
Helsinki Metropolia University of Applied Sciences
Degree Program in Information Technology

Claudio M. Camacho

Adaptive Behavior in Artificial Intelligence

Bachelor’s Thesis. October 31, 2009.
Supervisor: Jaakko Pitkänen, Principal Lecturer
Language Advisor: Taru Sotavalta, Senior Lecturer

Helsinki Metropolia University of Applied Sciences Abstract

Author Claudio Camacho

Title Adaptive behavior in artificial intelligence

Number of Pages 55

Date October 31, 2009

Degree ProgrammeInformation Technology

Degree Bachelor of Engineering

Supervisor Jaakko Pitk̈anen, Principal Lecturer

The goal of this project was to study the characteristics andconsequences of using
dynamic behavior in artificial intelligence (AI). The main purpose was to create a
computer chess program with two different artificial intelligence engines and using
them as a tool for performing different experiments.

The project was carried out by developing a simple chess program with two different
AI engines, one containing classical AI techniques withoutthe use of dynamism, and
another AI engine with adaptive behavior and dynamic evaluation techniques.

The results showed a remarkable improvement on the adaptiveAI engine over the
classic AI engine. The results also demonstrated the challenge of implementing
proper adaptive behavior for the system. Nevertheless, it was proved that it was
feasible to program certain dynamism, as an extension to theclassic AI engine, thus
enabling the intelligent agent to provide adaptive and human-like behavior when
playing a game.

To summarize, the results proved the possibility to create asimplified model of a
computational intelligent system with certain basic dynamic behavior capabilities.
Nonetheless, it is recommended to further develop the current implementation in
order to enable the intelligent agent to widen its dynamic behavior functionality and
to implement basic learning capabilities.

Keywords artificial intelligence, adaptive behavior, computer chess

Contents

Abstract 3

1 Introduction 4

2 Literature Review 5

2.1 Approaches to Artificial Intelligence 5

2.2 Computer Chess and Human Cognition 5

3 Computer Chess Techniques 7

3.1 Board Representations 7

3.2 Evaluation 8

3.3 Tree Traversing and Minimax 9

3.4 Learning Methods 12

4 Implementation of Chess0 14

4.1 Application Design and Purpose 14

4.2 Common Techniques 16

4.2.1 Negamax 16

4.2.2 Alpha-Beta Pruning 18

4.2.3 The Heuristic Function 20

4.3 Improvements to the Dynamic AI Engine 24

4.3.1 Randomization 24

4.3.2 Dynamic Heuristics 26

4.3.3 Quiescence Search and the Horizon Effect 31

5 Results 36

5.1 Randomization Tests 36

5.2 Dynamic Heuristics Tests 39

5.3 Quiescence Search Tests 44

6 Discussion 49

6.1 Achievements 49

6.2 Application Fields 51

7 Conclusions 52

References 53

4

1 Introduction

Artificial intelligence (AI) is, according to the Compact Oxford English Dictionary of

Current English, the capability of computer systems to perform tasks which require the

involvement of human intelligence [1]. Furthermore, Computational Intelligence (CI)

is defined as the subset of artificial intelligence, which covers the studies of adaptive

mechanisms for providing intelligent behaviorism in dynamic environments [2, 3-4].

The purpose of this project is to study the basic principles behind computational intelligence,

experimenting with the concept of dynamic behavior in artificial intelligence. In addition

to this, this projects aims at implementing such dynamism ina manner that the intelligent

agent would be capable of simulating basic human-like behavior, as proposed by Alan

Turing in his Turing Test. According to the Turing Test, a machine can be tested in order

to discover if it is able to imitate human intelligence, thusdisguising among actual human

beings. [3, 77-79]

The goal of this project is to develop a chess engine, as a computational intelligent system,

whose intelligence might follow an adaptive pattern, imitating the human intelligence

when playing a chess match. Moreover, this chess engine should include both a classical

artificial intelligence engine and a renovated adaptive engine, thus providing the necessary

tools for analyzing the improvements and benefits of using adaptive techniques.

The scope of this project is limited to a basic study and a simple implementation based on

computational intelligence, thus narrowing the range of study to the properties of interest.

First, there is limited availability of proper equipment (for testing purposes) and, second,

there is certain incapability of knowing if the Turing Test would be passed or not by the

implementation of this project.

5

2 Literature Review

2.1 Approaches to Artificial Intelligence

The first problem that arises when discussing Artificial Intelligence (AI) is how to define

intelligence. Most AI-related research processes rely on the study of the human intelligence,

at first, whereas, at the second stage, they aim at defining howa machine or computer

system could perform a given task demonstrating human-likebehavior. [4, 3-6]

Currently, there is no unified paradigm that would establish the path of research in the

field of AI. Instead, different approaches are being investigated in order to tackle the

problem of creating the most suitable representation modelfor the human reality. Hence,

there is a constant debate between different research groups, where each group defends

its approach to be the correct one. The most important researches are based on Symbolic

AI, Computational Intelligence (including all Connectionism paradigms), and Artificial

Life, among others. [3, 11-18]

Computational Intelligence (CI) requires that the intelligent system develops itself and

learns from a dynamic environment [2, 3-4]. On the other hand, Symbolic AI deals with

the abstract duality of symbol-association [3, 71-95]. Therefore, and having in mind the

current trends in computing, CI is one of the most researched approaches inside AI, and it

includes different branches such as artificial neural networks, evolutionary computation,

artificial immune systems and fuzzy systems [2, 3-13]

2.2 Computer Chess and Human Cognition

Computer chess is an example of an AI challenge which benefits from the principles of CI.

The thinking style during a chess match requires a comprehensive amount of computation,

thus becoming suitable for being implemented as a CI system. Nonetheless, there are

certain aspects, such as the representation of the board andthe pieces, that are considered

more a cognition problem than a computational problem. Therefore, a computer chess

program involves a CI system with both cognition and computation capabilities. [4,

20-24]

Accordingly, a computer chess program has to be capable of representing the reality (the

chess board and the pieces, in this case) taking two key factors. into account. First,

the internal representation must be as close to reality as possible; otherwise the system

6

will not work. Second, the internal representation must be as optimal as possible, hence

enabling the computational model to process a wider range ofinformation in a narrower

time frame. However, the second factor is purely conditional since a chess program may

still represent the reality perfectly without any optimization. [5, 1-37]

As regards cognition, a computer chess program, according to the Turing Test, must

prove a certain level of understanding in the structure of the board and how the pieces

are placed in order to produce a natural flow of the game [5, 87-100]. In consequence, a

computer chess, and any computer system, that is tackling the Turing Test must account

for a set of learning methods, both short-term and long-term, thus leading to performance

improvements in the dynamism of its behavior [6, 1-3].

Besides the performance improvements, dynamic learning affects the overall behavior

of the system, resulting in a more flexible behavior. For instance, hardwired behavior

denotes a fixed pattern of behavior through the life cycle of the task performed by the

system. However, dynamic behaviors are based on initial principles that are not completely

hardwired, but they are modified by a given set of functions and algorithms, during the

life cycle of the task. [6, 3-6]

The computer chess cognition principles and how learning methods are put into practice

condition how human beings perceive the intelligence of that system. Most computer

chess programs denote a common style of playing, applying brute force-like algorithms

in order to find the best move at any point in the match. Nevertheless, humans do not

always play the best move, as they analyze the situation and generate a response based on

other factors besides the actual chess board. Hence, a computer chess program is most

likely to be detected as a mere machine, by experienced humanchess players. [5, 62-87]

In conclusion, a computer chess program must, in order to depict human-like behaviorism

and tackle the Turing Test problem, adapt itself through each of the moves in a game, thus

altering its learning principles along the different situations presented across different

games. As a result, the computer chess program may acquire, with time, a certain degree

of dynamism that could lead to highly flexible behaviors found in human responses when

interacting with a complex environment. [7, 53-55]

7

3 Computer Chess Techniques

3.1 Board Representations

The first step towards reality cognition and recognition in computer chess is the representation

of the board and the pieces. Admittedly, a piece of software must be told, in exact terms,

what a piece is, what a square is and what the board is. As the current technology sets the

requirements of how information is stored and processed, the representation of the board

must be, generally speaking, a numerical approximation, since current technology is built

on the top of simple arithmetic calculations. [5, 1-2]

A simple representation of a chess board may be based on a two-dimensional matrix of

eight rows and eight columns, where each entry into the matrix contains the representation

of one piece or an empty square. This is a straightforward approach, from the human-cognition

point of view. However, there are alternative solutions, such as creating a unidimensional

array of 64 components. The differences between different representations affect the

manner in which the information is internally processed by the system. Therefore, the

main goal of studying different representations is to produce a proper representation with

the maximum possible efficiency. [8]

Besides the classical way of representing a board in a vector of pieces and squares or a

two-dimensional matrix, there is a relatively new technique which is based on the use of

64-bit computer extensions to perform computations in the minimum possible amount of

processor instructions. This technique relays on the so-called bitboards (or bitmaps). In

chess, there is the coincidence that there are exactly 64 bits, which is the current computer

trend in processor designs. Therefore, it is possible to codify a whole board of chess in

a single number of 64 bits. The gains are due to the fact that a board can be processed

in a single processor instruction with current computers, whereas the classical matrix

representation takes at least 64 processor instructions tobe processed. [8]

Bitboards cannot represent every piece, but just contain a 0 or a 1 on a square. However,

current computer chess programs store different bitboards(e.g. a bitboard for the white

bishops, another one for the black pawns) and then perform operations by using simple

boolean algebra against different bitboards. Figure 1 demonstrates the usage of two

different bitboards which can be used together to perform a chess operation in a single

processor instruction. [8]

8

Figure 1: Bitboard superposition technique

The bitboarda in figure 1 shows the position of the white king, represented by a 1, and all

the 0s are the other 63 squares, where the white king is not residing. On the other hand,

the bitboardb in figure 1 depicts the set of squares to which black pieces arecurrently

attacking. In order to see if the white king is in check or not,a computer chess program

using these bitboards may simply superpose them using boolean multiplication (logic

operation AND). If the result of this operation is differentthan zero, then the white king

is in check (one or more black pieces are attacking the squarewhere the white king is),

otherwise the white king is not in check (AND operation results in zero because no black

attack superposes with the white king position).

