
Kai Molander

DIGITAL SIGNAL PROCESSING THEORY FOR IN-PHASE
AND QUADRATURE SIGNAL COMPONENTS RECORDED
FROM WCDMA FREQUENCIES

Fourier-transform, filtering, and DSP theory.

Thesis
CENTRIA UNIVERSITY OF APPLIED
SCIENCES
Degree Programme in Telecommunications technology
March 2013

TIIVISTELMÄ OPINNÄYTETYÖSTÄ

Yksikkö
Ylivieska

Aika
Marraskuu, 2013

Tekijä/tekijät
Kai Molander

Koulutusohjelma
Tietoliikennetekniikka
Työn nimi
Digitaalisen signaalinkäsittelyn teoriaa I/Q signaali komponenteilla, jotka on nauhoitettua
WCDMA − taajuuksilta.

Fourier-muunnos, suodatus ja WCDMA signaalien käsittelyyn liittyvä teoria.
Työn ohjaaja
Joni Jämsä

Sivumäärä
50

Työelämäohjaaja
Ville Kukonlehto

Dokumentin tarkoituksena on esitellä meidän ensimmäiset digitaaliseen signaalin
näytteiden processointiin liittyvät askeleet. Tässä tapauksessa, nämä signaali näytteet on
nauhoitettu WCDMA taajuuksilta ja ne tulee muuttaa taajuus-tasoon, sekä suodattaa, jotta
(takaisin aikatasoon muuttamisen jälkeen) näytteiden processointia voidaan jatkaa
WCDMA – spesifikaatioiden algoritmeillä.

Tavoite tässä teesissä on selkeästi kuvata diskreettiin Fourier-muunnokseen liittyvät teoriat,
sekä miten näitä käytetään käytetään signaalinkäsittelyssä.

Asiasanat
Fourier muunnos, digitaalinen signaalinkäsittely, WCDMA (UMTS -verkoissa käytettävä
radiorajapinta)

ABSTRACT

CENTRIA UNIVERSITY
OF APPLIED SCIENCES

Date

March, 2013

Author

Kai Molander
Degree programme

Telecommunications technology
Name of thesis

DIGITAL SIGNAL PROCESSING THEORY FOR IN-PHASE AND QUADRATURE
SIGNAL COMPONENTS RECORDED FROM WCDMA FREQUENCIES
Fourier-transform filtering, and DSP theory
Instructor

Joni Jämsä

Pages

50
Supervisor

Ville Kukonlehto

The objective of this thesis is to describe our first steps of signal sample processing. In our
case these samples are recorded from WCDMA frequencies and they need to be
transformed into the frequency domain as well as filtered so that the signal samples (once
transformed back to the time domain) can be processed by WCDMA - specification
algorithms.

The objective of this thesis is to clearly explain the basics of the discrete Fourier-transform
and how it is applied to signal processing.

Key words
Fourier-transform, digital signal processing, Wideband Code Division Multiple Access,
WCDMA

DEFINITIONS AND ABBREVIATIONS

Function In mathematics, a function (f) associates an argument or input

(x) with one value or output: f (x).

Transform In mathematics an operation where the input is a function (f)

and the output is another function: Transform of f or as it is

usually expressed in its shortened form as just a capital F.

Discrete In mathematics and signal processing, we study a signal or set

of values in a certain range, (a finite or limited set of values)

rather than a continuous or infinite range.

Discrete transform In signal processing, mathematical transforms of signals

between discrete domains / ranges, such as discrete time or

discrete frequency.

Fourier transform A mathematical operation that allows us to transform a

mathematical function of time to its frequency representation.

Fourier series In mathematics or signal processing allows us to describe a

periodic function or signal as a set of sine and cosine functions.

In signal processing specifically, the Fourier transform allows

us to see the effect of each individual frequency (dependent on

resolution). The study of Fourier series is a branch of Fourier

analysis.

Fourier analysis In modern mathematics, refers to both the operation of

decomposing a function into simpler pieces as well as

rebuilding it from those pieces (pieces referring to values).

DFT Discrete Fourier Transform, a specific kind of discrete trans-

form used in Fourier analysis.

FFT Fast Fourier Transform, describes an efficient algorithm

used to compute the discrete Fourier transform and its inverse.

DIT When discussing the FFT, decimation refers to how we break

down the FFT. In the case of separating the calculations to the

"even" and "odd" indices (where these refer to the index for an

arbitrary array that holds samples used in calculation of the

FFT) we are discussing a decimation-in-time algorithm.

DIF When discussing the FFT, if we break down the FFT by

separating in a first-half/second-half (again, indices) approach

it is referred to as the decimation in frequency algorithm.

WCDMA Wideband Code Division Multiple Access, air interface (or

radio) technology of UMTS.

UMTS Universal Mobile Telecommunications System. UMTS is an

umbrella term for the third generation radio technologies

developed within the 3GPP.

3GPP The 3rd Generation Partnership Project (3GPP) unites [Six]

telecommunications standards bodies, known as

“Organizational Partners” and provides their members with a

stable environment to produce the highly successful Reports

and Specifications that define 3GPP technologies.

DSP Digital signal processing, is the processing of discrete signals

which are represented in a digital format. While working with

digitized data we gain several advantages in the processing

stages.

SAMPLING Sampling (in signal processing) refers to the reduction of a

continuous signal to series of discrete samples.

SAMPLE Refers to a value or set of values at a point in time and/or space.

SAMPLER A system (ADC) or operation (mathematics) that extracts

samples from a continuous signal.

ADC Analog-to-Digital converter, also abbreviated as A/D , is a de-

vice that in DSP is used to convert continuous signals into a

discrete digital representation (signal sampling) in the time do-

main.

I/Q signal In-phase and Quadrature signal components can be represented

as complex number format in mathematics as cosine (real) and

sine components (imaginary). These discrete values are referred

to as symbols. Symbols can be used visualized as points on the

complex plane and mapped via the constellation diagram.

Complex number Complex number is a number which can be represented in the

form , where r is the real part and i is the imaginary part of the

number. Also referred to as the imaginary unit . Complex

numbers are used in signal processing to represent the phase

information of a signal since they extend the idea of one

dimensional numbers to two dimensional.

Imaginary unit (i) Defined in mathematics as i=√−1.

Pi (π) The ratio of a circle's circumference to its diameter.

Approximation defined as 3.1415926535.

Euler's number (e) Defined in mathematics as an approximation of 2.71828. Used

to define the exponential function.

Prime number Defined in mathematics as a natural number greater than 1 that

has no positive divisors other than 1 and itself. For example 3.

Composite number Defined in mathematics as a positive integer which has a

positive divisor other than one or itself.

Natural number Defined in mathematics as a set of positive integers 1, 2, 3, etc.

or a set of nonnegative integers 0, 1, 2, 3 etc.

Radix In the FFT and DFT divide-and-conquer algorithms, the radix

refers to the decomposition of the FFT size N when it is

separated into a calculation radices r , where N is a

composite and r is a prime, N = r 1∗r 2∗r3 … rn .

Mathematical symbols

* Multiplication sign.

/ , ÷ Division sign(s).

x
y

Division of x with y.

x / y

∑ Summation sign.

∫ Integral sign.

