
Kai Molander

DIGITAL SIGNAL PROCESSING THEORY FOR IN-PHASE 
AND QUADRATURE SIGNAL COMPONENTS RECORDED 
FROM WCDMA FREQUENCIES

Fourier-transform, filtering, and DSP theory.

Thesis
CENTRIA UNIVERSITY OF APPLIED 
SCIENCES
Degree Programme in Telecommunications technology
March 2013



TIIVISTELMÄ OPINNÄYTETYÖSTÄ

Yksikkö
Ylivieska

Aika
Marraskuu, 2013

Tekijä/tekijät
Kai Molander

Koulutusohjelma
Tietoliikennetekniikka
Työn nimi
Digitaalisen signaalinkäsittelyn teoriaa I/Q signaali komponenteilla, jotka on nauhoitettua 
WCDMA − taajuuksilta.

Fourier-muunnos, suodatus ja WCDMA signaalien käsittelyyn liittyvä teoria.
Työn ohjaaja
Joni Jämsä

Sivumäärä
50

Työelämäohjaaja
Ville Kukonlehto

Dokumentin  tarkoituksena  on  esitellä  meidän  ensimmäiset  digitaaliseen  signaalin 
näytteiden processointiin liittyvät askeleet. Tässä tapauksessa, nämä signaali näytteet on 
nauhoitettu WCDMA taajuuksilta ja ne tulee muuttaa taajuus-tasoon, sekä suodattaa, jotta 
(takaisin  aikatasoon  muuttamisen  jälkeen)  näytteiden  processointia  voidaan  jatkaa 
WCDMA – spesifikaatioiden algoritmeillä.

Tavoite tässä teesissä on selkeästi kuvata diskreettiin Fourier-muunnokseen liittyvät teoriat, 
sekä miten näitä käytetään käytetään signaalinkäsittelyssä. 

Asiasanat
Fourier muunnos, digitaalinen signaalinkäsittely, WCDMA (UMTS -verkoissa käytettävä 
radiorajapinta)



ABSTRACT

CENTRIA UNIVERSITY 
OF APPLIED SCIENCES

Date

March, 2013

Author

Kai Molander
Degree programme

Telecommunications technology
Name of thesis

DIGITAL SIGNAL PROCESSING  THEORY FOR  IN-PHASE  AND  QUADRATURE 
SIGNAL COMPONENTS RECORDED FROM WCDMA FREQUENCIES
Fourier-transform filtering, and DSP theory
Instructor

Joni Jämsä

Pages

50
Supervisor

Ville Kukonlehto

The objective of this thesis is to describe our first steps of signal sample processing. In our 
case  these  samples  are  recorded  from  WCDMA  frequencies  and  they  need  to  be 
transformed into the frequency domain as well as filtered so that the signal samples (once 
transformed  back  to  the  time  domain)  can  be  processed  by  WCDMA -  specification 
algorithms. 

The objective of this thesis is to clearly explain the basics of the discrete Fourier-transform 
and how it is applied to signal processing.

Key words
Fourier-transform,  digital  signal  processing,  Wideband Code Division  Multiple  Access, 
WCDMA



DEFINITIONS AND ABBREVIATIONS

Function In mathematics, a function ( f ) associates an argument or input 

( x ) with one value or output: f ( x ).

Transform In mathematics an operation where the input is a function (  f  ) 

and the output is another function: Transform of f or as it is 

usually expressed in its shortened form as just a capital F.

Discrete In mathematics and signal processing, we study a signal or set 

of values in a certain range, (a finite or limited set of values) 

rather than a continuous or infinite range.

Discrete transform In signal processing, mathematical transforms of signals 

between discrete domains / ranges, such as discrete time or 

discrete frequency.

Fourier transform A mathematical operation that allows us to transform a 

mathematical function of time to its frequency representation.

Fourier series In mathematics or signal processing allows us to describe a 

periodic function or signal as a set of sine and cosine functions. 

In signal processing specifically, the Fourier transform allows 

us to see the effect of each individual frequency (dependent on 

resolution). The study of Fourier series is a branch of Fourier 

analysis.

Fourier analysis In modern mathematics, refers to both the operation of 

decomposing a function into simpler pieces as well as 

rebuilding it from those pieces (pieces referring to values).



DFT Discrete Fourier Transform, a specific kind of discrete trans-

form used in Fourier analysis.

FFT Fast Fourier Transform, describes an efficient algorithm 

used to compute the discrete Fourier transform and its inverse.

DIT  When discussing the FFT, decimation refers to how we break 

down the FFT. In the case of separating the calculations to the 

"even" and "odd" indices (where these refer to the index for an 

arbitrary array that holds samples used in calculation of the 

FFT) we are discussing a decimation-in-time algorithm.

DIF When discussing the FFT, if we break down the FFT by 

separating in a first-half/second-half (again, indices) approach 

it is referred to as the decimation in frequency algorithm.

WCDMA Wideband Code Division Multiple Access, air interface (or 

radio) technology of UMTS.

UMTS Universal Mobile Telecommunications System. UMTS is an 

umbrella term for the third generation radio technologies 

developed within the 3GPP. 

3GPP The 3rd Generation Partnership Project (3GPP) unites [Six] 

telecommunications standards bodies, known as 

“Organizational Partners” and provides their members with a 

stable environment to produce the highly successful Reports 

and Specifications that define 3GPP technologies. 

DSP Digital signal processing, is the processing of discrete signals 

which are represented in a digital format. While working with 



digitized data we gain several advantages in the processing 

stages.

SAMPLING Sampling (in signal processing) refers to the reduction of a 

continuous signal to series of discrete samples.

SAMPLE Refers to a value or set of values at a point in time and/or space. 

SAMPLER A system (ADC) or operation (mathematics) that extracts 

samples from a continuous signal.

ADC Analog-to-Digital converter, also abbreviated as A/D , is a de-

vice that in DSP is used to convert continuous signals into a 

discrete digital representation (signal sampling) in the time do-

main.

I/Q signal In-phase and Quadrature signal components can be represented 

as complex number format in mathematics as cosine (real) and 

sine components (imaginary). These discrete values are referred 

to as symbols. Symbols can be used visualized as points on the 

complex plane and mapped via the constellation diagram.

Complex number Complex number is a number which can be represented in the 

form , where r is the real part and i is the imaginary part of the 

number. Also referred to as the imaginary unit . Complex 

numbers are used in signal processing to represent the phase 

information of a signal since they extend the idea of one 

dimensional numbers to two dimensional.

Imaginary unit (i) Defined in mathematics as i=√−1.



Pi (π) The ratio of a circle's circumference to its diameter. 

Approximation defined as 3.1415926535. 

Euler's number (e) Defined in mathematics as an approximation of 2.71828. Used 

to define the exponential function.

Prime number Defined in mathematics as a natural number greater than 1 that 

has no positive divisors other than 1 and itself. For example 3.

Composite number Defined in mathematics as a positive integer which has a 

positive divisor other than one or itself. 

Natural number Defined in mathematics as a set of positive integers 1, 2, 3, etc. 

or a set of nonnegative integers 0, 1, 2, 3 etc.

Radix In the FFT and DFT divide-and-conquer algorithms, the radix 

refers to the decomposition of the FFT size N when it is 

separated into a calculation radices r , where N is a 

composite and r is a prime, N = r 1∗r 2∗r3 … rn .

Mathematical symbols

* Multiplication sign.

/ , ÷ Division sign(s).

x
y

Division of x with y.

x / y

∑ Summation sign.

∫ Integral sign.