Finally, comparing the classical matrix approach with the new bitboard technique, the

matrix-based computer chess would have to check all the squares one by one, against

the square of the king, and create an accumulative partial result, giving the answer after

at least 64 processed squares. Nevertheless, using bitboards, the very same operation is

performed at once, being executed in one processor operation (on 64-bit processors) or in

two (on 32-bit processors). [8]

3.2 Evaluation

One of the fundamental blocks for building a computer chess program is an evaluation

function, sometimes referred to as the heuristic function.This function has the role of

generating an absolute estimate for a given position in a chess board (static evaluation),

as well as providing some orientating data for the AI program, thus guiding the search of

a move. [5, 7-8]

9

An artificial intelligence application must be guided in theprocess of searching what to do

next. This is one of the basic principles around AI, since theintelligent agent is supposed

to achieve an objective and to be guided through its life cycle, until it achieves its given

task or goal. This is the existence purpose of the AI agent. Accordingly, a chess program

must be taught how to achieve the victory during the course ofa game. Therefore, the

heuristic evaluation function determines how suitable theposition in the board is towards

the goal achievement. In other words, the chess program mustevaluate each position

during the game and understand what is agood move and abad move. [5, 7-8]

There are different ways of evaluating a chess board. The evaluation function is a fine-tuned

mathematical expression that uses a weighted mean for estimating how proper the position

is. The heuristic function may vary from one chess program toanother, and the formula

is typically designed by the author of the chess program. [5,7-34]

The classical approach for generating an evaluation function has always been to create a

weighted mean using separate values for the material on the board (how many pieces are

left and how valuable they are) and the position of the pieces(how well situated they are on

the board). The material is the most valued factor, since a material loss immediately leads

to a position where it is most likely to be lost by the player lacking material. Normally,

the ratio between the material evaluation and the positional evaluation is of the order

of 3000:1, meaning that the material evaluation is 3000 times more important than the

positional evaluation. [5, 7-34]

The classical approach for evaluating a position is static,meaning that the evaluator shall

not know about what has happened before that position nor what is it going to happen

after that position. Nevertheless, modern trends tend to incorporate additions to the

evaluator, by which the heuristic function is informed about previous states of the board,

thus providing the chess program with a more dynamic overview of the game. [9, 5-24]

3.3 Tree Traversing and Minimax

In most AI applications where there is a known set of possibilities (moves in the case of

chess), programmers tend to implement a function for generating every possible combination

of choices and then traversing the tree in search for the bestpossible combination. The

word best refers to the most suitable move for the AI agent, in order to achieve its given

10

task or goal in the minimum possible amount of time. This goalis typically the victory,

when referring to a game. [10]

For instance, the AI engine of a tic-tac-toe game has to compute a total of 362880

games. This number is relatively small, with respect to the current computation trends

and capabilities. Therefore, a tic-tac-toe AI program may generate the whole tree of

possibilities, play each branch, and finally decide what thebest move is at any time of

the game. In this case, there is no need for a heuristic evaluation function. This is due to

the fact that every possible game can be played, and hence themachine responds with a

100% accuracy. [11]

In chess, however, the number of possible combinations (different games) is assumed

to approach infinity. Therefore, in order to know which is thebest move to perform

at a current position (meaning that best is towards the victory of the moving player),

a computer chess program should play a vast number of possible matches in order to

discover the winning move at any time. The current computation technology is limited,

and hence applications in which such a vast number of calculations is involved are not

capable of providing a perfect result. Instead, these applications use fuzzy techniques

which intend to discover which part of the analysis can be avoided, thus reducing the

volume of the data to be processed dramatically. [5, 43-48]

An expensive part of a computer chess is the one in charge of generating the moves. They

are generated in the form of a non-binary tree, where moves ofa same player on the same

turn are the siblings of a branch in the tree. The tree has the depth, which is measured in

plies (half-moves). A computer chess program is not capable of playing 10500 different

matches, but, instead, has to evaluate a board several movesahead of the current board

position. That is, the computer chess program generates a tree of a moderate depth and

modifies the current board applying all the moves on each branch, then it evaluates that

situation. Finally, the value of each branch of the tree (each possible game) is backed up,

thus selecting the branch with a higher probability of success. [5, 7-43]

The method is typically achieved with a combination of a movetree (data structure)

and a minimax-like algorithm. The minimax method is a simplerecursive algorithm

to decide the best move using the philosophy that the maximumbenefit is the minimum

loss. Therefore, a minimax algorithm traverses the move tree and finds the minimum

possible loss for the moving player, taking into account that the opponent will maximize

11

its possibilities. The evaluation of each node is, in turn, performed by a heuristic function.

[5, 38-43]

Figure 2 demonstrates the usage of the minimax algorithm. First, at depth 1, the computer

selects the maximum possible score. Then, at depth 2 (that is, all possible replies to the

moves at depth 1), the computer selects the minimum scores, in order to minimize the

losses (since it is the opponent who is playing now). Afterwards, at depth 3, the computer

applies the same logic as in depth 1, thus recursively findingthe minimum loss out of all

the generated possible moves. [12]

Figure 2: Move tree with branch scoring [12]

Eventually, the number of possibilities in a move tree may become large. Therefore,

the volume of data in the move tree must be substantially reduced, hence enabling the

computer system to process the information within a finite amount of time. For this

purpose, there are two common methods: decreasing the depthof the tree (smaller in

height) or pruning non-interesting leaves (smaller in width). [12]

Reducing the depth of the tree is generally a non-effective method, since the computer

chess program has less capability of seeing what will happenin future game situations.

Nonetheless, it is possible to shrink the width of the tree, which consists of eliminating

those branches in which it is impossible to achieve a winningresult. The heuristic function

plays a critical role here, since it is used by the tree-pruning algorithm to determine if the

branch is interesting or not, towards the target of the computer chess program. [12]

The pruning algorithm applies the heuristic function at every depth in the tree. As soon

as an evaluation on any of the moves (at any depth) turns to be worse than a previously

evaluated move, the computer chess program may cut off that branch of the tree. This

assumption is based on the fact that the opponent is supposedto play the best possible

12

reply at every moment. Figure 3 shows another example of a move tree, which has now

been pruned using a heuristic pruning. Evidently, the volume of the data to be analyzed

in the tree from figure 3 is reduced by applying the cut-off technique to the original move

tree. [11]

Figure 3: Pruned move tree with branch scoring [12]

The idea of pruning is general, and its implementation may beperformed in different

ways. Nevertheless, the main idea is to reduce the size of thedata to be processed by

shrinking the width of the data tree. Modern techniques do not simply rely on a heuristic

function to perform the cut-off, but on several heuristic functions and other situational

factors that may show evidence of a non-interesting branch,thus leading to a cut-off on

that part of the tree. [13, 7-18]

3.4 Learning Methods

Generally, computer chess is studied as a concrete application of Artificial Intelligence.

Hence, there is no concrete technique for achieving learning, but computer chess programs

utilize common learning methods described in AI and CI. A computer chess program may

be implemented using any general learning technique, such as neural networks, Bayesian

networks. [14, 1-15]

Despite the general learning methods researched alongsideAI and CI, there are certain

simple configurations that allow a computer chess program tolearn. These configurations

13

may introduce both short-term learning and long-term learning. Short-term learning

typically refers to volatile learning, where the machine learns while it is functioning and

then it clears its memory up on termination. On the other hand, long-term learning can be

thought as of permanent data storage, where the machine learns while functioning, but it

stores the learned data on static storage up on termination.[5, 60-61]

Short-term learning is a typical feature in current computer chess applications. It is

usually referred to astransposition tables, since it is based on the idea that any board seen

during a game may be stored in the memory. Then, if the same board arises once again

further on in the same game, the machine will be able to recallit from its memory. The

only benefit of the transposition tables is merely the performance gain, since the machine

recalls an already-analyzed position, thus not having to analyze again this position, and

generating an immediate reply to that situation. Furthermore, these transposition tables

may be permanently stored in a disk file, thus becoming long-term learning, eventually.

[5, 60-61]

14

4 Implementation of Chess0

4.1 Application Design and Purpose

Chess0 is a computer chess program, which aims at providing a simple chess engine with a

fully understandable source code and offering the basic tools for analyzing the behavior of

different AI implementations. Chess0 is an example of simpleAI for playing two-player

turn-based games, and it includes two different AI approaches in the same application: a

classical AI engine and an adaptive AI engine.

The classical AI engine is composed of a heuristic evaluation function, a minimax-like

algorithm and an alpha-beta pruning technique for speedingup the decision tree search

operations. In addition, the adaptive AI engine supports new features such as randomization,

dynamic heuristics and quiescence search, which dramatically improves the behavior of

the application compared to the classical behavior.

Figure 4 depicts the general organization of the application. The user communicates either

with a command-line application manager or with a graphicalchess board. As it can

be understood from figure 4, the application manager furtherrelies on a game manager,

which, in turn, keeps track of the current game, using a boardrepresentation.

