Pekka Ukkola

Lennon aikana tapahtuvien hätätilanteiden hoito matkustajalentokoneessa

Opinnäytetyö 2013
Tiivistelmä

Pekka Ukkola
Lennon aikana tapahtuvien hätätilanteiden hoito matkustajalentokoneessa, 73 sivua, 1 liite
Saimaan ammattikorkeakoulu
Sosiaali- ja terveysala Lappeenranta
Ensihoidon koulutusohjelma
Opinnäytetyö 2013
Ohjaaja: lehtori Simo Saikko, Saimaan ammattikorkeakoulu

Tämän opinnäytetyön tarkoituksena oli kuvata matkustajalentokonetta hoitoympäristönä, sekä miten koneessa äkillisesti sairastuvan potilaan hoito tapahtuu.

Opinnäytetyö toteutettiin kuvailuana kirjallisuuskatsauksena. Materiaali kerättiin laajalla suomen-, ja englanninkielisellä haulla useista eri tietokannoista. Tämän lisäksi materiaalia otettiin työhön myös haun ulkopuolelta.

Tehdyn kirjallisuushaun perusteella voidaan päätellä että tästä aiheesta on melko vähän kirjoitettua suomenkielistä materiaalia, ja kyseinen materiaali on usein suppeaa. Tekijä ei löytänyt yhtään vastaavanlaajuista tästä aiheesta kirjoitettua suomenkielistä tekstiä.

Lentomatkustajien määrä kasvaa koko ajan, kuten myös vanhempien ja sairaampien matkustajien suhteellinen osuus. Vaikka lennon aikaiset vakavat hätätilanteet ovat erittäin harvinaisia, lisäävät edelliset tekijät niiden todennäköisyyttä. Lentoyhtiöt ovat osaltaan varautuneet hätätilanteisiin, mutta koneessa saadun hoidon latu saattaa vaihdella johtuen siitä, että tilanteiden hoitaminen lentokoneessa perustuu suurelta osin kanssamatkustavien terveysalan ammattilaisten vapaaehtoisapuun.

Olisi hyvä verrata lennonaikana saadun hoidon vaikuttavuutta potilaan terveyteen suhteessa maalla tapahtuvaan ensihoitoon. Tämä voisi mahdollistaa matkustajalentokoneissa saadun avun kehittämisen.

Asiasanat: lentäminen, matkustajalentokone, hätätilanne, ensiapu, fysiologia
Abstract

Pekka Ukkola
Management of in-flight medical emergencies in a commercial aircraft, 73 pages, 1 appendix
Saimaa University of Applied Sciences
Health Care and Social Services Lappeenranta
Degree Program in Emergency Care Nursing
Bachelor’s Thesis, 2013
Instructor: Senior Lecturer Simo Saikko, Saimaa University of Applied Sciences

The purpose of this thesis was to describe the commercial aircraft as an environment for emergency care and how medical emergencies are managed on-board the aircraft.

This thesis was carried out as a descriptive literature review. The material was collected from a number of databases using both Finnish and English searches. In addition to this, some material was gathered outside this search.

The results of the literature search revealed that there is very little written material in Finnish on this subject, and the material is also often quite limited. The author did not find any comparative work in Finnish on this subject.

The number of air travellers is growing constantly, as is the relative number of the elderly and chronically ill passengers. Even though serious medical emergencies in an aircraft are very rare, the factors mentioned above increase their likelihood. Commercial airlines are for their part prepared for these emergencies, but the quality of care in an aircraft may vary, due to the fact that the management of these situations is largely dependent on the help of volunteering healthcare professionals.

It might be useful to compare the effectiveness of the care received on commercial aircrafts to that administered by a land-based emergency medical service. This could make possible the improvement of the care received on commercial aircrafts.

Keywords: flying, commercial aircraft, emergency, first-aid, physiology
Sisältö

1 Johdanto ... 7
2 Lentomatkustaminen ja hätätilanteet ... 8
 2.1 Lentomatkustaminen .. 8
 2.2 Liikannelentokoneen matkustamo-olosuhteet .. 8
 2.2.1 Kabinipaine ... 9
 2.2.2 Kabiinin ilmanlaatu ... 11
 2.2.3 Kabiinin ilmanvaihto ... 12
 2.3 Hätätilanteet lennolla .. 13
 2.4 Lentomatkustuksen säätely ... 14
 2.4.1 Säätelevät organisaatiot ... 14
 2.4.2 Lentomatkustamista sääteleviä lakeja ja säädöksiä 14
 2.4.3 Lentokoneessa auttaminen .. 15
 2.5 Lennon aikaisten hätätilanteiden tutkimus ... 16
 2.5.1 Lentämisestä aiheutuvat fyysiset ja psyykkiset rasitteet 19
 2.5.2 Matkustajan lentokelpoisuuden testaaminen 20
 2.5.3 Kuolemat .. 22
 2.6 Lennon aikaisten hätätilanteiden ehkäisy .. 18
 2.6.1 Lentoa edeltävä seulonta ja lentokelpoisuus selvitys 19
 2.6.2 Matkustajan lentokelpoisuuden testaaminen 20
 2.6.3 Matkustajan tarvitsema oma happihoito ... 22

3 Opinnäytelyn tarkoitus ja tavoitteet ... 23
4 Opinnäytelyn toteutus ... 24
 4.1 Käytetty metodi .. 24
 4.2 Tiedonkeruu alkuperäislähteistä ... 24
 4.3 Kerätyyn tiedon käsittely ja täydentäminen ... 26
 4.4 Opinnäytelyn aikataulu ... 27

5 Tulokset ... 27
 5.1 Lentämiseen liittyvät fysiologiset erityispiirteet ... 27
 5.1.1 Ilmakehä ... 27
 5.1.2 Ilmanpaine ... 29
 5.1.3 Hypoksiia ... 31
 5.1.4 Kaasujen laajeneminen ... 33
 5.1.5 Third spacing ... 37
 5.1.6 Ilmakosteus ja dehydraatio .. 37
 5.1.7 Lämpötilanvaihtelun vaikutukset .. 38
 5.1.8 Säteily .. 39
 5.1.9 Kiihtyvyys ... 39
 5.1.10 Tärinää ... 41
 5.1.11 Melu ... 41
 5.1.12 Aikaeroväsymys .. 41
 5.2 Matkustajalentokone hoitoypäristönä ... 42
 Ympäristöstät aiheutuvat käytännön ongelmat hoitaminelle 43
 5.3 Yleisiä matkustajalentokoneissa sattuvia hätätilanteita 45
 5.3.1 Lentämisestä aiheutuvat fyysiset ja psykkiset rasitteet 45
 5.3.2 Hätätilanteiden syyt ja prevalenssi lennoilla 46
 5.3.3 Yleisiä hoitoa vaativia hätätilanteita .. 48
 5.3.4 Muita lentomatkustamiseen liittyviä tilanteita 49
 5.3.5 Kuolemat ... 50
 5.4 Lentokoneen henkilökunnan resurssit akuuttien hätätilanteiden hoitoon 50
5.4.1 Matkustamohenkilökunnan koulutus .. 50
5.4.2 Ensihoitopakki ... 51
5.4.3 AED-laitteet ... 56
5.4.4 Ulkopuolinen apu hätätilanteen hoitamisessa ... 58
5.4.5 Telemedisiininen apu ... 59
5.4.6 Häättilanteen aiheuttama hätälaskeutuminen ... 60
5.4.7 Häättilanteen hoitamisen normaaliprotokolla .. 62

6 Pohdinta ... 62
 6.1 Työn luotettavuus ja eettisyys ... 62
 6.2 Tulosten tarkastelu ... 64
 6.3 Oma oppiminen ja johtopäätökset ... 65
 6.4 Jatkotutkimusaiheita ... 66

Kuvat ... 67
Taulukot ... 67
Lähteet .. 68

Liitteet

Liite 1 Käytetyt hakusanat
Määritelmiä

Hätälaskutumisella tarkoitetaan tässä työssä matkustajan tai matkustajalentokoneen henkilökunnan terveydellisestä syystä tehtävää lentokoneen ylimääräistä laskeutumista muualle kuin alkuperäiseen määränpäähän.

Hätätilanteella (in-flight medical emergency) tarkoitetaan tässä työssä sairaskohtauksia sekä vammautumisia/loukkaantumisia.

Kabiinilla tarkoitetaan tässä työssä matkustajalentokoneen matkustamoa sekä ohjaamoa.

Lentoemännällä (flight attendant) tarkoitetaan tässä työssä matkustajalentokoneissa työskenteleviä lentoemäntiä sekä stuertteja.
1 Johdanto

Arvioiden mukaan lentämällä matkustaa maailmanlaajuisesti yli kaksi miljardia ihmistä vuodessa (1), ja heidän määräänsä myös kasvaa tasaisesti (2). Ihmiset lentävät myös yhä vanhempina ja monilla heistä on kronisia perussairauksia (3). Edellä mainitut asiat saattavat lisätä lennettäessä tapahtuvien sairauskohtauksen riskiä (4). Koska esimerkiksi matkustajakoneen henkilökunnan antaman peruselvyysyksen laadulla voi olla vaikutusta sydänpotilaan selviytymiseen (5), saattaa matkustajakoneessa annettavan avun laadulla olla merkitystä matkustajien terveydelle laajassa mittakaavassa.

Suomessa potilaan saaman hoidon taso on standardisoitu lailla terveydenhuollon ammattihenkilöstä (6). Akutin hoidon laatu on kehitetty erilaisten koulutusvaatimusten, kuten esimerkiksi ensihoitaja (AMK)-koulutuksen (7) sekä monien lisäkoulutusten avulla. Uuden terveydenhuoltolain nojalla esimerkiksi hoitotason ensihoitidon yksikössä pitää olla vähintään yksi ensihoitaja AMK tai ensihoitidon lisäkoulutuksen saanut sairaanhoitaja (8). Potilaan saaman akuuttihoitodon laadun kehittämisensä lisäksi on kansallisella tasolla tarkoitus saada aikaan koko maan ensihoitolliset tarpeet tasapuolisesti kattava järjestelmä (9). Koska Laissa potilaan asemasta ja oikeuksista sanotaan, että jokaisella on oikeus hoitoon aina kiireellistä apua tarvitessaan (10), on tekijän mielestä perusteltua verrata matkustajalentokoneessa saatuapua maalla annettavaan ensihoitoon.

Tämä opinnäytetyö on luonteeltaan asiantuntijatietoon perustuva selvitys, joka käsittelée sitä, millainen matkustajalentokone on hoitoypäräistä eli mitkä erityispiirteet on huomioitava lentokoneessa potilaata hoidettaessa/autettaessa, sekä miten lennoilla äkillisesti sairastuvan potilaan hoito tapahtuu.

Tulevana ensihoitajana tekijää kiinnostaa se, että tästä aiheesta ei Suomessa tiedettävästi ole aiemmin tehty opinnäytetyötä. Aihe on mielenkiintoinen ja se on yhteiskunnalliselta kannalta perusteltu, koska lentäminen matkustamismuotona yleistyy koko ajan (2). Aihe on perusteltu myös siinä mielessä, että lentojen aikana sattuvien sairauskohtausten hoito on ollut esillä mediassa. Muun muassa television ajankohtaisohjelma 45-minuuttia käsittelee tätä aihetta 13.4.2005 (11).
Myös esimerkiksi 1.12.2010 Air Finlandin matkustajalentokoneessa sattunut elvytystapaus oli monen eri median uutisoinnin kohtena (12).

2 Lentomatkustaminen ja hätätilanteet

2.1 Lentomatkustaminen

Lentomatkustaminen on suosituin pitkän matkan matkustamisen muoto (4). Muun muassa talouskasvu sekä lisääntynyt globalisaatio ovat lisänneet lentomatkustamista (13). Se on käytännöllinen tapa matkustaa (3) ja lisäksi siitä on tullut yhä edullisempaa (14).

Uskotaankin, että matkustajien lukumäärä kaksinkertaistuu seuraavan kahden vuosikymmenen aikana, mikä johtuu isompien lentokoneiden käyttöön otosta sekä siitä, että lennetään yhä useampia reittejä (4). Matkustajamäärän kasvumisen taustalla on muun muassa halpalentoyhtiöiden mukaan tuleminen lentomarkkinoille (15), mikä on mahdollistanut sen, että lentomatkustaminen on tullut mahdolliseksi suurelle osalle väestöä (16).

Lentomatkustajien keskiväkiväli nousee (17; 16; 2), ja arvioidaan, että vuoteen 2030 mennessä kaikista lentomatkustajista puolet on iältään yli 50 vuotua (16). Väestön ikääntymisen myötä myös perussairaiden matkustajien määrä todennäköisesti kasvaa (18; 14; 4; 19). Esimerkiksi keuhkosairaiden matkustajien määrä on kasvanut (14), ja on arvioitu, että noin 5 %:lla matkustajista on jokin krooninen sairaus (1).

2.2 Liikennelentokoneen mattokustamo-olosuhteet

Matkustajalentokoneista esimerkiksi Airbus A380 kuluttaa suhteessa vähemmän polttoainetta ja aiheuttaa suhteessa vähemmän meluhaittoja, jolloin myös ympäristöystävällisyys lisääntyy. Lisäksi lentokoneet ovat myös nykyään hiljaisia ja mukavia (22). Uusimmissa matkustajakoneissa on myös panostettu parempaan ilmanlaatuun sekä istumamukavuuteen (17).

Istuimen mukavuuteen vaikuttaa istuimen edessä oleva tila, istuimen leveys, käytettävissä oleva jalkatila, istuimen kallistamismahdollisuus sekä verhoilumateriaalin laadukkuus. Istuimen edessä oleva tilaa on yleensä 76–86 senttimetriä, mutta tila vaihtelee 71 senttimetrinä 152 senttimetriiin sen mukaan, onko kyseessä esimerkiksi ensimmäisen luokan vai turistiluokan paikka. Istuimen kallistettavuus riippuu siitä, kuinka paljon etäisyyttä on takana olevaan matkustajaan. Istuimen leveydeksi on suositeltu 42 senttimetriä, mutta huomattava osa istumista on kuitenkin tätä kapeampia. (22)

2.2.1 Kabiinipaine

Nykyäikaiset matkustajalentokoneet lentävät normaalisti noin 7620–13720 metrin korkeudella (1). Näin korkealla lennetään muun muassa siksi, että ilmanvastus vähenee korkeuden kasvun myötä, jolloin koneet pystyvät lentämään pienemmällä polttoaineen kulutuksella sekä nopeammin kuin matalammilla korkeuksilla (23).

Lentokorkeudella 9150–12200 m ilmanpaine on alle 30 % merenpinnan tasolla olevasta ilmanpaineesta (22). Kansainvälisten sääntöjen mukaan matkustajalentokoneissa ilmanpaine ei saa laskea alle 2438 metrinä olevan ilmanpaineen tason eli alle 753 hPa (24).

Matkustamossa oleva ilmanpaine ilmaistaan kyseistä ilmanpainetta vastaavana korkeutena merenpinnan tasosta eli kabiinikorkeutena (cabin altitude) (25), tai niin sanottuna kabiinipaineena (26). Lentokorkeudella kabiinissä oleva ilma on paineistettu vastaamaan 1829–2438 metrin korkeutta (1). Kuitenkin 7010 metrin korkeudella ilmanpaine voi vastata 1524 metrin korkeutta (17). Matkustamon ilmanpaine lentokorkeuksilla on noin 20–25% merenpinnan tasoa matalampi (27) eli noin 560–600 mmHg (27; 28).
Kun koneen korkeutta lasketaan alle noin 6860 metrin, pystyy paineistusjärjestelmä paineistamaan matkustamon ilman suurin piirtein vastaamaan merenpinnan tasoja (1). Matkustamon ilmanpaine kuitenkin saattaa vaihdella vaihdella lentokorkeuden muuttuessa, ja lentokoneen kapteeni pystyy säätämään paineistustasoja (27).

Lentokoneen paineistaminen tapahtuu siten, että koneen moottori ottaa raitista ulkoilmaa sisään, joka kompressoidaan ja viilennetään (14), minkä jälkeen kompressoitu ilma pumpataan kabiinii. Tietyn matkustamon ilmanpaineen ylläpitämiseen vaikuttaa koneeseen pumpatun ilmanmäärä, sekä ilman vuoto- ja määrä matkustamosta pois, sekä kontrolloidun ulosvirtaavan ilman määrä (27).

Paineistaminen mahdollistaa koneen ulkopuolista ilmaa huomattavasti korkeamman ilmanpaineen (27). Kuitenkin paine on merenpinnan tasoa matalampi, jolloin paineistuksesta aiheutuu hypoksia, sekä lievä kaasujen laajenemista (1). Lisäksi koska paineistamiseen käytetty ilma on kuivaa, paineistaminen johtaa myös matkustamon ilman kuivumiseen (27).

On nimetty mona eri syytä sille, miksi matkustajalentokoneen matkustamoa ei ole paineistettu vastaamaan ilmanpainetta merenpinnan tasolla.

Useimmissa lentokoneissa olevat paineistusjärjestelmät kykenevät paineistamaan matkustamon vain 59,3 kPa eli 445 mmHg yli koneen ulkopuolisen ilmanpaineen, jolloin yli noin 6860 metrin korkeudella lentävissä koneissa on aina merenpinnan tasoa matalampi ilmanpaine (28). Myös rakennesyyt estävät matkustamon paineistamisen merenpinnan tasolle (15), ja on arvioitu, että merenpinnan tasolle paineistetun kabiinin olisi oltava niin vahvarakenteinen kestävä, että se olisi liian painava nostakseen ilmaan (29). Painavampi runko myös edellyttäisi, että istumapaikkoja olisi vähemmän, jolloin lentäminen olisi kalliimpaa (28). Lisäksi korkeaan matkustamon ilmanpaineeseen liittyvyy suurempi rakenteiden pettäminen ja tästä aiheutuvan äkillisen dekompression riski (20). Paineistuksen lisääminen myös lisää polttoaineen kulutusta, mikä lisää kulutavuutta (14).

On mahdollista, että koneessa olevaan paineistusjärjestelmään tulee toimintahäiriö tai että koneen rakenne vaurioituu, esimerkiksi ikkuna menee rikki. Näistä
voi aiheutua matkustamon ulkoilmata suuremman ilmanpaineen menetys eli dekompressio. Se, mitä tästä seuraa, riippuu muun muassa rakennevien koosta, matkustamon kokonaistilavuudesta, lentokorkeudesta sekä ulkoilman ja kabiinin ilmanpaineen erotuksesta. (27.)