∑
lower limit

upper limit

x (n)∗ y(n)
Operation of summation and 

multiplication with limits.

http://en.wikipedia.org/wiki/Ratio
http://mathworld.wolfram.com/NonnegativeInteger.html
http://mathworld.wolfram.com/PositiveInteger.html
http://en.wikipedia.org/wiki/Divisor
http://en.wikipedia.org/wiki/Positive_integer
http://en.wikipedia.org/wiki/Divisor
http://en.wikipedia.org/wiki/Natural_number
http://en.wikipedia.org/wiki/Diameter
http://en.wikipedia.org/wiki/Circumference
http://en.wikipedia.org/wiki/Circle


X (k )= ∑
n=0

upper limit

x(n)∗y (k−n) Discrete convolution.

x ∈ X

Element-of sign 

(x is included in or is an 

element of X) 
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1 INTRODUCTION

This document discusses  the projects first signal processing steps, the transformation of 
time domain signal samples to the frequency domain via the Fast Fourier Transform. It 
does  not  go  into  detail  about  the  shortcomings  of  the  FFT in  some signal  processing 
applications, nor are there any proper comparisons made against direct convolution filters.

Firstly the theory related to our defined problem is overviewed and necessary definitions 
are established. In the following chapters we move on to look at the process of calculating 
a Discrete Fourier Transform and finally implement one of the simplest forms of the FFT 
algorithm, the Cooley-Tukey Fast Fourier-transform algorithm. A portion of the algorithm 
as programming code is presented in the annexes.

The evaluation chapter presents the next problems that need to be solved in the case of 
WCDMA signal processing.
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2 THEORETICAL BASIS

A system records signal samples from the air and these signal samples need to be post-

processed in a non  − real-time software / hardware combination. This recording system 

design may vary immensely, in our case it has to take into account the requirements of the 

third generation (3G) air interface technology in WCDMA.

Figure 1: A pseudo block diagram for a signal sampling and recording device 

(paraphrased from  R&S FSQ-B17 Digital Baseband Interface manual)

The  above  graph  shows  a  possible  receiver  block  diagram based  heavily  on  the  one 

described in the R&S FSQ-B17 Digital Baseband Interface manual. The bandpass filter 

may be used to limit the bandwidth currently recorded. The signal is then digitized by the 

sampler, an ADC, at the chosen sampling rate. These digital samples are carried to the two 

mixers that are fed by the numerical controlled oscillator. Here the I/Q signal is split to its 

In-Phase and Quadrature components. The I/Q split is the most important portion of the 

processing since this  is  where we will  start  our digital  signal  processing via  software. 

Processing  such as  the  FFT requires  the  signal  the  be  split  since  it  employs  complex 

number operations to achieve signal processing.
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2.1 In-Phase and Quadrature signals

The I/Q signal is represented as complex numbers and they carry along with them phase 

information.  There  are  many  different  modulation  techniques  that  map  this  phase 

information  to  bits  (via  demodulating  the  signal).  The  following  graph  shows  a  two 

dimensional representation of the I/Q signal.

Figure 2: In-Phase and Quadrature signal 2D graphical representation (Hiebel 2007.)

The important thing to note for us considering the FFT is that we need to keep this phase 

information and deal with the complex number representation of these signals in order to 

gain a useful end product out of our calculations. If we only use the real data (the In-phase 

components) we will not be able to continue processing the signal in terms of WCDMA 

receiver algorithms.
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2.2 WCDMA and the sampling theorem

The Nyquist–Shannon sampling theorem comes into play when the ADC takes discrete 

time domain samples from the air interface. In the graph below, a bandwidth of 40 MHz is 

represented, where (roughly) at the center a single 5 MHz WCDMA frequency band exists. 

Note that the x-axis displays the number of bins from 0 to 1024.

In  the  very  essence  of  this  sampling  theorem states  that;  The  sampling  frequency  is 

determined as range of signal frequencies. If these are kept below half of the sampling 

frequency, all of the noise frequencies remain above this limit and can be kept away from 

the receiver by a low-pass filter.  The transmission of a signal may thus be completely 

distortionless, if the sampling frequency is twice the highest signal frequency. (Lüke 1999, 

108).

Figure 3: 40 MHz frequency band represented as 1024 point FFT in the frequency domain.
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The previous  statement  simplified in  a  mathematical  form,  where  Fmax is  the highest 

frequency of the original signal that can be sampled, where :

F max=
Sampling rate

2

In practice, the sampling theorem shows that a band-limited analog signal that has been 

sampled can be reconstructed from sequence of samples if the sampling rate is double the 

maximum frequency (Fmax). This also means that from a bandwidth point of view, it is the 

maximum bandwidth, that we can sample with the chosen sampling rate, where no 

information should be lost.

So looking at figure 3, it means that each point (or frequency bin) in the FFT represents a 

frequency  resolution  of  39.0625  kilohertz.  This  can  be  calculated  by  dividing  the 

bandwidth with the number of FFT bins or the sample rate with the size of the FFT. 

Frequency resolution=
Sample Rate
FFT points

=
Frequency range
Number of bins

Now, a single WCDMA band takes up 5 MHz of actual bandwidth. The number of FFT 

bins it should approximately occupy is equal to 128 and can be calculated by dividing the 

actual bandwidth with the frequency resolution:

Bins occupied by a singleWCDMA band=
5 MHz

39.0625 kHz
 

The most important point to realize from this is that if the recording system we use does 

not  satisfy the sampling theorem we will  be losing information.  The second important 

point is that if the resolution of the FFT is not accurate enough (FFT size large enough), the 

frequency components, in case of multiple WCDMA bands, will start to leak into other 

bands the way you do not want them to. What the reader should realize now, is that a single 

bin actually consists of signal information from multiple frequencies. Specifically, if the 

starting frequency of bin 0 in figure 3 is 0 Hz the first frequency bin actually contains 

information from frequencies 0 Hz to 39.0625 kHz. The Fourier-transform enables us to 

separate these frequencies in the resolution we desire.
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2.3 Quadrature sampling

When looking for information on the sampling theorem I discovered a few key notes about 

sampling systems. In essence, the sampling system devices today can be designed in a 

multitude of different ways and there are some interesting points to gain in terms of signal 

information. The following extracted from the book The Fast Fourier Transform and its 

Applications by E. Oran Brigham explains the idea behind the figures one and four where 

the receiver separates the signal into to two functions.

Applications of the FFT are sometimes limited by the sampling rates achieved by analog-
to-digital converters. For these cases, it is possible to achieve a lower sampling rate by 
separating the signal into two waveforms, or channels, and sampling each channel. This 
concept is based on the principle that a signal can be expressed in terms of two waveforms 
called quadrature functions. Each of the two quadrature functions occupies only one-half 
the  bandwidth  of  the  original  signal.  Hence,  it  is  possible  to  sample  each  quadrature 
function at one-half of the sample rate required to sample the original signal.

(Brigham 1988, 327)

The following chapter looks at the DFT from the point of view of DSP theory. It presents  

the examples that need to be understood when discussing the Fourier-transforms and what 

we actually gain from it.

Figure 4: Block diagram of the quadrature-sampling and signal-recombination process. (Brigham 
1988, 331)
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2.4 What is the point of the DFT and the FFT

The  Fourier-transform decomposes  the  specified  signal  (in  our  case,  a  series  of  time 

domain values) and splits the information up to the specified frequency resolution (size of 

the Fourier-transform) giving us a frequency domain representation of the signal. Some of 

the mathematical operations that we need to employ on our signal would be very costly 

and  slow (from a  computational  point  of  view)  in  the  time  domain.  However  in  the 

frequency domain they can be done more easily and filtering can even be done during the 

FFT calculation via convolution. 

Here  we  are  presented  with  an  example  of  signal  with  all  of  its  different  frequency 

components summed. This is often what we are looking at when we see the signal in a time 

domain  representation.  What  the  Fourier-transform  allows  us  to  do  is  separate  these 

different  frequency components  from this  signal.  We are  modifying the  signal  to  gain 

another signal, or in this example multiple different signals.