Figure 4: Chess0 architectural design

Moreover, Chess0 can be understood as implementing several interfaces between the

application components. According to figure 4, the user interface is provided either by the

15

command-line application manager or by the graphical interface. Then, there is a game

interface between the game manager and the game module, which assures that several

games may be abstracted by the game manager and further presented to the application

manager as a whole. Finally, the board interface is the border between the game and the

board objects, in which the board represents the reality forthis concrete application (such

as squares or pieces).

Figure 5, on the other hand, sketches the relation between the different AI engines in

Chess0 and how they are managed by the application. The impactof having two AI

engines running at the same time allows the user to switch, onthe fly, from one engine

to another. The ultimate goal of this feature is to provide aneasy tool for testing and

comparison purposes.

Figure 5: Chess0 multiple AI-engine interface

For instance, as it is demonstrated in figure 5, a user may request the application manager

to switch from an AI engine to another. Therefore, the behavior of the chess engine may

be changed while running the application, thus allowing theuser to test a move and its

behavior for a given situation using one type of AI and then switching to the other type of

AI and testing the same move.

16

To summarize, the main feature of Chess0 is that it provides two different AI engines,

while they as interchangeable on the fly (while running the application). Both engines

share some parts of the code, which are the common techniques, whereas the adaptive AI

engine includes new features that aim at improving the overall behavior of the application.

4.2 Common Techniques

4.2.1 Negamax

Chess0 aims at implementing a simple chess engine with two built-in computer chess

AI engines. One using the classical approach, that is a simple heuristic function, a

minimax-like algorithm and alpha-beta pruning for the decision tree. The other AI engine,

named adaptive AI engine, implements a set of dynamic features besides the classical

ones. However, they share the source code for the common techniques.

First, the program studies each reply by analyzing the decision tree using a minimax-like

algorithm namedNegamax. Negamax is a simplification over the classical Minimax

algorithm where the two necessary functions (the one for maximizing and the one for

minimizing) are synthesized into one unique function whichis negated and inverted every

time it is called. Listing 1 unveils the generally accepted pseudo-code for the Minimax

algorithm. [16, 249-252]

17

f u n c t i o n min imize (t r e e d e p t h) :

i f t r e e d e p t h i s 0 : r e t u r n e v a l u a t i o n ;

b e s t s c o r e =− i n f i n i t y ;

f o r a l l v a l i d moves as c u r s o r do :

apply move (c u r s o r) ;

myscore = maximize (t r e ed e p t h − 1) ;

undo move (c u r s o r) ;

i f myscore i s g r e a t e r t han b e s ts c o r e :

b e s t s c o r e = myscore ;

r e t u r n b e s t s c o r e ;

f u n c t i o n maximize (t r e ed e p t h) :

i f t r e e d e p t h i s 0 : r e t u r n e v a l u a t i o n ;

f o r a l l v a l i d moves as c u r s o r do :

apply move (c u r s o r) ;

myscore = min imize (t r e ed e p t h − 1) ;

undo move (c u r s o r) ;

i f myscore i s g r e a t e r t han b e s ts c o r e :

b e s t s c o r e = myscore ;

r e t u r n b e s t s c o r e ;

f u n c t i o n minimax (t r e e d e p t h) :

i f t r e e d e p t h i s 0 : r e t u r n e v a l u a t i o n ;

f o r a l l v a l i d moves as c u r s o r do :

apply move (c u r s o r) ;

myscore = min imize (t r e ed e p t h − 1) ;

undo move (c u r s o r) ;

i f myscore i s g r e a t e r t han b e s ts c o r e :

b e s t s c o r e = myscore ;

r e t u r n b e s t s c o r e ;

Listing 1: Pseudo-code for the Minimax algorithm found in previous versions of Chess0

According to the information presented in the code listing 1, the Minimax algorithm uses

three functions that are practically similar. First, theminimax function is used as a root

function, for all the valid moves on the current board situation. Then, the machine tries

to minimize the loss (thus maximizing the win) by calling theminimize function. Further,

theminimize function calls themaximize function, and thus the program begins to search

recursively, as minimize and maximize call each other untilthe limit depth of the tree has

been reached (this is the base case for the recursive algorithm in this case). [13, 5-9]

The code presented in listing 1 denotes similarities acrossfunctions, which may be reduced

18

into a more compact format. This is the purpose of the Negamaxalgorithm [13, 5-9].

The compact version of the Minimax may be achieved using several similar algorithms.

However, Chess0 uses Negamax, which is a straightforward reduction of the Minimax

code. Listing 2, provides the final version of the minimax-like algorithm in its compacted

form.

f u n c t i o n negamax (t r e ed e p t h) :

i f t r e e d e p t h i s 0 : r e t u r n e v a l u a t i o n ;

b e s t s c o r e =− i n f i n i t y ;

f o r a l l v a l i d moves as c u r s o r do :

apply move (c u r s o r) ;

myscore =−negamax (t r e ed e p t h − 1) ;

undo move (c u r s o r) ;

i f myscore i s g r e a t e r t han b e s ts c o r e :

b e s t s c o r e = myscore ;

r e t u r n b e s t s c o r e ;

Listing 2: Pseudo-code for the Negamax algorithm found in Chess0

As can be seen from listing 2, the Negamax algorithm is a simplified rewrite of the

Minimax algorithm, where all the functionality is compacted into a single function. The

negamax function calls recursively itself, and it negates the returned value at each depth

in the tree. This means that, at depthN−1, the score is negated, as well as at depthN−3,

etcetera. Hence, the score is negated as the depth changes bytwo in the decision move

tree. This negation explains the opposite nature of the functionsmaximize andminimize

in listing 1. In fact, these two functions are similar, except that they seek exactly the

opposite case: one looks for the best score for the moving player, and the other one looks

for the best score for the opponent. [17]

4.2.2 Alpha-Beta Pruning

Despite the limited amount of search iterations found in theMinimax/Negamax algorithm,

due to the limited depth of search (height of the decision tree), the number of evaluated

moves is large even in relatively small decision trees. For instance, the complete list of

moves for a non-started game is of 20 possible moves for the white side, which is the

starting and moving player at that situation. Then, in the first move for the black side,

there are 20 replies to each of the 20 possible moves of the white side. This means that,

already at the second ply (that is, the first move for the blackside), there are 400 possible

19

moves. At the third ply there are over 1,000 possible positions, and after the fourth ply

there are more than a million positions.

On an average, on a decision tree for a computer chess program, there arebd possible

positions, whereb represents the number of possible branches for a given position, and

d denotes the depth limit of the decision tree. This implies that for a chess position at

ply 4, the minimax-like algorithm must examine about one million positions in order to

produce a response. Furthermore, if a game is sufficiently advanced and there are many

possible branches, the number of nodes to examine may grow dramatically, thus slowing

the computational resources. [5, 43-48]

During the 1960s, people in the AI field discovered an algorithm which was able to

cutoff non-interesting branches of the tree, reducing the amount of data to process in

a drastic way. This algorithm was namedalpha-beta pruning, since it uses two variables

(alpha and beta) to control where the decision tree may be pruned, hence cutting off the

subsequent branches. By using this method, the number of nodes is reduced to2 ∗
√

bd,

which is a critical improvement over thebd number of moves to be calculated with a plain

minimax-like algorithm. [5, 43-48]

In order to achieve the improvement, the alpha-beta pruningmethod maintains the variables

alpha and beta updated at all moments during the search. Alpha has an initial value of

+ inf and beta has an initial value of− inf. Alpha denotes thebest possible score that the

computer can achieve, whereas beta represents the scores ofthe moves which prevent the

opponent from achieving more than the best score found untilnow. In other words, the

alpha-beta pruning method drives the minimax-like search on the decision tree in a way

that the search must find only moves that increase beta (a better move for the computer)

or reduce alpha (a worse move for the opponent). [5, 46]

When the program evaluates a move whose score is better than the best move found so

far, it must save that move as the best move found so far and update the value of beta.

Similarly, when the program evaluates a move whose score limits its opponent, it reduces

the value of alpha. The final result is then generated after the whole search, and it must lie

between alpha and beta. As alpha and beta become closer, the program measures the final

result in a more accurate way. Furthermore, when alpha crosses beta, meaning that alpha

is less than or equal to beta, the algorithm stops the search on that branch, thus cutting

off the part of the tree under that node. This cut-off is the improvement over the simple

20

minimax-like algorithm, and it happens when a better move may not be found anymore

in a decision tree, thus avoiding unnecessary and expensivecalculations. [5, 43-48]

Figure 6 exemplifies the use of alpha-beta pruning on a decision tree. It is important to

note that a minimax-like algorithm must be applied to the decision tree, thus involving a

heuristic function in order to evaluate each node. These evaluations will provide the base

for the alpha-beta pruning method to decide which branches shall be trimmed off the tree

and which branches shall remain asvalid ones. [18, 10-13]

Figure 6: Example of decision tree pruning based on Minimax values [18, 11-12]

Figure 6 demonstrates the alpha-beta workflow as the branch under the nodeD is trimmed,

since it cannot provide an improved result over the last recorded results. The evident

improvement is, therefore, the reduction of the data volumeto be processed, thus speeding

up the search on the decision tree. [18, 1-13]

4.2.3 The Heuristic Function

Chess0 has been designed using two different AI engines, in order to provide a proper tool

for comparing the achievements of introducing adaptive techniques to the AI behavior.