Nopeassa dekompressiossa kabiinin paineistus menetetään äkillisesti suuren rakennevian takia noin yhdestä kolmeen sekunnissa. Tärkein haitallinen seuraamus tällaisesta on hypoksia, ja hapenosapaine veressä laskeekin erittäin nopeasti (27). koneissa on kuitenkin sekä ohjaamossa että matkustamossa varahappijärjestelmät, joilla riittävä hapensaanti turvataan. Tästä huolimatta paineistuksen menetyksestä johtuvan dekompressiotaudin riskin, sekä nopean koneen lämpötilan laskun takia kone joutuu laskeutumaan matalammalle korkeudelle (26).

2.2.2 Kabiinin ilmanlaatu

Kabiinin ilmanlaatuun on tarkat ohjearvot, ja ne koskevat kabiinin paineistuksen lisäksi raikkaan ilman virtausta kabiinin (14). Hyvä ilmanlaatu on koneessa olevien henkilöiden mukavuuden sekä hyvinvoinnin kannalta tärkeää, ja huono ilmanlaatu voi muun muassa aiheuttaa väsymystä (22), päänsärkyä, huimaausta (22; 17), hengitysoireita, (22), silmien kuivumista, ihopärsytystä sekä mahdollisesti sekavuutta (17).

Ilmanlaatuun vaikuttavat muun muassa kabiinin ilmavirtauksen määrä, kabiinissa olevien henkilöiden määrä, kierrätetyn ilman suhteellinen osuus, sekä suhteellinen ilmankosteus (22).

Kabiinin ilmanlaadun tärkeä mittari on sen hiilidioksidipitoisuus (CO2). Suositeltu pitoisuus on alle 1000 ppm. Yhtä matkustajaa kohden tarvitaan noin 7 litraa sekunnissa ulkoilmata, jotta tätä hiilidioksiditasoa voidaan ylläpitää, kun taas ilman kabiinin ilmanvaihtoa kestäisi 2,3 minuuttia, kunnes pitoisuus olisi liian korkea. Nousujen ja laskujen yhteydessä hiilidioksidipitoisuus pitoisuus voi nousta huomattavasti. (22.)

Koska matkustajalennon ovat nykyään pidempiä ja pidempiä, on myös tärkeää, että kabiinin ilma pidetään puhtaana toksiineista (30). Kabiinin ilmaan voi siirtyä
hajuja sekä erilaisia haittuvia organisia yhdisteitä esimerkiksi koneeseen käytettävistä voiteluaineista, hydraulisista nesteistä tai jäänesto nesteistä, mitkä pääsevät kabiiniin ovista sisään koneen ollessa maassa (22).

2.2.3 Kabiinin ilmanvaihto

On arvioitu, että matkustajalentokoneessa kabiinin ilma vaihtuu noin 20–30 kertaa tunnissa, mikä ylittää helposti toimistoissa, kodeissa tai muissa julkisissa kulkualueissa käytettävän ilmanvaihtoneuden (31). Koneessa ilma kiertää poikkisuunnassa segmentteittäin (32), ja yhden rivin yläpuolelta tulevan ilmanvirran jakaa kyseisen rivin lisäksi pääasiassa kaksi sen edessä ja takana olevaa riviä (21).

Kabiinin tehokkaalla ilmanvaihdolla pyritään muun muassa rajoittamaan tarttuvien tautien leviämistä (21), ja ilmanvaihdon ollessa pois päältä 30 minuuttia, voi kabiinin ilmaa kumuloitua epäpuhtauksia, kuten patogeeneja (33). Lisäksi ilmanvaihdolla pyritään muun muassa puhdistamaan kabinia (22). Nykyisin keski- ja suurikokoisissa matkustajalentokoneissa on yleensä ilman uudelleen kierrätyssärjestelmät (21), joiden läpi menee yleensä noin puolet kabiinin ilmasta (22; 21). Ilman uudelleen kierrättämisellä saadaan korkea lämmönsäätelyä sekä vähentää polttoaineen käyttöä (21). Ilman uudelleen kierrättäminen saattaa lisätä terveysriskejä (22).

Kierrätetyn ilman puhtaana pitäminen patogeeneista, kuten bakteereista, edellyttää sen tehokasta suodattusta. Nykyään kaikkiin matkustajalentokoneisiin asennetaan ns. HEPA-suodattimia (high efficiency particulate air), jotka poistavat ainakin 99,9 % uudelleen kierrätetyn ilman partikkeleista (21).

Ilmasuodattimet eivät kuitenkaan poista haittuvia orgaanisia yhdisteitä. Tällaisesta esimerkki ilmailussa käytettävä neurotoksinen “tri-ortho-cresyl-phosphate” (TOCP) (30).
2.3 Hätätilanteet lennolla

Lentomatkustaminen on turvallisin matkustusmuoto. Vaikka lentokoneen ympäristöstä aiheutuu sekä fysiologiasta että psykologiasta stressiä osalle matkustajista (16), mikä saattaa pahentaa tai jopa aiheuttaa hätätilanteita (20), ei suurelle enemmistölle lentämisestä aiheudu kuitenkaan vaaraa (30).

Vaikka matkustajalentokoneissa sattuvat hätätilanteet eivät ole yleisiä (34; 1) sattuun niitä maailmanlaajuuisesti päivittäin (2). Esimerkiksi Finnairin koneissa sattuu vuoden aikana useita sairaustapaikkoja, joista noin 20–30 on vakavia tilanteita (32).

Suuri osa lentokoneissa sattuvista tilanteista on kuitenkin lieviä tapauksia, kuten pyörytymisissä (2), ja usein voi riittää, että tilanteet hoidetaan oireenmukaisesti kuten laittamalla potilaas makuuasentoon ja antamalla hänelle happea (34).

Matkustajalentokoneen kabiini on eristetty ympäristö (2). Verrattuna maalla tapahtuviin hätätilanteisiin kestää yleensä kauan, ennen kuin potilasta päästään hoitamaan tehokkaasti (35) huolimatta lentokoneen nopeasta hätälaskutumisesta (19).

Koneen henkilökunta osaa antaa hätätilanteissa ensiapua (15). Erään arvion mukaan matkustamohenkilöstö hoitaa yli 75 % hoitoa vaativista tilanteista ilman ulkopuolista apua (36).

Lisäksi hätätilanteen sattuessa koneessa matkustavat terveysalan ammattilaiset ovat aina olleet tärkeitä tilanteen hoitamisen kannalta (1), ja heitä myös suurella todennäköisyydellä löytyy koneesta hätätilanteen sattuessa (34). Ongelmallista on, ettei monesti esimerkiksi auttamaan tarjoutuvalla lääkärillä ole erityisemmärystä kabiiniin ympäristöstä tai kokemusta hätätilanteessa toimimisesta (15).

Media on kiinnostunut matkustajalentokoneissa sattuviista hätätilanteista (4), ja niiden hoidon suhteen yleiset odotukset ovat korkealla (37). Esimerkiksi koneessa sattuvalla kuohelmantapaikalla voi olla huono vaikutus lentoyhtiön yritystekstillä (38). Lentoyhtiöiden valmistautuminen hätätilanteisiin onkin parantunut (4).
2.4 Lentomatkustuksen sääteytyminen

2.4.1 Säätelevät organisaatiot

Siivili-ilmailua säätelee kansainvälisesti monet eri organisaatiot. Tässä on niistä muutama.

Suomessa liikenteen turvallisuusvirasto TraFi muun muassa huolehtii lentoturvallisuudesta, antaa kansallisia ilmailumäääräyksiä sekä valvoo lentomatkustajien oikeuksia (39).

Kansainvälinen lentoliikennettä säätelee International Civil Aviation Organization (ICAO). Se on Yhdistyneiden Kansakuntien alainen järjestö, jonka tehtävänä on muun muassa valvoa maailmanlaajuisesti siivili-ilmailun turvallisuutta. Sen jäsemaita on 191, joihin lukeutuu Suomi (40).

Yhdysvalloissa lentotoimintaa säätelevä organisaatio on Federal Aviation Administration (41).

2.4.2 Lentomatkustamista sääteleviä lakeja ja säädöksiä

Lentomatkustamiseen liittyvät monia lakeja ja säädöksiä, joista tässä muutama olennaisin.

Lentoyhtiöillä on oikeus olla ottamatta kyytiin sellaista matkustajaa, joka ei terveydentilansa puolesta kykene lentämään (17). Kapteenin ja miehistön on ilmailulain 63 §:n perusteella huolehdittava matkustajista. Ilmailulain (1242/2005) 61§:n mukaisesti ilma-aluksen päällikköllä on koneessa ylin käsitysvalta (36), jolloin matkustajalentokoneessa kapteeni viime kädessä määrää (38; 42; 17).

Matkustajalentokoneessa olevia ensihoitopakkeja eli "medical kit” varten on myös olemassa eri säännöksiä.

European Joint Aviation Authorities vaatii, että medical kit tarvitaan koneissa, joissa on yli 30 matkustajapaikkaa, ja jos jokin suunnitellun reitin piste on yli 60 minuutin päässä normaalilentonopeudella lentokentästä, missä voidaan saada pätevää hoitoa. Toisaalta the International Civil Aviation Organization(ICAO), jonka säännöt pätevät kaikkiin sen jäsenmailoihin, edellyttää, että medical kit tarvi-
tään vain niissä lentokoneissa, jotka ovat auktorisoituja kantamaan yli 100 mat-
kustajaa yli kahden tunnin lentopituuden ajan. (2)

Myös muun muassa matkustamohenkilökunnan koulutuksesta sekä tarttuvien
tautien ehkäisystä on omat säädöksensä (21). Tarttuvien tautien ehkäisyä ei
tässä opinnäytetyössä käsitellä sen enempää.

2.4.3 Lentokoneessa auttaminen

Monissa Euroopan maissa, kuten myös Suomessa (43), lääkärit ovat velvollisia
auttamaan, kun koneessa sattuu hätätapaus (17). Tämän lisäksi esimerkiksi
Uudessa-Seelannissa lääkäri voidaan haastaa oikeuteen, jos tätä ei tehdä (1). Toisaalta esimerkiksi Yhdysvalloissa lääkäreillä ei ole tällaista velvollisuutta
(16), ellei heillä ole hoitosuhdetta kyseiseen matkustajaan (17). Suomen rikos-
laissa olevan pelastusvelvollisuuden mukaan myös muilla kuin lääkäreillä on
velvollisuus auttaa vakavasti sairastunutta (36).

Kansainvälisillä lennoilla terveysalan ammattilainen on sen maan lakien alaise-
na, mihin hänen lentämänsä lentokone on rekisteröity (1), paitsi kun kone on
maassa tai maan omassa ilmatilassa (17). Toisaalta myös esimerkiksi autta-
maan tarjoutuneen henkilön maalla voi olla laillista päätäntävaltaa (4).

Monet terveysalan ammattilaiset ovat huolissaan mahdollisuudesta, että heidät
saatetaan haastaa oikeuteen tarjoutuessaan auttamaan koneessa sattuvassa
hätätilanteessa (1). Vuoden 2008 lähteen mukaan kuitenkaan yksikään lääkäri
ei ole joutunut vastuuseen autettuaan lentokoneessa sattuneessa hätätilan-
teessa (17).

On olemassa niin sanottuja ”Good Samaritan” lakeja, jotka suoraavat hätätilan-
teessa auttaneita terveysalan ammattilaisia (1). Esimerkiksi Yhdysvaltojen ilma-
tilassa sekä lentokoneissa, jotka ovat Yhdysvalloissa rekisteröityjä, pätee
Aviation Medical Assistance Act (17). Tämä laki suojaavat lääkäriä sekä lentojärjestö-
tä vastuulta, kun koneessa hoidetaan matkustajan hätätapausta (1). Laki suo-
jaa, kun auttanut lääkäri toimii hyvään tarkoituksen, ei ota vastaan rahallista kor-
vausta, antaa asianmukaista hoitoa (17), eikä toimi törkeän huolimattomasti tai
tarkoituksellisesti väärin (42). Lisäksi monien lento-yhtiöiden vakautukset suojaavat auttamaan tarjoutuneita terveysalan ammattilaisia (1).

2.5 Lennon aikaisten hätätilanteiden tutkimus

Viimeaikaista lentojen aikana sattuvia hätätilanteita koskevaa tietoa on vähän, ja se pohjautuu monesti lyhyelle ajanjaksoille ja jonkin yksittäisen lento-yhtiön lentoihin (16). Myöskään kansainvälistä tietokantaa lentojen aikana sattuva hätätilanteesta ei ole (17).

Tarkkaa tietoa hätätilanteista ei ole, koska lento-yhtiöt eivät ole laillisesti velvollisia raportoimaan niistä (17; 16), tai sairaustapaustensa johtuvista hätälaskeutumisista (42). Erään arvion mukaan vain 17 % sattuneista tilanteista raportoidaan (16).

Vaikka jotkin lento-yhtiöt kirjaavat lentojen aikana sattuvat hätätilanteet tarkasti, niiden raportointi on suurimmaksi osaksi epäjohdonmukaista (16), ja epäyhtenäistä, mikä tekee vaikeaksi määrittää lentojen aikana sattuvien hätätilanteiden todellista määrää (1). Standardisoinnin puute raportoinnissa johtaa myös laadultaan vaihtelevan tietoon, mikä johtaa hätätilanteiden epidemiologisen tutkimuksen vaikeutumiseen (16), sekä mahdollisesti esiintyvyyden tilastoinnin aaltoiluun (4).

Yhtenä hätätilanteiden raportoinnin ongelmana arvioidaan olevan, että lento-yhtiöt mahdollisesti pelkäävät hätätilanteista aiheutuvaa negatiivista julkisuutta (4).

2.5 Hätätilanteiden esiintyvyys

Matkustajalentokoneissa sattuu hätätapaikowo joka päivä (2). On arvioitu, että tällaisten tapausten määrä tulee lisääntymään (17), mutta on myös päinvastaisia arvioita (16).

Kaksi yleisimmin tarkasteltua parametriä ovat lennonaikaiset hätätilanteet sekä kuolleisuus (35). Molemmat ovat harvinaisia suhteessa lentävän väestön määrään (42). Koska vuosittain lentävien ihmisten määrä on niin suuri, pienelläkin esiintyvyydellä tapaukset kuitenkin koskevat merkittävää määrää lentomatkusta-
Pitempiä reittejä lentävillä lentoyhtiöillä on raportoitu enemmän sekä hätätilanteita että äkkikuolemia (44). Lennolla sattuu suuri määrä erilaisia sairaustapauksia (35), ja näiden vakavuus vaihtelee lievästi henkeä uhkaaviin (42). British Airwaysin koneissa vuonna 2007 sattuneista 31200 sairaustapauksesta noin 3000 katsottiin olevan vakavia eli noin 10 %. Vakavimmat tilanteet liittyvät sydän- ja hengitysongelmiin sekä neurologisiin vaivoihin (17). Kuitenkin suurin osa tilanteista on lieviä (17; 1), ja ne ovat monesti lyhytkestoisia (2), eikä kaikista oireista edes kerrota matkustamon henkilökunnalle (22).

Edesauttava tekijä sille, että koneessa sattuu hätätilanne, on joka vuosi lentävän ihmismäärän suunnaton koko (35; 1). Lisäksi väestö myös vanhenee, mikä lisää sairaiden matkustajien määrä lennoilla (4). Suuri osuus lentojen aikana sattuvista hätätilanteista saa alkunsa matkustajien olemassa olevista sairauksista. Erään tutkimuksen mukaan 65 % sairaustapauksista johtui matkustajalla jo valmiiksi olevista terveysongelmissa, kun taas 28 % tapauksista johtui täysin uudesta tilanteesta. Toisen tutkimuksen mukaan useimilla lennonaikana sydänkohtauksen saaneilla matkustajilla oli olemassa ennestään sydänsairaus (1).

Lennonaihaisia hätätilanteita sattuu kaikenikäisille matkustajille. Eräässä tutkimuksessa näiden matkustajien ikähaarukka oli 1 - 87 vuotta (15). Ikäryhmistä eniten hätätilanteita on yli 70-vuotiailla. Keskiarvoikä lennon aikaiseen hätätilanteeseen joutuneella oli erään tutkimuksen mukaan miehillä 44 vuotta ja naisilla 49 vuotta (17) ja toisessa tutkimuksessa yleisesti 42 vuotta (15).

Nykyisen tietämyksen perusteella sattuu yksi hätätilanne jokaista 10–40 tuhatta (17; 1) tai jopa 50 tuhatta matkustajaa kohden (5). Toisaalta lentoyhtiöiden raportoinen pienten sairaustapausten määrät saattavat vaihdella, vaihteluväliin ollessa 1:1300 ja 1:202 000 matkustajan välillä (22). Matkustettuihin lentokilometreihin perustuvat esiintyvyyden arvion, että 14 hätätilannetta sattuu yhtä miljardia matkustajakilometriä kohden (16). Toisaalta erään arvion mukaan selaiisten matkustajien, joilla on ennen lentoa todettu olevan vakava terveyson-
gelma, hätätilanteen esiintyvyys koneessa on noin 1:350 matkustajaa kohden (45).

Lentämiseen liittyvistä hätätilanteista kuitenkin vain 25 % sattuu lentokoneen ollessa ilmassa ja 75 % tapauksista sattuu maalla ennen lentoa tai sen jälkeen (35; 4). Arvion mukaan lennoilla sattuvista tapauksista mantereella tapahtui 20,4 % ja mannertenvälisillä lennoilla 79,6 % (16).

2.6 Lennon aikaisten hätätilanteiden ehkäisy

Monet matkustajat eivät tiedä lentomatkatilanteeseen liittyvistä seuraamuksista terveydelleen. On paljon sellaisia tilanteita, jolloin lentomatkatilannet on kontraaindisoitu (17), ja matkustaja jonka terveydentila on epästabiili, ei tulisi lentää. Lentoyhtiön päättää lopulta, kykenekö sairas henkilö matkustamaan (32).

Lentomatkatilannet tulisi esimerkiksi siirtää 14 vuorokauetta leikkausten tai muita sururakin kirurgisten toimenpiteiden jälkeen (17), sillä vastaleikatuilla korkeuteen liittyvää paineus nostautua saattaa aiheuttaa kirurgisesti tehdyn haavan aukamisen. Dekompressiotaudin vaaran takia sukelta евien ei tulisi lentää vuorokauttaan sukeltaamisesta (1), eikä henkilön tulisi lentää vuorokautteen myöskään epileptisen grand-mal–kohtauksen jälkeen (29).

Raskaana olevien naisten lentämisen suhteen lentoyhtiöillä on erilaisia käytännöllisiä rajoituksia (46; 1). Raskaana oleva voi entää lentoyhtiön luvalla eri lähteiden mukaan noin 34–36 raskausviikkoon asti (47; 46; 1). Monisikkisarvauksissa lentoyhtiöt antavat raskaana olevan lentää 32 raskausviikolle saakka (29; 48). Tällaisilla rajoituksilla pyritään ehkäisemään lennonaikeisia synnytyksiä.