Figure 5: Example of a time-domain signal is represented with all of its frequency components 
summed.
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Here  we  have  the  same  signal  previously  from  figure  5,  but  with  all  the  different 

frequencies  (in  this  case  only  three  for  easier  display  in  this  2D  domain)  displayed 

separately.  When  we  run  our  signal  or  signal  samples  through  the  forward  Fourier-

transform operation, the algorithms and mathematical operations are designed to give us a 

frequency representation of the signal. 

If we try to represent a signal with a 5 MHz bandwidth in the previous way (separating the 

frequencies  into  to  signals  relative  to  time)  not  only  would  the  drawing  get  quite 

complicated but we would not be able to tell much from it. Next let's look at the frequency 

domain representation of our example signal.

Figure 6: Example signal is represented with all of its frequency components separated in the time-
domain.
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Here the results of the Fourier-transform are plotted in the frequency domain. From this it 

is much easier to distinguish, in the case of wide-band signals, the range of frequencies in 

our signal.

In the very core the Fourier-transform is nothing but multiplications and additions with 

sine and cosine waves. Moreover when these waves are expressed as a series of discrete 

values, the mathematics of it suddenly becomes more familiar. As a side note, although the 

mathematics of it can be very simple, some of the problems that it is used to solve are not. 

The only problem with mathematics such as the Fourier-transform is that, although the 

calculations are just additions and multiplications, the explanations behind the formulas are 

almost always lacking in detail. This is true especially from the point of view of people that 

have marginal experience with mathematics. We will now look at some of the mathematics 

that need to be understood when looking at the Fourier-transform and FFT algorithms.

Figure 7: Example signal is represented in the frequency domain.
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2.4.1 Euler's formula

Euler introduced the use of exponential functions and logarithms in analytic proofs. Most 

times in the FFT formulas the sine and cosine components are represented in exponential 

function  notation.  It  comes  down to  being  another  polar  format  representation  of  the 

complex number format.

Euler's number ( e ) helps us define an exponential format for complex numbers, as well as 

provides  a  relation  to  the  trigonometric  functions.  This  is  the  exponential  function 

representation often used with the DFT and FFT formulae.

ei φ=cos(φ )+ i∗sin (φ )

Where i is the imaginary component and φ (phi) is any real number. Euler's formula allows 

us to move between the polar and Cartesian representation.  A complex number can be 

represented on the complex-plane as Cartesian coordinates. 

This is the same complex-plane representation as the I/Q signal example in figure two. It is  

displayed here once more to demonstrate the link between the mathematics and signal 

processing. 

Figure 8: A geometric interpretation of Euler's formula 
(Wikipedia, 2009)
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2.5 Discrete Fourier Transform (DFT)

If you need and explanation on the basics of the equation notation, please see Annex C. 

Before discussing the discrete transform lets take a look at the actual Fourier-transform 

integral it is based on. This example is taken from the Stanford University website:

X (ω)=∫
−inf

inf

x (n)∗ei∗ω∗n dt , ω ∈ (−inf ,inf )

This is the Fourier transform notation for infinite signals The DFT replaces this previous 
integral with a finite sum, where N is the size of the DFT:

X (ωk )=∑
n=0

N −1

x(n)∗ e−i ∗ ωk ∗ n

In summary, the DFT is  simpler mathematically, and more relevant computationally than 
the Fourier transform. At the same time, the basic concepts are the same.  (Smith,  J.O. 
2007.)

The  DFT  gives  us  access  to  the  signals  frequency  domain,  however  it  is  basically 

implemented  as  a  direct  convolution  operation.  This  means  that  the  calculation  still 

requires  a  lot  of  arithmetic  operations.  This  is  why the  algorithm known as  the  Fast 

Fourier-transform was developed. The most important point to note at this time, is that the 

FFT is not an approximation of the DFT. It is the DFT with a reduced number of arithmetic 

operations. Next, before moving on to the FFT formula and the explanation behind the 

Cooley-Tukey decimation-in-time FFT algorithm, we will take a look at the divide-and-

conquer algorithm approach and how these FFT algorithms relate to it.
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2.6 Divide and conquer algorithms for computation of the DFT

This next example is based on the book Digital Signal Processing: Principles, Algorithms 

and Applications by  Proakis and Manolakis, 1996. The books chapter 6.1.2 "Divide-&-

Conquer Approach to Computation of the DFT gives a detailed explanation to how the 

family of FFT algorithms is formed.

The development of computationally efficient algorithms for the DFT is made possible if 
we adopt a divide-and-conquer approach. This approach is based on the decomposition of 
an N-point DFT into successively smaller DFTs. This basic approach leads to a family of 
computationally efficient algorithms known collectively as FFT algorithms. (Proakis and 
Manolakis, 1996).

The divide-and-conquer method solves this problem by breaking it into subproblems that 

are  smaller  instances of the same type of  problem. It  them solves  these problems and 

appropriately combines the results

For  the  Cooley-Tukey  radix-2  FFT algorithm,  where N is  the  size  of  the  DFT,  the 

computational sizes will be factored as a product of two integers: N=L∗M . the values 

were chose as M =N /2 and L=2 . This comes down to breaking the DFT into two 

smaller  DFTs  where  the  summation  runs  to  half  of  the  original  size  of  the  DFT. 

Additionally these two DFTs are designated to compute the even and odd-numbered signal 

samples. 

This "index reversing" is discussed in chapter 2.8 with an example displayed in figure 10. 

Where the butterfly diagrams (discussed in chapter 2.8.1)  use complete bit-reversing of 

the  signal  sample  indices  to  produce  the  frequency-domain  results,  the  Cooley-Tukey 

algorithm only computes the even- and odd-index split stage. 

In the next chapter we will look at the actual FFT formula and the additional rules that 

provide the algorithm its speed, mainly due to the periodic properties of the coefficients. 
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2.7 Fast Fourier Transform (FFT)

The Cooley-Tukey decimation-in-time (DIT) algorithm separates the calculations into two 

parts  (hence the name radix-2). The basic formula operations consist of signal samples 

being multiplied by coefficients and then summed together. A more common notation for 

the FFT is as follows:

FFT N [k , f ] = ∑
n=0

N−1

f (n)∗ e−i∗2∗π∗k∗n / N

Where we take the FFT of function f where f (n) defines the values of the function 

being multiplied by our coefficients and then summed together. We assign the calculated 

values to be stored by index k .

The indices k and n run from 0 to N – 1, where N is the size of the FFT. What this 

means is that the the calculated frequency domain value at index k=0 consists of all 

values  in  our  function  (up  to  the  size  of  the  FFT)  multiplied  with  a  portion  of  our 

coefficients. The coefficients actually run much longer than the size of the FFT because of 

both indices existing inside the exponential function.

To transform this notation into the DIT radix-2 algorithm, we need to split the DFT into the 

even and odd portion (decimation by factor of two) calculations as follows: 

FFT N [k , f ] =

∑
n=0

N /2−1

f (2∗n)∗ e−i∗2∗π∗k∗2∗n / N +

∑
n=0

N /2−1

f (2∗n+ 1)∗ e−i∗2∗π∗k∗(2∗n+ 1) / N

This means that the even (2*n = 0, 2, 4 etc.) indexed samples and the odd (2*n+1 = 1, 3, 5 

etc.) indexed samples are handled separately. This is where the name 'decimation-in-time' 

comes form. Index n now runs from 0 to N /2 due to being split into two portions. 
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Now to produce the computational savings that we are after, the FFT needs to be modified 

further by extracting the twiddle factor element from our coefficients. In the following 

equations well only look at the exponential functions, our coefficients of the odd part:

… e−i∗2∗π∗k∗ (2∗n+ 1) / N

From  this,  we  want  to  extract  the  twiddle  factor  or  phase  factor  by  separating  the 

summation inside the exponential function to produce two exponential functions:

… e−i∗2∗π∗k∗2∗n / N
∗ e−i∗2∗π∗k / N

This leaves the odd part coefficient with the same expression as the even part coefficients. 