Nevertheless, AI engines designed for game playing must provide a heuristic function,

unless the game has a properly limited number of possible combinations. [5, 7-43]

21

The heuristic function represents both the rules of the gamethat is being played and

the quality of how the game is being played, according to the given purpose to the AI

program. In chess, the evaluation function is based on two critical factors: material

and position. The material evaluation concerns the number of pieces and their value,

whereas the positional evaluation refers to how properly the pieces are situated along

the board. Evidently, the heuristic evaluation radically changes from one application to

another, while the common goal remains: to define what isgood and what isbad, thus

providing a mechanism to the AI program to decide towards itsgoal. [5, 7-43]

In chess, each piece has a value, according to its mobility onthe board and its capabilities

of attacking the enemy. For instance, the queen is typicallygiven the highest value, the

rook is given half of the queen’s value, the knights and bishops are less worthy than the

rook, and finally the pawns are the measurement unit, which denotes the lowest score

for them. However, this value assignment is a heuristic task, since the exact values are

not absolute, and they are assigned differently depending on the player or even on the

situation on the board. [5, 7-43]

Concretely in chess, material is the most valuable aspect. Positional evaluations are not

as valuable, hence resulting in a weighted mean between the material and positional

evaluation, where the material is typically 1000 to 3000 times more valuable than the

position. Equation (1) shows a probable example of a simple and general heuristic evaluation

function: [5, 7-8]

score =
(3000 ∗material) + position

3001
(1)

material = white material − black material (2)

To be more precise, the heuristic function returns an absolute value between− inf and

+ inf, where a negative value means agood score for the black, and a positive value

means agood score for the white. By extension, a return value of0 represents total

equity between the two players. Furthermore, the material evaluation for one player, as

22

it is presented in equation (2), is calculated by summing thevalues of each piece of that

color on the board. Hence, the player with more pieces on the board will have a higher

probability of winning the game, according to the heuristicfunction. [5, 38-48]

Normally, the material is balanced during a game, meaning that no big differences exist

between the players’ material. Therefore, the accuracy of measuring heuristically is

stressed on the positional evaluation. This is usually achieved by rating different squares

on the board with different values, thus biasing the computer program to place its pieces

on higher-rated squares rather than on lower-rated squares. Moreover, there exist several

key points that must be taken into account when evaluating a position, and they are all

evaluated separately and added up together for generating the final positional evaluation.

[5, 7-48]

Some important positional aspects that are typically included in chess engines are the

center control (central squares are higher-rated than close-to-the-border squares), piece

mobility (how many possible moves a piece can perform from a given position), development

(according to the chess theory and the rules of strategy at the beginning of a chess game),

the pawn structure and the king safety (how easy it is to attack the opponent’s king and

how easy to defend one’s own king). Equation (3) depicts an example of positional

evaluation, taking these several factors into account. [5,7-43]

pos =
(5 ∗ control) + (2 ∗mobil.) + devel. + (2 ∗ pawns) + (3 ∗ king)

13
(3)

The weights presented in equation (3) may vary, since this isa rough estimate that the

programmer must take into account when designing the chess engine. Modifying the

weights in equation (3) would imply a change in the behavior of the chess engine, producing

different results with different formulas. As a consequence, an AI program may be biased

in its behavior by simply modifying the weights of its evaluations. Figure 7, demonstrates

an exemplar representation of square-rating. [5, 28-31]

23

Figure 7: a) Central squares bias; b) Encouraged biasing [5, 18-19]

In the boarda), the biasing is completely normal. The squares on the edge are less

valuable, and the rating of any square increases as the square approaches the central four

squares. Similarly, a chess engine may be biased with a more encouraging rating, for

instance by the increase of the difference in value between one square and another. In

figure 7, the boardb) shows how this is achieved, by increasing the square value atany

step towards the center, resulting in a more encouraging result for the AI engine at the

time of the positional evaluation. [5, 18-19]

Chess0 uses a set of formulas similar to the ones presented in this chapter. These formulas

are implemented in the classical AI engine, which uses a fixedevaluation, meaning that

the same set of formulas is applied to every board situation,independently of which events

have occurred on the board or which events are likely to happen in the future. That is, the

heuristic evaluation function in the classical AI engine inChess0 is completely static for

a given board situation.

Nevertheless, there are several problems that arise with the use of a completely static

heuristic evaluation function. To begin with, the development evaluation dramatically

varies from one phase of the game to another. The developmentevaluation should be taken

into account only at the beginning of a game. Furthermore, the king’s safety evaluation

must be more valuable as the game approaches its end, since the objective of the game is

to capture the opponent’s king while preventing the opponent from capturing one’s own

king. [5, 7-43]

For that purpose, many chess engines nowadays implement a slightly adaptive set of

formulas, which vary as the board situation is modified through the game [19, 1-4].

24

Chess0 implements this feature in the adaptive AI engine, which is a dynamic version

of the classic engine. The main difference is that the evaluation function in the adaptive

engine uses adaptiveness as its basis, in order to achieve more accurate measurements and

improved results at any point of a chess game.

4.3 Improvements to the Dynamic AI Engine

4.3.1 Randomization

According to the description of the functionality in the minimax-like algorithm, a computer

chess program will analyze a part of the decision tree and tryto find the minimum possible

loss, considering that decision the best possible move. This implementation will result

in a common behavior, where the machine always picks what itsbest decision is. By

extension, this signifies a fixed behavior for similar situations. [5, 38-43]

One of the main purposes in the AI field is to simulate and approach human-like behavior.

Chess players are provided with feelings, as they are human, and therefore they may

generate different responses to the same board, under different spatial or temporal situations.

Additionally, a human presents a characteristic emphasis on discovering, where new

things are sometimes tried out, in search of new possibilities. This behavior follows a

close-to-random regression. [20, 562-571]

A simple implementation of such behavior in AI applicationsis the use of randomization.

Randomization enables the application to select a random response from a set of possible

responses, instead of picking always the properest decision. However, this randomization

method must be controlled until certain extent. The fact of not having a controlled

randomization process could cause the AI application to behave completely randomly

in most situations. [21, 16-24]

In Chess0, the randomization process is implemented using a so-called randomization

threshold. The randomization threshold is the regulative variable, which does not allow

the randomization process to escape out of the controlling boundaries. In addition, this

implementation is possible due to the nature of the decisions, since, in computer chess,

they are basically a move response and its absolute score (win or loss after applying that

move). The pseudo-code in listing 3 describes the implementation of the randomization

method in Chess0.

25

f i n d a l l p o s s i b l e moves

s o r t t h e moves from b e s t t o wors t

wh i l e moves l e f t do

margin = b e s t p o s s i b l e s c o r e − RAND THRESHOLD

i f (c u r r e n t m o v e s c o r e < margin)

d i s m i s s cu r ren tmove

e l s e

s e l e c t a b l em o v e s += cu r ren tmove

done

s e l e c t i o n = p i ck a random move from s e l e c t a b l em o v e s

r e t u r n s e l e c t i o n

Listing 3: Pseudo-code for the randomization process foundin Chess0

According to the pseudo-code in listing 3, the chess engine behaves normally as it would

do in a non-randomized minimax-like algorithm. However, instead of just keeping the

best move (as was described in the negamax algorithm in combination with the alpha-beta

pruning method), the chess engine remembers all the evaluated root nodes, associating

them with their score. Afterwards, the engine discards the moves that are below the

minimum allowed score, that is the best possible score minusthe randomization threshold,

thus performing a fully controlled randomized selection ofthe move.

It is important to note, nonetheless, that the randomization threshold may not affect the

response in certain situations. One straightforward situation in which randomization may

not apply is when all non-best scores are below the randomization threshold, thus leading

to the selection of the best move for that response. As a result of the randomization, the

chess engine typically behaves more imprecisely. This implies two important characteristics

that the chess engine acquires: [21, 16-24]

1. The machine behaves more close to human-like behavior, due to the imprecisions

in its decisions [21, 16-24].

2. The machine is capable of discovering new game lines that could not analyze further

if there was no randomization, since it would always select the same response for

the same given board situation [21, 16-24].

26

Consequently, the implementation of the randomization process in the adaptive AI engine

enables Chess0 to play in a more human-like manner, as well as trying out different

variants that might be interesting and were not considered when using a fixed-behavior

classic AI engine.

4.3.2 Dynamic Heuristics

The heuristic evaluation is not completely precise, since it is typically implemented as a

static evaluation function, meaning that the same heuristic thinking is applied to any board

position at any point of the game. The static heuristic evaluation function is normally

implemented in such a way that it is not concerned the previous states of the board

nor possible future states. Therefore, the AI engine is not capable of having a proper

understanding of the game flow. [22, 26-28]

In Chess0, in the classic AI engine, the heuristic evaluationfunction is straightforward.

It simply evaluates the amount of material and the current position, without taking into

account the changes on the board. On the other hand, the adaptive AI engine utilizes a

reduced set of features that provides certain degree of dynamism to the decision-taking

process. Some of the dynamism aspects taken into account in the adaptive AI engine in

Chess0 are:

• game phase recognition: Chess0 applies different decision-taking techniques, depending

on the game phase

• move ordering: Chess0 recognizes which moves are more important than others,

analyzing the first, thus imitating human-like behavior

• dynamic quanta: Chess0 understands the distribution of the pieces on the board, not

only statically, but also according to the chain of moves performed by the opponent

and its plan to secure its king

As an initial approach, the classic AI engine is acceptable,as it provides a generic understanding

of a given position. However, as the static heuristic evaluation function does not understand

about the game flow, the AI engine would have to search using large depth limits, in

order to discover an accurate response. This would require much computation, since the

computation time increases exponentially as the decision tree depth increases. However,

27

using dynamic adaptations to the heuristic function, the AIengine may become aware of

the overall situation on the board, and in fact of the overallgame flow, thus generating

more proper response in less time. [22, 26-28]

First, the adaptive AI engine implemented in Chess0 is aware of the game parts, meaning

that it may recognize when a game is in the opening, in the middle-game or in the end,

thus applying different heuristics. This is generally achieved by counting the number of

pieces left on the board and their position with respect to their original starting position.