Naisen, jolla on sellainen terveydellinen tai synnytystauteihin liittyvä komplikaatio, jossa hätätilanteen syntymistä lennon aikana ei voida pätevästi ennustaa, ei suositella matkustavan missään vaiheessa raskautta. Esimerkiksi naisten, joilla on istukan pokkekevauksia tai riski synnyttää ennenaikeisesti, ei tulisi lentää (47). Loppuraskaudeessa lentoyhtiöt saattavat vaatia lentokelpoisuustodistuksen raskaana olevilta matkustajilta (29).

Tromboembolian (syvälaskimotukos ja siitä mahdollisesti aiheutuva keuhkoembolia, VTE) (49) ehkäisemiseksi kaikkien matkustajien olisi lennon aikana hyvä
käyttää empiirisä keinoja, joihin kuuluu muun muassa pohjeharjoitusten teke-
minen, säännöllinen käveleminen kabiinissa, nesteytettynä pysyminen, alkoho-
lin, sedatiivien ja kofeiinin välttäminen (50). Toisaalta on myös arvioitu, että al-
koholiannoksen juomisella on jopa suojavaa vaikutus (51).

Painesukkia suositellaan pitkillä lennoilla niille matkustajille, joilla on kohtuulli-
nen riski saada tromboembolia (50) tai jotka altistuvat liikkumattomuudelle (17). On ehdotettu, että lentämisestä johtuvan tromboembolian ehkäisemiseksi käy-
tettäviä lääkeaineita tulisi käyttää vain korkeimman riskin potilaille (50). Aspiri-
nin käyttämistä ei ole viimeaikaisen tiedon perusteella hyötyä (50; 1), mutta mi-
nihepariini (LMWH) taas näyttää pienentävän riskipotilailla tromboembolia riskiä
(1).

Myös sellaisten matkustajien, jotka eivät perussairautensa takia siedä len
toympäristöön liittyvää hypoksiaa tai ilmanpaineen vaihteluita, ei tulisi lentää (17). On muitakin tilanteita, milloin lentomatkustamista ei suositella, mutta niitä ei tåssä
opinnäytetyössä käydä yksitellen läpi.

2.6.1 Lentoa edeltävä seulonta ja lentokelpoisuus selvitys

On todettu, että suurin osa matkustajille lentokoneessa sattuviin hätätilanteista
saa alkuna olemassa olevista sairauksista (1). Sama pätee myös lentokonees-
sa sattuviin kuolemantapauksiin. Tosin on myös arvioita, joiden mukaan suurin
osa lentojen aikaisista kuolemista sattuu näennäisesti terveille matkustajille,
jotka eivät ole ilmoittaneet lentojärjestelmään vaihteluita. Lennon aikana
sattuvien hätätilanteiden esiintyvyyden laskemiseksi on tärkeää tunnistaa ne
matkustajat, joille lentomatkustamisesta aiheutuvan komplikaation riski on suuri
(35). Tällaisten riskipotilaiden tunnistaminen on osittain lääkäreiden vastuulla
(17).

Normaalia suuremmalla riskin potilaiden seulonnalla voidaan mahdollisesti estää
koneessa sattuvia hätätilanteita (35; 1), ja mahdollisesti kuolemantapauksia
(35). Seulontakysymyksiä käytettiin esimerkiksi vuonna 2003, kun SARS–
epidemia oli valloillaan. Kysymysten käyttö ei ole kuitenkaan routiinomaista
(21).
Seulontaa tehdään oikeastaan vain tilanteissa, joissa lentoyhtiö haluaa lentokelpoisuusselvityksen matkustajista, jotka toivovat terveydellisistä syistä matkalleen ylimääräisiä järjestelyjä. Näiden matkustajien määrä on kuitenkin pieni.

Esimerkksiytä lentokelpoisuuksien selvittämiseen ovat muun muassa tilanteet, joissa matkustajalla on raajamurtuma, hengitysjärjestelmän sairaus kuten COPD, sydäninfarkti tai aiurahanvaus. Näistä selvityksistä yleensä seuraa se, että kyseiset henkilöt saavat matkalleen muun muassa hoitajan, muun matkakumppanin, hapen lennon ajaksi tai siirron pyörätuolilla koneeseen ja sieltä pois. Tällaisilla ylimääräisiillä järjestelyillä saatetaan mahdollisesti voida vähentää lentokoneessa sattuvien hätätilanteiden määrää. (1.)

Matkustajan lentokelpoisuuden selvittämiseen kuuluu potilaan yleislääkärin täyttämä todistus lentokelpoisuudesta (fitness to fly certificate) ja joissain tilanteissa ennen kun lentoyhtiö antaa potilaan lentää, saatetaan vaatia, että lentoyhtiön työntekijä tekee potilaalle lääkärin täytäntöön tekevä testi (29). Lentokelpoisuutta voidaan myös testata eri tavoin.

2.6.2 Matkustajan lentokelpoisuuksien testaaminen

Suurelle osalle esimerkiksi hengityssairaita matkustajista lentämisen ei ole vaarallista. On kuitenkin paljon hengityssairaita, joiden lentomatkustamiseen liittyviä hengitysvaikutuksia ei ole helppoa ennustaa (30). Erilaisilla testeillä on pyritty arvioimaan matkustajien lentokelpoisuutta (52).

Rasitustestit

Matkustajan lentokelpoisuuden testaaminen perustuu monesti matkustajan kykyyn sietää rasitusta. Potilaan tulee pystyä käveleämään 50 metriä ilman ongelmaa (30; 14) ja ilman, että hänen tulee rintakipua tai vakavia hengitysvaikeuksia (17). Nämä testin etuina on, että ne ovat yksinkertaisia tehdä ja niillä saadaan kuitenkin karkea arviot matkustajan hengityksen ja verenkierron tilasta (30).

Veren happiarvo testit

Huoneilmalla mitatut hengitysparametrit ovat toinen tapa testata lentokelpoisuutta. On tosin kritisoitu, että esimerkiksi merenpinnan tasolla otettujen veren...
hapen saturatioarvojen perusteella ei pystytä hyvin havaitsemaan niitä potilaita, jotka saturoidutuvat alle 90 % matkustajalentojen tai joilla on hypoksiaa testien aikana (17). Levossa otetut arvot eivät välttämättä myöskään huomioi hyvin rasituksen vaikutusta näihin arvoihin (14).

Jos henkilön happisaturaaatio huoneilmalla on yli 95 % tai valtimoveren happiosapaine yli 9,3 kPa (70mmHg), ei ole todennäköistä, että henkilö olisi lennonaikana merkittävästi hypokseminen (14). Erään arvion mukaan matkustaja tarvitsee lisähappea, jos happisaturaaatio on huoneilmalla alle 92 %. Jos happisaturaaatio on merkittävää keuhkosairautta sairastavilla välillä 92–95 %, on hänelle tehtävä hypoksiatesti lentoa edeltävästi (30).

On lisäksi paljon erilaisia yhtälöitä, jotka pyrkivät ennustamaan merenpinnan taason valtimoveren happiosapaine arvoista vastaavaa arvoa lentokorkeudelle. Näiden käytettävyyssä kuitenkin rajoittaa yleensä levossa oleviin COPD–potilaisiin (30), ja ne ovat usein epätarkoja (17). Lisäksi tällaiset yhtälöt saattavat aliarvioiota hengitysobstruktiopotilaille normaalillalla hengitystapa, seurannalla ilmaantuvaa hypoksiaa, mikä johtuu tällaisen potilaiden kompensatorisesta hyperventiliatiosta (52).

Hypoksia testaus

Erään korkeussimulaatiotutkimuksen mukaan levossa otetut keuhkofunktio-, sekä verikaasuarvot eivät pystyneet luotettavasti arvioimaan keuhkosairaiden potilaiden hypokseminen simuloidussa ympäristössä. Lisäksi havaittiin, että ai-kaisemmin ongelmaksi lentäneet keuhkosairaat henkilöt sekä sellaiset henkilöt, jotka eivät suositusten mukaan tarvinneet hypoksiatestausta, kärsivät huomat-tavasta hapen puutteesta korkeussimulaatiossakaan (14.)

Hypoksiatutkimuilla (hypoxia-altitude simulation test, HAST) pyritään ennakkoimaan lentämisestä aiheutuvia mahdollisia hengenvaarallisia tiloja (52).

Hypobaarinen kammioaltistus on paras tapa arvioida lennonaikaisesta hypoksiaa. Tällä tavalla kaasujen laajenemisen haitalliset vaikutukset, kuten mahdollinen vatsan liiallisesta turpoamisesta johtuva hengityksen huononeminen, voidaan samalla havaita (30). Testi arvioi luotettavasti henkilön fysiologisen vasteen len-
toypärjestöllä sekä simuloi lentotilanteen psykologista ilmapiiriä ja tila olosuhteita (52).

Toinen tällainen HAST–metodi on se, että henkilö hengittää vähähappista kauas pois ja simuloi lentotilanteen psykologista ilmapiiriä ja tila olosuhteita (52). Esimerkiksi keuhkosairailulla henkilöillä, jotka hengittävät tätä 15,1 % happea sisältävää kaasua, pidetään yli 85 % happisaturaatiota (SaO2 tai SpO2), tai yli 6,7–7,3 kPa (50–55 mmHg) valtimoveren happiosapainetta hyväksyttävänä. Jos arvot menevät näiden alle, suositellaan matkan ajaksi lisähappea (14). Hypoksisen kaasun inhalaomista usein suositetaan sen käytännöllisyyden ja taloudellisuuden takia (52).

Koska monilla potilaililla sairauden tila vaihtelee, ei hypoksia-altistus tiettynä päivänä välttämättä kuvaavuus tilannetta matkapäivänä. Arvioimisen lisäksi on tärkeää varmistaa, että matkustaja voi hyvin matkapäivänä, hänellä on tarvittavat lääkkeet käsimatkatavaroihinsa ja että hän ei ole polttanut pariin päivään (30).

2.6.3 Matkustajan tarvitsema oma happihoito

Lennon aikana jatkuvaa happihoitoa tarvitsevien matkustajien määrä on kasvanut. Lentoyhtiöiden käytännöt hapen käytön suhteen vaihtelevat (18), mutta monesti matkustaja joutuu itse käyttämään lisähapen (29). Lentoyhtiöt järjestävät lisähappea lennon ajaksi ajaksi henkilöille, joilla on lääkärin todistus sen tarpeesta sekä sekoitus pitää varten. Todistuksessa tulee lisäksi käydä ilmi, että matkustaja kykenee lisähapen avulla matkustamaan 2438 metrin korkeudessa (17). Tämän lisäksi koneissa on kosteutettu happea hätättilanteita varten (18; 42).

Happihoitoa tarvitsevien matkustajien hoito voidaan toteuttaa eri tavoin (17). Yksi vaihtoehto ovat tavalliset happisylinterit, jotka on yleensä sijoitettu niitä tarvitsevien matkustajien edessä olevan penkin alle (18). Myös ilman typpipipoisuutta poistavat hapen rikastimet ovat yksi vaihtoehto (17).

Lisähappi on hypoksian hoidon kulmakivi (27) ja sitä suositellaan tietyille potilaaseille, jotta vältetään lentoympäristöstä johtuvaa hypoksidia. Näitä potilaata ovat esimerkiksi keskipaikkaa tai vaikeaa COPD:ta sairastavat matkustajat (1). Happihoidon tarkoituksena on lisätä PAO2:ta (27) ja sitä kautta valtimoveren happipitoisuutta (20). Hypoksidin korjaantuminen vähentää myös sydämen työ-
määrrää. Myös koneen korkeuden laskeminen sekä mahdollinen kabiinikorkeuden lisääminen nostavat PAO2:ta (27).

Lisähapen antokriteerit poikkeavat hieman riippuen tahosta. Esimerkkinä British Thoracic Society:n mukaan lennon aikainen happilisä tulee kyseeeseen, jos henkilön happisaturaatio levossa merenpinnan tasolla on ≤ 92 % tai hänen PaO2 ≤ 67 mmHg (17). On laajasti esitetty, että lisähappea tulisi antaa matkustajalle, joilla lentokorkeudella valtimoveren happiosapaine laskee alle 50–55 mmHg (6,7–7,3 kPa) (52).

Lentoypäristössä turvallisen hypoksiatason rajasta ei ole yksimielisyyttä (30). Esimerkiksi keuhkokroonikot, kuten kystistä fibroosia ja COPD:tä sairastavat potilaat saattavat sietää alle 50 mmHg valtimoveren hapenosapainetta, sillä he ovat todennäköisesti sopeutuneet keuhkoviikkaan sekä siitä aiheutuvaan hypoksiään (52). Lisäksi matkustajien vasteet hypoksialle ovat erilaisia (30), jolloin hypoksemian ennustaminen yksittäisen matkustajan kohdalla on haastavaa (22).

3 Opinnäytetyön tarkoitus ja tavoitteet

Tämän opinnäytetyön tarkoitus on kuvata, mitä Suomessa ja kansainvälisesti tiedetään matkustajalentokoneesta potilaan hoitoypäristönä sekä millaisia akuutteja tilanteita lentokoneissa esiintyy ja miten niitä hoidetaan lennoilla.

Opinnäytetyön tavoitteena on koota aiheesta kirjoitettua tietoa yksiin kansiin sekä toimia pohjatyöön mahdollisia jatkotutkimusaiheita ajatellen.

Opinnäytetyössä tekijä pyrkii selvittämään tuoreimman kotimaisen ja kansainvälisten kirjallisuustiedon perusteella seuraavia neljässä tutkimuskysymyksessä esitettyä asiaa:

1. Minkä ovat lentämiseen liittyvät fysiologiset ertyispiirteet?

2. Minkälainen matkustajalentokone on hoitoypäristönä?

3. Minkälaisia akuutteja tilanteita lentämiseen yleisesti liittyvät?
4. Minkälaiset valmiudet koneen henkilökunnalla on hoitaa äkillisiä sairaskoh- tautuksia ja miten matkustajalentokoneessa toimitaan akuutin hätätilanteen sattuessa?

4 Opinnäytetyön toteutus

Suomessa ei ole aikaisemmin tiettävästi tehty opinnäytetyötä, joka käsittelisi laajasti matkustajalentokoneessa sattuvien sairaskohtautusten hoitoa. Tämän vuoksi tekijä kokosi opinnäytetyönsä teoreettiseksi pohjatyöksi, joka pohjautuu laajaan englannin- ja suomenkieliseen aihetta käsittelevään aineistoon.

4.1 Käytetty metodi

4.2 Tiedonkeruu alkuperäislähteistä

Lokakuussa 2010 tekijä määritti alustavasti internethaulla Theseus-opinnäytetyöiden verkkotietokannasta, oliko tällaisesta aiheesta julkaistu opinnäytetyötä. Haussa tekijä kävi läpi kaikkien ammattikorkeakoulujen hoitotyön ja ensihoidon koulutusohjelmien opinnäytetyöiden nimet, ja jos opinnäytetyön nimi liittyi millään tavalla lentomatkustamiseen, tekijä luki myös kyseisten töiden tiivistelmän. Vaikka Theseus ei ollut tässä vaiheessa ollut käytössä kuin noin vuoden verran, tekijä sai karkean kuvan siitä kuinka paljon aihetta on aikaisemmin käsitelty. Alustavan haun perusteella ei tällaisesta aiheesta ollut aikaisemmin tehty opinnäytetyötä.

Alustavan haun jälkeen tekijä aloitti varsinaisen tiedonhaun. Hakuasennosten määrittelyyn tekijä käytti apuna yleistä suomalaista asiasanastoa (YSA) sekä MOT

Englanninkielisen haun lähteet hyväksyttiin huomattavasti tiukemmilla kriteereillä kuin suomenkieliset lähteet, mikä johtui niiden huomattavasti paremmasta relevanssista. Lähteiden sisällön piti otsikoiden perusteilla tarkasteltuna selvästi vastata asetettuihin tutkimusongelmien. Tekijä rajoittienglanninkielistä haku-

Sekä suomenkielisessä että englanninkielisessä haussa löydetyistä lähteistä tekijä laatii itselleen lähdeluettelon, johon merkitse käytetyn hakusanat, sekä tie-tokannan mistä lähde löytyi. Suomenkieliseen lähdeluetteloon kuului alustavasti 121 lähde, joista suuri enemmistö oli erittäin huonoja relevanssinsä lähteitä. Englanninkielisen haun lähdeluetteloon kuului 68 lähde. Näistä lähteistä 9 suomenkielisellä haulla ja 45 englanninkielisellä haulla löydettyä lähdeä käytettiin tässä opinnäytetyössä.

4.3 Kerätyn tiedon käsittely ja täydentäminen

Tiedonhaun jälkeen tekijä aloitti löytämänsä materiaalin käsittelyn englanninkielisestä kirjallisuudesta aloittaen. Tekijä numeroi jokaisen artikkelin, luki ja allevi-vasi olennaisina pitämiään kohtia tekstistä sekä numeroi myös näitä kohdat. Sen jälkeen tekijä käänsi tekstin suomeksi. Tekijä käytti kääntämiseen apuna perinteistä sanakirjaa sekä internetsivuston sanakirjaa. Käännösten ja numeroidut kohdat siirrettiin yhdelle tekstipohjalle, niin että pohja sisälsi irtonisia lauseita, jotka oli luokiteltu sisältönsä perusteella otsikoiden alle. Tästä karkeasta teoriapohjasta tekijä teki alustavan version teoriasta työhön, johon lisäsi suomen-

Tekijän alkuperäisenä tarkoituksena oli täydentää lödettyä teoriatietoa mahdollisuksien mukaan lento-yhtiöiltä saadulla materiaalilla, kuten tilastoilla, kuvilla, asiantuntijatiedolla (ilmailulääkäri) sekä kyselyllä. Näiden materiaalien tarkoitus oli tuoda opinnäytetyöhön monipuolisuutta.

Aikataulun kiireellisyyden vuoksi tekijä hylkäsi ajatuksen kyselystä jo prosessin aikaisessa vaiheessa. Myöskään ilmailulääkäriä ei saatu osallistumaan opinnäytetyöhön, mutta Finnairilta saatiin joitakin kuvia sekä muun muassa tietoa sen käyttämästä hoitovälineistöstä. Tilastoja lennoilla sattuvista hätätilanteista ei saatu.

4.4 Opinnäytetyön aikataulu

5 Tulokset

5.1 Lentämiseen liittyvät fysiologiset erityispiirteet

5.1.1 Ilmakehä

Ilmakehä ulottuu noin 800 kilometriin. Se on maapallon painovoiman ylläpitämä maata ympäröivä vaippa, joka koostuu kaasuseoksesta (20). Seoksen kaasuja on noin 21320 metrin korkeuteen vakioprosenttiosuuksina (27), mikä johtuu alailmakehän turbulenssista (44). Tyyppä on 78 % ja happea 21 % (54). Loput
kaasut ovat argon, hiilidioksidi, vety, neon sekä helium (27), mutta näillä ei ole osaa normaalissa hengitysfysiologiassa (20).