And now due to the operations inside the transform only consisting of multiplications, we 

can move this twiddle factor to the front of our summation clause to produce:

FFT N [k , f ] =

∑
n=0

N /2−1

f (2∗n)∗ e−i∗2∗π∗k∗2∗n / N +

e−i∗2∗π∗k / N
∗ ∑

n=0

N /2−1

f (2∗n+ 1)∗ e−i∗2∗π∗k∗2∗n / N

Now as stated, the even and odd parts are multiplied with the same coefficients. The other 

coefficients that are moved to the front of the odd summation part of the algorithm are also  

referred to as 'twiddle factors' or 'phase factors'.

Lets define a more compact representation for the summation and multiplication parts as 

follows, where f E denotes the DFT for the even and f O for the odd index part:

FFT N /2[k , f E ] = ∑
n=0

N /2−1

f (2∗n) ∗ e−i∗2∗π∗k∗2∗n / N

FFT N /2[k , f O] = ∑
n=0

N /2−1

f (2∗n+ 1)∗ e−i∗2∗π∗k∗2∗n / N
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This change of expressing the DFT parts hopefully makes the next rule we introduce a little 

more clear. These are the periodic properties of the radix-2 FFT. Note that the index n is 

now hidden inside compact representation of the summation equation that we defined:

FFT N [k , f ] = {
FFT N /2[k , f E ] + e−i∗2∗π∗k / N ∗ FFT N /2[k , f O] ,

when k < N / 2

FFT N /2 [k−
N
2

, f E ] − e−i∗2∗π∗k / N
∗ FFT N /2[k−

N
2

, f O ] ,

when k ≥ N / 2

The most important thing to note here is the index k and the sign flip on the twiddle 

factor during the calculations. The algorithm recycles the calculation results of the even 

and odd DFT parts to compute the final output of the FFT.

The Cooley-Tukey algorithm is limited FFT sizes N of power of two or 2 p . This main 

limitation for the algorithm comes from the radix-2 size. For the radix-2 decomposition the 

FFT size must be able to be divided to sizes of two prime numbers r , where we split the 

single DFT into these two DFT's, according to the divide and conquer principle, for which 

the sizes of the DFT's are primes as long as the rule for power of two size for the FFT is  

followed.

In the following chapter we will look at the periodic properties of the twiddle factors in 

much more detail to hopefully gain an understanding how the final summation of the FFT 

algorithm works.
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2.7.1 Twiddle factors and their redundancy properties

In the mathematical notation the coefficients and the twiddle factors (also known as phase 

factors) are presented in the exponential function notation.

The Cooley-Tukey DIT algorithm splits up the coefficients into the standard multipliers 

and the twiddle factors but their basic formats are the same. The following equation shows 

only the twiddle factors expressed in exponential function format that will be converted 

with Euler's formula:

X k= ⋯ e
−2∗π∗i

N
∗k

∗ FFT N /2[k−
N
2

, f O ]

Where X k is the final calculated sample at the  index k , which is an integer ranging 

form 0 to N –  1, N is the size of the FFT (for this example lets say it is 1024), and 

FFT N /2 [k−
N
2

, f O]  denotes the DFT of the odd-indexed values. The division to even 

and odd comes from separating the DFT into the radix-2 representation.

As stated, exponential format can be modified into a geometric representation via Euler's 

formula. In this case it results in the following:

e
−2∗π∗i

N
∗k

= cos(
−2∗π

N
∗k )+ i∗sin (

−2∗π

N
∗k )

The  first  point  here  is  to  provide  a  simpler  representation  (other  than  the  exponential 

format) which is  often used when expressing the FFT algorithm formulae.  The second 

important point is that when the FFT is calculated, the results of it can then be manipulated 

with standard vector mathematics to extract information from them. 

Now, this all comes back to the phase difference of the sine and cosine waves to separate 

the real and imaginary parts of the signal. 
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The coefficients are often written in the form W N
k , where it denotes the twiddle factors 

for FFT size N and index k .

W N
k
= e−i∗2∗π∗k / N

Since  the  twiddle  factors  rotate  on  the  complex  plane  it  actually  creates  a  form  of 

redundancy which  makes  the  FFT possible.  Lets  look at  the  DFT formula  again.  The 

important thing to note here is how integers k effects the twiddle factor definition. We will 

need this information shortly. 

X k= ⋯ W N
k

∗ FFT Odd

Some authors like to explain this arithmetic reduction by the redundancies inherent in the 
twiddle factors. They illustrate this with the  starburst pattern in figure 10 showing the 
equivalencies of some of the twiddle factors in an 8-point DFT. ( Lyons, 2004).

The above figure as explained by Lyons describes the redundancy and symmetry of the 

twiddle factors . This redundancy is part of what makes the FFT possible.

Notice, in figure 8, how some of the coefficients W N are actually the same. For example, 

how W 8
6=W 4

3 . What the notations mean is that for FFT size 8 and index six and FFT 

size 4 with index three are actually the same (remembering that N is the size of the DFT or 

FFT). Next lets look at how the FFT operates slight more closely.

Figure 9: Cyclic redundancies in the twiddle factors 
(coefficients) of an 8-point FFT (Lyons, 2004).
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2.8 The FFT operations

The Fast  Fourier  transform works  by decomposing a  signal  of N point  time domain 

samples. The key differences between the algorithms are called decimation-in-time and 

decimation-in-frequency.  The Cooley-Tukey version,  discussed in  detail  later,  is  a  DIT 

algorithm that decomposes the signal samples by separating them into two between the 

even and odd signal samples.

This example and figure taken from Steven W. Smiths DSP book illustrates the point very 

well.

Figure  shows an example  of  the  time  domain  decomposition  used  in  the  FFT.  In  this 
example, a 16 point signal is decomposed through four. separate stages. The first stage 
break the 16 point signal into two signals each consisting of 8 points. The second stage 
decomposes the data into four signal of 4 points. This pattern continues until there are N 
signals composed of a single point. (Smith, 2002).

 The butterfly diagram operations (the actual calculation operations of the FFT) are what is 

missing from between the lines of Figure 9. The next chapter looks at the twiddle factors as 

well as the butterfly diagrams and why they are so important to the FFT. 

Figure 10: The FFT decomposition. An N point signal is decomposed into N 
signals, each containing a single point. Each stage uses and interlace 

decomposition, separating the even and odd numbered samples (DIT) (Smith, 
2002).
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2.8.1 FFT butterfly diagrams

Now  lets  take  a  look  at  the  simplest  form  of  FFT  butterfly  diagram,  for  more 

comprehensive  images  please  see  Annexes  A and B.  The  next  example  is  taken  from 

Richard G. Lyon’s book "Understanding Digital Signal Processing". Where N is again, 

the size of the DFT or FFT.

Here, x (k ) represents  the  signal  samples  at  index k and W N represents  the 

coefficients that are defined as W N =e−i∗2∗pi /N . This is the very basic operation that takes 

place  when  the  FFT  is  calculated,  coefficients  are  multiplied  with  signal  samples  to 

produce the outputs from the FFT. In figure 9 at the coefficients W N , a multiplication 

operation takes place and at the end dots a summation operation takes place.

The next important bit of information is the redundancy of the coefficients also known as 

twiddle  factors  as  discussed  in  chapter  2.7.1.  For  larger  size  butterflies,  some  of  the 

calculations can be skipped due to the twiddle factor redundancy properties.

A larger  butterfly  is  presented  in  Annex  A,  where  some  of  these  skips  are  marked. 

Derivation of these butterfly images can get quite complicated, however the formulae and 

explanations behind them already exist so most of the mathematical work has been done 

for us.

The next chapter looks at the inverse of the Fourier transform and what tricks we can use 

for calculating it.