∑
lower limit

upper limit

x (n)∗ y(n)
Operation of summation and

multiplication with limits.

http://en.wikipedia.org/wiki/Ratio
http://mathworld.wolfram.com/NonnegativeInteger.html
http://mathworld.wolfram.com/PositiveInteger.html
http://en.wikipedia.org/wiki/Divisor
http://en.wikipedia.org/wiki/Positive_integer
http://en.wikipedia.org/wiki/Divisor
http://en.wikipedia.org/wiki/Natural_number
http://en.wikipedia.org/wiki/Diameter
http://en.wikipedia.org/wiki/Circumference
http://en.wikipedia.org/wiki/Circle

X (k)= ∑
n=0

upper limit

x(n)∗y (k−n) Discrete convolution.

x ∈ X

Element-of sign

(x is included in or is an

element of X)

CONTENTS

1 INTRODUCTION...9

2 THEORETICAL BASIS...10

2.1 In-Phase and Quadrature signals..11

2.2 WCDMA and the sampling theorem...12

2.3 Quadrature sampling..14

2.4 What is the point of the DFT and the FFT...15

2.4.1 Euler's formula...18

2.5 Discrete Fourier Transform (DFT)..19

2.6 Divide and conquer algorithms for computation of the DFT....................................20

2.7 Fast Fourier Transform (FFT)..21

2.7.1 Twiddle factors and their redundancy properties...24

2.8 The FFT operations..26

2.8.1 FFT butterfly diagrams..27

2.7 The Inverse Fast Fourier Transform..28

3 PRACTICAL IMPLEMENTATION...29

3.1 FFT windowing and window functions...30

3.2 Signal sample overlap..33

3.3 Implementation in C-based languages...34

3.4 Results and their interpretation..39

4 THE SOLUTION AND ITS EVALUATION..40

10

1 INTRODUCTION

This document discusses the projects first signal processing steps, the transformation of
time domain signal samples to the frequency domain via the Fast Fourier Transform. It
does not go into detail about the shortcomings of the FFT in some signal processing
applications, nor are there any proper comparisons made against direct convolution filters.

Firstly the theory related to our defined problem is overviewed and necessary definitions
are established. In the following chapters we move on to look at the process of calculating
a Discrete Fourier Transform and finally implement one of the simplest forms of the FFT
algorithm, the Cooley-Tukey Fast Fourier-transform algorithm. A portion of the algorithm
as programming code is presented in the annexes.

The evaluation chapter presents the next problems that need to be solved in the case of
WCDMA signal processing.

11

2 THEORETICAL BASIS

A system records signal samples from the air and these signal samples need to be post-

processed in a non − real-time software / hardware combination. This recording system

design may vary immensely, in our case it has to take into account the requirements of the

third generation (3G) air interface technology in WCDMA.

Figure 1: A pseudo block diagram for a signal sampling and recording device

(paraphrased from R&S FSQ-B17 Digital Baseband Interface manual)

The above graph shows a possible receiver block diagram based heavily on the one

described in the R&S FSQ-B17 Digital Baseband Interface manual. The bandpass filter

may be used to limit the bandwidth currently recorded. The signal is then digitized by the

sampler, an ADC, at the chosen sampling rate. These digital samples are carried to the two

mixers that are fed by the numerical controlled oscillator. Here the I/Q signal is split to its

In-Phase and Quadrature components. The I/Q split is the most important portion of the

processing since this is where we will start our digital signal processing via software.

Processing such as the FFT requires the signal the be split since it employs complex

number operations to achieve signal processing.

12

2.1 In-Phase and Quadrature signals

The I/Q signal is represented as complex numbers and they carry along with them phase

information. There are many different modulation techniques that map this phase

information to bits (via demodulating the signal). The following graph shows a two

dimensional representation of the I/Q signal.

Figure 2: In-Phase and Quadrature signal 2D graphical representation (Hiebel 2007.)

The important thing to note for us considering the FFT is that we need to keep this phase

information and deal with the complex number representation of these signals in order to

gain a useful end product out of our calculations. If we only use the real data (the In-phase

components) we will not be able to continue processing the signal in terms of WCDMA

receiver algorithms.

13

2.2 WCDMA and the sampling theorem

The Nyquist–Shannon sampling theorem comes into play when the ADC takes discrete

time domain samples from the air interface. In the graph below, a bandwidth of 40 MHz is

represented, where (roughly) at the center a single 5 MHz WCDMA frequency band exists.

Note that the x-axis displays the number of bins from 0 to 1024.

In the very essence of this sampling theorem states that; The sampling frequency is

determined as range of signal frequencies. If these are kept below half of the sampling

frequency, all of the noise frequencies remain above this limit and can be kept away from

the receiver by a low-pass filter. The transmission of a signal may thus be completely

distortionless, if the sampling frequency is twice the highest signal frequency. (Lüke 1999,

108).

Figure 3: 40 MHz frequency band represented as 1024 point FFT in the frequency domain.

14

The previous statement simplified in a mathematical form, where Fmax is the highest

frequency of the original signal that can be sampled, where :

F max=
Sampling rate

2

In practice, the sampling theorem shows that a band-limited analog signal that has been

sampled can be reconstructed from sequence of samples if the sampling rate is double the

maximum frequency (Fmax). This also means that from a bandwidth point of view, it is the

maximum bandwidth, that we can sample with the chosen sampling rate, where no

information should be lost.

So looking at figure 3, it means that each point (or frequency bin) in the FFT represents a

frequency resolution of 39.0625 kilohertz. This can be calculated by dividing the

bandwidth with the number of FFT bins or the sample rate with the size of the FFT.

Frequency resolution=
Sample Rate
FFT points

=
Frequency range
Number of bins

Now, a single WCDMA band takes up 5 MHz of actual bandwidth. The number of FFT

bins it should approximately occupy is equal to 128 and can be calculated by dividing the

actual bandwidth with the frequency resolution:

Bins occupied by a singleWCDMA band=
5 MHz

39.0625 kHz

The most important point to realize from this is that if the recording system we use does

not satisfy the sampling theorem we will be losing information. The second important

point is that if the resolution of the FFT is not accurate enough (FFT size large enough), the

frequency components, in case of multiple WCDMA bands, will start to leak into other

bands the way you do not want them to. What the reader should realize now, is that a single

bin actually consists of signal information from multiple frequencies. Specifically, if the

starting frequency of bin 0 in figure 3 is 0 Hz the first frequency bin actually contains

information from frequencies 0 Hz to 39.0625 kHz. The Fourier-transform enables us to

separate these frequencies in the resolution we desire.

15

2.3 Quadrature sampling

When looking for information on the sampling theorem I discovered a few key notes about

sampling systems. In essence, the sampling system devices today can be designed in a

multitude of different ways and there are some interesting points to gain in terms of signal

information. The following extracted from the book The Fast Fourier Transform and its

Applications by E. Oran Brigham explains the idea behind the figures one and four where

the receiver separates the signal into to two functions.

Applications of the FFT are sometimes limited by the sampling rates achieved by analog-
to-digital converters. For these cases, it is possible to achieve a lower sampling rate by
separating the signal into two waveforms, or channels, and sampling each channel. This
concept is based on the principle that a signal can be expressed in terms of two waveforms
called quadrature functions. Each of the two quadrature functions occupies only one-half
the bandwidth of the original signal. Hence, it is possible to sample each quadrature
function at one-half of the sample rate required to sample the original signal.

(Brigham 1988, 327)

The following chapter looks at the DFT from the point of view of DSP theory. It presents

the examples that need to be understood when discussing the Fourier-transforms and what

we actually gain from it.

Figure 4: Block diagram of the quadrature-sampling and signal-recombination process. (Brigham
1988, 331)

16

2.4 What is the point of the DFT and the FFT

The Fourier-transform decomposes the specified signal (in our case, a series of time

domain values) and splits the information up to the specified frequency resolution (size of

the Fourier-transform) giving us a frequency domain representation of the signal. Some of

the mathematical operations that we need to employ on our signal would be very costly

and slow (from a computational point of view) in the time domain. However in the

frequency domain they can be done more easily and filtering can even be done during the

FFT calculation via convolution.

Here we are presented with an example of signal with all of its different frequency

components summed. This is often what we are looking at when we see the signal in a time

domain representation. What the Fourier-transform allows us to do is separate these

different frequency components from this signal. We are modifying the signal to gain

another signal, or in this example multiple different signals.

Figure 5: Example of a time-domain signal is represented with all of its frequency components
summed.

17

Here we have the same signal previously from figure 5, but with all the different

frequencies (in this case only three for easier display in this 2D domain) displayed

separately. When we run our signal or signal samples through the forward Fourier-

transform operation, the algorithms and mathematical operations are designed to give us a

frequency representation of the signal.