Ilmakehässä voidaan laskea olevan kolme kerrosta. Näitä ovat troposfääri, stratosfääri ja ionosfääri. Koska matkustajalentokoneet lentävät lähteestä riippuen pääosin joko troposfäärissä (20) tai stratosfäärissä (27), tässä työssä ei käsitellä ionosfääriä.

Troposfääri ulottuu merenpinnaan tasolta napa-alueiden noin 7 kilometrin korkeudesta päinvastassa seudun 17 kilometriin (55). Tässä kerroksessa ilmanlämpötila laskee noin kaksa celsiusastetta jokaista 305 metrin nousua kohden, ja noin 11 kilometrin korkeudella lämpötila saavuttaa vakion -56 celsiusastetta (27). Troposfäärissä on vesihöyryä, ja sen määrään vaikuttaa muun muassa koneen sijainti, korkeus sekä ulkolämpötila. Lisäksi troposfäärissä on myös suuria vertikaalisia ilmavirtoja (20).

Troposfäärin ja stratosfäärin välissä on tropopausi, joka on näiden kahden kerroksen raja (27). Tropopausissa lämpötila alkaa nousta korkeuden kasvun myötä. Stratosfääri ulottuu noin 50 kilometriin, ja sen ylärajoilla lämpötila saavuttaa 0 celsiusastetta (55). Stratofäärissä ei koeta turbulenssia (27).

Vaikka ilmanpaineen ja korkeuden välinen suhde ei olekaan lineaarinen (20), se laskee korkeuden kasvun myötä. Ilmanpaine laskee koko ajan troposfäärissä sekä stratosfäärin alkuosissa (27). Sisäänhengitetyyn hapen osapaine laskee tällöin 4-5 mmHg jokaista 305 metrin korkeuden nousua kohden (56). Taulukossa 1 on kuvattu korkeuden muutoksen vaikutuksia ilmanpaineeseen, lämpötilaan sekä kaasujen tilavuuteen.
<table>
<thead>
<tr>
<th>Korkeus (ft)</th>
<th>Korkeus (m)</th>
<th>Ilmanpaine (mmHg)</th>
<th>Lämpötila (°C)</th>
<th>Kaasun tilavuuden suhdeluku</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>760</td>
<td>15,0</td>
<td>1,0</td>
</tr>
<tr>
<td>2000</td>
<td>610</td>
<td>706</td>
<td>11,0</td>
<td>1,3</td>
</tr>
<tr>
<td>4000</td>
<td>1219</td>
<td>656</td>
<td>7,1</td>
<td>1,3</td>
</tr>
<tr>
<td>6000</td>
<td>1829</td>
<td>609</td>
<td>3,1</td>
<td>1,3</td>
</tr>
<tr>
<td>8000</td>
<td>2438</td>
<td>565</td>
<td>-0,9</td>
<td>1,3</td>
</tr>
<tr>
<td>10000</td>
<td>3048</td>
<td>523</td>
<td>-4,8</td>
<td>1,3</td>
</tr>
<tr>
<td>12000</td>
<td>3658</td>
<td>483</td>
<td>-8,8</td>
<td>1,3</td>
</tr>
<tr>
<td>14000</td>
<td>4267</td>
<td>447</td>
<td>-12,7</td>
<td>1,3</td>
</tr>
<tr>
<td>16000</td>
<td>4879</td>
<td>412</td>
<td>-16,7</td>
<td>1,3</td>
</tr>
<tr>
<td>18000</td>
<td>5486</td>
<td>380</td>
<td>-20,7</td>
<td>1,3</td>
</tr>
<tr>
<td>20000</td>
<td>6096</td>
<td>349</td>
<td>-24,6</td>
<td>1,3</td>
</tr>
<tr>
<td>22000</td>
<td>6706</td>
<td>321</td>
<td>-28,6</td>
<td>2,7</td>
</tr>
<tr>
<td>24000</td>
<td>7315</td>
<td>295</td>
<td>-32,6</td>
<td>2,7</td>
</tr>
<tr>
<td>26000</td>
<td>7925</td>
<td>270</td>
<td>-36,5</td>
<td>2,7</td>
</tr>
<tr>
<td>28000</td>
<td>8534</td>
<td>247</td>
<td>-40,5</td>
<td>2,7</td>
</tr>
<tr>
<td>30000</td>
<td>9144</td>
<td>228</td>
<td>-44,4</td>
<td>2,7</td>
</tr>
<tr>
<td>32000</td>
<td>9754</td>
<td>206</td>
<td>-48,4</td>
<td>3,3</td>
</tr>
<tr>
<td>34000</td>
<td>10363</td>
<td>188</td>
<td>-52,4</td>
<td>3,3</td>
</tr>
<tr>
<td>36000</td>
<td>10973</td>
<td>171</td>
<td>-56,3</td>
<td>4,5</td>
</tr>
<tr>
<td>38000</td>
<td>11582</td>
<td>155</td>
<td>-56,5</td>
<td>4,5</td>
</tr>
<tr>
<td>40000</td>
<td>12192</td>
<td>141</td>
<td>-56,5</td>
<td>4,5</td>
</tr>
<tr>
<td>42000</td>
<td>12802</td>
<td>128</td>
<td>-56,5</td>
<td>4,5</td>
</tr>
<tr>
<td>44000</td>
<td>13411</td>
<td>116</td>
<td>-56,5</td>
<td>4,5</td>
</tr>
<tr>
<td>46000</td>
<td>14021</td>
<td>105</td>
<td>-56,5</td>
<td>4,5</td>
</tr>
<tr>
<td>48000</td>
<td>14630</td>
<td>96</td>
<td>-56,5</td>
<td>4,5</td>
</tr>
<tr>
<td>50000</td>
<td>15240</td>
<td>87</td>
<td>-56,5</td>
<td>4,5</td>
</tr>
</tbody>
</table>

5.1.2 Ilmanpaine

Ilmanpaineella tarkoitetaan sitä voimaa, jonka ilmakehä kohdistaa tiettyyn pisteeeseen (27). Neliösenttimetrin ilmapylväs saa merenpinnan tasolla aikaan 1,03 kilogramman voiman, ja tätä kutsutaan ”1 atmosphere (1 atm)”. Se on myös yhtä kuin 760 mmHg tai noin 100 kPa. Ilmanpaine puolittuu noin 5490 metrissä (20). Myös kaikkien ilman kaasujen osapaineet laskevat, kun ilmapaine laskee (27).

Matkustajalentokoneen paineistusjärjestelmän takia kabiinin ilmanpaine vaihtee merenpinnan tason 760 mmHg:stä, 2438 metrin 564 mmHg:iin (22).

Kaasut laajenevat ilmapaineen laskiessa, jolloin tiettyssä ilmatilavuudessa on vähemmän kaasumolekyylejä (27), eli ilmantihys laskee (20). Tästä aiheutuu, että keuhkoihin pääse jokaisella hengenvedolla vähempi happea (27). Ilman-
paineen lasku johtaa siis myös sisään hengitetyn ilman osapaineen laskuun (22), ja hapenosapaine hengitysteissä laskee merenpinnan tason 150 mmHg:stä, 2438 metrin 109 mmHg:iin (30). 1524–2438 metrin kabiinikorkeuskilla matkustajat hengittävät happimäärää, joka vastaa merenpinnan tasolla 17,2–15,1 % happea sisältävän kaasun hengittämistä (57).

Koska tarvitaan paine-eroa, jotta keuhkorakkuloissa (alveoleissa) oleva kaasu siirtyy veneen, johtaa keuhkorakkuloissa vähentynyt hapen osapaine myös vähentyneeseen valtimoveren hapenosapaineeseen (27). Valtimoveren happiosapaine laskee merenpinnan tason 95–100 mmHg:stä, 2438 metrin maksimi kabiinikorkeuden 60-65 mmHg:iin (4; 17). Näillä hapenosapaineilla pysytään kuitenkin oksihemoglobiinin dissosiaatiokäyrän tasaisella osuudella (17). Taulukossa 2 on oksihemoglobiinin dissosiaatiokäyrä. Siihen on kuvattu kabiinipaineen vaikutus perusterveen sekä COPD:tä sairastavan matkustajan happisaturaatioon.

On arvioitu, että lentokoneessa matkustajien happisaturaation vaihteluväli on 85–93 % (22). Kuitenkin terveen matkustajan happisaturaatio laskee yleisesti merenpinnan tason läheille 100 %-sta (20; 58) lentokorkeudella noin 90 %-ään tai hieman tämän tason päälle (22; 4). On myös arvioitu että happisaturaatio laskee vain noin 3–4 % merenpinnan tason arvosta (17).

Kuitenkin esimerkiksi sydän- ja tai keuhkosairautta sairastava matkustaja voi olla jo valmiaksi hypoksinen. Tällöin lentoypäristössä joudutaan oksihemoglobiinin dissosiaatiokäyrän jyrkemmälle osuudelle, mistä aiheutuu, että happisatu-
raatio laskee lentoympäristössä merkittävästi (30). Lisäksi nukkuvilla matkustajilla happisaturaatio voi olla noin 80 % (22).

Joka tapauksessa kabiinin matala ilmanpaine aiheuttaa matkustajille lievää hypoksiaa (29; 1). Vaikka ei olekaan yksimielisyyttä turvallisen hypoksian asteesta (30), on arvioitu, ettei tästä aiheudu haittaa terveelle matkustajalle (1).

5.1.3 Hypoksia

Hypoksialla tarkoitetaan hapenpuutosta kudosten tasolla (54). On olemassa neljä erilaista hypoksialuokkaa, joilla on toisistaan poikkeavat etiologiat (27).

Aneemisessa hypksiassa hapenpuute aiheutuu veren hapenkuljetuskapasiteetin heikentymisestä. Esimerkiksi veren menetys, anemia, liiallinen tupakointi ja häkämyrkytys aiheuttavat tällaista hypoksiaa (27). Suurtupakoitsijan karboksihemoglobiinin suuri taso heikentää veren hapenkuljetusta (59). Kolmen tupakan sisältämä häkä voi jo aiheuttaa merenpinnan tasolla 2438 metriä vastaavan hypoksisen tilan (27), jolloin matkustajan hypoksia pahenee lentokorkeudessa matalaan ilmanpaineen yhdistettynä (60).

"**Stagnant**" hypksiassa hapenpuutteen syynä on heikko verenkierto kehossa, mitä voi aiheuttaa riittämätön sydämen minuuttitilavuus, verisuonen tukos (okluusio), veren pakkautuminen, arteriaspasmi tai pitkäaikainen ylipaine hengittäminen (27).

Histotoksisessa hypksiassa kehon kudokset eivät pysty hyödyntämään saamaansa happea (27), ja usein tälle on syynä sytokromioksidaasi-järjestelmän toimintahäiriö (54). Histotoksisista hypoksiaa aiheuttaa muun muassa häkä- tai syanidimyrkytys, alkoholin käyttö sekä huumeet (27).

Hypoksia lisää sympaatista ärsytystä (24), ja sen oireet ovat yleensä samat riippumatta sen aiheuttajan. Huomioitavaa on, että eräs hypoksian vaara on sen huomaamaton alkami (27).

Hypoksian vaikutukset peruselintoimintoihin

Sydän- ja verenkiertojärjestelmä on hengitysjärjestelmää ja keskushermostoa resistentimpi hypoksialle (27). Syketaso nousee kompensoimaan lentoypäristöstä aiheutuvaa hypoksiaa (22) 1219 metriä vastaavassa ilmanpaineessa. Sydämen minuuttitilavuutta lisää myös selektiivinen vasokonstriktio (27). On arvioitu, että hypoksioiden voisi johtaa keuhkosuoniston vastuksen kasvuun (3). Lisääntynyt sydämen työmäärä lisää myös sydämen hapentarvetta (27), ja hypoksia altistaa esimerkiksi eteisrytmihäiriöille (22). Hypoksioiden lisäksi myös heikentää sydämen iskutilavuutta (3).

Keskushermosto on erityisen altis hypoksialle (54), ja aivojen aineenvaihdunta vähenee hypoksian seurauksena (60). On arvioitu, että 50–60 mmHg valtimove- ren hapenosapaineilla keskushermosto alkaa käräjä hypoksiasta (27). Jo vähäinen hypoksia voisi heikentää henkisiä toimintoja (60), kuten ajattelukykyä ja ajatusta vaativien tehtävien suorittamista (57), sekä vaikuttaa toimintakykyyn (27). Näitä asioita voidaan havaita jo alle 85 %:in happisaturaatioarvoilla, mutta merkittävää haittoja sattuu 70 %:in happisaturaatioarvoilla (22). Muita kes-
kushermoston hypoksian oireita ja löyöksiä ovat näköhäiriöt, väsymys, uneliaisuus, päänsärky, käyttäytymisen muuttuminen, sekavuus, huonontunut koordinaatio sekä lopulta tajuttomuus (54).

5.1.4 Kaasujen laajeneminen

Lentokoneen lisätessä korkeutta ympäröivä ilmanpaine laskee, ja vastaavasti koneen laskiessa korkeutta painee nousee (27). Kabiinin matalan ilmanpaineen vuoksi ruumiinonteloissa oleva kaasu laajenee Boylen lain mukaisesti (17). Tämän mukaan tieyn kaasun tilavuus on käänän verrannollinen sen paineen, $P_1V_1=P_2V_2$ (27). Kaasut laajenevat kabiinkorkeudella 10–30 % (1) - jopa 35 % (22).

Ilmanpaineen muutos ja siitä aiheutuvaa kaasun tilavuuden lisääntyminen voivat vaikuttaa ihmiseen muun muassa mahalaukkuun, suolistoon, välikorvaan, siinuksiin (27) sekä keuhkopussiin (22). Se voi myös vaikuttaa esimerkiksi matkustajan suljetun ilmarintaan tai subkutaani emfyseemään. Suljetun ilmatilan paine nousee lentotelttaan alhaisen ilmanpaineen takia ja voi aiheuttaa kudosten repeämistä tai vierekkäisten rakenteiden puristumista (27). Paineen vaihtelut tapahtuvat kuitenkin melko hitaasti (22), ja jos kaasutätteisten onteloiden ja ympäröivän ilman välillä on vapaa ilmanvaihto, ei kaasujen laajeneminen aiheuta ongelmaa (20).

Terveillä ihmisillä ilmanpaineen muutos ja aiheuttavat lähinnä lievää turvotusta, tuntemusta välkorvassa (22), ilmavaivoja (28) vatsakrampia tai joskus korvien barotraumoa (17).

Dysbarismilla tarkoitetaan kaikkia ilmanpaineen muutoksen aikaansaamia kehossa tapahtuvia fysiologisia vaikutuksia, kun taas barotraumalla tarkoitetaan ilmanpaineen muutoksista aiheutuvaa kudostraumaa (60). Seuraavassa on joi- takin lentomatkustamiseen ja kaasujenlaajenemiseen liittyviä ongelmia.

Barotraumat

Lentoypäräistössä voi esiintyä monenlaisia barotraumoja, kun kaasutätteinen ontelo ei kykene purkamaan sen sisäistä painetta (54).
Yleisin kaasujen laajenemisen haittavaikutus on välikorvan kivuliaasta paineen kertymisestä johtuva lievä barotrauma (1), ja on arvioitu, että jopa 9 %:lle lentomatkatustajista tulee korvan barotrauma (22). Korvan barotraumaan liittyy muun muassa paineen tuntu ja kipu korvassa, alentunut kuulo, mahdollisesti huimaus (60), sekä tinnitus (54). Joskus harvoin on kuitenkin mahdollista, että tärykalvo repeää paineen vaikutuksesta (1).

Jos korvatorvi on tukkeutunut, ei matkustajan tulisi lentää ennen tukoksen poistumista (22).

Barotrauma voi aiheutua sekä koneen nostossa että koneen laskeutuessa (1). Koneen nostossa tärykalvon takana välilokossa laajeneva ilma pääsee pois korvatorven kautta. Tämä tapahtuu korkeudella lisääntyessä noin 150–200 metrin välein, tai kun välilokossa ja nielun välillä on riittävä, noin 15 mmHg:n (2kPa) paine-ero. Koneen laskeutuessa välilokossa olevan ilman tilavuus pienenee, mikä aiheuttaa välilokoa alipaineen, joka vetää tärykalvoa sisäänpäin (20). Hoitona tällöin on paineen tavattaminen välilokossa (27), koska ilma ei pääse passiivisesti sakaisin välilokoa (20). Tämä voidaan saavuttaa muun muassa Valsalvan manööverillä (27; 1), Frenzelin manööverillä, haukottelemalla tai nieslemällä (27).

Valsalvan manööverillä nostetaan nielun painetta, jolloin ilmaa pakotetaan ylös korvatorvea pitkin välilokoa (22). Myös nenäsumute–vasokonstriktorit saattavat olla hyödyksi ennen laskeutumista ja mahdollisesti myös ennen nousua. Lisäksi koneen hidas laskeutuminen korkeudesta ehkäisee korvien barotrauman oireiden syntymistä (27).

Barotraumaa voi kehittyä muuallekin, esimerkiksi limakalvon turvetuksesta kärssiviin poskionteloihin. Tällöin koneen laskeutuessa esiintyy mahdollisesti kipua poskissa tai otsalla, kyynelten erittymistä ja nenäverenvuotoa. Hoito on sama kuin välilokovan barotraumassa. (20.)

Kaasujen laajenemisen muita vaikutuksia

Kaasujen laajeneminen mahasuolikanavassa aiheuttaa harvoin vakavia ongelmia (27). Se voi kuitenkin aiheuttaa epämuukavaa oloa (27; 22), röyhäilyä, ilma-
vaivoja (27), vatsakipua (27; 20), pahoinvointia, oksentelua (27; 22), sekä hengenahdistusta tai hyperventilaatiota (27) palleaan kohdistuvan suurentuneen paineen vuoksi (20). Tämän lisäksi huomattava mahansisällön laajeneminen voi johtaa veren pakkautumiseen (27; 20), joka voi aiheuttaa pyörytmisen (synkopeen) (27). Synkopeetä, kuten myös nopeasykkeisyttä (takykardiaa) ja matalaa verenpainettakin (hypotensiota) voi aiheuttaa myös kivan kivun aiheuttama vasovagaalinen heijaste (27; 20).