Figure 11: A single 2-point DFT butterfly (Lyons, 2004).
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2.7 The Inverse Fast Fourier Transform

The reason we calculate the FFT from, in this case, our signal is to do operations such as 

filtering at lower computational cost. The reason we need the inverse is to transform that 

frequency representation back to  continue  processing a  WCDMA signal  with our  next 

processing step we will need to signal samples back in the time domain.

Forward DFT

Inverse DFT

The inverse DFT is basically defined as swapping the calculated samples X (k ) with the 

signal  samples x (n) ,  as  well  as  the  sign  flip  for  the  twiddle  factors e−i∗φ where 

φ=2∗pi∗m∗n and N is the size of the DFT.

Continuing on, the next example is again taken from the book by Richard G. Lyons. One of 

the techniques for calculating the inverse Fourier-transform using the forward transform is 

shown next. The data is separated into real and imaginary parts.

In this clever inverse FFT scheme we don't bother with conjugation. Instead, we merely 
swap the real and imaginary parts of sequences of complex data. (Lyons, 2004).

Now lets start implementing one of the FFT algorithms in the next chapter.

Figure 12: Processing for the inverse FFT calculation method (Lyons, 2004).

X (k )= ∗ ∑
n=0

N−1

x (n) ∗ e−i∗φ / N

x(n)=
1
N

∗ ∑
k=0

N −1

X (k )∗ ei∗φ / N
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3 PRACTICAL IMPLEMENTATION

The algorithm introduced by J.W. Cooley and J.W. Tukey can be expressed in one of the 

most simple and understandable forms when it comes to FFT algorithms. This is why it is a 

good starting point and we will now go over it.

We've already taken a look at portions of this algorithm in the previous chapters, here is to 

full decimation-in-time DFT formula:

X (k )=∑
n=0

N −1

xn∗e
−2∗π∗i

N
∗n∗k

Where N is the size of the DFT, n and k are integers ranging from 0 to N−1 . The 

symbols X and  x are functions where the integers n and k are the inputs where 

each input correspond to one output. They can also be viewed as arrays where the integers 

are used as index indicators to access a value stored in that index. The twiddle factors 

eφ∗i ,  though  not  an  immediately  representable  as  an  array  by  itself,  can  be  pre-

calculated and stored in memory.

The radix-2 DIT algorithm (Cooley-Tukey, 1965) divides the DFT into two parts: a sum 

over the even-numbered indices and a sum over the odd-numbered indices. Although the 

original  papers  notation  is  quite  complex,  it  can  be  expressed  much  more  simply  as 

follows:

X (k )= ∑
m=0

N /2−1

x(2∗m)∗ e
−2∗π∗i

N /2
∗(2∗m)∗k

+ ∑
m=0

N /2−1

x(2∗m+ 1) ∗ e
−2∗π∗i

N /2
∗ (2∗m+ 1)∗k

Note the change to indicator n . Here index indicator n is calculated as 2∗m for the 

even index parts and as 2∗m+ 1 for the odd index part. When m=0 the index for even 

parts is 2∗0=0 and (2∗0)+ 1=1 and so on.

Before heading into the actual coding of the algorithm (the snap of source code can be 

found in Annex D), we need to look at some more of fundamental theory.
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3.1 FFT windowing and window functions

Following chapter discusses the window functions in general and introduces the window 

function to be used for WCDMA data. The next example is taken from Richard G. Lyon's 

book.

Windowing reduces DFT leakage by minimizing the magnitude of a functions side-lobes. 
We do this by forcing the amplitude of the input time sequence at both the beginning and 
the end of the sample interval to go smoothly toward a single common amplitude value. 
(Lyons, 2004).

In  other  words,  windowing  is  a  technique  used  to  shape  the  time  portion  of  your 
measurement  data,  to  minimize  edge effects  that  result  in  spectral  leakage in  the  FFT 
spectrum. By using Window Functions correctly, the spectral resolution of your frequency-
domain result will increase. (National Instruments, 2012).

To apply a window function to our signal samples, we can modify our FFT formula and 

include the application of the window function during its calculation. This means, that our 

input sample sequence x(m) is multiplied by the generated window function coefficients 

y(m ) . The modified formula would become:

where ω =
−2∗π∗i

N /2
, N is the size of the FFT and k = 0,1 ,2 … N−1 .

X (k )= ∑
m=0

N /2−1

y(2∗m)∗ x(2∗m)∗e ω ∗(2∗m)∗k
⋯

+ ∑
m=0

N /2−1

y(2∗m+ 1)∗ x(2∗m+ 1)∗ eω∗(2∗m+ 1)∗k

Here, our time domain samples would be multiplied by the window function coefficients 

before the FFT is performed. Next lets look at some of the common window functions and 

their coefficient generation.
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Firstly looking at the simplest form of window, the rectangular window. The rectangular 

window is defined as: y (m)=1 for all values of m i.e when m = 0,1 ,2 … N −1 .

Figure 13 shows an input sinusoid with constant frequency and amplitude. Next, lets look 

the windowing functions and what effect they have when applied to this signal. 

In figure 14,  the lower portion of the image is the sample output after  the windowing 

function has been applied to our original function, or input signal. Notice how the window 

function only effects the length of our data, by defining its own sample interval. Only data 

from this sample interval is  used within the window function.  Because the rectangular 

window defines all of its values to one, not much else has changed.

Figure 13: Input signal, time domain (Lyons, 
2004)

Figure 14: Rectangular window (Lyon, 
2004)
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Next, lets look at the Hanning window, also known as the raised cosine window. Where, 

m = 0,1 ,2 … N −1 and N is the size of the FFT, the coefficients y (m) are:

y (m)= 0.5−0.5∗cos(
2∗π∗m

N−1
)

When the Hanning window function is applied to our original signal (previous page, figure 

14) the results (lower portion of figure 15) are vastly different, since the coefficients are 

generated using a cosine function.

The Hanning window is the more interesting example, since it is closer to the shape of the 

Root-raised cosine  filter  used in  WCDMA. The RRC filter  definition can  be found in 

Annex  E.  The  RRC window coefficients  are  the  coefficients  of  choice  when  actually 

working with WCDMA data.

Now lets look at the closely related topic to the window-functions which is the overlap that 

needs to be taken into account during signal processing.

Figure 15: Hanning window 
(Lyons, 2004)
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3.2 Signal sample overlap

Because of windowing (discussed in the previous chapter) our output signal can be greatly 

reduced around the edges. This of course assumes that we are using a window-function that 

focuses the signal amplitude around the center of the window-function, and such is the 

case in WCDMA. 

In DSP terms, this means we need to apply what is called the overlap-add method to our 

calculations.  This  simply  means  that  the  processed  overlapping  data  parts  need  to  be 

summed together to produce a viable representation of our signal.

Take note of the sample numbers in figure 16. As a window-function is applied to our 

processing segments, these output segments (1 to 3) are produced. The additional step to 

produce our output signal is to sum the overlapping sample parts. For example, output 

segments one and two have overlapping sample numbers ranging from 100 to 200. In the 

output signal graphic, you can see the shape that summing together those two segments 

produces with the two rises quite clearly visible.

Finally, in the next chapter lets look at an implementation of the FFT in detail.

Figure 16: The Overlap-Add method (Smith, 2002)
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3.3 Implementation in C-based languages

To  view  the  full  source  code,  please  see  Annex  D.  Note  that  the  following  piece  of 

complex multiplication code has been implemented by Microsoft Visual Studio compiler 

intrinsic. 

An intrinsic is a function known by the compiler that directly maps to a sequence of one or 
more assembly language instructions. Intrinsic functions are inherently more efficient than 
called functions because no calling linkage is required.

Intrinsics make the use of processor-specific enhancements easier because they provide a 
C/C++ language interface to  assembly instructions.  In doing so,  the compiler  manages 
things that the user would normally have to be concerned with, such as register names, 
register allocations, and memory locations of data. (Microsoft, 2011).

