

Siddhart. 2012. Getting Cozy with Underscore.js. Referred to on Septermber 13,
2012. http://net.tutsplus.com/tutorials/javascript-ajax/getting-cozy-with-underscore-
js

Strahl, R. An Introduction to jQuery, 2008. Referred to on November 13, 2012.
http://www.west-wind.com/presentations/jquery/

Tilkov, Stefan. 2007. A Brief Introduction to REST. Referred to on September 13, 2012.
http://www.infoq.com/articles/rest-introduction

Underscore.js, n.d. Javascript library. Referred to on September 13, 2012.
http://underscorejs.org

w3.org. n.d. Introduction to HTML 4. Referred to on November 8, 2012.
http://www.w3.org/TR/REC-html40/intro/intro.html

w3.org, 2000. Document Object Model Core. Referred to on November 30, 2012.
http://www.w3.org/TR/DOM-Level-2-Core/core.html

w3.org, 2001. URIs, URLs and URNs: Clarifications and Recommendations 1.0.
Referred to on November 27, 2012. http://www.w3.org/TR/uri-clarification/

Wikipedia, n.d. Application Programming Interface. Referred to on November 30,
2012. http://en.wikipedia.org/wiki/Application_programming_interface

	Redesign of FreeNEST web interface
	Terminology
	AJAX
	ALM
	API
	DOM Core
	FreeNest
	HTML
	JavaScript
	MVC
	Python
	Server
	SkyNest
	URI
	Web client

	1. Introduction
	1.1 FreeNEST
	1.2 FreeNEST web interface
	1.2. History

	2 Concepts
	2.1 REST
	2.2 HTML
	2.3 AJAX
	2.4 HTML DOM
	2.5 jQuery Core
	2.6 MVC with Backbone and Backbone.Marionette
	2.7 Application Lifecycle Management (ALM)

	3. Goals of the rework
	3.1 REST interface
	3.2 Modularity
	3.3 Clear file and code structure
	3.4 Documentation

	4. plan for new interface architecture
	4.1 General idea
	4.2 Main Application
	4.3 Modules and add-ons
	4.4 Addon management
	4.5 MVC model
	4.6 Themes
	4.7 File structures and interfaces
	4.8 Libraries

	5 Suggested modules
	5.1 Navigation menu
	5.2 Webchat
	5.3 WikiWord
	5.4 Other modules

	6. Documentation
	6.1 Comments in code
	6.2 Wiki pages

	7. Summary
	References