If we try to represent a signal with a 5 MHz bandwidth in the previous way (separating the

frequencies into to signals relative to time) not only would the drawing get quite

complicated but we would not be able to tell much from it. Next let's look at the frequency

domain representation of our example signal.

Figure 6: Example signal is represented with all of its frequency components separated in the time-
domain.

18

Here the results of the Fourier-transform are plotted in the frequency domain. From this it

is much easier to distinguish, in the case of wide-band signals, the range of frequencies in

our signal.

In the very core the Fourier-transform is nothing but multiplications and additions with

sine and cosine waves. Moreover when these waves are expressed as a series of discrete

values, the mathematics of it suddenly becomes more familiar. As a side note, although the

mathematics of it can be very simple, some of the problems that it is used to solve are not.

The only problem with mathematics such as the Fourier-transform is that, although the

calculations are just additions and multiplications, the explanations behind the formulas are

almost always lacking in detail. This is true especially from the point of view of people that

have marginal experience with mathematics. We will now look at some of the mathematics

that need to be understood when looking at the Fourier-transform and FFT algorithms.

Figure 7: Example signal is represented in the frequency domain.

19

2.4.1 Euler's formula

Euler introduced the use of exponential functions and logarithms in analytic proofs. Most

times in the FFT formulas the sine and cosine components are represented in exponential

function notation. It comes down to being another polar format representation of the

complex number format.

Euler's number (e) helps us define an exponential format for complex numbers, as well as

provides a relation to the trigonometric functions. This is the exponential function

representation often used with the DFT and FFT formulae.

ei φ=cos(φ)+ i∗sin (φ)

Where i is the imaginary component and φ (phi) is any real number. Euler's formula allows

us to move between the polar and Cartesian representation. A complex number can be

represented on the complex-plane as Cartesian coordinates.

This is the same complex-plane representation as the I/Q signal example in figure two. It is

displayed here once more to demonstrate the link between the mathematics and signal

processing.

Figure 8: A geometric interpretation of Euler's formula
(Wikipedia, 2009)

20

2.5 Discrete Fourier Transform (DFT)

If you need and explanation on the basics of the equation notation, please see Annex C.

Before discussing the discrete transform lets take a look at the actual Fourier-transform

integral it is based on. This example is taken from the Stanford University website:

X (ω)=∫
−inf

inf

x (n)∗ei∗ω∗n dt , ω ∈ (−inf ,inf)

This is the Fourier transform notation for infinite signals The DFT replaces this previous
integral with a finite sum, where N is the size of the DFT:

X (ωk)=∑
n=0

N −1

x(n)∗ e−i ∗ ωk ∗ n

In summary, the DFT is simpler mathematically, and more relevant computationally than
the Fourier transform. At the same time, the basic concepts are the same. (Smith, J.O.
2007.)

The DFT gives us access to the signals frequency domain, however it is basically

implemented as a direct convolution operation. This means that the calculation still

requires a lot of arithmetic operations. This is why the algorithm known as the Fast

Fourier-transform was developed. The most important point to note at this time, is that the

FFT is not an approximation of the DFT. It is the DFT with a reduced number of arithmetic

operations. Next, before moving on to the FFT formula and the explanation behind the

Cooley-Tukey decimation-in-time FFT algorithm, we will take a look at the divide-and-

conquer algorithm approach and how these FFT algorithms relate to it.

21

2.6 Divide and conquer algorithms for computation of the DFT

This next example is based on the book Digital Signal Processing: Principles, Algorithms

and Applications by Proakis and Manolakis, 1996. The books chapter 6.1.2 "Divide-&-

Conquer Approach to Computation of the DFT gives a detailed explanation to how the

family of FFT algorithms is formed.

The development of computationally efficient algorithms for the DFT is made possible if
we adopt a divide-and-conquer approach. This approach is based on the decomposition of
an N-point DFT into successively smaller DFTs. This basic approach leads to a family of
computationally efficient algorithms known collectively as FFT algorithms. (Proakis and
Manolakis, 1996).

The divide-and-conquer method solves this problem by breaking it into subproblems that

are smaller instances of the same type of problem. It them solves these problems and

appropriately combines the results

For the Cooley-Tukey radix-2 FFT algorithm, where N is the size of the DFT, the

computational sizes will be factored as a product of two integers: N=L∗M . the values

were chose as M =N /2 and L=2 . This comes down to breaking the DFT into two

smaller DFTs where the summation runs to half of the original size of the DFT.

Additionally these two DFTs are designated to compute the even and odd-numbered signal

samples.

This "index reversing" is discussed in chapter 2.8 with an example displayed in figure 10.

Where the butterfly diagrams (discussed in chapter 2.8.1) use complete bit-reversing of

the signal sample indices to produce the frequency-domain results, the Cooley-Tukey

algorithm only computes the even- and odd-index split stage.

In the next chapter we will look at the actual FFT formula and the additional rules that

provide the algorithm its speed, mainly due to the periodic properties of the coefficients.

22

2.7 Fast Fourier Transform (FFT)

The Cooley-Tukey decimation-in-time (DIT) algorithm separates the calculations into two

parts (hence the name radix-2). The basic formula operations consist of signal samples

being multiplied by coefficients and then summed together. A more common notation for

the FFT is as follows:

FFT N [k , f] = ∑
n=0

N−1

f (n)∗ e−i∗2∗π∗k∗n / N

Where we take the FFT of function f where f (n) defines the values of the function

being multiplied by our coefficients and then summed together. We assign the calculated

values to be stored by index k .

The indices k and n run from 0 to N – 1, where N is the size of the FFT. What this

means is that the the calculated frequency domain value at index k=0 consists of all

values in our function (up to the size of the FFT) multiplied with a portion of our

coefficients. The coefficients actually run much longer than the size of the FFT because of

both indices existing inside the exponential function.

To transform this notation into the DIT radix-2 algorithm, we need to split the DFT into the

even and odd portion (decimation by factor of two) calculations as follows:

FFT N [k , f] =

∑
n=0

N /2−1

f (2∗n)∗ e−i∗2∗π∗k∗2∗n / N +

∑
n=0

N /2−1

f (2∗n+ 1)∗ e−i∗2∗π∗k∗(2∗n+ 1) / N

This means that the even (2*n = 0, 2, 4 etc.) indexed samples and the odd (2*n+1 = 1, 3, 5

etc.) indexed samples are handled separately. This is where the name 'decimation-in-time'

comes form. Index n now runs from 0 to N /2 due to being split into two portions.

23

Now to produce the computational savings that we are after, the FFT needs to be modified

further by extracting the twiddle factor element from our coefficients. In the following

equations well only look at the exponential functions, our coefficients of the odd part:

… e−i∗2∗π∗k∗ (2∗n+ 1) / N

From this, we want to extract the twiddle factor or phase factor by separating the

summation inside the exponential function to produce two exponential functions:

… e−i∗2∗π∗k∗2∗n / N
∗ e−i∗2∗π∗k / N

This leaves the odd part coefficient with the same expression as the even part coefficients.

And now due to the operations inside the transform only consisting of multiplications, we

can move this twiddle factor to the front of our summation clause to produce:

FFT N [k , f] =

∑
n=0

N /2−1

f (2∗n)∗ e−i∗2∗π∗k∗2∗n / N +

e−i∗2∗π∗k / N
∗ ∑

n=0

N /2−1

f (2∗n+ 1)∗ e−i∗2∗π∗k∗2∗n / N

Now as stated, the even and odd parts are multiplied with the same coefficients. The other

coefficients that are moved to the front of the odd summation part of the algorithm are also

referred to as 'twiddle factors' or 'phase factors'.