Depending on the game phase, Chess0 is capable of using more orless processing time,

due to the nature of the chess game.

For instance, in the opening, the chess theory states that itis most important to develop

the minor pieces (the pawns, knights and bishops, as well as castling), whereas in the

middle-game it is most important to control critical squares that may lead to an attack

against the opponent’s king [5, 8-34]. The adaptive AI engine in Chess0 uses less computation

in the opening and a positionally stronger heuristic function, whereas it uses more computation

in the middle-game and end-game, caring about the attack to the opponent’s king. This

phase recognition and variable-depth adjusting is exemplified in the code in listing 4 (this

is an original part of the source code extracted from Chess0).

vo id Adapt i ve : : con f igAutoDepth ()

{
/ / s e t t h e dep th t o i t s base va lue , b e f o r e mod i fy ing i t

dep th = odep th ;

/ / i n t h e opening , use l e s s dep th

i f (board−>ge tPhase () == PHASETYPE OPENING)

{
dep th −= AI DEPTH DEVIATION ;

}
/ / i n t h e end , i n c r e a s e dep th as p i e c e s d e c r e a s e

e l s e i f (board−>ge tPhase () == PHASETYPE END)

{
dep th += (4 ∗ AI DEPTH DEVIATION) − board−>ge tNP ieces () ;

}
}

Listing 4: Chess0 C++ code for adjusting a variable-depth search

28

As can be perceived from listing 4, Chess0 uses a constant defined asAI DEPTH DEVIATION,

which is a natural number representing the variance that canbe applied to the search depth

limit. For instance, consider a search depth set to 4 and an AIdepth deviation set to 2.

Then, in order to know the actual search depth for an end-game, equation (4) demonstrates

that the search depth is then increased from its original value of 4 to an actual search depth

value dictated by equation (5).

depth = initial depth− ((4 ∗ depth deviation)− number of pieces left) (4)

depth = depth + (8− number of pieces left) (5)

According to listing 4, and as exemplified in equations (4) and (5), the adaptive AI engine

of Chess0 is capable of self-regulating the amount of computation, depending on its

necessities. This feature only allows Chess0 to restrict thecomputation resources, which

are, however, present in human-like thinking, since a humanmay not process unnecessary

information depending on the phase of the game [23, 143-164].

A second feature present in Chess0 or more concretely in its adaptive AI engine, is the

capability of ordering moves and recognize their significance, depending on the nature

of the move itself, and its score. The technique used in Chess0is namedMost Valuable

Victim / Least Valuable Attacker (MVV/LVA), which is an algorithm for ordering the

moves taking into account the fact that less-valuable pieces attacking higher-value pieces

may return a higher score. For example, if in the list of movesthere is such a move that

a pawn may capture a queen, then that move will be most likely to return a high score,

since the pawn is the least valuable piece on the board, and the queen is the most valuable

piece on the board. [24, 1-10]

The MVV/LVA method enables two important properties in a computer chess program.

First, it boosts the performance of the search, since probable higher-score moves are

evaluated before probable lower-score moves, thus speeding up the alpha-beta pruning,

as the non-interesting parts of the tree are cutoff early in the search process. Second,

the computer chess program is biased to behave closer to the human-like approach of

29

thinking, since human players first analyze the moves that seem of higher importance.

[24, 1-10]

vo id Adapt i ve : : i n i t S e a r c h ()

{
roo t moves = board−>ge tA l lVa l idMoves (c o l o r) ;

/ / 1) s e t t h e o r d e r f o r each move , b e f o r e s o r t i n g them

f o r (uns igned i n t i = 0 ; i < roo t moves . s i z e () ; i ++)

{
/ / i f a move i s no t a c a p t u r e , s e t t h e l o w e s t p r i o r i t y

i f (! roo t moves [i] . i s C a p t u r e ())

roo t moves [i] . s e t O r d e r (9 9 9 9) ;

e l s e

{
i n t vo = 0 ; i n t vd = 0 ;

P i ece ∗po = board−>g e t P i e c e A t (roo tmoves [i] . g e t O r i g i n ()) ;

P i ece ∗pd = board−>g e t P i e c e A t (roo tmoves [i] . g e t D e s t ()) ;

vo = po−>ge tVa lue () ∗ po−>g e t C o l o r () ;

/ / now s e t t h e o r d e r i n g number f o r f u t u r e s o r t i n g

roo t moves [i] . s e t O r d e r (1000− vd + vo) ;

}
}

/ / 2) s o r t t h e moves us i ng MVV/LVA

s o r t (roo t moves . beg in () , roo tmoves . end () , movecompare) ;

/ / 3) s o r t moves a c c o r d i n g t o t h e i r s c o r e i n t h e p r e v i o u s s e a rc h

f o r (uns igned i n t i = 0 ; i < bes t moves . s i z e () ; i ++)

f o r (uns igned i n t j = 0 ; j < roo t moves . s i z e () ; j ++)

i f (bes t moves [i] . e q u a l s (roo tmoves [j]))

{
Move tmp = roo t moves [j] ;

roo t moves . e r a s e (roo tmoves . beg in () + j) ;

roo t moves . i n s e r t (roo tmoves . beg in () , tmp) ;

}
}

Listing 5: Chess0 C++ code for sorting the moves using MVV/LVA

As can be seen from listing 5, the implementation of the MVV/LVA ordering is simple,

where the moves are first obtained, then rated according to their score and their nature,

30

and finally sorted from the most interesting to the least interesting. Finally, the alpha-beta

pruning benefits from this ordering by cutting off the decision tree in less time. Astonishingly,

this method, although simple, is a precise approach to human-like thinking strategies, thus

providing the chess AI engine with a proper rational thinking flow. [24, 1-10]

Another feature present in the AI engine of Chess0 is the capability of using dynamic

quanta for evaluating a board position. In principle, Chess0uses, both in the classic AI

engine and in the adaptive AI engine, a score-based square distribution on the board,

meaning that each square on the board has a value or score (aquantum). This quantum is

a number from− inf to + inf, which provides an estimate of how valuable that square is

for a player, where negative values are a positive result forthe black player.

The classic AI engine in Chess0 uses such a feature. However, these quanta are not

modified during the course of the game, and the values of the squares are the same

throughout the game, where the central squares are the most valuable ones, according

to the general rules of chess theory [5, 18-19]. On the other hand, the adaptive AI engine

in Chess0 uses dynamic quanta, where the scores for each square are updated after each

move on the board, thus adapting and conditioning the response generation to the current

situation. Figure 8 illustrates a comparison between the static quanta and the dynamic

quanta implementation in Chess0.

Figure 8: Colored diagram of different quanta within a same game in Chess0

Both boards in figure 8 are representations of the quanta according to the attack against

the opponent’s king, where the player to use these quanta is the black side, due to the

negative sign of the squares values. On the first board, the opponent’s king is on the

squaree1, since the maximum score is on that square. However, on the second board,

31

the opponent’s king seems to be shifted onto squarec1, probably because there was a

long-castle before this situation.

It is important to note the tonality of the squares. The coloring scheme depicts how the

scoring is re-arranged around the opponent’s king, in the case of the attack quanta. This

method is implemented in the adaptive AI engine of Chess0 using Euclidean distances.

That means that the highest score is always assigned to the square where the opponent’s

king size is residing, and afterwards, the surrounding squares are given a lower score

as they are placed farther from the highest-score square. Ingeneral, implementing this

method requires from the application to recalculate the quanta for each player after each

move, according to the current board situation. This feature adds dynamism to the AI

engine, since it constantly verifies the current situation and then modifies its decision

values.

4.3.3 Quiescence Search and the Horizon Effect

Finally, one of the most important features of the adaptive AI engine in Chess0, is the

implementation of the quiescence search. The quiescence search is a technique for obtaining

proper evaluations in decision tree searches, where the search function is not accurate

enough. Furthermore, the quiescence search solves the AI problem of thehorizon effect,

which is one of the main goals of current AI researches from a general point of view. [25,

5-15]

The horizon effect is a limitation to any AI application, by which the application is

constrained in its perception of the reality, normally due to a computational conditioning.

This means that the AI application is not capable of representing or understanding the

reality beyond its perception, and hence its response to theenvironment is limited as well,

according to the horizon effect. In computer chess it is easyto understand the nature of

the horizon effect, as it is conditioned by the search depth limit on the decision tree. The

move tree is illustrated in figure 9. [25, 7-15]

32

Figure 9: Demonstration of a typical non-quiescent position

In figure 9, there are two possibilities for the black side, who is moving from that position.

First, the black side can capture the white’s queen, to whichthe white player would reply

by capturing the pawn with its white bishop and the check mateis not avoidable after two

moves. On the other hand, the black side can prevent this check mate by not capturing the

white’s queen.