Mahasuolikanavan kaasun laajenemisesta johtuvia oireita saattaa ehkäistää tai helpottaa löysien vaatteiden pitäminen sekä röyhtäily ja piereskely (27), kun taas mahassa olevan kaasun määrä saattaa lisätä muun muassa ilman nielemisen (27; 20) hiilihappoliset juomat, kaasua tuottavat ruuat sekä mahasuolikanavan infektiot (20).

Leikatuille matkustajille lentoymyöppöön liittyvä kaasujen laajeneminen voi aiheuttaa ongelmia (17). On mahdollista, että vastikään leikatun matkustajan tikit saattavat revetä ja potilaalle tulee verenvuoto kaasujen laajenemisen takia (59; 57).

Keuhkot laajenevat, kun lentoymyöppössä ilmapaine laskee (54). Normaalisti keuhkot pyövyvät tasaamaan paineen kabiinin ilman kanssa (20). Jos kuitenkaan matkustaja ei kykene päästämään ulos keuhkoissa olevaa ilmaa, voi paine aiheuttaa alveolien repeytymistä, jolloin ilmaa voi vapautua interstitiaali tilaan. Ilma voi mennä välilikarsinaan, ihonalaiskudokseen (subkutikseen), keuhkopussiin (pleura) tai keuhkolaskimoihin. Laskimoihin mennyt ilma voi kulkeutua valtimoverenkiertoon ja aiheuttaa valtimokaasembolian, joka voi vuorostaan kulkeutua joko aivojen tai sydämen verisuoniiin (54).

Ilmanpaineen muutokset voivat aiheuttaa myös esimerkiksi hammaa. Tämä tapahtuu yleensä nousun aikana (20), kun ilma on jäänyt loukkuun esimerkiksi hammastuspaikoihin. Tämä kuitenkin on harvinainen ongelma (27).

Dekompressiotauti

"Decompression sickness" eli dekompressiotauti (61) voidaan jakaa laitesukel-tamiseen liittyvään ja ilmailuun liittyvään muotoon (54). Sen aiheuttavat ylipai-
neessa kudoksiin liuonneet kaasu, joita hengitysjärjestelmä ei ole ehtinyt pois-
taa (61).

Lentoypäristössä dekompressiotauti voi puhjeta, kun kabiinin paineistus äkill-
sesti menetetään ja vereen liuonneet kaasut vapautuvat (27). Tällainen nopea
ilmanpaineen lasku saa kaasun muodostamaan kuplia (60), jotka ovat yleensä
typpeä. Typpikuplien kokoon vaikuttavat muun muassa korkeus, korkealla vie-
tetty aika ja nousun nopeus (54).

On arvioitu, että dekompressiotautia voi esiintyä normaalisti jo 5486 metrin kor-
keudella (27), vaikka useimmiten tarvittava korkeus on yli 7620 metriä (54). Kun
sukelletaan esimerkiksi yhdeksän metrin syväyteen tiivistetyn ilman kanssa,
keho absorboi kaksinkertaisesti normaalin verrattuna tyypeä, jolloin tällaisen
henkilön lentäminen 2438 metrin kabiinin korkeudella vastaa ei-sukeltajan lentä-
mistä 12192 metrin kabiinin korkeudella (27).

Kuitenkin normaalisti dekompressiotaudin esiintyvyys on vain 1,5 %, kun altisti-
taan 7925–14467 metrin korkeudelle puolesta tunnista kolmeen tuntiin (27).
Sille altistaa myös tuore vamma, yli 40 vuoden ikä, naisikuppuoli, ja avoid sy-
dämien eteisten väliseinä (foramen ovale) (54).

On monenlaisia dekompressiotautia (27), mutta ne on oireiden mukaisesti pe-
rinteisesti jaoteltu kuitenkin 1 ja 2 tyypin dekompressiotautiin (54). Molempiin
tyypeihin voi liittyä poikkeavaa väsymystä (61).

Ykköstyyppiin kuuluu nivelkipu sekä ihoon ja imusuonistoon liittyvät oireet (54).
Niveliin liittyvä dekompressiotauti, ”the bends”, aiheutuu typen vapautumisesta
verestä nivelta ympäröiviin kudoksiin. Tästä aiheutuu kipua, joka voi olla esi-
merkiksi terävää, sekä mahdollisesti puutuneisuutta tai pistelyä. Yleensä ”the
bends” vaikuttaa polviin, kynänpäähin ja olkapäähin, ja se on syynä 75 % kaikis-
ta dekompressiovammoista. Lisäksi dekompressiotautit voivat aiheuttaa ihoon
ihottumaa, pistelyä, turtuneisuuttaa, kutinaa ja myös subkutanaiemfyseemaa
(27).

Kakkostyyppiin kuuluu periferiiseen- tai keskushermostoon tai sydän- ja hengi-
tysjärjestelmään liittyvät vakavat oireet ja löydökset (54). ”The chokes” on de-

Dekompressiotautien hoito on 100 %:inen happi, nopea laskeutuminen sekä vakaviin oireisiin mahdollisesti hoito ylipaineaomiossa (27).

5.1.5 Third spacing

Matala ilmanpaine voi aiheuttaa lisäksi "third spacingiä", jolla tarkoitetaan nesteen menetystä suonen sisäisestä tilasta (intravaskulaaritilasta) sitä ympäröivin kudoksiin. Tämä aiheutuu lentoypäristössä verisuonen seinämien ympäröivän paineen laskessa, ja sitä voivat edistää muun muassa lisääntynyt hydrostaattinen paine, lisääntynyt verisuonen läpäisevyys, suuret G-voimat, tärinä sekä olemassa olevat sairaudet, kuten munuaissairaus. "Third spacingin" oireita ja löydettyjä ovat ödeema, tihentynyt syke, vähentynyt verenpaine sekä dehydraatio. (27.)

5.1.6 Ilmakosteus ja dehydraatio

Merenpinnan tasolla pidetään hyvänä 40–70 % suhteellista ilmakosteutta (22). Lentokorkeudessa ilma sisältää kuitenkin vähän vettä ja kun tätä ilmaa käytetään kabiinin kudoksiin tai tilaon sisäiseen, lisääntyy verisuonen seinämien ympäröivä paine, lisääntynyt verisuonen läpäisevyys, suuret G-voimat, tärinä sekä olemassa olevat sairaudet, kuten munuaissairaus. "Third spacingin" oireita ja löydöksiä ovat ödeema, tihentynyt syke, vähentynyt verenpaine sekä dehydraatio. (27.)
dattaminen sekä uudelleen kierrättäminen (1). On myös arvioitu, että ilman uudelleen kierrätys mahdollistaisi korkeamman ilmankosteuden (21).

Kabiinin matala ilmankosteus johtaa lähinnä ihon (22) ja limakalvojen kuivumiseen (30). Lisäksi voi tapahtua esimerkiksi keuhkoputkieritteiden kuivumista (20) sekä paksuuntumista, mikä saattaa haitata kaasujen vaihtoa ja edesauttaa matkustajan hypoksiia (27).

Matala ilmankosteus saattaa aiheuttaa myös kuivumista (dehydraatiota) (1), erityisesti kun matkustajan virtsan erityys (diureesi) on lisääntynyt esimerkiksi lääkkeiden tai alkoholin vaikutuksesta (22). Tätä on havaittu myös terveillä henkilöillä (17). Dehydraatio saattaa hypotalamuksen kautta lisätä aineenvaihduntaa sekä lisätä matkustajan havan tarvetta (27). Tämän lisäksi dehydraatio voi aiheuttaa hemokonsentraatiota ja lisätä veren viskoiteettia näin lisäten myös tromboembolia riskiä (17). Pitkillä matkoilla matala ilmankosteus myös vaikeuttaa esimerkiksi ripulia sairastavan matkustajan hoitoa (1). Dehydraatiota voidaan estää hyvällä nesteytyksellä sekä esimerkiksi tarjoamalla lisähappea tarvitsevalle kosteutettua lisähappea (27).

5.1.7 Lämpötilanvaihtelun vaikutukset

Lentokoneen ulkopuolella troposfäärissä lämpötila laskee noin kaksi celsiusastetta jokaista 305 metrin nousua kohden. Tämän vuoksi kabiinin paineistamiseen käytettävä ilma on viileää (20). Tämä johtaa myös ilmankosteuden vähenemiseen (27). Näistä aiheutuu lentoympäristössä kylmästressiä (60). Vaikka lentokoneen kabiinia pyritään pitämään miellyttävän lämpöisenä (27) noin 20–24 celsiusasteessa (62), voi matkustaja lentokorkeuksilla kuitenkin altistua lämpötilan vaihtuksille (60).

5.1.8 Säteily

Kosmista säteilyä tulee auringonpurkausten aikana vapautuvista partikkeleista sekä aurinkokukunnan ulkopuolelta (17). Se lisääntyy korkeuden myötä (58) ja sen intensiteettiin vaikuttavat altistusaika, lentokoneen korkeus, leveysaste sekä vuosi (17). Lisäksi esimerkiksi ultraviolettisäteilyaltistus lisääntyy lentokorkeuksilla, kun pilvet eivät anna siltää suojaan (60).

Kosminen säteily on matkustajalentokoneiden lentokorkeuksilla noin 100 kertaa suurempaa merenpinnan tasoon verrattuna. Lisäksi ajoittain esiintyy paljon korkeamman säteilytason purkauksia (58). Toisen lähteen mukaan altistus on satossa kertoja suurempaa verrattuna merenpinnan tasoon (13).

Matkustaja altistuu lentoypäräistössä kosmisen säteilyn lisäksi esimerkiksi koneen radioalloille (60).

Säteilyaltistus saattaa olla haitallista erityisesti raskaana oleville (60), sillä korkeat säteilymäärät saattavat aiheuttaa epämuodostumia sikiöille alkuraskaudessa (58). Tämän lisäksi kosminen säteily saattaa olla yhteydessä erityisesti rintasyövän, ihosyövän sekä melanooman syntymiseen lentohenkilöstöllä ja useasti lentävällä. Kuitenkaan kosmisesta säteilystä ei todennäköisesti koidu haittaa edes paljon lentäville matkustajiille (17).

Raskaana oleville koneen henkilöstön jäsenille on asetettu erilaisia maksimi säteilyaltistusrajoja sikiöhaittojen vähentämiseksi, ja esimerkiksi The International Comission on Radiological Protection (ICPR) suosittelee yhden millisievertin(mSv) säteilyraja koko raskausajalle. Esimerkiksi noin 15 pitkän matkan lennon lentäminen saattaa ylittää tämän rajan. Muuten lentohenkilöstön vuosittainen altistus on pyritty rajaamaan 20 mSv:n tasolle. (17.)

5.1.9 Kiihtyvyys

Kiihtyvyydellä tarkoitetaan nopeuden muutosta tietystä ajassa (54). Maan painovomakenttä aikaansaanne meissä kiihtyvyyden kohti planeetan keskusta 9,81 m/s² magnitudilla, ja tämä voima tunnetaan painona (20). Vaikka kiihtyvyydellä ei ole suurta vaikutusta rutinilentotoiminnassa (27), voi nykyaikainen len-
tomatkailu kuitenkin altistaa meidät kiihtyvyyysvoimille, joilla saattaa olla merkit- täviä fysiologisia vaikutuksia (20).

Kiihtyvyyden magnitudi mitataan painovoiman aiheuttaman kiihtyvyyden mononkertoina (54). Yksi G on se voima, jonka henkilö kohdistaa istuessaan penkkiiin. Se on kehoon kohdistuvan painovoiman tulos. G-voimia kohdistuu yksilöön lentokoneen nopeuden ja suunnan muutosten sekä nousujen ja laskujen yhteydessä (27). Muun muassa G-voimien intensiteetti, ja kesto vaikuttavat niiden aikaansaamaan vaikutukseen (54; 60).

Kiihtytyksen luokitellaan pitkäkestoiseksi ja lyhykestoiseksi kiihtytykseksi (54). Useita sekunteja kestävät kiihtytykset lisäävät esineiden painoa ja aiheuttavat fysiologisia muutoksia, kun taas alle sekunnin kestävät kiihtytykset saattavat vammauttaa tai tappaa. Kiihtyvyys jaetaan myös lineariaiseen sekä radiaaliseen kiihtyvyyn. (20)

Lineaarista kiihtyvyyttä tapahtuu, kun liikkeen nopeus muuttuu suoran linjan suhteen (20). Lineaarinen kiihtyvyys johtaa ohimenevään sykkenen ja verenpaineen nousuun (60). On tosin myös arvioitu, ettei lineariaisesta kiihtyvyydestä aiheudu istuvalle henkilölle fysiologisia vasteita. Paareilla makaavalle potilaalle tämä voi kuitenkin aiheuttaa veren siirtymistä (20). Esimerkiksi nousun aikana veri pakkautuu kehon yläosiin, kun potilaan päähän on kohti koneen perää, ja vastaavasti alaraajoihin, kun potilaan päähän on kohti nokkaa (27).

Radiaalista kiihtyvyyttä tapahtuu, kun liikkeen suunta muuttuu. Lentokoneessa oleva tuntee tämän painon muutoksena. Jos radiaalinen kiihtyvyys pitkittyvy esimerkiksi nousun yhteydessä, voi sydämen alapuolella olevien laskimoiden painen nousua, mikä johtaa heikentyneeseen laskimopaluuseen sekä k ompensatoriseen sykkenen nousuun ja selektiiviseen verisuonien supistumiseen (vasokon- striktioon). (20.)

Kiihtyvyysvoimat nopeuttavat myös matkapahoinvoinnin oireiden alkamista (60). Lisäksi nopeuden hidastuessa, kun esimerkiksi laskeudutaan, voi henkilö, jolla ei ole turvavyötä päällä, mahdollisesti lentää pois istuimeltaan tai loukata itsensä (27).
5.1.10 Tärinä

Lentokoneissa tärinää aiheuttavat lähinä moottorit ja turbulenssi (20), ja se lisääntyy suurilla nopeuksilla, matalalla korkeudella sekä turbulentissa säässä pilvien läpi lennettäessä (27). Tärinän syntymistä lentokoneessa ei voida estää. Vaikka tärinä on lähinä ärsyttävää terveille matkustajille, siitä voi vakavasti sairaille aiheuttaa vaaroja (20).

Kohtalainen tärinä nopeuttaa aineenvaihduntaa, heikentää hikoilukykyä sekä aiheuttaa vasokonstriktiota (20), ja se voi häiritä kehon lämmönsäätelevää (27). On lisäksi todettu, että matalataajuusisenä tärinänä voi aiheuttaa näön tarkkuuden huononemista, matkapahoinvointia (27; 20) väsymystä, ärtysisyyttä (27) hengenahdistusta, rinta- tai vatsakipua (27; 20).

5.1.11 Melu

Melu on ääntä, joka on epämiellyttävää tai kovaa (20). Matkustajalentokoneessa oleva melu voi olla kovaa (1). Lentokoneissa melun aiheuttajia ovat pääasiassa moottorit, potkurit, turbulenssi, ventilaatiojärjestelmä (27), ilman aiheuttama kitka (20) sekä mahdollinen muu laitteisto (27). Myös matkustajista aiheutuu melua.

On todettu, että intensiivinen melualtistus voi johtaa muun muassa päänsärynyn, väsymykseen, pahoinvointiin, huimaukseen, näköhäiriöihin, yleiseen epämukavaan oloon ja väliaikaiseen tai pysyvään korvavaurioon. (27.)

5.1.12 Aikaeroväsymys

Aikaeroväsymys eli jet lag on pitkiin lentomatkoihin liittyvää väliaikainen sirkadiyunan rytmisen tai vuorokausirytmisen häiriö. Tämä johtuu kehon sisäisen kellon ja uuden äkillisen aikavyöhykkeiden muutoksen aiheuttamasta pimeää-valorytmin desynkronaatiosta. (17.)

Aikaeroväsymykseen liittyy päiväsaikainen väsymys, univalverytmin häiriöt, heikentynty psykomotorinen koordinaatio ja kognitiiviset kyvyt, ummetus sekä vähentyntä ruokahalu. Lentämisvuuntuuksekä ylitettyjen aikavyöhykkeiden määrä vaikuttaa aikaeroväsymyksen vaikeusasteeseen (17). On myös ehdotettu, että
kabiiniympäristön tekijät, kuten hypoksia, saattavat johtaa lennonjälkeiseen väsymykseen riippumatta ylitettyjen aikavyöhykkeiden määrästä (24).

5.2 Matkustajalentokone hoitoympäristönä

Verrattuna maalla tapahtuviin hätättilanteisiin matkustajalentokoneessa potilaan oireiden alun ja edistyneemmän hoidon saamisen välillä on merkittävä viive (35). Vaikka lentokone muuttaisi lentoreittiään välittömästi, kuluu aikaa siihen, että ensihoitopalvelu pääsee potilaan luo (19). Tämä voi kestää jopa useita tunteja (5).

Kyvyttömyys hoitaa hyvin lentokoneessa sattuvia hätättilanteita voi olla potilaan terveydelle vaarallista (2).

On tärkeää, että koneissa sattuvat hätättilanteet hoidetaan hyvin, jotta koneessa olevien matkustajien ja henkilökunnan turvallisuus maksimoitaisiin. Se on myös tärkeää lentojärjestelyjen ja henkilökunnan turvallisuuden säilyttämisessä (37). Esimerkiksi koneessa sattuvilla kuolemantapauksilla on laillisia ja taloudellisia seuraamuksia lentoyhtiöille sekä mahdollisia vaikutuksia niiden yrityskaavan (38).

Eri lentoliikennettä säätelevät tahot, kuten esimerkiksi IATA (The International Air Transport Association) ja AsMA (The Aerospace Medical Association) ovat julistaneet ohjesääntöjä sille, miten lentojen alkaiset hätät tiltaneet tulisi hoitaa. Tästä huolimatta ainakin osalla lentoyhtiöistä on omat käytäntönsä (34). Nämä käytvät selvästi lentokoneessa olevista ohjekirjoista, joissa yksityiskohtaisesti

Koneessa sattuvien hätätilanteiden hoitamisessa täytyy ottaa huomioon paitsi itse hätätilanne, myös muiden henkilöiden turvallisuus (64).

Ympäristöstä aiheutuvat käytännön ongelmat hoitamiselle

Ahtaus

Ahtaan istumatilan lisäksi (46; 1) monissa matkustajalentokoneissa ei ole paljoa tilaa hoitaa potilasta (46), jolloin esimerkiksi elvytyksen laatu saattaa kärsiä (19). Vain harvassa koneessa on esimerkiksi varattu erillinen tila tällaisten tilanteiden hoitoon (65). Usein matkustaja voidaan siirtää avoimelle tilalle lattialla esimerkiksi "galley"-tilaan tai ovien lähelle (45).