Lets define a more compact representation for the summation and multiplication parts as

follows, where f E denotes the DFT for the even and f O for the odd index part:

FFT N /2[k , f E] = ∑
n=0

N /2−1

f (2∗n) ∗ e−i∗2∗π∗k∗2∗n / N

FFT N /2[k , f O] = ∑
n=0

N /2−1

f (2∗n+ 1)∗ e−i∗2∗π∗k∗2∗n / N

24

This change of expressing the DFT parts hopefully makes the next rule we introduce a little

more clear. These are the periodic properties of the radix-2 FFT. Note that the index n is

now hidden inside compact representation of the summation equation that we defined:

FFT N [k , f] = {
FFT N /2[k , f E] + e−i∗2∗π∗k / N ∗ FFT N /2[k , f O] ,

when k < N / 2

FFT N /2 [k−
N
2

, f E] − e−i∗2∗π∗k / N
∗ FFT N /2[k−

N
2

, f O] ,

when k ≥ N / 2

The most important thing to note here is the index k and the sign flip on the twiddle

factor during the calculations. The algorithm recycles the calculation results of the even

and odd DFT parts to compute the final output of the FFT.

The Cooley-Tukey algorithm is limited FFT sizes N of power of two or 2 p . This main

limitation for the algorithm comes from the radix-2 size. For the radix-2 decomposition the

FFT size must be able to be divided to sizes of two prime numbers r , where we split the

single DFT into these two DFT's, according to the divide and conquer principle, for which

the sizes of the DFT's are primes as long as the rule for power of two size for the FFT is

followed.

In the following chapter we will look at the periodic properties of the twiddle factors in

much more detail to hopefully gain an understanding how the final summation of the FFT

algorithm works.

25

2.7.1 Twiddle factors and their redundancy properties

In the mathematical notation the coefficients and the twiddle factors (also known as phase

factors) are presented in the exponential function notation.

The Cooley-Tukey DIT algorithm splits up the coefficients into the standard multipliers

and the twiddle factors but their basic formats are the same. The following equation shows

only the twiddle factors expressed in exponential function format that will be converted

with Euler's formula:

X k= ⋯ e
−2∗π∗i

N
∗k

∗ FFT N /2[k−
N
2

, f O]

Where X k is the final calculated sample at the index k , which is an integer ranging

form 0 to N – 1, N is the size of the FFT (for this example lets say it is 1024), and

FFT N /2 [k−
N
2

, f O] denotes the DFT of the odd-indexed values. The division to even

and odd comes from separating the DFT into the radix-2 representation.

As stated, exponential format can be modified into a geometric representation via Euler's

formula. In this case it results in the following:

e
−2∗π∗i

N
∗k

= cos(
−2∗π

N
∗k)+ i∗sin (

−2∗π

N
∗k)

The first point here is to provide a simpler representation (other than the exponential

format) which is often used when expressing the FFT algorithm formulae. The second

important point is that when the FFT is calculated, the results of it can then be manipulated

with standard vector mathematics to extract information from them.

Now, this all comes back to the phase difference of the sine and cosine waves to separate

the real and imaginary parts of the signal.

26

The coefficients are often written in the form W N
k , where it denotes the twiddle factors

for FFT size N and index k .

W N
k
= e−i∗2∗π∗k / N

Since the twiddle factors rotate on the complex plane it actually creates a form of

redundancy which makes the FFT possible. Lets look at the DFT formula again. The

important thing to note here is how integers k effects the twiddle factor definition. We will

need this information shortly.

X k= ⋯ W N
k

∗ FFT Odd

Some authors like to explain this arithmetic reduction by the redundancies inherent in the
twiddle factors. They illustrate this with the starburst pattern in figure 10 showing the
equivalencies of some of the twiddle factors in an 8-point DFT. (Lyons, 2004).

The above figure as explained by Lyons describes the redundancy and symmetry of the

twiddle factors . This redundancy is part of what makes the FFT possible.

Notice, in figure 8, how some of the coefficients W N are actually the same. For example,

how W 8
6=W 4

3 . What the notations mean is that for FFT size 8 and index six and FFT

size 4 with index three are actually the same (remembering that N is the size of the DFT or

FFT). Next lets look at how the FFT operates slight more closely.

Figure 9: Cyclic redundancies in the twiddle factors
(coefficients) of an 8-point FFT (Lyons, 2004).

27

2.8 The FFT operations

The Fast Fourier transform works by decomposing a signal of N point time domain

samples. The key differences between the algorithms are called decimation-in-time and

decimation-in-frequency. The Cooley-Tukey version, discussed in detail later, is a DIT

algorithm that decomposes the signal samples by separating them into two between the

even and odd signal samples.

This example and figure taken from Steven W. Smiths DSP book illustrates the point very

well.

Figure shows an example of the time domain decomposition used in the FFT. In this
example, a 16 point signal is decomposed through four. separate stages. The first stage
break the 16 point signal into two signals each consisting of 8 points. The second stage
decomposes the data into four signal of 4 points. This pattern continues until there are N
signals composed of a single point. (Smith, 2002).

 The butterfly diagram operations (the actual calculation operations of the FFT) are what is

missing from between the lines of Figure 9. The next chapter looks at the twiddle factors as

well as the butterfly diagrams and why they are so important to the FFT.

Figure 10: The FFT decomposition. An N point signal is decomposed into N
signals, each containing a single point. Each stage uses and interlace

decomposition, separating the even and odd numbered samples (DIT) (Smith,
2002).

28

2.8.1 FFT butterfly diagrams

Now lets take a look at the simplest form of FFT butterfly diagram, for more

comprehensive images please see Annexes A and B. The next example is taken from

Richard G. Lyon’s book "Understanding Digital Signal Processing". Where N is again,

the size of the DFT or FFT.

Here, x (k) represents the signal samples at index k and W N represents the

coefficients that are defined as W N =e−i∗2∗pi /N . This is the very basic operation that takes

place when the FFT is calculated, coefficients are multiplied with signal samples to

produce the outputs from the FFT. In figure 9 at the coefficients W N , a multiplication

operation takes place and at the end dots a summation operation takes place.

The next important bit of information is the redundancy of the coefficients also known as

twiddle factors as discussed in chapter 2.7.1. For larger size butterflies, some of the

calculations can be skipped due to the twiddle factor redundancy properties.

A larger butterfly is presented in Annex A, where some of these skips are marked.

Derivation of these butterfly images can get quite complicated, however the formulae and

explanations behind them already exist so most of the mathematical work has been done

for us.

The next chapter looks at the inverse of the Fourier transform and what tricks we can use

for calculating it.

Figure 11: A single 2-point DFT butterfly (Lyons, 2004).

29

2.7 The Inverse Fast Fourier Transform

The reason we calculate the FFT from, in this case, our signal is to do operations such as

filtering at lower computational cost. The reason we need the inverse is to transform that

frequency representation back to continue processing a WCDMA signal with our next

processing step we will need to signal samples back in the time domain.

Forward DFT

Inverse DFT

The inverse DFT is basically defined as swapping the calculated samples X (k) with the

signal samples x (n) , as well as the sign flip for the twiddle factors e−i∗φ where

φ=2∗pi∗m∗n and N is the size of the DFT.

Continuing on, the next example is again taken from the book by Richard G. Lyons. One of

the techniques for calculating the inverse Fourier-transform using the forward transform is

shown next. The data is separated into real and imaginary parts.

In this clever inverse FFT scheme we don't bother with conjugation. Instead, we merely
swap the real and imaginary parts of sequences of complex data. (Lyons, 2004).

Now lets start implementing one of the FFT algorithms in the next chapter.

Figure 12: Processing for the inverse FFT calculation method (Lyons, 2004).

X (k)= ∗ ∑
n=0

N−1

x (n) ∗ e−i∗φ / N

x(n)=
1
N

∗ ∑
k=0

N −1

X (k)∗ ei∗φ / N

30

3 PRACTICAL IMPLEMENTATION

The algorithm introduced by J.W. Cooley and J.W. Tukey can be expressed in one of the

most simple and understandable forms when it comes to FFT algorithms. This is why it is a

good starting point and we will now go over it.

We've already taken a look at portions of this algorithm in the previous chapters, here is to

full decimation-in-time DFT formula:

X (k)=∑
n=0

N −1

xn∗e
−2∗π∗i

N
∗n∗k

Where N is the size of the DFT, n and k are integers ranging from 0 to N−1 . The

symbols X and x are functions where the integers n and k are the inputs where

each input correspond to one output. They can also be viewed as arrays where the integers

are used as index indicators to access a value stored in that index. The twiddle factors

eφ∗i , though not an immediately representable as an array by itself, can be pre-

calculated and stored in memory.