Accordingly, if a computer chess program is commanded to evaluate that position and

to decide for the black side, the response would completely depend on the search depth

that is given to its algorithm. In the example presented in figure 9, a computer chess

program must search at a depth of 4 at least, in order to avoid the check mate situation,

which would result in the maximum lost. However, if the computer chess is programmed

to search only until a depth of 3 plies or less, it will not discover the check mate, thus

believing that capturing the white’s queen will be the most valuable move response. [25,

5-15]

Exemplified by figure 9, the horizon effect for a computer chess program is typically

created from the search depth limit, which disallows the AI engine to see further in a

game, when analyzing the decision tree up to some given depthlimit. Anything that

happens outside of that scope will not be of importance to theAI engine. Therefore, in

order to avoid unexpected results in the heuristic search due to dramatic changes that are

not studied out of the scope, this horizon effect must be palliated. The most common

approach to avoid the horizon effect is to provide the AI agent with the capability of

33

sensing when a situation is stable or not. This is due to the fact that stable situations are

not likely to present dramatic changes in the near future, whereas unstable situations will

most probably present a dramatic change in the environment in the near future. [26]

The minimax-like algorithm searches until a given depth and, when it reaches the terminal

nodes of the decision tree, it ends up calling a quiescence search algorithm, which estimates

if the position is stable or not. If a position is stable (quiet position), it can be evaluated

with a simple heuristic function, since it will not present dramatic changes in the near

future. However, if a position is not stable (not quiet), thesimple heuristic function

will not provide an accurate result. Hence the tree must be traversed deeper, breaking

the search depth limit and crossing over the line drawn by thehorizon effect. A simple

implementation of the quiescence search extension to the minimax-like algorithm is presented

in code listing 6. [25, 5-15]

f u n c t i o n negamax (t r e ed e p t h) :

i f t r e e d e p t h i s 0 : r e t u r n q u i e s c e n c e () ;

b e s t s c o r e =− i n f i n i t y ;

f o r a l l v a l i d moves as c u r s o r do :

apply move (c u r s o r) ;

myscore =−negamax (t r e ed e p t h − 1) ;

undo move (c u r s o r) ;

i f myscore i s g r e a t e r t han b e s ts c o r e :

b e s t s c o r e = myscore ;

r e t u r n b e s t s c o r e ;

f u n c t i o n q u i e s c e n c e () :

b e s t s c o r e = a l pha ;

f o r a l l v a l i d moves as c u r s o r do :

apply move (c u r s o r) ;

i f c u r s o r i s (c a p t u r e & check & promot ion) :

myscore =−q u i e s c e n c e () ;

e l s e

myscore = e v a l u a t i o n ;

undo move (c u r s o r) ;

i f myscore i s g r e a t e r t han b e s ts c o r e :

b e s t s c o r e = myscore ;

r e t u r n b e s t s c o r e ;

Listing 6: Chess0 negamax pseudo-code, combined with a quiescence search

34

As is presented in the pseudo-code in listing 6, the quiescence search is a function similar

to the negamax function, however it has no depth search limit. The quiescence search

basically searches for a quiet node in the decision tree, meaning that the move under

analysis must not be a capture, a check nor a promotion. If themove is one of those

critical moves, then the quiescence will continue iterating by calling itself. However, if

the quiescence search finds a node whose move is not one of the critical moves, then it

will return the normal evaluation, without recursing over itself anymore. This behavior is

further exemplified in figure 10. [26]

Figure 10: Quiescence search impact on the decision tree traversing [25]

The example in figure 10 presents a decision tree in which the search depth limit has been

set to seven plies. Nevertheless, some of the terminal nodesin the decision tree must

present critical moves, such as captures, checks or promotions), since the decision tree

is expanded in one more ply at some of its terminal nodes. Thisis the effect of calling

a quiescence search function inside the minimax-like algorithm. The quiescence search

will definitely ensure that the heuristic evaluation takes place only at stable nodes. [25,

5-15]

35

Last, it is important to note that the quiescence must be defined to the AI agent, in order to

make it understand what a stable situation is and what an unstable situation is. Once these

two concepts are defined to the AI agent, it will be provided with a simulation of sense, by

which it will decide whether to evaluate the current situation or not, or rather go further

in its analysis. For computer chess, this definition is givenby the type of move under

analysis. However, for any other application, the quiescence search must be researched,

and adapted accordingly to the specific AI application. [27,321-322]

36

5 Results

5.1 Randomization Tests

The first experiment demonstrates the randomization mechanism used by the adaptive AI

engine. The classic AI engine is fixed in behavior, and thus italways selects the move

with a higher score. Practically, the classic AI engine willplay the same game indefinitely

when playing against itself. On the other hand, the adaptiveAI engine will introduce

random alterations, thus varying the path of the game. Figure 11 shows the position from

which the classic and the adaptive engines are asked to provide a response.

Figure 11: Initial position: black to move against the move 1.e4

Parting from figure 11, there the black side has 20 different replies to the move. After

Chess0 performs a search on its decision tree, it selects the move with higher score, when

using the classic AI engine. However, when using the adaptive AI engine, Chess0 may

pick other moves close to the higher-score move, but not necessarily the move with the

highest score in the search. These data is studied in table 1,with a sample of 100 different

games.

Table 1: Adaptive AI randomization for generating move responses

Classic AI Response Adaptive AI Response

1.. e4100%

1.. e520%

1.. e640%

1.. d540%

37

The examples presented in table 1 are a result of asking both Chess0 AI engines for a

response to the same move. The classic AI engine provided always the same response to

the same initial move, whereas the adaptive AI engine presents different move response

with a different ratio. These data were gathered using a randomization threshold of0.50.

Admittedly, the wider the randomization threshold, the larger number of different moves

would be provided by the adaptive AI engine.

The randomization threshold allows the chess engine to playusing a wider variety of

moves, thus being able to explore different branches in the decision tree. Figure 12 plots a

simple graph showing the relation between the randomization threshold and the wideness

of the variety in move responses.

Figure 12: Change in the variety of moves respect to the randomization threshold

According to the data exposed in figure 12, the randomizationthreshold plays an important

role in the decision taken by the chess engine. These data aretaken from a response given

by the adaptive AI engine in Chess0 when presented with a certain situation in the board.

In that board situation, the black moves, having many possible move responses, due to

the distribution of the pieces on the board.

Reflected in the graph in figure 12, the number of selectable moves are the moves that

are considered close to good, when compared to the move with the highest score possible.

This decision behavior is hence dictated by the randomization threshold. As the randomization

38

threshold increases, the range of selectable moves widens as well, thus providing a larger

number of choices to the chess engine.

Astonishingly, figure 12 depicts an horizontal asymptotic bound for the number of selectable

moves, whose scores lie0.60 from the best score. On one line, it is possible that the

amount of total valid moves has been reached already. On the other line, it is possible that

the chess engine needs a much higher randomization threshold in order to allow worse

moves to be selectable as well.

From the experimental point of view, it is also important to analyze the probability of

victory and defeat when applying a randomization thresholdto the adaptive AI engine.

Figure 13 synthesizes a collection of data gathered from running dozens of games using

different randomization threshold, where thex-axis represents the value of the randomization

threshold applied on each game, and they-axis represents the percentage of victories after

playing a total of 10 games.

Figure 13: Efficiency of the randomization threshold, in terms of game wins

Interestingly, the data presented in figure 13 suggests thatthe Chess0 adaptive AI engine

plays in a more efficient manner when the randomization threshold lies between0.00 and

1.00, optimally0.50. According to the data in figure 13, from0.00 to 0.50, approximately,

the efficiency of the program increases. Nevertheless, after 0.50, as the randomization

threshold increases, the efficiency of the program decreases. Thus, the interesting part of

39

the analysis is the range of values for the randomization threshold lying between0.00 and

1.00. Please notice the difference in scales between figures 12 and 13, which is necessary

in the latter, in order to depict the overall behavior after several games.

One explanation for the behavior depicted in figure 13 is thatthe heuristic evaluation of

Chess0 is not perfect, due to its heuristic nature. Therefore, when the randomization

threshold is zero, meaning no tolerance at all, the program may avoid analyzing any

branch that is not evaluated with the highest score. Nonetheless, the program might avoid

analyzing branches that further lead to more efficient results, since the evaluation has a

certain degree of inaccuracy. On the other hand, when the randomization threshold is

close to0.50, the program will allow itself to analyze different branches, thus being able

to discover more efficient decisions.

Finally, and as shown in figure 13, when the randomization threshold is too large, meaning

greater than0.50, the decisions taken by the program are of a low score, thus leading to

non-efficient results. Furthermore, much randomization decreases the efficiency of the

program in a quasi-linear manner, according to the graph in figure 13. Hence, it can be

concluded from this experiment that the randomization threshold is somewhat dependent

on the heuristic function of the program, where0.50 is the approximate optimal value for

the concrete implementation in Chess0.

5.2 Dynamic Heuristics Tests

The technique of using dynamic quanta when assigning a certain score to each square on

the board has an impact on the overall result of the chess engine decisions. In Chess0,

the classic AI engine does not use dynamic quanta, and hence the evaluation is fixed,

weighing the central squares more than the rest of the squares. However, the adaptive AI

engine modifies the quanta on the squares, depending on the position of the enemy’s king

and thus giving more preference to aggressive positions, towards attacking the opponent’s

king. Figure 14 provides an example of the position.

40

Figure 14: Middle-game position, white moves

In the position given by figure 14, the white moves in the middle of the game. According

to the implementation of the classic AI engine, the machine should evaluate the central

squares as the most valuable, whereas the adaptive AI engineshould consider more

profitable the moves closer to the opponent’s king, due to thedifferent quanta for different

AI engines. Table 2 shows a list of the move evaluations of both types of the engine.