Please note that the implementation code relies on the compiler to generate an efficient 

starting point for modifying the generated assembly code.  The memory stack and heap 

management are left without much of a mention. This efficient complex multiplication is 

taken  from  the  Intel  SSE  instructions  document  by  Mostafa  Hagog  of  Intel's 

Microprocessor Technology Labs.

Figure 17: Complex multiplication using SSE intrinsic (Hagog, 2007)
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As we are dealing with complex valued signal samples, this will provide us with a more 

efficient implementation in general. Complex multiplication is defined as:

z∗w=(a+ ib )∗(c+ id )

→ a∗c+ ib∗c+ a∗id−b∗d

→(a∗c−b∗d )+ i(a∗d + b∗c)

With the SSE vector, we will end up loading four signal sample values as 32-bit floating 

point values at a time to our processor registers. Let us define them as:

VECTORs = [ ar , a i , br , bi ]

Where  the  subscript  denotes  either  the  real  part xr or  the  imaginary  part x i of  the 

complex  value.  Let  us  also  define  the  coefficients,  that  our  signal  samples  will  be 

multiplied with, in a similar manner as:

VECTORc = [ cr , c i , d r , d i ]

Now the important thing to note here, is that the way the SSE load operation works, is that 

it  takes the next four sequentially stored 32-bit  floating point values from the memory 

location we specify (memory alignment restrictions apply here). So in order to pair the 

right coefficients with the correct signal samples our complex multiplication output should 

look as follows:

VECTOR0,1 = (ar∗cr−ai∗c i)+ (ar∗ci+ a i∗cr)

VECTOR2,3 = (br∗d r−bi∗d i)+ (br∗d i+ b i∗d r)

To  produce  this  result  with  SSE  programming  our  first  step  uses  the  SSE  intrinsics 

movsLdups and movsHdups on our coefficients to produce two new arrays of values:

[ cr , c i , d r , d i ]

↓
movsLdup

↓
[ cr , cr , d r , d r ]

[ cr , ci , d r , d i ]

↓
movsHdup

↓
[ c i , c i , d i , d i ]
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The movsLdup intrinsic duplicates the first and third elements and places the first element 

in the positions of the first and second elements, and the third element into the third and 

fourth elements of the return value. The movsHdup intrinsic in turn duplicates the second 

and fourth elements and placing them in a similar manner. One of the arrays now consists 

only of real values and the other one only of imaginary values. 

Next we will multiply the new coefficient arrays with out signal sample arrays with the 

mulps intrinsic.

[ cr , cr , d r , d r ]
∗ ∗ ∗ ∗

[ ar , a i , br , bi ]

↓
[ cr⋅ar , cr⋅a i , d r⋅br , d r⋅bi ]

[ c i , c i , d i , d i ]

∗ ∗ ∗ ∗
[ ar , ai , br , bi ]

↓
[ c i⋅ar , ci⋅a i , d i⋅br , d i⋅bi ]

The split  coefficient  arrays  are  multiplied  with  the  signal  sample  to  produce  our  next 

intermediate results. Following the complex multiplication defined in Figure 17, our next 

step is to use the intrinsic addsubps for the final summation of the complex multiplication.

Multiplied 1=[ cr⋅ar , cr⋅a i , d r⋅br , d r⋅bi ]

− + − +
Multiplied 2=[ c i⋅ar , c i⋅a i , d i⋅br , d i⋅bi ]

Notice  how the  intrinsic  alternates  with  the  subtraction  and  addition  of  corresponding 

elements  in  the  vectors.  However,  here  we  note  that  the  results  would  not  match  the 

required  steps  for  complex  multiplication  as  defined  earlier  with VECTOR0,1 and

VECTOR2,3 . 

RESULT 0,1 = (cr∗ar− ci∗ar⏟
incorrect position

)+ (cr∗a i+ ci∗a i⏟
incorrect position

)

We will need to shuffle one of our intermediate result arrays to produce the correct output 

as follows: 

CORRECT 0,1 = (cr∗ar−c i∗ai⏟
correct

)+ (cr∗ai+ d i∗br⏟
correct

)

These  modifications  group the real  parts  of  the  calculation together  while  respectively 

doing the same with the imaginary parts of the calculation. Note that i∗i=−1 .
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The exact same result and solution can be noted for the other complex multiplication:

RESULT 2,3 = (d r∗br− d i∗br⏟
incorrect position

)+ (d r∗bi+ d i∗b i⏟
incorrect position

)

CORRECT 2,3 = (d r∗br−d i∗bi⏟
correct

)+ (d r∗bi+ d i∗br⏟
correct

)

To achieve this result in programming we will use the SSE macro SHUFPS to switch the 

position of our required values in combination with another macro  _MM_SHUFFLE for 

the creation of our shuffle mask. 

We want to switch the position of the first and second elements and the third and fourth 

elements in the Multiplied 2 vector to produce the correct output, so we define our bit 

mask as:

MASK = {2,3,0,1}

Note that the mask macros indices are actually the opposite of the vector indices so the 

index zero in the SSE vector actually corresponds to index three in the mask macro. This is 

due to the way the mask is calculated. Now, this means that the SSE vectors indices zero  

and one will switch places to produce the correct output as follows:

SHUFPS {[ ci⋅ar , ci⋅a i , d i⋅br , d i⋅bi ] ,MASK }

↓
RESULT shuffle=[ c i⋅ai , ci⋅ar⏟

switched

, d i⋅bi , d i⋅br⏟
switched

]

After  the  shuffle  operation  we  can  proceed  with  the  calculation  of  the  complex 

multiplication as defined in Figure 17:

Multiplied1 =[ cr⋅ar , cr⋅a i , d r⋅br , d r⋅bi ]

− + − +
Multiplied 2,shuffle=[ ci⋅a i , c i⋅ar⏟

switched

, d i⋅b i , d i⋅br⏟
switched

]
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Which will finally produce the correct output to our SSE vector elements as:

FINAL{
0
1
2
3
} = {

cr⋅ar − ci⋅a i

cr⋅ai + ci⋅ar

d r⋅br − d i⋅b i

d r⋅bi + d i⋅br
} = {

[0] real part
[0] imaginary part
[1]real part
[1]imaginary part

}
The real and imaginary parts of samples[0, 1] and coefficients[0, 1] are multiplied with 

each other to produce the correct results of our complex multiplication.
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3.4 Results and their interpretation

The FFT results shifted roughly to the center of the spectrum are presented in the figure 
below.

When taking into account our 40 MHz recording bandwidth, our 5 MHz WCDMA band 

should take roughly 256 FFT bins with size 2048 point FFT. As we can see from the figure 

it  is  roughly  equivalent  to  this  even  without  any  window-functions  applied.  A more 

detailed result verification is done via additional processing, but this is not included in the 

scope of this thesis.

Figure 18: Cooley-Tukey algorithm results, no window-function.
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4 THE SOLUTION AND ITS EVALUATION

An important thing to note of our test data, is that the WCDMA band is almost centered. 

Due to this, minimal frequency error is present and hence no frequency shifting is needed 

when just drawing the spectrum. In a real world application however, multiple bands can 

exist  near  each other  in  efficient  recording systems.  Additional  theories  and especially 

implementations  to  be  considered,  because  of  this,  would  include  spectrum frequency 

shifting being implemented.

The next signal processing might be decimation,  or lowering the sampling rate (down-

sampling) to the WCDMA defined chip rate of 3.84 MHz. Depending on the recording 

system however, in some cases it may be necessary to actually raise the sampling rate of 

our signal, or interpolate (up-sample). This is done since decimation basically requires the 

the higher sampling rate to be a multiple of our sampling we want to reduce it to. This is 

because at its simplest, a decimator simply lets through every n : th sample, where n is 

the integer factor for decimation. More complex decimation schemes however, do exist. 

One such is described as being part of a polyphase filter, where four filter banks are used to 

control the signal flow from the ADC (Richardson, 2005). 