The radix-2 DIT algorithm (Cooley-Tukey, 1965) divides the DFT into two parts: a sum

over the even-numbered indices and a sum over the odd-numbered indices. Although the

original papers notation is quite complex, it can be expressed much more simply as

follows:

X (k)= ∑
m=0

N /2−1

x(2∗m)∗ e
−2∗π∗i

N /2
∗(2∗m)∗k

+ ∑
m=0

N /2−1

x(2∗m+ 1) ∗ e
−2∗π∗i

N /2
∗ (2∗m+ 1)∗k

Note the change to indicator n . Here index indicator n is calculated as 2∗m for the

even index parts and as 2∗m+ 1 for the odd index part. When m=0 the index for even

parts is 2∗0=0 and (2∗0)+ 1=1 and so on.

Before heading into the actual coding of the algorithm (the snap of source code can be

found in Annex D), we need to look at some more of fundamental theory.

31

3.1 FFT windowing and window functions

Following chapter discusses the window functions in general and introduces the window

function to be used for WCDMA data. The next example is taken from Richard G. Lyon's

book.

Windowing reduces DFT leakage by minimizing the magnitude of a functions side-lobes.
We do this by forcing the amplitude of the input time sequence at both the beginning and
the end of the sample interval to go smoothly toward a single common amplitude value.
(Lyons, 2004).

In other words, windowing is a technique used to shape the time portion of your
measurement data, to minimize edge effects that result in spectral leakage in the FFT
spectrum. By using Window Functions correctly, the spectral resolution of your frequency-
domain result will increase. (National Instruments, 2012).

To apply a window function to our signal samples, we can modify our FFT formula and

include the application of the window function during its calculation. This means, that our

input sample sequence x(m) is multiplied by the generated window function coefficients

y(m) . The modified formula would become:

where ω =
−2∗π∗i

N /2
, N is the size of the FFT and k = 0,1 ,2 … N−1 .

X (k)= ∑
m=0

N /2−1

y(2∗m)∗ x(2∗m)∗e ω ∗(2∗m)∗k
⋯

+ ∑
m=0

N /2−1

y(2∗m+ 1)∗ x(2∗m+ 1)∗ eω∗(2∗m+ 1)∗k

Here, our time domain samples would be multiplied by the window function coefficients

before the FFT is performed. Next lets look at some of the common window functions and

their coefficient generation.

32

Firstly looking at the simplest form of window, the rectangular window. The rectangular

window is defined as: y (m)=1 for all values of m i.e when m = 0,1 ,2 … N −1 .

Figure 13 shows an input sinusoid with constant frequency and amplitude. Next, lets look

the windowing functions and what effect they have when applied to this signal.

In figure 14, the lower portion of the image is the sample output after the windowing

function has been applied to our original function, or input signal. Notice how the window

function only effects the length of our data, by defining its own sample interval. Only data

from this sample interval is used within the window function. Because the rectangular

window defines all of its values to one, not much else has changed.

Figure 13: Input signal, time domain (Lyons,
2004)

Figure 14: Rectangular window (Lyon,
2004)

33

Next, lets look at the Hanning window, also known as the raised cosine window. Where,

m = 0,1 ,2 … N −1 and N is the size of the FFT, the coefficients y (m) are:

y (m)= 0.5−0.5∗cos(
2∗π∗m

N−1
)

When the Hanning window function is applied to our original signal (previous page, figure

14) the results (lower portion of figure 15) are vastly different, since the coefficients are

generated using a cosine function.

The Hanning window is the more interesting example, since it is closer to the shape of the

Root-raised cosine filter used in WCDMA. The RRC filter definition can be found in

Annex E. The RRC window coefficients are the coefficients of choice when actually

working with WCDMA data.

Now lets look at the closely related topic to the window-functions which is the overlap that

needs to be taken into account during signal processing.

Figure 15: Hanning window
(Lyons, 2004)

34

3.2 Signal sample overlap

Because of windowing (discussed in the previous chapter) our output signal can be greatly

reduced around the edges. This of course assumes that we are using a window-function that

focuses the signal amplitude around the center of the window-function, and such is the

case in WCDMA.

In DSP terms, this means we need to apply what is called the overlap-add method to our

calculations. This simply means that the processed overlapping data parts need to be

summed together to produce a viable representation of our signal.

Take note of the sample numbers in figure 16. As a window-function is applied to our

processing segments, these output segments (1 to 3) are produced. The additional step to

produce our output signal is to sum the overlapping sample parts. For example, output

segments one and two have overlapping sample numbers ranging from 100 to 200. In the

output signal graphic, you can see the shape that summing together those two segments

produces with the two rises quite clearly visible.

Finally, in the next chapter lets look at an implementation of the FFT in detail.

Figure 16: The Overlap-Add method (Smith, 2002)

35

3.3 Implementation in C-based languages

To view the full source code, please see Annex D. Note that the following piece of

complex multiplication code has been implemented by Microsoft Visual Studio compiler

intrinsic.

An intrinsic is a function known by the compiler that directly maps to a sequence of one or
more assembly language instructions. Intrinsic functions are inherently more efficient than
called functions because no calling linkage is required.

Intrinsics make the use of processor-specific enhancements easier because they provide a
C/C++ language interface to assembly instructions. In doing so, the compiler manages
things that the user would normally have to be concerned with, such as register names,
register allocations, and memory locations of data. (Microsoft, 2011).

Please note that the implementation code relies on the compiler to generate an efficient

starting point for modifying the generated assembly code. The memory stack and heap

management are left without much of a mention. This efficient complex multiplication is

taken from the Intel SSE instructions document by Mostafa Hagog of Intel's

Microprocessor Technology Labs.

Figure 17: Complex multiplication using SSE intrinsic (Hagog, 2007)

36

As we are dealing with complex valued signal samples, this will provide us with a more

efficient implementation in general. Complex multiplication is defined as:

z∗w=(a+ ib)∗(c+ id)

→ a∗c+ ib∗c+ a∗id−b∗d

→(a∗c−b∗d)+ i(a∗d + b∗c)

With the SSE vector, we will end up loading four signal sample values as 32-bit floating

point values at a time to our processor registers. Let us define them as:

VECTORs = [ar , a i , br , bi]

Where the subscript denotes either the real part xr or the imaginary part x i of the

complex value. Let us also define the coefficients, that our signal samples will be

multiplied with, in a similar manner as:

VECTORc = [cr , c i , d r , d i]

Now the important thing to note here, is that the way the SSE load operation works, is that

it takes the next four sequentially stored 32-bit floating point values from the memory

location we specify (memory alignment restrictions apply here). So in order to pair the

right coefficients with the correct signal samples our complex multiplication output should

look as follows:

VECTOR0,1 = (ar∗cr−ai∗c i)+ (ar∗ci+ a i∗cr)

VECTOR2,3 = (br∗d r−bi∗d i)+ (br∗d i+ b i∗d r)

To produce this result with SSE programming our first step uses the SSE intrinsics

movsLdups and movsHdups on our coefficients to produce two new arrays of values:

[cr , c i , d r , d i]

↓
movsLdup

↓
[cr , cr , d r , d r]

[cr , ci , d r , d i]

↓
movsHdup

↓
[c i , c i , d i , d i]

37

The movsLdup intrinsic duplicates the first and third elements and places the first element

in the positions of the first and second elements, and the third element into the third and

fourth elements of the return value. The movsHdup intrinsic in turn duplicates the second

and fourth elements and placing them in a similar manner. One of the arrays now consists

only of real values and the other one only of imaginary values.

Next we will multiply the new coefficient arrays with out signal sample arrays with the

mulps intrinsic.