Ilmanpaineen vaikutukset hoitolaitteisiin ja -välineisiin

Boylen laki vaikuttaa lentoypäräistössä ruumiinonteloissa olevan ilman lisäksi myös esimerkiksi laitteisiin, joissa on suljettu ilmatila (27). Korkeuden kasvaessa tällaisiin hoitovalineisiin ja laitteisiin mahdollisesti sisään jäänyt ilmaa laajenee. Tällöin laite tai sen osa voi vaurioitua ja mittaus- tai monitorointilaitte voi menettää tarkkuutta sekä sen toiminta voi häiriintyä (59).

Melun haitat

Stetoskoopilla kuuntelu eli auskultoinimen on tärkeää muun muassa, kun teh—dään potilaasta työdiagnoosia, seurataan potilaan tilan muutosta tai varmistetaan intubaatioputken paikka (66). Matkustajakone on kuitenkin meluisa paikka, ja siellä auskultoinimen voi olla miltei mahdotonta (1). Myös tärinä haittaa auskultoimista (66).

On arvioitu, että stetoskoopit eivät sovellu lentoypäräistössä käytettäviksi. Toisaalta on myös ehdotettu, että elektroniset stetoskoopit saattavat soveltua perinteisiä malleja paremmin lentoypäräisöön. (66.)

Melu, tärinä sekä ilmanpaineen vaihtelut voivat myös johtaa vääriin tuloksiin verenpaineen mittauksessa (35), ja voi olla, että mittaus onnistuu vain tunnustelemalla (palpaatio) sykken avulla ylälämpäine (1). Tosin palpoituihinkaan arvoihin ei voi täysin luottaa, sillä aneroidimittarit eivät ole tarkkoja suurilla korkeuksilla (35).

Lisäksi kova tärinä tekee esimerkiksi kanyloinnista vaikeaa (20).
5.3 Yleisiä matkustajalentokoneissa sattuvia hätätilanteita

Lentoypäröstö voi vaikuttaa negatiivisesti joidenkin aikuisuuden yksilöiden terveyteen (35; 22). Lentämisestä ja lentoypäröstöstä aiheutuu yksilölle sekä fyysisiä että psyykkistä stressiä (16; 1), ja tämä saattaa pahtaa lennon (20) sekä laukaista koneessa sattuvia hätätilanteita (20; 16). On esimerkiksi havattu yhteys lennon pituuden ja äkkiakuolemien frekvenssin välillä (35).

Lentokoneessa sattuvat hätätilanteet voidaan jakaa esimerkiksi seuraaviin kategorioihin: lentoypäröstön fysiologisista rasitteista johtuviin hätätilanteisiin; lentämiseen liittyvästä psykologisesta stressistä johtuviin hätätilanteisiin, vahinkoihin sekä sattumalta lennon aikana tapahtuviin hätätilanteisiin. (65.)

5.3.1 Lentämisestä aiheutuvat fyysiset ja psyykkiset rasitteet

Lentoypäröstössä fysiologista stressiä aiheuttaa hypoksia, ilmanpainen vaihtelut, lämpötilan vaihtelut, dehydraatio, vibraatio, melu, väsymys (27; 42) painovoima, ”third spacing” (27), ortostatismi sekä vuorokausirytmmin häiriöt (42). Edellisten lisäksi stressiä voivat aiheuttaa esimerkiksi vähentynyttä istumistila, stressi lisääntyneistä turvallisuustoimenpiteistä (security) tai erilaiset viiveet (16).

Matkustajilla, joilla on muun muassa keuhko-, sydän-, tai verisairauksia, on jo valmiiksi normaalia alhaisempi valtimoveren happiosapaine. Tämä laskee entisestään alhaisen ilmanpaineen vaikutuksesta, jolloin happisaturaatiokin laskee (17). Lisäksi iällä on taipumusta laskeva valtimoveren hapenosapainetta (22). Lentämiseen liittyvän alentunut veren happipitoisuus saattaa pahtaa potilaan tautitiloja (17) esimerkiksi aiheuttamalla keuhkoverisuonten konstriktiota (28). Lisäksi esimerkiksi nukkuminen lentokoneessa saattaa olla haitallista sellaiselle matkustajalle, jolla on hengitysvajausta hypoksiessaan ympäröstössä (30).

Lentoypäröstössä tapahtuva fyysinen rasitus vaikuttaa keuhkojen diffuusio- ominaisuuksiin, ja rasitus on ongelmainen kaasujenvaihto-ongelmaiselle matkustajalle. Esimerkiksi kävelymatka vessaan saattaa aiheuttaa tällaisille potilaalle pyörätmisriskin. Tällaisessa tilanteessa on tapahtunut myös kuolemia (30). Matkustajan kykyyn sietää fyysisistä rasistusta lentokoneessa vaikuttaa se, kuinka suuria rajoitteita hänet on merenpinnan tasolla. Matkustajalle aiheutuu rasitus-
ta myös lentokentällä käveltäessä ja erityisesti kun on paljon matkatavaraa muskan. Kun tähän yhdistetään vielä mahdollisesti portaiden käyttäminen, saattaa sillä olla vaikutusta esimerkiksi sydämen vajaatoimintaa sairastavan matkustajan terveyteen (3).

Matkustajalentokoneessa on usein ahdasta istua. Ahdas istumatila voi pahentaa tai jopa luoda matkustajalentokoneessa sattuvia sairastilanteita (46).

Lentokoneessa matkustettaessa on monesti puutetta jalkatilasta. Huonossa istuma-asennossa istuimen reuna voi painaa pohkeita, jolloin esimerkiksi syvä-laskimotukoksen (SLT) riski voi nousta (50). Matkustajista erityisesti obeesit, pitkät ja lyhyet joutuvat huonoille asentoihin lentäässään (51). Ahtaat ja epäoptimaaliset istuma-asennot muun muassa häiritsevät hengittämistä, verenkiertoa, mahasuolikanavan toimintaa (22) sekä mahdollisesti pahentavat kroonisia lihasranka (muskulosiskelettaali) kipuja, kuten selkäkipua (46). Kaiken lisäksi se on epämukavaa ja vaikeuttaa liikkeelle lähtemistä (22).

Lentokentillä myös pitkät odotusajat voivat turhautumisen lisäksi aiheuttaa vihan tuntemuksia, mikä saattaa pahentaa esimerkiksi sydänlihasiskemiaa. Lentettäessä etenkin koneen nousuun lähdentö sekä laskut saattavat aiheuttaa ahdistusta ja stressiä (3). Psykologiset syyt, kuten kova ahdistuneisuus ja lentopelko, voivat johtaa esimerkiksi synkopeheen (1).

5.3.2 Häättilanteiden syyt ja prevalenssi lennoilla

Sekä eniten raportoitu terveysongelma (42) että eri tautikategorioiden suhteellinen prevalenssi (1) on lähteestä riippuvaa. Kuitenkin suuressa osassa lähteistä
synkopee, pyöryminen ja vasovagaalikohtaus ovat yleisin hätätilanne koneessa (42; 2; 1).

Synkopee oli erään 10189 tapausta kattaneen tutkimuksen mukaan syynä 53,5 % hätätilanteista (16). MedLinkin asiakkaiden lennoilla vuonna 1999 sattuneista tilanteista 22 % oli vasovagaalikohtauksia (37). Epäspesifit pyörymiset (16,5 %) olivat eräässä tutkimuksessa suurin yksittäinen syy ottaa yhteyts maassa toimivalle lääkärikehityksille (38).

Myöskään sydännapahtumat hätätilanteen syynä eivät ole harvinaisia (19). Niiden prosentuaaliset osuudet ovat tutkimuksesta riippuen 4,9 % (10189, 509 tapausta) (16), ja 12–20 % (37; 38; 1).

Yleisiä hätätilanteiden syitä ovat lisäksi mahasuolikanavan ongelmat, joita on lähteeestä riippuen 8,9–15,7 % (37; 38; 16); neurologiset oireet 9,3–11 %, hengitysvaikeudet 3,7–10 %, psykiatriset/psykologiset ongelmat 4–7,5 % (37; 38), endokriiniset sairaudet 3 % (37), lentopelko 4,3 %, yleistynyt kipu 4,1 % (16). Lisäksi pahoinvointi ja oksentelu ovat yleisiä (67).

Myös vammautumisest 3 % (38) ja onnettomuudest 3,5 % (16) koneessa ovat melko yleisiä. Erään arvion mukaan 10 % koneessa sattuvista vammautumisista on päävammoja. Syitä päävammoille oli tavaroiden, kuten salkkujen tiippuminen yläpuolella olevasta varastotilasta, sekä ilmaturbulenssin aiheuttama pään lyöminen (4). Joidenkin arvioiden mukaan palovammat ja traumat aiheuttavat jopa 25 % kaikista hätätilanteista (65).

Niin sanottuja kirurgisia syitä hätätilanteelle oli erään laajan tutkimuksen mukaan vähän, ja niitä olivat tromboosi 0,5 %, umpilisäkkeen tulehdus 0,25 % ja mahasuolikanavan (GI-vuoto) verenvuoto < 0,1 % (16). Toisessa lähteeessä GI-vuotoja oli 1,6 % konsultaation syistä (38).

Lapsille sattuviin yleisimpän hätätilanteisiin kuuluivat 27 % infektiotaudit, neurologiset ongelmat 15 % sekä hengitys故障mat 13 % (1). Nimenomaan lapsille sattuviin hätätilanteista eivät juuri yhtään tietoa.
5.3.3 Yleisiä hoitoa vaativia hätätilanteita

Pyörtyminen eli synkopee on kaikista lennon aikaisista hätätilanteista yleisin. Mahdollisina synkopeen syihin lentoimmatristössä kuuluu muun muassa hypokssia (30; 1), jota esimerkiksi hengityssairaus edesauttaa (30); pitkäaikainen liikkumattomuus (1), joka voi johtaa vähentyneeseen esikuormaan (46) ja mahdollisesti paniikkikohtauksen aikaansaama hyperventilaatio (1). Toisaalta synkopeen voi aiheuttaa myös muukin syy, kuten hengenvaarallinen rytmihäiriö (63).

Hengitys- ja sydänsairaudet, kuten keuhkokuume, COPD, sydäninfarkti pahenevat korkealla (27). Lentoimmatristön matala ilmanpaine voi johtaa lisääntyneeseen sympaattisen hermoston kiihtymiseen, joka verisuonien vastusta ja sydämen työmäärää lisäämällä saattaa epäsuorasti lisätä sydänsairaiden potilaiden riskiä saada kohtaus koneessa (35).

Pahoinvoinnista lennon aikana kärsii erään arvion mukaan jopa 8,4 % matkustajista (22). Naisilla on miehiä enempi matkapahoinvointia (20), ja esimerkiksi raskaus voi pahentaa sitä (58). Lennonaikana matkustajiin voi kohdistua normaalista poikkeavaa tärinää, liikettä sekä keskipakovoimia. Tämän lisäksi ilmaturbulenssi saattaa aiheuttaa tasapainon puutetta, joka liittyneenä ihmisiin saattaa aiheuttaa erilaista käytön epäselvyyttä, sekä dehydroaatiota (22).

Aivojen verisuonitukoksista käräjille vanhuksille voi esiintyä sekavuutta tai heille voi tulla aivojen vapauttaja tietävän liikkumista, mutta jopa vatsan toisten oksentamisen näkeminen (20). Matkapahoinvointiuuni liittyvää seikkailua osalta matkustajia voi aiheuttaa esimerkiksi elektrolyyttitasapainon häiriöitä, sekä dehydratointia (22).

Epilepsiaa sairastavat matkustajat saattavat olla alttiimpia kohtauksille, johtuen pitkän lentoaikaa liittyvistä hypoksiasta, hyperventilaatiosta, vääryyksestä ja ahdistuneisuudesta (29). Kouristuskohtauksille altistaa lisääksi stressi, jännitys (59) sekä esimerkiksi valojen heijastuminen ja välkkyminen propelleista (4).
5.3.4 Muita lentomatkustamiseen liittyviä tilanteita

Raskaus ja synnytys

Lentomatkustaminen on yleisesti ottaen turvallista raskauden aikana (58; 1). Se ei itsessään näytä edistää synnytyksen käynnistymistä (58), eikä siitä myöskään näytä aiheutuvan lentomatkustajille lisääntyvttä riskiä saada spontaani abortti (47).

Lennonaiakaiset synnytykset ovat erittäin harvinaisia (1), ja arvioidaan, että vain noin 1 % kaikista lentojen aikana sattuvista hätätilanteista on raskauden aikaisia tai obstetrisia (48).

Kuitenkin parhaimmissakin olosuhteissa on aina mahdollista, että synnytyksesää lapselle käy huonosti (46). Lentoypäräistössä synnytyksen sattuessa sekä lapsen että äidin hoito rajoittuu lähinnä tukea antavaan hoitoon (1) eikä koneessa yleensä ole saatavissa esimerkiksi asianmukaisia elvytysvälineitä vastasyntyneelle (46).

Tromboembolia

Ihmisillä, jotka tekevät pitkän matkan lentoja, ja joilla lisäksi on muita tromboembolian riskitekijöitä, on nykyisen tietämyksen mukaan suurentunut riski saada syvälaskimotukoks sekä tästä aiheutuva embolus (50). Lentomatkustaminen on erään arvion mukaan syynä ainakin 5 %:lle kaikista syvälaskimotukoksista (30). Syvälaskimotukoksia raportoidaan yleensä vasta koneesta lähtemisen jälkeen, jolloin niitä ei monesti sisällytetä tilastoihin lentojen aikana sattuvista hätätilanteista (4).

Tromboembolian oireet tulevat esiin yleensä kolmen päivän sisällä määränpäähän saapumisesta, jolloin syy-yhteyttä voi olla vaikea huomata. Sitä on raportoitu kaksikin viikkoa lennon jälkeen. (30.)

Arvion mukaan absoluuttinin riski saada tromboembolia jokaista pitkän matkan lentoa kohden on 1:4500 (51). Riski kasvaa, kun on lennetty yli neljä tuntia ja saavuttaa huippunsaa, kun on lennetty yli kahdeksan tuntia (17). On kuitenkin
Lentoypäristössä on monia tekijöitä, jotka selittävät sen, miksi tromboemboliän riski lisääntyy lentomatkatuntemisesta johtuen. Näihin kuuluvat immobiliteetti, dehydraatio ja hypoknia (17). Tämän lisäksi suurimmalla osalla henkilöistä, joille tulee lentomatkatuntemiseen liittyvää tromboemboliä, on muitakin riskitekijöitä sen synnylle, kuten esimerkiksi luonnostaan suurentunut hyytymistaipumus, aikaisempi syväskimitotukos, sydänverisuonisairaus, syöpä, raskaus, estrogeenihoito, viimeaikainen leikkaus (17; 1) tai obesiiteetti (17). Tosin riski on olemassa myös terveillä matkustajilla (30).

5.3.5 Kuolemat

On harvinaista, että lennon aikana kuolee matkustaja. Arvion mukaan kuolemia sattuu noin 0,3–1 miljoonaa matkustajaa kohden vuodessa (1). Toisen lähteen mukaan sattuu vain 0,1 kuolemaa 3 miljoonaa matkustajaa kohden vuodessa (60). Erään arvion mukaan noin 3 % lentojen aikana sattuvista hätätilanteista voivat olla fataaleja. Kuolemantapauksia on myös luultavasti enemmän, koska kuolemaa ei joissain tilanteissa raportoida ennen kuin se on julistettu sairaalassa (4).

Kuolemista noin 90 % on kyseessä vanhus tai terminaalisisairautta sairastava potilas. Toisaalta on myös arvioitu, että jopa 69 % kuolemista näyttää tapahtuvan näennäisesti terveille matkustajille. (35.)

Sydäntapahtumat ovat yleisin syy lentojen aikana sattuville kuolemille (1), ja ne aiheuttavatkin arviolta puolet lentojen aikana tapahtuvista kuolemantapauksista (19).

5.4 Lentokoneen henkilökunnan resurssit akuuttien hätätilanteiden hoi- toon

5.4.1 Matkustamohenkilökunnan koulutus

Matkustamohenkilökunta ei ole hoitohenkilöstöä vaan maallikkoja (19), eikä heitä ole koulutettu tekemään lääketieteellistä tutkimusta (21). Heidät kaikki on kui-
tenkin koulutettu antamaan ensiapua (21; 2), sekä mahdollisesti antamaan neuvoo matkustajille pienten vaivojen hoitoon (15). Heidän työnsä edellyttää vuosittaisia koulutusta ensiaputilanteiden varalle (4).

Kaikki matkustamohenkilökunnan jäsenet ovat saaneet systemaattisen hätäensiapukoulutuksen (Basic Life Support, BLS) (1), joka sisältää esimerkiksi painelu-puhalluselytyksen (19) ja tavallisesti myös defibrillointivalmiuden neuvovalla laitteella (AED) (1; 2; 19). Heillä on myös lupa käyttää koneessa olevaa ensiapupakkia (18), ja heidät voi olla koulutettu esimerkiksi erottamaan tarttuvia tautia, kuten tuberkuloosia, sairastavan potilaan oireita (31).

5.4.2 Ensiohoitopakki

Matkustajalentokoneissa on pääosin kahdenlaisia pakkeja eli "kits" (1). On ensiapupakkeja "first-aid kit" (34; 1)}, joita on 1–4 kpl (17), ja koko koneen henkilöstö saa käyttää näitä (18). Tämän lisäksi on ainakin yksi ensiohoitopakki eli "emergency medical kit" (17), joka on tarkoitettu koneessa olevien lääkäreiden käytettäväksi hätätilanteissa (1; 36). Tämä sijaitsee usein ohjaamossa (42). Sen saa avata vain lääkärin ollessa läsnä (34). Sitä saattaa voida käyttää esimerkiksi sairaanhoitajia, kunhan toimintaa ohjaan lääkäri radion välityksellä (68). Myös lentokoneen kapteeni voi valtuuttaa muita kuin lääkäreitä käyttämään sitä (35). Kuvassa 2 on Finnairin ensiohoitopakki.
Kuva 2. Finnairin ensihoitopakki (Emergency Medical Kit). Kuva Finnair Oyj.

Ensihoitopakit voivat olla kattavia, ja niiden tarkka sisältö riippuu lentoyhtiöstä (17; 34). Taloudelliset paineet saattavat vaikuttaa joidenkin halpalentoyhtiöiden ensihoitopakkien sisältöön ja siten mahdollisesti matkustajaturvallisuuteen (2). Kuitenkin ilmailuviranomaiset ovat laatineet ensihoitopakeille minimivaatimuksset (32).