41

Table 2: Different evaluations of moves for a given position

Move Proximity Classic Evaluation Adaptive Evaluation

Rb1 1 0.60 0.58

Rc1 1 0.62 0.56

Qb1 1 0.54 0.52

Qc1 1 0.58 0.54

Qe1 1 0.63 0.60

Qe2 2 0.67 0.66

Re1 1 0.63 0.60

Kh1 1 0.53 0.34

a3 2 0.50 0.36

a4 2 0.52 0.45

b3 3 0.51 0.38

b4 3 0.53 0.38

Bc1 1 0.48 0.56

Be1 1 0.49 0.58

Be3 3 0.61 0.66

Bf4 4 -2.52 -2.59

Bg5 5 0.58 0.75

Bh6 6 -2.26 -2.32

g3 3 0.51 0.63

g4 4 -0.73 -0.79

h3 3 0.50 0.61

h4 4 0.52 0.66

Nb1 1 0.42 0.48

Ne2 2 0.58 0.51

Na4 2 -2.88 -2.94

Nb5 3 -2.67 -2.91

Nd5 5 0.42 0.51

d4 4 0.41 0.49

Ne1 1 0.46 0.47

Nd4 4 -3.13 -3.25

Nh4 4 0.31 0.62

Nxe5 5 -2.40 -2.58

Ng5 5 0.49 0.69

42

The data in table 2 represents a sample of decisions from the classic AI engine and the

adaptive AI engine when taking a decision given the same situation. The moves with

higher proximity to the opponent’s king are marked in bold. Generally, the adaptive

AI engine evaluates moves with higher proximity as more valuable moves. However,

this fact does not necessarily happen at every moment. For instance, moves involving

captures or decisions with higher preference than just position may overcome the effect

of the dynamic quanta.

Another feature that Chess0 implements is theMVV/LVA move ordering technique. As

explained in chapter 4, this technique is an aid for sorting the moves between different

search levels in the decision tree. Moving the “most-likely-to-be-best” moves to the

beginning of the tree, the alpha-beta algorithm improves its speed, since it is most likely

that the cutoff will occur at the very beginning of the tree. Therefore, if such a cutoff takes

place early in the decision process, the volume of data to be processed will be reduced

dramatically. The position is illustrated in figure 15, which presents a classical chess

problem namedsmothered mate. [24, 1-10]

Figure 15: Smothered mate, a classical simple chess problem[28]

In order to test the improvement of theMVV/LVA algorithm, Chess0 provides a command

named “solve”, which is given a certain position and the chess engine tries to find which

move will lead to the victory for the moving side in the minimum number of moves. In

the smothered mate, presented in figure 15, the black moves tomate the white, and the

check-mate comes after four moves, and it is unavoidable after the black playsNf2. This

43

experiment was run using the classic AI engine, and then using the adaptive AI engine.

Figures 16 and 17 depict the running speed of the algorithm compared to the search depth

used when solving the problem.

Figure 16: Search time in seconds, classic pruning versus MVV/LVA

Figure 17: Search time in seconds, classic pruning versus MVV/LVA (zoomed)

In figures 16 and 17, the red line represents the classic AI engine search process, using

standard alpha-beta pruning without any move ordering technique. On the other hand,

44

the green line represents the alpha-beta pruning algorithmaided by theMVV/LVA move

ordering technique. In figure 16, it is noticeable that the search in the classic AI engine

takes more than 55 minutes, whereas the search in the adaptive AI engine does not exceed

3 minutes. This is evidently a vast improvement.

In practice, the classic AI engine searches for a decision onthe tree using different depths.

However it looks for the same moves in the same order at any search depth. On the

contrary, the adaptive AI engine analyzes every move at depth 1, and then sorts the moves

by their probability of being the best move. On search depth 2, the adaptive AI engine

already performs a cut-off at the beginning of the tree, thusreducing dramatically the

amount of data to be processed. Further, this cut-off at an early stage continues at every

search depth, thus making the adaptive AI engine to analyze uniquely the first branch of

every tree, and avoiding the rest of the calculations.

Figure 17 is a magnification of the results presented in figure16. The exponential growth

in computation resources is observed from search depth 4, where the function starts to

increase the Y-values rapidly. The results in figure 16 and 17conclude that theMVV/LVA

move ordering algorithm is an actual improvement, making the engine up to 30 times

faster, depending on the search depth at every decision.

5.3 Quiescence Search Tests

The quiescence search is one of the most interesting features implemented in Chess0,

since it provides not only proper efficiency, but actual human-like behavior. In order to test

the quiescence search capabilities of Chess0, there are three experiments which tell the

functionality capabilities, the functionality impact andits overall behavior improvement

over the classic AI engine. The first experiment consists of querying both AI engines

(classic and adaptive) over a same position, using different search depths, in order to

obtain an idea of their decision making process. Figure 18 presents an interesting position.

45

Figure 18: Demonstration of a typical non-quiescent position

In the position on figure 18, the black moves to capture the white’s queen or avoid check

mate. If black captures the queen of its opponent, the check-mate is unavoidable in four

plies, giving the victory to the white. Therefore, a normal chess engine without quiescence

search, should not be capable of discovering the check-mateif the search depth is set to

less than four plies. The purpose of the quiescence search isto be able to search deeper in

the decision tree, if the situation is not stable, such as theone in figure 18, where there are

several captures and checks to the black king. Table 3 includes a collection of different

responses for both AI engines at different search depths.

Table 3: Check-mate trap response, classic AI versus adaptive AI

Depth Classic AI Response Adaptive AI Response

1 1.. Bxd1 1.. Ke7

2 1.. Bxd1 1.. dxe5

3 1.. Bxd1 1.. dxe5

4 1.. Ke7 1.. dxe5

5 1.. dxe5 1.. dxe5

6 1.. dxe5 1.. dxe5

According to the data presented in table 3, the adaptive AI engine avoids the check-mate

already at search depth of one, by moving the king. However, the classic AI engine

needs a search depth of four plies, in order to discover the check-mate and perform the

movement of the king that was detected by the adaptive AI engine already at search depth

46

1. By extension, the quiescence search discovers a better move already at ply 2, by taking

the piece ine5. This move is discovered by the classic AI engine at search depth 5. Hence,

this experiments demonstrates the efficiency of the quiescence search, even when using

low search depth values.

As an extension to the normal search algorithm, the quiescence search requires more

computation time, since it performs more calculations thana plain minimax-like algorithm.

However, these calculations only take place when there are dramatic moves, which are

those capable of altering the order of the position in a shortperiod of time. Consequently,

when the number of dramatic moves is considerably large, thequiescence search requires

much computation time. The graph in figure 19 represents the computation time required

by the quiescence search according to the number of dramaticmoves in the decision tree.

Figure 19: Search time per number of dramatic moves

It is noticeable from the data in figure 19 that the amount of time required to compute

a quiescence search is roughly proportional to the number ofdramatic moves found in

the decision tree. There is, however, a slight inflection point at six million moves, which

may be explained by the change in the depth search, thus introducing certain exponential

growth at that point. The growth ratio is approximately of 100,000 moves per minute,

meaning that Chess0 utilizes one minute to search through 100,000 dramatic moves using

the current implementation of the quiescence search algorithm.

47

Finally, an important experiment is to confront the adaptive AI engine against the classic

AI engine, thus demonstrating the overall behavior efficiency over the classic techniques.

This experiment was run using different search depths for both engines. One part of

the experiment was run with a quiescence search time limit, and the other one without

any time limit. This is due to the fact that Chess0 implements atimeout feature in the

quiescence search, in order to stop the search at some point,even when the depth limit

has not been reached. Figure 20 depicts three experiments, where the time-constrained

quiescence search is in green and red (green for a 30-secondslimit and 60-seconds limit)

and the unlimited quiescence search is in green.

Figure 20: Number of victories (adaptive AI versus classic AI)

At first, it is noticeable that the time limit feature is an impediment for the perfection of

the quiescence search. According to figure 20, the adaptive AI engine, running with a

30-seconds time limit, starts winning with a ratio of85% against the classic engine at

search depth 1. However, as the search depth is increased, the classic engine will start to

take over the adaptive AI engine, since the classic AI enginedoes not have a time limit.

As expected, when the time limit is increased to 60 seconds, the adaptive engine starts to

play better. This is due to the fact that the quiescence search returns the best move found

so far when the time limit is exceeded, and not the absolutelybest move.

48

Furthermore, figure 20 depicts the improvement in the behavior of the adaptive AI engine

when it is not limited in time. The adaptive AI engine always scores more than90% of the

victories after a search depth of two plies. The quiescence search with no time restriction

is substantially slower than the one with a time limit, as explained in figure 19, due to the

large number of dramatic moves along the decision tree.

49

6 Discussion

6.1 Achievements

The results of the experiments present some interesting arguments for discussing the

comparison between the classic AI engine and the adaptive AIengine implemented in

Chess0. As a recall for the purpose of the project, the aim was to create an improved

version of a classic AI engine for a computer chess application. The purpose of the

experiments was to compare the differences, both in behavior and performance, between

the classic implementation and the improved version.

The three main differences between the classic AI engine andthe adaptive AI engine are

the randomization extension, the use of dynamic heuristicsand the implementation of the

quiescence search. Each improvement aims at providing dynamism to the behavior found

in the classic AI implementation, thus turning it into a modern chess engine, with proper

capabilities for simulating human-like behavior.

First, the randomization extension works, in principle, asexpected, according to the

results presented in chapter 5. The adaptive AI engine is, byusing this randomization,

capable of producing alternative branches and discoveringnew paths along a chess game.

Moreover, the randomization threshold, which is a setting for fine-tuning the behavior of

the adaptive AI engine, proved to be a working tool, as explained in figure 13.