[cr , cr , d r , d r]
∗ ∗ ∗ ∗

[ar , a i , br , bi]

↓
[cr⋅ar , cr⋅a i , d r⋅br , d r⋅bi]

[c i , c i , d i , d i]

∗ ∗ ∗ ∗
[ar , ai , br , bi]

↓
[c i⋅ar , ci⋅a i , d i⋅br , d i⋅bi]

The split coefficient arrays are multiplied with the signal sample to produce our next

intermediate results. Following the complex multiplication defined in Figure 17, our next

step is to use the intrinsic addsubps for the final summation of the complex multiplication.

Multiplied 1=[cr⋅ar , cr⋅a i , d r⋅br , d r⋅bi]

− + − +
Multiplied 2=[c i⋅ar , c i⋅a i , d i⋅br , d i⋅bi]

Notice how the intrinsic alternates with the subtraction and addition of corresponding

elements in the vectors. However, here we note that the results would not match the

required steps for complex multiplication as defined earlier with VECTOR0,1 and

VECTOR2,3 .

RESULT 0,1 = (cr∗ar− ci∗ar⏟
incorrect position

)+ (cr∗a i+ ci∗a i⏟
incorrect position

)

We will need to shuffle one of our intermediate result arrays to produce the correct output

as follows:

CORRECT 0,1 = (cr∗ar−c i∗ai⏟
correct

)+ (cr∗ai+ d i∗br⏟
correct

)

These modifications group the real parts of the calculation together while respectively

doing the same with the imaginary parts of the calculation. Note that i∗i=−1 .

38

The exact same result and solution can be noted for the other complex multiplication:

RESULT 2,3 = (d r∗br− d i∗br⏟
incorrect position

)+ (d r∗bi+ d i∗b i⏟
incorrect position

)

CORRECT 2,3 = (d r∗br−d i∗bi⏟
correct

)+ (d r∗bi+ d i∗br⏟
correct

)

To achieve this result in programming we will use the SSE macro SHUFPS to switch the

position of our required values in combination with another macro _MM_SHUFFLE for

the creation of our shuffle mask.

We want to switch the position of the first and second elements and the third and fourth

elements in the Multiplied 2 vector to produce the correct output, so we define our bit

mask as:

MASK = {2,3,0,1}

Note that the mask macros indices are actually the opposite of the vector indices so the

index zero in the SSE vector actually corresponds to index three in the mask macro. This is

due to the way the mask is calculated. Now, this means that the SSE vectors indices zero

and one will switch places to produce the correct output as follows:

SHUFPS {[ci⋅ar , ci⋅a i , d i⋅br , d i⋅bi] ,MASK }

↓
RESULT shuffle=[c i⋅ai , ci⋅ar⏟

switched

, d i⋅bi , d i⋅br⏟
switched

]

After the shuffle operation we can proceed with the calculation of the complex

multiplication as defined in Figure 17:

Multiplied1 =[cr⋅ar , cr⋅a i , d r⋅br , d r⋅bi]

− + − +
Multiplied 2,shuffle=[ci⋅a i , c i⋅ar⏟

switched

, d i⋅b i , d i⋅br⏟
switched

]

39

Which will finally produce the correct output to our SSE vector elements as:

FINAL{
0
1
2
3
} = {

cr⋅ar − ci⋅a i

cr⋅ai + ci⋅ar

d r⋅br − d i⋅b i

d r⋅bi + d i⋅br
} = {

[0] real part
[0] imaginary part
[1]real part
[1]imaginary part

}
The real and imaginary parts of samples[0, 1] and coefficients[0, 1] are multiplied with

each other to produce the correct results of our complex multiplication.

40

3.4 Results and their interpretation

The FFT results shifted roughly to the center of the spectrum are presented in the figure
below.

When taking into account our 40 MHz recording bandwidth, our 5 MHz WCDMA band

should take roughly 256 FFT bins with size 2048 point FFT. As we can see from the figure

it is roughly equivalent to this even without any window-functions applied. A more

detailed result verification is done via additional processing, but this is not included in the

scope of this thesis.

Figure 18: Cooley-Tukey algorithm results, no window-function.

41

4 THE SOLUTION AND ITS EVALUATION

An important thing to note of our test data, is that the WCDMA band is almost centered.

Due to this, minimal frequency error is present and hence no frequency shifting is needed

when just drawing the spectrum. In a real world application however, multiple bands can

exist near each other in efficient recording systems. Additional theories and especially

implementations to be considered, because of this, would include spectrum frequency

shifting being implemented.

The next signal processing might be decimation, or lowering the sampling rate (down-

sampling) to the WCDMA defined chip rate of 3.84 MHz. Depending on the recording

system however, in some cases it may be necessary to actually raise the sampling rate of

our signal, or interpolate (up-sample). This is done since decimation basically requires the

the higher sampling rate to be a multiple of our sampling we want to reduce it to. This is

because at its simplest, a decimator simply lets through every n : th sample, where n is

the integer factor for decimation. More complex decimation schemes however, do exist.

One such is described as being part of a polyphase filter, where four filter banks are used to

control the signal flow from the ADC (Richardson, 2005).

The solutions covered in this document however are valid theories and provide us with a

solid base of knowledge for our implementation of the first part of signal processing when

working with our data.

42

REFERENCES

Brigham, Oran E. 1988. The Fast Fourier Transform and its Applications. New Jersey:
Prentice-Hall, Inc.

Cooley, James W. and Tukey, John W. 1965. An algorithm for the machine calculation of
complex Fourier series. Mathematics of Computation. 19, 297-301. Available at
http://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-
1/home.html.

Hiebel, M. 2007. Fundamentals of Vector Network Analysis. Rohde & Schwarz.

Hagog, Mostafa. 2007. Intel: Looking for 4x speedups? SSE to the rescue! Www-
document. Available at: http://software.intel.com/file/1000.

Lüke, Hans D. 1999. The Origins of the Sampling Theorem. IEEE Communications
Magazine, April. Www-document. Available at
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.163.2887&rep=rep1&type=pdf.
Read on 20.9.2011.

Lyons, Richard G. 2004. Understanding Digital Signal Processing, Second Edition.
Prentice Hall Professional Technical Reference.

Microsoft. 2011. MMX, SSE, and SSE2 Intrinsics. Www-document. Available at
http://msdn.microsoft.com/en-us/library/y0dh78ez%28v=vs.80%29.asp. Read on
12.9.2011

National Instruments (NI). 2012. Windowing: Optimizing FFT's Using Window Functions.
Www-document. Available at http://zone.ni.com/devzone/cda/tut/p/id/4844. Read on
4.3.2012

Proakis, John G and Manolakis, Dimitris G. 1996. Digital Signal Processing: Principles,
Algorithms and Applications, Third Edition. New Jersey: Prentice-Hall Inc.

Richardson, Andrew. 2005. WCDMA Design Handbook. New York: Cambridge University
Press.

Rohde & Schwarz. 2007. Operating Manual for the R&S®FSQ-B17 Digital Baseband
Interface. Www-document. Available at http://www2.rohde-schwarz.com/file/FSQ-
B17e.pdf. Read on 31.8.2011.

Smith, Steven W. 2002. The Scientist and Engineer's Guide to Digital Signal Processing.
Www-document. Available at http://www.dspguide.com/pdfbook.htm. Read on
11.10.2011.

Smith, J.O. 2007. Mathematics of the Discrete Fourier Transform (DFT) with Audio
Applications, Second Edition. Www-document. Available at
http://ccrma.stanford.edu/~jos/mdft/. Read on 12.8.2011.

http://ccrma.stanford.edu/~jos/mdft/
http://www.dspguide.com/pdfbook.htm
http://www2.rohde-schwarz.com/file/FSQ-B17e.pdf
http://www2.rohde-schwarz.com/file/FSQ-B17e.pdf
http://zone.ni.com/devzone/cda/tut/p/id/4844
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.163.2887&rep=rep1&type=pdf
http://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/home.html
http://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/home.html

ANNEX A

ANNEX B

ANNEX C

In the last chapter (2.4.1 Euler's formula and the 'Twiddle factors') we took a look at a cut-

off Cooley-Tukey twiddle factor portion of the formula. Now we will look at the basic

mathematical operations and expressions and hopefully realize how we can use them to

calculate the DFT and the FFT.