Yhdysvaltalaiset ensihoitopakit ovat usein suppeampia muiden maiden lentoyhtiöihin kitteihin verrattuna (1). FAA:n edellyttämä emergency medical kit:in sisälöö on kuvattu taulukossa 3.
FAA Emergency medical kit minimum requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>sphygmomanometer</td>
<td>stethoscope</td>
</tr>
<tr>
<td>nonpermeable gloves</td>
<td>scissors</td>
</tr>
<tr>
<td>alcohol sponges</td>
<td>intravenous administration set</td>
</tr>
<tr>
<td>tourniquet</td>
<td>needles and syringes</td>
</tr>
<tr>
<td>adhesive tape, 1-inch roll</td>
<td>oropharyngeal airways (3 sizes)</td>
</tr>
<tr>
<td>CPR masks (3 sizes)</td>
<td>self-inflating manual resuscitation device with 3 different sized masks</td>
</tr>
<tr>
<td>instructions for use of kit’s medication</td>
<td></td>
</tr>
</tbody>
</table>

Injectable Medications

<table>
<thead>
<tr>
<th>Medication</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epinephrine 1mg/ml, 1ml (1 dose)</td>
<td></td>
<td>Epinephrine 0.1mg/ml, 2ml (1 dose)</td>
</tr>
<tr>
<td>Atropine 0,5mg, 5ml (1 dose)</td>
<td></td>
<td>Lidocaine 20mg/ml, 5ml (1 dose)</td>
</tr>
<tr>
<td>Antihistamine 50mg (1 dose)</td>
<td></td>
<td>Dextrose 50%, 50ml (1 dose)</td>
</tr>
<tr>
<td>Saline solution 500ml</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other medication

<table>
<thead>
<tr>
<th>Medication</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitroglycerin tablets 0,4mg</td>
<td></td>
<td>Inhaled bronchodilator</td>
</tr>
<tr>
<td>Antihistamine tablets 25mg</td>
<td></td>
<td>Aspirin tablets 325mg</td>
</tr>
<tr>
<td>Non-narcotic analgesic tablets 325mg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eurooppalaisissa matkustajalentokoneissa ensihoitopakkien sisältöä ei ole säädety kovin tarkasti, minkä vuoksi niissä on huomattavaa vaihtelua lääke- ja välinevalikoimissa (16; 2). Esimerkiksi eräässä 12 eurooppalaisen lentoyhtiön ensihoitopakkeja tutkineessa tutkimuksessa osallistuneilla lentoyhtiöillä oli käytössä 104 eri lääkettä. Samassa tutkimuksessa yleisimmät käytössä olevat akuuttiihoitolääkkeet olivat adrenaliini, atropiini, diatsepaami, digoxiini ja furosemidi (2).

Tällaisten minivaatimusten lisäksi tahot, kuten Aerospace Medical Association (AsMA) ja International Air Transport Association (IATA) ovat tehneet ehdotuksia sille, mitä lääkkeittä koneessa tulisi olla (34). Finnarin ensihoitopakki perustuu Joint Aviation Authorities vaatimuksiin (43) ja sen sisältö on kuvattu taulukko 4. Tämän lisäksi Finnairin koneissa olevat ensiapupakki sekä nestehoitopakki (Intravenous Drip Kit) on kuvattu taulukko 5.
Finnair Emergency Medical Kit

Contents

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood pressure meter</td>
<td>Stethoscope</td>
</tr>
<tr>
<td>Tourniquet</td>
<td>Syringes 1ml, 2ml, 5ml, 10ml</td>
</tr>
<tr>
<td>Injection needles</td>
<td>Oropharyngeal airway tube, 2 sizes</td>
</tr>
<tr>
<td>Antiseptic wound cleaner</td>
<td>Catheter</td>
</tr>
<tr>
<td>Disposable resuscitation aid</td>
<td>Needle disposal box</td>
</tr>
<tr>
<td>Disposable gloves</td>
<td>Surgical gloves (L, M, S)</td>
</tr>
<tr>
<td>Reserve seal</td>
<td>List of contents, indications</td>
</tr>
<tr>
<td>Report forms</td>
<td></td>
</tr>
</tbody>
</table>

Injectable Medications

<table>
<thead>
<tr>
<th>Drug</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenalin</td>
<td>1mg/ml (1ml and 5ml)</td>
</tr>
<tr>
<td>Atropin</td>
<td>1mg/ml</td>
</tr>
<tr>
<td>Buscopan</td>
<td>20mg/ml</td>
</tr>
<tr>
<td>Euphylong</td>
<td>20mg/ml</td>
</tr>
<tr>
<td>GlucaGen</td>
<td>1mg/ml</td>
</tr>
<tr>
<td>Phenergan</td>
<td>25mg/ml</td>
</tr>
<tr>
<td>Solu-Cortef</td>
<td>125mg/ml</td>
</tr>
<tr>
<td>Morphin</td>
<td>20mg/ml</td>
</tr>
<tr>
<td>Phenergan</td>
<td>5mg/ml</td>
</tr>
<tr>
<td>Solu-Cortef</td>
<td>1mg/ml</td>
</tr>
<tr>
<td>Stesolid</td>
<td>5mg/ml</td>
</tr>
</tbody>
</table>

Other Medications

<table>
<thead>
<tr>
<th>Drug</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dinit</td>
<td>1,25mg/dos</td>
</tr>
<tr>
<td>Ventoline</td>
<td>0,1mg/dos</td>
</tr>
<tr>
<td>Methergin</td>
<td>0,125mg (tablet)</td>
</tr>
<tr>
<td>Postafen</td>
<td>25mg (tablet)</td>
</tr>
</tbody>
</table>

Finnair Intravenous Drip Kit

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposable gloves</td>
<td>Surgical gloves</td>
</tr>
<tr>
<td>Adhesive tape</td>
<td>Intravenous catheters, 3 sizes</td>
</tr>
<tr>
<td>Tape to attach the iv-catheters</td>
<td>Bandage</td>
</tr>
<tr>
<td>Solution tubing set</td>
<td>Tourniquet</td>
</tr>
<tr>
<td>Natriumklorid 9mg/ml 500ml</td>
<td>Ringersteril 500ml</td>
</tr>
<tr>
<td>Antiseptic wound cleaner</td>
<td>Needle disposal box</td>
</tr>
<tr>
<td>Reserve seal</td>
<td>Report forms</td>
</tr>
</tbody>
</table>

Finnair First Aid Kit

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandages</td>
<td>Wound dressings (large, small)</td>
</tr>
<tr>
<td>Burn dressings</td>
<td>Adhesive wound dressing roll</td>
</tr>
<tr>
<td>Adhesive tape 8 cm</td>
<td>Safety pins</td>
</tr>
<tr>
<td>Scissors</td>
<td>Wound closure strips</td>
</tr>
<tr>
<td>Triangle bandage</td>
<td>Thermal blanket</td>
</tr>
<tr>
<td>Disposable gloves</td>
<td>Surgical gloves (L, M, S)</td>
</tr>
<tr>
<td>Antiseptic wound cleaner</td>
<td>Ground/air code</td>
</tr>
<tr>
<td>First-aid handbook</td>
<td>Disposable scalpels</td>
</tr>
<tr>
<td>Extra seal</td>
<td>Report forms</td>
</tr>
</tbody>
</table>

Ensihoitopakit ovat usein riittävän hyvin varusteltu hätätilanteiden akuuttihoitoon (4). Usein niissä on tietytä lääkettä 1–2 annoksen verran (1), minkä vuoksi niiden sisällöllä ei voida esimerkiksi hoitaa pitkittyntää elvytystä (4; 1). Ne eivät myöskään sisällä kaikkia normaaliin Advanced Cardiac Life Support (ACLS)–protokollaan kuuluvia lääkkeitä, minkä vuoksi niiden sisällöllä ei voida toteuttaa täyttä ACS-protokollaa. Lisäksi esimerkiksi keinoilmateiden asettamiseen sekä kirurgisen ilmatien tekemiselle tarvittavaa välineistöä puuttuu (1). Myös perustarvikkeista kuten lateksisuojahanskoista voi olla pulaa (46).

Vaikka suurilla lentoyhtiöillä on pyrkimys siihen, että koneessa pystytään hoitamaan potilaita asianmukaisesti, on vaikeaa varustaa kone niin, että siinä olisi tarvittavat lääkkeet jokaisen mahdollisen tilanteen hoitoon. Ensihoitopakkiin lääkkeet on valikoitu usein siten, että niillä voidaan hoitaa potilasta oireenmuukaisesti siihen asti, kun potilaalle voidaan antaa definitiivistä hoitoa (34). Silloin tällöin tulee vastaan tilanteita, jolloin potilaan hoito edellyttää lääkettä, jota ei pakissa ole, ja tällaisissa tapauksissa lääkkeet usein saadaan kysymällä niitä muilta matkustajilta (35).

Ensihoitopakin varustelu ei sovi erityisen hyvin lasten hätätilanteiden hoitoon, ja esimerkiksi kuumeeseen annettavaa parasetamolia tai ibuprofeinia ei ole nesemäisenä. Myöskään siellä ei ole välineitä vastasyntyneen hoitoon, esimerkiksi ilmateiden imemiseen eikä ventilaatioon sopivan kokoista kasvo-osaa (1).

Erään arvion mukaan vuonna 1986 käyttöön otettu FAA:n säätmä lääkäreiden käyttöön tarkoitettu ensihoitopakki maksaa 10 vuodessa 5,9 miljoonaa dollaria, ja se pelastaisi arviolta 21–100 ihmishenkeä. Ensioitopakkia käytetään erään arvion mukaan yhden kerran 1900 lennolla tai vastaavasti yhden kerran jokaista 150 tuhatta matkustajaa kohden. Vuonna 1989 arvioitiin, että kanadalaisen lennohtioen Air Canadian kättää käyttetään 70–100 kertaa vuoden aikana, ja tämän arvioitiin estävän 6–10 lentokoneen hätälaskeutumistapausta vuodessa. (35.)

Happi on erään arvioin mukaan hätätilanteiden hoidossa yleisin annettava lääke. Muita yleisiä ovat kipulääkkeet kuten parasetamoli. Lisäksi nestehoito on yleistä (15).

5.4.3 AED–laitteet

Defibrillaatioviive on sairaalan ulkopuolisesta sydänpyysähdyksestä selviytymisen suurin yksittäinen määräävä tekijä, jolloin koneessa oleva AED on kammiotakkykardioden ja kammiovärinän onnistuneen hoidon kulmakivi (1). On arvioitu, että jokainen minuutin viive kammiovärinän defibrilloimisessa heikentää potilaan selviytymisen todennäköisyyttä 7–10 % (69). Lennohtioiden raportoimat selviytymisprosentit sydänpyysähdyksestä AED:den käyttöön oton jälkeen ovat parempia kuin parhaat ensihoitopalvelun (EMS) tulokset (43).

Yhdysvaltain FAA edellyttää, että kaikissa siellä rekisteröidyissä matkustajalentokoneissa, joissa on enemmän kuin yksi lentoemäntä tai yli 12 istumapaikkaa (16), sekä kaikissa ulkomailta Yhdysvaltoihin lentävissä koneissa, tulee olla AED (5). Yhdysvalloissa matkustajalentokoneessa defibrillaattoria saavat käyttää lääkärit sekä sen käyttöön koulutetut lentoemännät (18).

Matkustajalentokoneissa olevien AED:tä edellytetään, että ne täyttävät tietyt vaatimukset. Näihin kuuluu muun muassa häiritsevä lentokoneen muita välineitä, sekä ettei ne kestävät hyvin lentokoneen joustamista tai korkeuden vaihteluita. (18.)

Eräs pelon aihe AED:n käyttöön otossa oli, että laitteella pystyisi antamaan sähköiskuja tilanteissa, joissa ne olisivat epätarkoituksenmukaisia, ja esimerkiksi normaali sinusrytmi muutettaisiin vaarallisiksi rytmihäiriöiksi. Kuitenkin eräs
tutkimus, jossa tutkittiin niiden käyttöä kahdella tajuttomuspotilaalla, tuli lopputulokseen, että laitteella on 100 %:n herkkyys kammiovärinän havaitsemisessa eikä yhdessäkään vuoteen 2010 mennessä tehdynä tutkimuksessa ole todettu, että se olisi antanut sähköä epätarkoituksenmukaisesti (1). Useat mallit eivät myöskään mahdollista defibrillaatiota manuaalisetutkimuksella (42).

5.4.4 Ulkopuolinen apu hätätilanteen hoitamisessa

Hätätilanteen sattuessa matkustajalentokoneessa on hyvin todennäköistä, että paikalla on lääkäri tai muu terveysalan ammattilainen auttama (34; 4). Auttamaan tarjoutuviin terveysalan ammattilaisiin luetaan lähteestä riippuen muun muassa lääkäri, sairaanhoitaja, peruskoulutettu ensihoitaja (EMT) (16), ja jatkokoulutettu ensihoitaja (paramedic) (38; 34). Lähteestä riippuen heitä on mukana 56 %–86 % tapauksista (38; 34; 16; 1).

Eräässä lähteessä arvioitiin lääkäreitä olevan mukana 40–90 % kaikista lennoista (42). Eurooppalaisia lääkäreitä haastatelleessa kyselytutkimuksessa noin kolmasosa vastaajista oli ollut osallisena matkustajalentokoneessa sattuneessa hätätilanteen hoidosta (1). On arvioitu, että noin 2 % kansainvälisistä lennoista kuulutetaan lääkäriä avuksi, mutta vain 3 % niistä matkustaja on vakavasti sairas (44).

Tästä huolimatta arvioitaan, että terveysalan ammattilaiset pystyvät lentohenkilöstöä paremmin arvioimaan tilanteen lentokoneessa sattuville hätätilanteissa (1). Erään arvion mukaan lääkärien lentokoneessa tekemä työdiagnoosi vastaa
79 % todennäköisyydellä lopullista diagnoosia (4), ja lääkärin ollessa mukana hätälaskutumispäätöksessä potilas on todennäköisemmin otettu sairaalaan laskeuduttua (1). Lisäksi 60 % hätätilanteissa, joissa hoitoalan työntekijä antoi hoitoa, potilaan tila kohentui lennon aikana (4).

Matkustajalentokoneessa sattuvissa hätätilanteissa lääkärit auttavat potilaan käytännön hoitamisessa sekä toimivat konsulttina koneen kapteenille ja lentohenkilökunnalle esimerkiksi hätälaskutumisiin liittyen (1; 2).

5.4.5 Telemedisiininen apu

Suuri osa lento-yhtiöistä hyödyntää lentokoneessa sattuvissa hätätilanteissa telemedisiinista apua (17), minkä avulla voidaan esimerkiksi vähentää hätälaskutumisten määrää (34). Näillä lento-yhtiöillä on sopimuksia maassa sijaitsevia lääkäriyhtiöiden kanssa, mikä mahdollistaa ympäri vuorokauden konsultaatio mahdollisuuuden hätätilanteissa (1). On useita yrityksiä, jotka tuottavat tällaisia palveluita (17). Niillä on maassa sijaitsevat lääkärit, jotka ovat satelliittipuhelin- tai radion avulla yhteydessä koneen kapteeniin (1). Konsulttilääkäri voi mahdollisesti puhua myöös matkustamohenkiloön, auttamaan tarjoutuville sekä itse potilaalle (64). Jotkut konsultaatioyritykset haluavat, että jokaisesta hätätilanteesta täyttävän struktuurin esitettävän ennen konsultaatiota lääkärille valmiiksi (15).

Näissä yrityksissä konsultoitava lääkäri antaa hoitoneuvoja ja tukea hätätilan aikana (17; 1) huomioiden muun muassa koneessa olevan hoitohenkilöstön saatavuuden sekä ensiohitoopakin käytön mahdollisuuden. Konsultti myös arvioi, kuinka kauan koneella kestäis lentää määränpäähän, huomio määränpäässä olevan avun mahdollisuuuden (38), sekä auttaa päätöksen teossa hätälaskutumiseen liittyen (17; 1). Palveluun kuuluu usein myös se, että yhtiöt järjestävät, että ensiohitohenkilöstö menee konetta vastaan sen laskeutuessa määränpäähän (38; 17). Lisäksi niitä voidaan käyttää arvioimaan portilla olevien, huonokuntoisilta näyttävien matkustajien lentokelpoisuutta (17) Nämä yritykset usein myös pitävät kirjaan hätätilanteista, joista niitä on konsultoitu (37; 38).

5.4.6 Hätätilanteen aiheuttama hätälaskeutuminen

Hätälaskeutumiset ovat lentoyhtiölle melko kalliita (35; 37; 46; 15; 16; 1), ja niihen hinta riippuu muun muassa koneen koosta (16). Hinta-arviot vaihtelevat lähteestä riippuen 15 000 dollarista jopa 893 000 dollarin (64; 4; 16).

Hätälaskeutumisista aiheutuvien suoranaisten kenttäkustannusten lisäksi (36) niihin liittyvyys myös muita kustannuksia, kuten esimerkiksi yhdyslennoiltaan myöthästynneille matkustajille maksettavia korvauksia (1). Niistä aiheutuva vaivaa myös toisille matkustajille (35). Lisäksi hätälaskeutumiset voivat aiheuttaa huonoa julkisuutta lentoyhtiölle. Tämän sekä kustannusten vuoksi on järkevää, että niitä sattuu vain, kun potilaan tila sitä edellyttää (37). Hätälaskeutumisilla on myös ekologisia haittoja, esimerkiksi kun lentokone joutuu painorajoitusten takia tyhjentämään polttoainekuorma laskeutumista varten (16).

Koska lääkärin mielipide vaikuttaa vahvasti kapteenin päätökseen koneen hätälaskeutumisesta (4), saatetaan ammattitaitoinen lääkärin panoksella pystyä välttämään turhat hätälaskeutumiset ja niistä aiheutuvat haitat (35). Toisaalta on myös arvioitu, että lääkärin osallistuminen hätätilanteen hoitoon lisäsi hätälaskeutumisen todennäköisyyttä (4). Näyttää siltä, että suurimmassa osassa hätälaskeutumisiin johtavista hätätilanteista on terveydenhoitoalan ammattilainen
mukana tilanteen hoidossa (38; 16). AED:t saattavat vähentää hätälaskeutumisien määrää (43).

Riippumatta lennon pituudesta hätälaskeutumisen kestää erään arvion mukaan vähintään 20–30 minuuttia päätöksen teosta (2). Toisen arvion mukaan mante-reella lennettäessä voitaisiin hätälaskeutuminen tehdä noin 40 minuutissa (35), ja Euroopan mantereella tapahtuvan hätälaskeutumisen keskimääräiseksi kesto on arvioitu noin 35 minuuttia (19). Kestää kuitenkin todennäköisesti enemmän aikaa tehdä hätälaskeutuminen, kun kone lentää esimerkiksi Atlantin yllä (2).