Second, Chess0 received an important improvement by using dynamic heuristics. The

most important components of such dynamism are the use of dynamic quanta for the

heuristic evaluation (dynamic heuristics) and the technique of move ordering. As a result

of the dynamic heuristics, Chess0 is capable of using human-like thinking, as it becomes

aware of the position on the board and it reformats its decisions based on how the board

is evolving during a game. These capabilities are working properly, as reported in the

dynamic heuristics experiments. Nevertheless, in relation with what is depicted by the

experiments, dynamic quanta only adds a slight bias to the decision algorithm.

In practice, the move ordering technique mainly provides performance improvements,

speeding up the decision tree traversing. This is necessarysince computation in the

quiescence search is highly expensive. However, the main purpose of the move ordering

technique was to provide human-like thinking to the chess engine, which was achieved,

although not noticeable for the end-user.

50

Last, the quiescence search implementation of Chess0 is another feature that is working

properly. This is proved in the last set of experiments, especially in the first experiment,

where the adaptive AI engine is capable of discovering unstable situations already at

search depth 1 in the decision tree. In addition to this, the quiescence search proved to

be a more efficient solution, compared to the classic AI implementation, since it achieves

more wins using the same search settings.

Generally, the adaptive AI engine implemented in Chess0 seems to work efficiently, and

it is definitely an improvement over the classic AI engine. This is the conclusion of the

experiments, at a glance. Nonetheless, there are several points that are arguable about the

implementation of the improvements in the adaptive AI engine:

1. The scope of this project was limited in time and, therefore, the improvements

over the classic AI engine leave room for further refinement,such as improving the

accuracy of the heuristic evaluation.

2. The number of experiments does not suffice to fully determine if the adaptive AI

engine is a complete improved replacement for the classic AIengine, although it

proves to behave more properly in most situations.

3. Due to the low performance of the application, the number of the experiment runs

has been kept low, typically to 10 runs per experiment. In fact, the search depth

tested in the experiment does not exceed seven, which may notbe conclusive for all

cases, since most commercial AI engines use search depths ofup to 15.

In addition to all the features included in the adaptive AI engine, machine learning is

an extension that could have been designed and implemented into Chess0’s adaptive AI

engine. However, the time and resource constraints for thisproject set the development

pace at more concrete areas for dynamism, such as quiescencesearch and dynamic heuristics.

As a matter of fact, the sole component for achieving basic machine learning would have

required the amount of time equivalent to develop the whole application of Chess0 as it is

currently implemented.

51

6.2 Application Fields

Nowadays there are AI applications in any field, and not just in IT-related projects. More

concretely, computational AI and dynamic behavior are required in, for example, general

simulation, medicine researches, biotechnology. Furthermore, these technologies expand

more rapidly due to the improvements and discoveries in computer science, where parallel

computing allows AI systems to model human brains with largeamounts of computation

resources. [29, 2-86]

Chess0 includes several features in its adaptive AI engine that could be used in other

fields. Chess0 is an example of adaptive AI demonstrating the use of dynamic heuristics

and quiescence search. However, these features are well applicable to other fields. Dynamic

heuristics is a vague emulation of the behavior occurring inneural networks. Neural

networks have an initial configured behavior, and they modify these behaviorism rules as

they face new situations. Similarly, the dynamic heuristics found in Chess0 adapts its way

of thinking (and generating a response) as the situations onthe board change.

On the other hand, the quiescence search is a technique that has not been put into practice

in general AI fields, as it has been used in games and finding paths for a known set

of variants in applications containing decision trees [26]. Technology experts discuss the

possibility to integrate computational AI (with its intrinsic dynamic behaviorism capabilities)

for simulating real-life situations where a decision must be taken and there are several

risks to be evaluated. Computational intelligence may be a key for discovering which

decisions lead to a higher margin of probability for a risk totake place, thus optimizing

decision taking. [30, 357-373]

52

7 Conclusions

The goal of this project was to develop a chess engine consisting of two different AI

components. First, a classic AI engine using basic techniques for decision tree traversing,

and then an adaptive AI engine putting dynamic techniques into practice, thus providing

the tools for comparing the improvements of the adaptive AI engine (with dynamic behavior)

over the classic AI engine (with static behavior).

The outcome of the project was the creation of an adaptive AI engine with for Chess0.

The results proved that it is possible to create a simplified model of a computational

intelligent system with some basic dynamic behavior capabilities. However, the results

also demonstrated the challenge of establishing a proper adaptive-behaviorism system,

which may vary its response functionality while interacting with its environment. The

results proved that it is feasible to program a dynamism model inside the system, as an

extension to the classic AI engine, thus enabling the intelligent agent to provide human-like

behavior when playing a game.

This project was limited both in time and resources, thus concentrating on a simple study

about dynamic AI systems and their behavior, such as in computational intelligence. The

constraints ranged from equipment lack to the availabilityof applying real-life tests to the

application such as the Turing Test.

Finally, it is recommended to further develop the current implementation, probably by

integrating parallelization support and a distributed data management system, hence enabling

the intelligent agent to widen its dynamic behavior functionality and implementing basic

learning capabilities. It would be a concrete point to be improved towards the Turing Test

preparation and future computational extensions to the system.

53

References

1 Simpson, John and Weiner, Edmund. Compact Oxford English Dictionary of Current
English. Oxford: Oxford University Press; 2005.

2 Engelbrecht, Andries P. Computational Intelligence, An Introduction, Second
Edition. University of Pretoria, South Africa: Wiley; 2007.

3 Franklin, Stan. Artificial Minds. Cambridge, Massachusetts: The MIT Press; 1995.

4 Moursund, David. Brief Introduction to Educational Implications of Artificial
Intelligence. Oregon, United States of America: University of Oregon; 2006.

5 Levy, David. The Chess Computer Handbook. London: B. T. Batsford Ltd.; 1984.

6 Nilsson, Nils J. Introduction to Machine Learning. Stanford, California: University
of Stanford; 1996.

7 Morris, Rober. Deep Blue versus Kasparov: The Significance for Artificial
Intelligence. United States of America: AAAI Workshop; 1997.

8 Hyatt, Robert. Chess program board representations [online]. University of Alabama
at Birmingham; 2004.
URL: http://www.cis.uab.edu/hyatt/boardrep.html

9 Steinberg, Louis. Introduction to Artificial Intelligence: Lecture 5. Rutgers
University: Dept. of Computer Science, Hill Center. New Jersey; May 13, 2002.

10 Willestofte Berg, Casper and Petersen, Hans Gregers. A simplex approach for the
tuning of a chess evaluation function. Technical University of Denmark; January 23,
2006.

11 St. Denis, Paul and Grim, Patrick. Fractal Images of Formal Systems. The Journal of
Philosophical Logic 1997, 26: 181-222.

12 Chan, Pui Yee; Choi, Hiu Yin and Xiao, Zhifeng. Data Structures and Algorithms:
Topic #11: Game trees. Alpha-beta search [online]. School of Computer Science.
McGill University; 1997.
URL: http://www.cs.mcgill.ca/˜cs251/OldCourses/1997/topic11/

54

13 Marsland, T.A. Computer Chess Methods. University of Alberta: Computing Science
Department. Edmonton, Canada; December 15, 1990.

14 J. Nilsson, Nils. Introduction to Machine Learning Notes. Stanford University:
Robotics Laboratory, Department of Computer Science. Stanford; December 4, 1996.

15 Silver, David; Sutton, Richard S. and Mller, Martin. Sample-Based Learning and
Search with Permanent and Transient Memories. Unversity ofAlberta: Department
of Computing Science. Edmonton, Alberta; 2007.

16 DeLoura, Mark. Game Programming Gems. Charles River Media:United States of
America; 2000.

17 Berent, Adam. Computer Chess Information and Resources: MoveSearching and
Alpha Beta [online]. ChessBin; February 11, 2009.
URL: http://www.chessbin.com/post/Move-Searching-Alpha-Beta.aspx

18 Tolun, Mehmet R. Artificial Intelligence: Game Playing. ankaya University:
Department of Computer Engineering. Anakara, Turkey: February 3, 2007.

19 Jerz, John L. A Proposed Heuristic for a Computer Chess Program. Fairfax, Virginia:
October 2, 2009. (needs correction)

20 Turing, Alan M. and Copeland, B. Jack. The Essential Turing:The ideas that gave
birth to the computer age. New York: Oxford University Press; 2004.

21 Dresher, Melvin. The mathematics of games of strategy: theory and applications.
Canada: The Rand Corporation; 1981.

22 Saariluoma, Pertti. Foundational analysis: presuppositions in experimental
psychology. London: Routledge; 1997.

23 Saariluoma, Pertti. Chess and content-oriented psychology of thinking. University of
Helsinki, Finland; 2001.

24 Boul, Marc and Zilic, Zeljko . An FPGA Move Generator for theGame of Chess.
Montreal, Canada; 2002.

55

25 Marsland, T.A. and Bjrnsson, Y. Variable Depth Search. Alberta, Canada: University
of Alberta; 1999.

26 Frayn, Colin. Computer Chess Programming Theroy: Quiescence Search [online].
Beowulf Computer Chess Engine; August 1, 2005.
URL: http://www.frayn.net/beowulf/theory.html#quiescence

27 Kent, Allen and Williams, James G. Encyclopedia of computer science and
technology (volume 27, suppl. 12). CRC Press: United States ofAmerica; October
29, 1992.

28 Surratt, David. Smothered Mate [online]. Chessville; 2009.
URL: http://www.chessville.com/instruction/SmotheredMate.htm

29 Reusch, Bernd. Computational Intelligence: Theory and Applications. Dortmund,
Germany: Springer; 2001.

30 Chen, Zhengxin . Computational Intelligence for Decision Support. United States of
America: CRC Press LLC; 2000.