The solutions covered in this document however are valid theories and provide us with a 

solid base of knowledge for our implementation of the first part of signal processing when 

working with our data.
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ANNEX C

In the last chapter (2.4.1 Euler's formula and the 'Twiddle factors') we took a look at a cut-

off Cooley-Tukey twiddle factor portion of the formula. Now we will look at the basic  

mathematical operations and expressions and hopefully realize how we can use them to 

calculate the DFT and the FFT.

Even the most simplest forms of the FFT and DFT formulas use the summation operator 

symbol ∑ x . Lets look at a modified one from the previous chapter, with similar index 

notation:

X k=∑
n=k

k+ 3

yn

Because the summation operation is a key definition and is used extensive lets look at this 

example in detail and see what is actually happening. 

The  most  basic  thing  to  realize  is  that X and y represent  some  arbitrary  array  or 

storage space and their indices  n  and  k determine the accessed value (which ever 

value resides in that index) for this simple algorithm.

If our index indicator k begins at zero:

when k = 0, index n goes from 0 to 3, so X 0= y0+ y1+ y2+ y3

when k = 1, index n goes from 1 to 4, so X 1= y1+ y2+ y3+ y4

and so on.

If you are familiar with programming this is basically a simple for-loop with index increase 

of one and upper limit of k+ 3 . Here, we just did not define an end value to k. 

It is very important to understand the summation notation before moving on to the DFT 

and FFT, as it is one of the simplest representations used.



 ANNEX D

   Definitions used in the FFT source code:

#if defined(AVX)

    // AVX would hold and process 256-bits
    #define FVECTOR_SIZE sizeof(float)*2
    #define FVECTOR_INPLACE_MULTIPLIER 4
    #define FVECTOR_INPLACE_MULTIPLIER_POSITION sizeof(float)*2
    #define FVECTOR_FFT_DIVISOR sizeof(float)*2

.

.

.
#endif

#if defined(SSE)

    // SSE would hold and process 128-bits
    #define FVECTOR_SIZE sizeof(float)
    #define FVECTOR_INPLACE_MULTIPLIER 2
    #define FVECTOR_INPLACE_MULTIPLIER_POSITION sizeof(float)
    #define FVECTOR_FFT_DIVISOR sizeof(float)

    // SSE, process two samples at a time so we divide by two.
    #define FVECTOR_DIVISOR 2

    // Create the mask for shuffle single precision.
    // Note the index differences -> Vector index: [0, 1, 2, 3]
    // Macro index:  [3, 2, 1, 0]
    #define FVECTOR_SHUFFLE(x,y,z,w)   (z<<6)|(y<<4)|(x<<2)|w

    #include <xmmintrin.h>
    #include <intrin.h>

    // Floating point (single precision):
    typedef __m128 FVECTOR;                             
    #define FVECTOR_SHUFPS                        _mm_shuffle_ps
    #define FVECTOR_SETZERO                     _mm_setzero_ps()
    #define FVECTOR_LOAD                           _mm_load_ps
    #define FVECTOR_STOREPS                    _mm_store_ps
    #define FVECTOR_MULPS                        _mm_mul_ps
    #define FVECTOR_ADDPS                        _mm_add_ps
    #define FVECTOR_SUBPS                        _mm_sub_ps
    #define FVECTOR_STORELOWPS _mm_storel_pi
    #define FVECTOR_SQRTPS _mm_sqrt_ps
    #define FVECTOR_MOVSLDUPS             _mm_moveldup_ps
    #define FVECTOR_MOVSHDUPS               _mm_movehdup_ps
    #define FVECTOR_ADDSUBPS                 _mm_addsub_ps   // A0-B0, A1+B1, A2-B2, A3+B3
#endif



The Cooley-Tukey FFT algorithm requires the samples to be processed while being split 

into the even and odd index parts. This is equivalent to the bit-reversing operation seen in 

chapter 2.8, however instead of reversing each sample separately we stop at the even and 

odd split.

void CooleyTukey_SplitEvenOdd_float(   float** evenPtr, float** oddPtr, float** samplePtr, 
     const uint32_t maxNumOfSamples)

    {
        float* sample = (*samplePtr);
        float* even = (*evenPtr);
        float* odd = (*oddPtr);

        float* addressLimit = ((*samplePtr) + (maxNumOfSamples));

        while(sample < addressLimit)
        {
            // Even real:
            (*even) = (*sample);
            ++even;
            ++sample;

            // Even imaginary:
            (*even) = (*sample);
            ++even;
            ++sample;

            // Odd real:
            (*odd) = (*sample);
            ++odd;
            ++sample;

            // Odd imaginary:
            (*odd) = (*sample);
            ++odd;
            ++sample;
        }
    }

Figure 19: Cooley-Tukey FFT even and odd split



The Cooley-Tukey FFT algorithm for floating point precision:

void Inplace_CooleyTukey_FFT( float** coefPtr, float** twiddlePtr, float** evenPtr, float** oddPtr, 
float** resultsLow, float** resultsHigh, const uint32_t fftSize)

    {
        // Generate twiddle factors:
        Inplace_Cooley_GenTwiddle(twiddlePtr, 0, fftSize);
        InPlace_Cooley_GenTwiddleMultipliers(twiddlePtr, 2, fftSize);

        // Load twiddle factor:
        FVECTOR twiddle = FVECTOR_LOAD((*twiddlePtr));

        // Load the multipliers used to generate the next twiddle factor 
        //(stored after the twiddle factor by default):
        FVECTOR multiplier = FVECTOR_LOAD( ((*twiddlePtr) + FVECTOR_SIZE) );

        uint32_t rotation = 0;

        // FFT loop.
        for(uint32_t i = 0; i < (fftSize / FVECTOR_FFT_DIVISOR); ++i)
        {
            // Reset pointers to the start of the data before DFT:
            float* even = (*evenPtr);
            float* odd = (*oddPtr);

            FVECTOR evenSum = FVECTOR_SETZERO;
            FVECTOR oddSum  = FVECTOR_SETZERO;

            // Generate coefficients:
            Inplace_CooleyTukey_GenCoefficients(coefPtr, 0, rotation, fftSize);

            Inplace_CooleyTukey_GenCoefMultipliers(coefPtr, FVECTOR_INPLACE_MULTIPLIER, rotation, fftSize);

            Inplace_CooleyTukey_DFT(&even, &odd, coefPtr, &evenSum, &oddSum, (fftSize / 2));

            // Twiddle factor multiplication for odd summation:
            oddSum = Inplace_Cooley_Twiddle_float(&twiddle, &multiplier, &oddSum);
 
           FVECTOR resultLow = FVECTOR_ADDPS(evenSum, oddSum);
           FVECTOR resultHigh = FVECTOR_SUBPS(evenSum, oddSum); // Sign flip.