Even the most simplest forms of the FFT and DFT formulas use the summation operator

symbol ∑ x . Lets look at a modified one from the previous chapter, with similar index

notation:

X k=∑
n=k

k+ 3

yn

Because the summation operation is a key definition and is used extensive lets look at this

example in detail and see what is actually happening.

The most basic thing to realize is that X and y represent some arbitrary array or

storage space and their indices n and k determine the accessed value (which ever

value resides in that index) for this simple algorithm.

If our index indicator k begins at zero:

when k = 0, index n goes from 0 to 3, so X 0= y0+ y1+ y2+ y3

when k = 1, index n goes from 1 to 4, so X 1= y1+ y2+ y3+ y4

and so on.

If you are familiar with programming this is basically a simple for-loop with index increase

of one and upper limit of k+ 3 . Here, we just did not define an end value to k.

It is very important to understand the summation notation before moving on to the DFT

and FFT, as it is one of the simplest representations used.

 ANNEX D

 Definitions used in the FFT source code:

#if defined(AVX)

 // AVX would hold and process 256-bits
 #define FVECTOR_SIZE sizeof(float)*2
 #define FVECTOR_INPLACE_MULTIPLIER 4
 #define FVECTOR_INPLACE_MULTIPLIER_POSITION sizeof(float)*2
 #define FVECTOR_FFT_DIVISOR sizeof(float)*2

.

.

.
#endif

#if defined(SSE)

 // SSE would hold and process 128-bits
 #define FVECTOR_SIZE sizeof(float)
 #define FVECTOR_INPLACE_MULTIPLIER 2
 #define FVECTOR_INPLACE_MULTIPLIER_POSITION sizeof(float)
 #define FVECTOR_FFT_DIVISOR sizeof(float)

 // SSE, process two samples at a time so we divide by two.
 #define FVECTOR_DIVISOR 2

 // Create the mask for shuffle single precision.
 // Note the index differences -> Vector index: [0, 1, 2, 3]
 // Macro index: [3, 2, 1, 0]
 #define FVECTOR_SHUFFLE(x,y,z,w) (z<<6)|(y<<4)|(x<<2)|w

 #include <xmmintrin.h>
 #include <intrin.h>

 // Floating point (single precision):
 typedef __m128 FVECTOR;
 #define FVECTOR_SHUFPS _mm_shuffle_ps
 #define FVECTOR_SETZERO _mm_setzero_ps()
 #define FVECTOR_LOAD _mm_load_ps
 #define FVECTOR_STOREPS _mm_store_ps
 #define FVECTOR_MULPS _mm_mul_ps
 #define FVECTOR_ADDPS _mm_add_ps
 #define FVECTOR_SUBPS _mm_sub_ps
 #define FVECTOR_STORELOWPS _mm_storel_pi
 #define FVECTOR_SQRTPS _mm_sqrt_ps
 #define FVECTOR_MOVSLDUPS _mm_moveldup_ps
 #define FVECTOR_MOVSHDUPS _mm_movehdup_ps
 #define FVECTOR_ADDSUBPS _mm_addsub_ps // A0-B0, A1+B1, A2-B2, A3+B3
#endif

The Cooley-Tukey FFT algorithm requires the samples to be processed while being split

into the even and odd index parts. This is equivalent to the bit-reversing operation seen in

chapter 2.8, however instead of reversing each sample separately we stop at the even and

odd split.

void CooleyTukey_SplitEvenOdd_float(float** evenPtr, float** oddPtr, float** samplePtr,
 const uint32_t maxNumOfSamples)

 {
 float* sample = (*samplePtr);
 float* even = (*evenPtr);
 float* odd = (*oddPtr);

 float* addressLimit = ((*samplePtr) + (maxNumOfSamples));

 while(sample < addressLimit)
 {
 // Even real:
 (*even) = (*sample);
 ++even;
 ++sample;

 // Even imaginary:
 (*even) = (*sample);
 ++even;
 ++sample;

 // Odd real:
 (*odd) = (*sample);
 ++odd;
 ++sample;

 // Odd imaginary:
 (*odd) = (*sample);
 ++odd;
 ++sample;
 }
 }

Figure 19: Cooley-Tukey FFT even and odd split

The Cooley-Tukey FFT algorithm for floating point precision:

void Inplace_CooleyTukey_FFT(float** coefPtr, float** twiddlePtr, float** evenPtr, float** oddPtr,
float** resultsLow, float** resultsHigh, const uint32_t fftSize)

 {
 // Generate twiddle factors:
 Inplace_Cooley_GenTwiddle(twiddlePtr, 0, fftSize);
 InPlace_Cooley_GenTwiddleMultipliers(twiddlePtr, 2, fftSize);

 // Load twiddle factor:
 FVECTOR twiddle = FVECTOR_LOAD((*twiddlePtr));

 // Load the multipliers used to generate the next twiddle factor
 //(stored after the twiddle factor by default):
 FVECTOR multiplier = FVECTOR_LOAD(((*twiddlePtr) + FVECTOR_SIZE));

 uint32_t rotation = 0;

 // FFT loop.
 for(uint32_t i = 0; i < (fftSize / FVECTOR_FFT_DIVISOR); ++i)
 {
 // Reset pointers to the start of the data before DFT:
 float* even = (*evenPtr);
 float* odd = (*oddPtr);

 FVECTOR evenSum = FVECTOR_SETZERO;
 FVECTOR oddSum = FVECTOR_SETZERO;

 // Generate coefficients:
 Inplace_CooleyTukey_GenCoefficients(coefPtr, 0, rotation, fftSize);

 Inplace_CooleyTukey_GenCoefMultipliers(coefPtr, FVECTOR_INPLACE_MULTIPLIER, rotation, fftSize);

 Inplace_CooleyTukey_DFT(&even, &odd, coefPtr, &evenSum, &oddSum, (fftSize / 2));

 // Twiddle factor multiplication for odd summation:
 oddSum = Inplace_Cooley_Twiddle_float(&twiddle, &multiplier, &oddSum);

 FVECTOR resultLow = FVECTOR_ADDPS(evenSum, oddSum);
 FVECTOR resultHigh = FVECTOR_SUBPS(evenSum, oddSum); // Sign flip.

 FVECTOR_STOREPS((*resultsLow), resultLow);
 FVECTOR_STOREPS((*resultsHigh), resultHigh);

 (*resultsLow) = (*resultsLow) + FVECTOR_SIZE;
 (*resultsHigh) = (*resultsHigh) + FVECTOR_SIZE;

 // Increase rotation by two, because two samples are processed at a time
 // (in the FFT formulae, rotation is the index 'k').
 rotation = rotation + 2;
 }

 // Move pointers to store the next data in the correct position.
 (*resultsLow) = (*resultsLow) + fftSize;
 (*resultsHigh) = (*resultsHigh) + fftSize;

 // Move pointers to process next data.
 (*evenPtr) = (*evenPtr) + fftSize;
 (*oddPtr) = (*oddPtr) + fftSize;
 }

The Cooley-Tukey algorithm DFT portion:

void Inplace_Cooley_DFT(float** evenPtr, float** oddPtr, float** coefPtr, FVECTOR*
 evenSumPtr, FVECTOR* oddSumPtr, const uint32_t dftSize)

 {
 // Same coefficient is used in the multiplication for odd and even parts.
 // Load the first coefficients:
 FVECTOR coefficient = FVECTOR_LOAD((*coefPtr));

 // Load the multipliers used to generate the next coefficients:
 FVECTOR multiplier = FVECTOR_LOAD(((*coefPtr) + FVECTOR_SIZE));

 // DFT loop.
 for(uint32_t i = 0; i < (dftSize / FVECTOR_DIVISOR); ++i)
 {
 // Split the coefficient to real and imaginary parts:
 FVECTOR coefReal = FVECTOR_MOVSLDUPS(coefficient);
 FVECTOR coefImag = FVECTOR_MOVSHDUPS(coefficient);