Samassa, 10189 lentokoneessa sattunutta hätätilannetta käsitteeneessä tutki-muksessa, 2,8 % hätätilanteista johti hätälaskeutumiseen (16). Tutkimuksessa, jossa arvioitiin noin 12 tuhatta telemedisinisen konsultaatioon johtanutta hätätilannetta, vuosien 1998 ja 1999 hätälaskeutumisen tekemisen keskiarvo prosentti oli noin 8 % hätätilanteista (37). Muissa lähteissä hätälaskeutumisten osuudet vaihtelivat lähteestä riippuen 3 %–33 % hätätilanteista (15; 4; 16; 2).

Hätätilanteisiin, jotka aiheuttavat eniten hätälaskeutumisia, kuuluvalt sydän- ja verisuonitapahtumat (4; 1), joita on lähteestä riippuen 22,7 %–35 % hätälaskeutumisista (37; 38; 16).

Toinen yleinen syy hätälaskeutumiseen ovat neurologiset sairaudet (4). Eräässä tutkimuksessa aivohalvaukset olivat syyynä 11,3 %:iin ja epileptiset kohtaukset 9,4 %:iin hätälaskeutumisista (16).
Lisäksi yleisiä hätälaskeutumisten syitä ovat myös taijottomuus (15), hengitys- ja ruuansulatusongelmat (4) sekä obstetriset tilanteet (70). Lapsille sattuvista hätätilanteista yleisimpiä hätälaskeutumisiin johtavia syitä ovat kourestelukohtaukset sekä astmakohtaukset (1).

5.4.7 Häätätilanteen hoitamisen normaaliprotokolla

Kun kabiinissa ilmenee terveysongelma, kutsutaan lentoemäntä ensimmäiseksi paikalle. Hän tekee alustavan arvon potilaan tilanteesta (4) sekä tarvittaessa pyytää apua toisilta lentoemänniltä (18). Jos he arvioivat, etteivät pärijä ongelmansa, he kuuluttavat sisäpuhelimella lääkäriä tai muuta terveysalan ammattilaista ilmoittautumaan lentohenkilökunnalle (4). Vapaaehtoista lääkäriä voidaan pyytää näyttämään lääkärin sertifikaatinsa (42), mutta esimerkiksi Finnairilla todistuksia ei tarkisteta, koska se on hankalaa ja vie aikaa (43). Tämän jälkeen hänet viedään potilaan luo, jonne lentoemännät tuovat ensihoitopakin ja muun välineistön (42). Lentoemännät ilmoittavat myös kapteenille tilanteesta (18; 4).

Potilasta hoidetaan monesti hänen omalla istumapaikallaan. Vapaaehtoista auttajaa, esimerkiksi lääkäriä pyydetään keskustelemaan potilaan tilanteesta koneen kapteenin kanssa, alkuavuineen tutkimusten ja mahdollisen hoidon jälkeen (42). Kapteenin rooliin hätätilanteen hoidossa kuuluu olla yhteydessä maahan ja tarvittaessa konsultoida potilaan tilanteesta, järjestää hätälaskeutuminen sekä jatkohoito laskeuduttaessa (34). Eräs keino hätätilanteen hoitamiseksi on, että kapteeni laskee lentokorkeutta (42; 1), mikä nostaa PAO2:ta, kuten myös kabiinin paineistuksen lisääminen (27). Tässä opinnäytetöissä ei käydy läpi yksittäisen potilaan hoitoa, eikä potilaan jatkohoitoa.

6 Pohdinta

6.1 Työn luotettavuus ja eettisyys

Materiaali oli pääosin englanninkielistä, mikä voi pahimmillaan johtaa vääriin tulkintoihin ja valheelliseen tietoon. Tekijä pyrki minimoimaan tämän riskin, ja sitä kautta lisäämään työn luotettavuutta, käyttämällä matalalla kynnyksellä.
apunaan perinteistä sanakirjaa sekä internet sivuston sanakirjaa. Vaikeimmat käännökset tekijä jätti työstämisvaiheessa kääntämättä ja käänsi ne sitten yhdessä englannin kielen opettajan kanssa.

Tekijä päättti olla kääntämättä taulukoissa 3-5 olevien pakkien sisältöjä, koska joidenkin välineiden/tarvikkeiden käännöket ovat monitulkintaisia, eikä tekijä halunnut antaa niiden sisällöstä väärää tietoa.

Luotettavuutta lisää myös tekijän työskentelytapa. Kaikkien lähteiden oleellista teoriaa sisältävät lauseet alueen vaihtoehtoja ja numeroihin, ja numerointi säilytettiin koko työstämisvaiheen ajan, jolloin tekijän oli helppo tarkistaa tiedon oikeellisuus missä prosessin vaiheessa tahansa. Ennen kuin alkuperäiset numeroinnit muutettiin lopulliseen numerovitemuotoon, tekijä tarkisti jokaisen yksittäisen väitteen oikeellisuuden alkuperäisestä lähteestä.

Työn luotettavuutta lisää myös kattava lähdemateriaali sekä lähteiden alkuperä. Lähes kaikki teoriaosassa käytetyt lähteet on luotettavista englanninkielisistä tietokannoista, ja esimerkiksi 30/45 englanninkielisessä haussa löytyvätä ja tässä opinnäytetöössä käytetyistä lähteestä on ScienceDirect–tietokannasta. Siellä julkaistaan vain tiukat laatuvaatimukset läpäissytä aineistoa, jolloin tietoa voidaan pitää luotettavaksi.

Työn luotettavuutta heikentää se, ettei tekijällä ollut aikaa varmistaa opinnäytteeseen kirjoitettuun tiedon oikeellisuutta esimerkiksi ilmailulääkäriltä. Käytetty materiaali on myös pääosin lähteistä, jotka ovat ilmestyneet ennen vuotta 2011, jolloin on mahdollista, että jotkin tässä opinnäytetyössä esitettyjä faktat ovat ehtineet vanhentua. Lisäksi manuaalisella tiedonhalla olisi saattanut voida löytää paremmin suomalaista tiedoa asiasta.

Tekijä kuitenkin myöntää, että on aina mahdollista, että tällainen opinnäytetyö on tehty aikaisemmin, eikä tekijä laajasta hausta huolimatta vain sitä löytänyt.

Myös mahdollisten vastakkaisten näkemysten tuominen esiin, lisää työn eettisyttä.

6.2 Tulosten tarkastelu

Tulosten perusteella voidaan sanoa, että vaikka lentämiseen liittyvät tiettyjä rasi-tustekijöitä, kuten esimerkiksi hypobaarinen hypoksia ja kaasujen laajeneminen, jotka lentoa suunnittelevan perussairaan tulee ottaa huomioon, ei suurelle osalle ihmisistä lentämisestä aiheudu haittaa. Joidenkin fysiologisten tekijöiden, kuten matalan ilmanpaineen, aikaansaatavan vaikutuksen korostuivat kaikissa lähteissä, kun taas esimerkiksi kiihtyvyyden merkitys lentomatkustajan terveyteen tuli esille vain muutamassa lähteessä.

Vaikka lentoyhtiöt ovat jokseenkin varustautuneet lennoilla sattuvien hätätilanteiden hoitoon, voi lentokoneessa saadun avun tai hoidon taso vaihdella esimerkiksi suunnittuna tarjoutuneen terveysalan ammattilaisen tietotaidon mukaisesti. Käsittelystä materiaalista tulee selvästi esille lääkärikeskeisyyssä hätätilanteen sattuessa. Täytyy kuitenkin muistaa, että harva lääkäri on työssään teke-misissä sairaalan ulkopuolisten hätätilanteiden hoitamisen kannsa.

Monesti sairaalan ulkopuolisessa ensihoitajalla voi olla koneessa parempi asiantuntelus vastaavan hätätilanteen hoitamisesta kuin lääkärillä (71). On kuitenkin huomioitava, että kabinin erityispiirteet heitoypäräistönä, kuten tilan puute, meluisuus, tärinä, sekä välineiden sekä muun henkilöstön vieraus voivat tehdä tilanteiden hoitamisen vaikeaksi pitkästä akuuttihoito työtäusteesta huolimatta.

Eräs materiaalista laajasti esiin nousut ongelma on se, etteivät lentoyhtiöt noudata yhteisiä standardeja lentojen aikana sattuvien hätätilanteiden raportoinnissa. Tästä johtuen on vaikeaa yksiselitteisesti määrittää yleisimmät hätätilanteet sekä niiden esiintyvyyys, jolloin epidemiologinen tutkimus käräsi. Tässä opinnäytetyössäkin joudutaan siksi varsin yleisellä tasolla kuvaamaan joitakin yleisimpiä tilanteita. Lisäksi tekijä päätti kuvata lyhyesti myös esimerkiksi trom-
boembolian mahdollisuutta koneessa. Tämän tekijä teki pääosin siksi, että aihe
on niitä harvoja, joista on lentomatkustamiseen liittyen kirjoitettu todella run-
saasti.

Tekijä kokee saaneensa pääosin vastaukset asettamiinsa tutkimuskysymyksiin.
Tämän lisäksi työstä löytyy myös varsinaisten tutkimuskysymysten ulkopuolelle
ulottuvaa teoriaa. Koska työ on luonteeltaan kuvaava, on tällä taustatiedolla
oma paikkansa työssä. Tekijän alkuperäinen tarkoitus oli kuvata nimenomaan
pitkän matkan lennoilla sattuvien äkillisten sairaustapausten hoitoa. Kuitenkin
ainoastaan yhdessä lähteessä mainittiin eroja lyhyen ja pitkän matkan lennoilla
sattuviin hätätilanteisiin, minkä vuoksi tekijä muutti otsikkoa.

6.3 Oma oppiminen ja johtopäätökset

Luettu materiaali sisälsi paljon teoriaa, mikä ei ollut ennestään tuttua. Tekijä
kokee oppineensa paljon esimerkiksi lentämiseen liittyvää fysiologiaa sekä
yleistietoa lentomatkustamiseen liittyen.

Uuden asian oppiminen voi jo sinänsä olla haastavaa, mutta kun monimutkaisia
asiakokonaisuuksia pyrkii oppimaan lähes yksinomaan englannin kielellä, muut-
tuvat asiat entistä haastavammiksi. Tämän lisäksi oppinäyttelyö oli näkökulmal-
taan todella laaja ja siitä johtuen erityisen suuritoinen.

Näin suuritoisen oppinäyttelyön tekeminen muun koulun ohella osoittautui todel-
liseksi haasteeksi. Tästä huolimatta tekijä koki prosessin kaiken kaikkiaan mie-
lekkääksi. Kapeamman näkökulman ottaminen työhön olisi ollut helpompaa,
mutta koska laajasti matkustajalentokoneessa sattuvien hätätilanteiden hoita-
mista kuvaavia töitä ei tekijän tiedon mukaan suomen kielellä ole, oli laajan nä-
kökulman valitseminen tekijälle itsestäänselvyyys.

Tiedonhaussa tuli esille kaksi tähän aiheeseen liittyvää, Finnairille tehtyä oppin-
äyttelyötä. Toinen näisti keskitty kuitenkin kuvaamaan valmiiksi sairaiden poti-
laiden kuljetusta matkustajalentokoneissa (72), ja toinen työ koski Finnairin
matkustajalentokoneissa vuoden aikana sattuneita sairaustapaustisia sekä ni-
den hoitoa. Tämä työ oli kuitenkin kohtuullisen suppea (73).
Tämä työ on tiettävästi ainoa suomalainen, laajasti matkustajalennonilla tapahtuvia terveydellisten hätätilanteiden hoitamista, kuvaava opinnäytö. Työn laajuuden vuoksi sitä voi esimerkiksi hyödyntää lähdemateriaalinä ja jatkotutkimusaiheita varten. Tekijän mielestä näin suuren tietomäärän kokoaminen yksiin kanni on myös itsessään arvokasta.

6.4 Jatkotutkimusaiheita

Opinnäytöön laajan näkökulman vuoksi ei tässä työssä pystytety kovin tarkasti keskittymään mihinkään yksittäiseen matkustajalentoypäräistössä tapahtuvan hoidon osa-alueeseen, eikä myöskään kuvaamaan sitä miten tilanteen hoito jatkuu koneen laskeutuessa maahan. Yksi jatkotutkimusaihe voisi olla esimerkiksi tutkia kvalitatiivisesti matkustajalentokonen ja ensihoitopalvelun välistä toimintaketjua, kun lentokoneessa on sattunut hätätilanne.

Mielenkiintoista olisi myös tehdä tarkempi selvitys matkustajalentokonessa annetun hoidon vaikuttavuudesta suhteesa maassa toimivan ensihoitopalvelun antamaan hoitoon. Tämä mahdollistaisi näiden kahden vertailun, jonka pohjalta voitaisiin paremmin arvioida sitä tarvitseko matkustajalentokonessa tehdä muutoksia nykyisen toiminnan kehittämiseksi.
Kuvat

Kuva 1. Finnairin kaukolentojen business-luokan tuoli, s. 43. Kuva Finnair Oyj.

Kuva 2. Finnairin ensihoitopakki (Emergency Medical Kit), s. 52. Kuva Finnair Oyj.

Kuva 3. Finnairin käyttämä AED-malli, s. 57. Kuva Finnair Oyj.

Taulukot

Lähteet

Suomenkieliset hakusanat:

<table>
<thead>
<tr>
<th>Suomenkieliset hakusanat:</th>
<th>Liite 1 (1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lentäminen</td>
<td>Lentäminen ja ensiapu</td>
</tr>
<tr>
<td>Lentäminen ja ensihoito</td>
<td>Lentäminen ja akuuttihoito</td>
</tr>
<tr>
<td>Lentäminen ja fysiologia</td>
<td>Lentäminen ja terveysriskit</td>
</tr>
<tr>
<td>Lentäminen ja terveys</td>
<td>Lentäminen ja elvytys</td>
</tr>
<tr>
<td>Lentäminen ja sairaanhoito</td>
<td>Lentäminen ja lääketiede</td>
</tr>
<tr>
<td>Lentäminen ja sairauskohtaukset</td>
<td></td>
</tr>
<tr>
<td>Lentotekniikka</td>
<td>Ilmailu ja ensiapu</td>
</tr>
<tr>
<td>Ilmailu</td>
<td>Ilmailu ja ensiapu</td>
</tr>
<tr>
<td>Ilmailu ja ensihoito</td>
<td>Ilmailu ja akuuttihoito</td>
</tr>
<tr>
<td>Ilmailu ja fysiologia</td>
<td>Ilmailu ja terveysriskit</td>
</tr>
<tr>
<td>Ilmailu ja terveys</td>
<td>Ilmailu ja elvytys</td>
</tr>
<tr>
<td>Ilmailu ja sairaanhoito</td>
<td>Ilmailu ja sairauskohtaukset</td>
</tr>
<tr>
<td>Ilmailulääketiede</td>
<td>Ilmailulääketiede</td>
</tr>
<tr>
<td>Matkailu ja terveysriskit</td>
<td>Matkailu ja terveys</td>
</tr>
<tr>
<td>Matkailu ja lääketiede</td>
<td>Matkailu ja sairauskohtaukset</td>
</tr>
<tr>
<td>Lentoliikenne</td>
<td>Lentoliikenne ja terveysriskit</td>
</tr>
<tr>
<td>Lentoliikenne ja terveys</td>
<td>Lentoliikenne ja sairauskohtaukset</td>
</tr>
<tr>
<td>Finnair®</td>
<td></td>
</tr>
<tr>
<td>Medi-heli</td>
<td></td>
</tr>
</tbody>
</table>

Englanninkieliset hakusanat:

<table>
<thead>
<tr>
<th>Englanninkieliset hakusanat:</th>
<th>Air travel and medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air travel and medicine</td>
<td>Air travel and first-aid</td>
</tr>
<tr>
<td>Air travel and cpr</td>
<td>Air travel and paramedicine</td>
</tr>
<tr>
<td>Air travel and emergency care</td>
<td>Air travel and nursing</td>
</tr>
<tr>
<td>Air travel and primary care</td>
<td>Air travel and health risks</td>
</tr>
<tr>
<td>Air travel and physiology</td>
<td>Air travel and medical emergencies</td>
</tr>
<tr>
<td>Air travel and environment</td>
<td></td>
</tr>
<tr>
<td>Aviation and medicine</td>
<td>Aviation and first-aid</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Aviation and cpr</td>
<td>Aviation and paramedicine</td>
</tr>
<tr>
<td>Aviation and emergency care</td>
<td>Aviation and nursing</td>
</tr>
<tr>
<td>Aviation and primary care</td>
<td>Aviation and health risks</td>
</tr>
<tr>
<td>Aviation and physiology</td>
<td>Aviation and medical emergencies</td>
</tr>
<tr>
<td>Aviation and environment</td>
<td></td>
</tr>
<tr>
<td>In-flight and medicine</td>
<td>In-flight and first-aid</td>
</tr>
<tr>
<td>In-flight and cpr</td>
<td>In-flight and paramedicine</td>
</tr>
<tr>
<td>In-flight and emergency care</td>
<td>In-flight and nursing</td>
</tr>
<tr>
<td>In-flight and primary care</td>
<td>In-flight and health risks</td>
</tr>
<tr>
<td>In-flight and physiology</td>
<td>In-flight and medical emergencies</td>
</tr>
<tr>
<td>In-flight and environment</td>
<td></td>
</tr>
<tr>
<td>Cabin crew and medicine</td>
<td>Cabin crew and first-aid</td>
</tr>
<tr>
<td>Cabin crew and cpr</td>
<td>Cabin crew and paramedicine</td>
</tr>
<tr>
<td>Cabin crew and emergency care</td>
<td>Cabin crew and nursing</td>
</tr>
<tr>
<td>Cabin crew and primary care</td>
<td>Cabin crew and health risks</td>
</tr>
<tr>
<td>Cabin crew and physiology</td>
<td>Cabin crew and medical emergencies</td>
</tr>
<tr>
<td>Cabin crew and environment</td>
<td></td>
</tr>
<tr>
<td>Commercial aircraft and medicine</td>
<td>Commercial aircraft and first-aid</td>
</tr>
<tr>
<td>Commercial aircraft and cpr</td>
<td>Commercial aircraft and paramedicine</td>
</tr>
<tr>
<td>Commercial aircraft and emergency care</td>
<td></td>
</tr>
<tr>
<td>Commercial aircraft and nursing</td>
<td></td>
</tr>
<tr>
<td>Commercial aircraft and primary care</td>
<td>Commercial aircraft and health risks</td>
</tr>
<tr>
<td>Commercial aircraft and physiology</td>
<td>Commercial aircraft and medical emergencies</td>
</tr>
<tr>
<td>Commercial aircraft and environment</td>
<td></td>
</tr>
<tr>
<td>Flight nursing</td>
<td></td>
</tr>
<tr>
<td>Aeromedical transport</td>
<td></td>
</tr>
<tr>
<td>Aeromedical illness epidemiology</td>
<td>Passenger medical incidents</td>
</tr>
</tbody>
</table>