            FVECTOR_STOREPS((*resultsLow), resultLow); 
            FVECTOR_STOREPS((*resultsHigh), resultHigh);

            (*resultsLow)  = (*resultsLow) + FVECTOR_SIZE;
            (*resultsHigh) = (*resultsHigh) + FVECTOR_SIZE;

            // Increase rotation by two, because two samples are processed at a time 
            // (in the FFT formulae, rotation is the index 'k').
            rotation = rotation + 2;
        }

        // Move pointers to store the next data in the correct position.
        (*resultsLow)  = (*resultsLow) + fftSize;
        (*resultsHigh) = (*resultsHigh) + fftSize;

        // Move pointers to process next data.
        (*evenPtr) = (*evenPtr) + fftSize;
        (*oddPtr)  = (*oddPtr) + fftSize;
    }



The Cooley-Tukey algorithm DFT portion:

void Inplace_Cooley_DFT(   float** evenPtr, float** oddPtr, float** coefPtr, FVECTOR* 
          evenSumPtr, FVECTOR* oddSumPtr, const uint32_t dftSize)

    {
        // Same coefficient is used in the multiplication for odd and even parts.
        // Load the first coefficients:
        FVECTOR coefficient = FVECTOR_LOAD((*coefPtr));

        // Load the multipliers used to generate the next coefficients:
        FVECTOR multiplier = FVECTOR_LOAD( ((*coefPtr) + FVECTOR_SIZE) );

        // DFT loop.
        for(uint32_t i = 0; i < (dftSize / FVECTOR_DIVISOR); ++i)
        {
           // Split the coefficient to real and imaginary parts:
           FVECTOR coefReal = FVECTOR_MOVSLDUPS(coefficient);
           FVECTOR coefImag  = FVECTOR_MOVSHDUPS(coefficient);

           // Even DFT:
           FVECTOR sampleEven = FVECTOR_LOAD((*evenPtr));
           (*evenPtr) = (*evenPtr) + FVECTOR_SIZE;;
           *evenSumPtr = FVECTOR_ADDPS(*evenSumPtr, 

VECTOR_InplaceComplexMultiply_float(&sampleEven, &coefReal, &coefImag));

           // Odd DFT:
           FVECTOR sampleOdd = FVECTOR_LOAD((*oddPtr));
           (*oddPtr) = (*oddPtr) + FVECTOR_SIZE;
           *oddSumPtr = FVECTOR_ADDPS(*oddSumPtr, 
                VECTOR_InplaceComplexMultiply(&sampleOdd, &coefReal, &coefImag));

            // Generate next coefficient(s) through multiplication with the correct coefficient:
            coefficient = VECTOR_InplaceComplexMultiply_float(&multiplier, &coefReal, &coefImag);
        }
    }

The Cooley-Tukey algorithm twiddle-factor multiplication for the odd part:

FVECTOR Inplace_Cooley_Twiddle_float(   FVECTOR* twiddleFactorPtr, FVECTOR* multiplierPtr, 
          FVECTOR* oddSumPtr)

    {
        FVECTOR twiddleReal = FVECTOR_MOVSLDUPS(*twiddleFactorPtr);
        FVECTOR twiddleImg  = FVECTOR_MOVSHDUPS(*twiddleFactorPtr);

        // Generate next twiddle factor(s) through multiplication with the correct multiplier:
        *twiddleFactorPtr = VECTOR_InplaceComplexMultiply_float(multiplierPtr, &twiddleReal, &twiddleImg);

        FVECTOR multiply1 = FVECTOR_MULPS(*oddSumPtr, twiddleReal);
        FVECTOR multiply2 = FVECTOR_MULPS(*oddSumPtr, twiddleImg);

        FVECTOR shuffle = FVECTOR_SHUFPS(multiply2, multiply2, FVECTOR_SHUFFLE(2, 3, 0, 1));

        return FVECTOR_ADDSUBPS(multiply1, shuffle);
    }

Complex multiplication using vector intrinsics (requires at least SSE3 support):

FVECTOR VECTOR_InplaceComplexMultiply_float(FVECTOR* signalPtr, FVECTOR* coefReal, FVECTOR* coefImag)
    {
        // Multiply samples with the coefficients:
        FVECTOR multiply1 = FVECTOR_MULPS(*signalPtr, *coefReal);            
        FVECTOR multiply2 = FVECTOR_MULPS(*signalPtr, *coefImag);

        // Shuffle multiply2 result, so that the final part of the complex multiplication is calculated correctly:
        FVECTOR shuffle = FVECTOR_SHUFPS(multiply2, multiply2, FSSE_SHUFFLE(2, 3, 0, 1));

        // Final summation of complex multiplication:
        return FVECTOR_ADDSUBPS(multiply1, shuffle);
    }



Coefficient and multiplier  generators can be combined into one if  one wants to do so. 

Multipliers  make  use  of  the  cyclic  redundancy  and  generate  the  next  coefficient  by 

multiplying it with the appropriate multiplier.

void Inplace_CooleyTukey_GenCoefficients(   float** coefPtr, int32_t multiplier, const int32_t rotation, 
                      const uint32_t fftSize)

    {
        // Multipliers for generating next DFT coefficients:
        // SSE, stored in multiplier in index 0 to 3.
        // AVX, stored in multiplier 0 to 7.
        float* coef = (*coefPtr);

        //  Coefficients: exp(2*pi*m*k / N / 2)
        //  Rotation = k, multiplier = m.
        const float component = (float)( (M_PI / fftSize) * rotation);
        
        for(int32_t i = 0; i < FVECTOR_SIZE; i = i + 2)
        {
            (*coef) = cosf(component * multiplier);     // real
            ++coef;

            (*coef) = -sinf(component * multiplier);    // imag
            ++coef;

            multiplier = multiplier + 1;
        }
    }

    void Inplace_CooleyTukey_GenTwiddle(float** twiddlePtr, int32_t multiplier, const uint32_t fftSize)
    {
        // Multipliers for generating next DFT coefficients:
        // SSE, stored in multiplier in index 0 to 3.
        // AVX, stored in multiplier 0 to 7.
        float* twiddle = (*twiddlePtr);

        //  Coefficients: exp(2*pi*m / N)
        //  multiplier = m.
        const float component = (float)M_PI * 2 / fftSize;
        
        for(int32_t i = 0; i < FVECTOR_SIZE; i = i + 2)
        {
            (*twiddle) = cosf(component * multiplier);     // real
            ++twiddle;

            (*twiddle) = -sinf(component * multiplier);    // imag
            ++twiddle;

            multiplier = multiplier + 1;
        }
    }



void Inplace_CooleyTukey_GenCoefMultipliers(   float** coefPtr, const int32_t multiplier, 
                         const int32_t rotation, const uint32_t fftSize)

    {
        // Multipliers for generating next DFT coefficients:
        // SSE, stored in coefPtr, in index 4 to 7.
        // AVX, stored in index 8 to 15.
        float* coefMultiplier = (*coefPtr) + FVECTOR_INPLACE_MULTIPLIER_POSITION;

        //  Generator coefficients: exp(2*pi*m*k / N / 2)
        //  Rotation = k, multiplier = m.
        const float component = (float)( (M_PI / fftSize) * rotation);
        
        for(int32_t i = 0; i < FVECTOR_SIZE; i = i + 2)
        {
            (*coefMultiplier) = cosf(component * multiplier);     // real
            ++coefMultiplier;

            (*coefMultiplier) = -sinf(component * multiplier);    // imag
            ++coefMultiplier;
        }
    }

void InPlace_CooleyTukey_GenTwiddleMultipliers(float** twiddlePtr, const int32_t rotation, const uint32_t fftSize)
    {
        // Multipliers for generating next twiddle coefficients:
        // SSE, stored in twiddlePtr in index 4 to 7.
        // AVX, stored in index 8 to 15.
        float* twiddleMultiplier = (*twiddlePtr) + FVECTOR_INPLACE_MULTIPLIER_POSITION;

        //  Twiddle factors: exp(2*pi*k / N)
        //  rotation = k.
        const float component = (float)M_PI * 2 / fftSize;

        for(int32_t i = 0; i < FVECTOR_SIZE; i = i + 2)
        {
            (*twiddleMultiplier) = cosf(component * rotation);    // real
            ++twiddleMultiplier;

            (*twiddleMultiplier) = -sinf(component *rotation);    // imag
            ++twiddleMultiplier;
        }
    }



 ANNEX E

3GPP TS 25.101

3rd Generation Partnership Project;
Technical Specification Group Radio Access Network;
User Equipment (UE) radio transmission and reception (FDD)

6.8.1 Transmit pulse shape filter

The transmit pulse shaping filter is a root-raised cosine (RRC) with roll-off α = 0.22 in 
the frequency domain. The impulse response of the chip impulse filter RC0(t) is:
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Where the roll-off factor α = 0.22 and the chip duration is 
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