 // Even DFT:
 FVECTOR sampleEven = FVECTOR_LOAD((*evenPtr));
 (*evenPtr) = (*evenPtr) + FVECTOR_SIZE;;
 *evenSumPtr = FVECTOR_ADDPS(*evenSumPtr,

VECTOR_InplaceComplexMultiply_float(&sampleEven, &coefReal, &coefImag));

 // Odd DFT:
 FVECTOR sampleOdd = FVECTOR_LOAD((*oddPtr));
 (*oddPtr) = (*oddPtr) + FVECTOR_SIZE;
 *oddSumPtr = FVECTOR_ADDPS(*oddSumPtr,
 VECTOR_InplaceComplexMultiply(&sampleOdd, &coefReal, &coefImag));

 // Generate next coefficient(s) through multiplication with the correct coefficient:
 coefficient = VECTOR_InplaceComplexMultiply_float(&multiplier, &coefReal, &coefImag);
 }
 }

The Cooley-Tukey algorithm twiddle-factor multiplication for the odd part:

FVECTOR Inplace_Cooley_Twiddle_float(FVECTOR* twiddleFactorPtr, FVECTOR* multiplierPtr,
 FVECTOR* oddSumPtr)

 {
 FVECTOR twiddleReal = FVECTOR_MOVSLDUPS(*twiddleFactorPtr);
 FVECTOR twiddleImg = FVECTOR_MOVSHDUPS(*twiddleFactorPtr);

 // Generate next twiddle factor(s) through multiplication with the correct multiplier:
 *twiddleFactorPtr = VECTOR_InplaceComplexMultiply_float(multiplierPtr, &twiddleReal, &twiddleImg);

 FVECTOR multiply1 = FVECTOR_MULPS(*oddSumPtr, twiddleReal);
 FVECTOR multiply2 = FVECTOR_MULPS(*oddSumPtr, twiddleImg);

 FVECTOR shuffle = FVECTOR_SHUFPS(multiply2, multiply2, FVECTOR_SHUFFLE(2, 3, 0, 1));

 return FVECTOR_ADDSUBPS(multiply1, shuffle);
 }

Complex multiplication using vector intrinsics (requires at least SSE3 support):

FVECTOR VECTOR_InplaceComplexMultiply_float(FVECTOR* signalPtr, FVECTOR* coefReal, FVECTOR* coefImag)
 {
 // Multiply samples with the coefficients:
 FVECTOR multiply1 = FVECTOR_MULPS(*signalPtr, *coefReal);
 FVECTOR multiply2 = FVECTOR_MULPS(*signalPtr, *coefImag);

 // Shuffle multiply2 result, so that the final part of the complex multiplication is calculated correctly:
 FVECTOR shuffle = FVECTOR_SHUFPS(multiply2, multiply2, FSSE_SHUFFLE(2, 3, 0, 1));

 // Final summation of complex multiplication:
 return FVECTOR_ADDSUBPS(multiply1, shuffle);
 }

Coefficient and multiplier generators can be combined into one if one wants to do so.

Multipliers make use of the cyclic redundancy and generate the next coefficient by

multiplying it with the appropriate multiplier.

void Inplace_CooleyTukey_GenCoefficients(float** coefPtr, int32_t multiplier, const int32_t rotation,
 const uint32_t fftSize)

 {
 // Multipliers for generating next DFT coefficients:
 // SSE, stored in multiplier in index 0 to 3.
 // AVX, stored in multiplier 0 to 7.
 float* coef = (*coefPtr);

 // Coefficients: exp(2*pi*m*k / N / 2)
 // Rotation = k, multiplier = m.
 const float component = (float)((M_PI / fftSize) * rotation);

 for(int32_t i = 0; i < FVECTOR_SIZE; i = i + 2)
 {
 (*coef) = cosf(component * multiplier); // real
 ++coef;

 (*coef) = -sinf(component * multiplier); // imag
 ++coef;

 multiplier = multiplier + 1;
 }
 }

 void Inplace_CooleyTukey_GenTwiddle(float** twiddlePtr, int32_t multiplier, const uint32_t fftSize)
 {
 // Multipliers for generating next DFT coefficients:
 // SSE, stored in multiplier in index 0 to 3.
 // AVX, stored in multiplier 0 to 7.
 float* twiddle = (*twiddlePtr);

 // Coefficients: exp(2*pi*m / N)
 // multiplier = m.
 const float component = (float)M_PI * 2 / fftSize;

 for(int32_t i = 0; i < FVECTOR_SIZE; i = i + 2)
 {
 (*twiddle) = cosf(component * multiplier); // real
 ++twiddle;

 (*twiddle) = -sinf(component * multiplier); // imag
 ++twiddle;

 multiplier = multiplier + 1;
 }
 }

void Inplace_CooleyTukey_GenCoefMultipliers(float** coefPtr, const int32_t multiplier,
 const int32_t rotation, const uint32_t fftSize)

 {
 // Multipliers for generating next DFT coefficients:
 // SSE, stored in coefPtr, in index 4 to 7.
 // AVX, stored in index 8 to 15.
 float* coefMultiplier = (*coefPtr) + FVECTOR_INPLACE_MULTIPLIER_POSITION;

 // Generator coefficients: exp(2*pi*m*k / N / 2)
 // Rotation = k, multiplier = m.
 const float component = (float)((M_PI / fftSize) * rotation);

 for(int32_t i = 0; i < FVECTOR_SIZE; i = i + 2)
 {
 (*coefMultiplier) = cosf(component * multiplier); // real
 ++coefMultiplier;

 (*coefMultiplier) = -sinf(component * multiplier); // imag
 ++coefMultiplier;
 }
 }

void InPlace_CooleyTukey_GenTwiddleMultipliers(float** twiddlePtr, const int32_t rotation, const uint32_t fftSize)
 {
 // Multipliers for generating next twiddle coefficients:
 // SSE, stored in twiddlePtr in index 4 to 7.
 // AVX, stored in index 8 to 15.
 float* twiddleMultiplier = (*twiddlePtr) + FVECTOR_INPLACE_MULTIPLIER_POSITION;

 // Twiddle factors: exp(2*pi*k / N)
 // rotation = k.
 const float component = (float)M_PI * 2 / fftSize;

 for(int32_t i = 0; i < FVECTOR_SIZE; i = i + 2)
 {
 (*twiddleMultiplier) = cosf(component * rotation); // real
 ++twiddleMultiplier;

 (*twiddleMultiplier) = -sinf(component *rotation); // imag
 ++twiddleMultiplier;
 }
 }

 ANNEX E

3GPP TS 25.101

3rd Generation Partnership Project;
Technical Specification Group Radio Access Network;
User Equipment (UE) radio transmission and reception (FDD)

6.8.1 Transmit pulse shape filter

The transmit pulse shaping filter is a root-raised cosine (RRC) with roll-off α = 0.22 in
the frequency domain. The impulse response of the chip impulse filter RC0(t) is:

()
() ()

−

++

−

=
20

41

1cos41sin

CC

CCC

T

t

T

t

T

t

T

t

T

t

tRC

απ

απααπ

Where the roll-off factor α = 0.22 and the chip duration is

s
chiprate

T µ26042.0
1 ≈=

	1 INTRODUCTION
	2 THEORETICAL BASIS
	2.1 In-Phase and Quadrature signals
	2.2 WCDMA and the sampling theorem
	2.3 Quadrature sampling
	2.4 What is the point of the DFT and the FFT
	2.4.1 Euler's formula

	2.5 Discrete Fourier Transform (DFT)
	2.6 Divide and conquer algorithms for computation of the DFT
	2.7 Fast Fourier Transform (FFT)
	2.7.1 Twiddle factors and their redundancy properties

	2.8 The FFT operations
	2.8.1 FFT butterfly diagrams

	2.7 The Inverse Fast Fourier Transform

	3 PRACTICAL IMPLEMENTATION
	3.1 FFT windowing and window functions
	3.2 Signal sample overlap
	3.3 Implementation in C-based languages
	3.4 Results and their interpretation

	4 THE SOLUTION AND ITS EVALUATION

