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The thesis was completed for the Research and Development (R&D) laboratory at Kiil-

to Oy.  The purpose of the thesis was to study the delamination of glued solid timber 

and glulam, glued with moisture cured one component polyurethane adhesives (1K 

PUR) and an emulsion polymer isocyanate adhesive (EPI) using the new easyQ DLA 

appliance.  Delamination is the failure of the adhesive layer between wood lamellae, 

used to produce glued solid timber and glued laminated timber (glulam).  Delamination 

tests are accelerated weather exposure tests which aim to simulate the stresses over the 

lifetime of a glued timber structure.   

 

From July 2013, glued solid timber and glulam produced in Finland has to be CE-

marked. This means production must be covered by the harmonized EN 14080 standard, 

which includes the quality control standard EN 391 as well as the adhesive evaluation 

standard EN 302-2.  Currently, 1K PUR adhesives can be used for glued solid timber 

and glulam production.  In the final draft of the FprEN 14080:2013 standard, EPI adhe-

sives can also be used, though only for service class 1 & 2 applications.   

 

Parallel EN 391 quality control samples, provided by Kontio, were tested in two differ-

ent drying chambers and four different conditions.  The objective was, to evaluate the 

need for a drying chamber to accompany the delamination appliance, as well as com-

pare results with Kontio.  A method following EN 302-2 as closely as possible was de-

veloped for the second objective of comparing R&D formulated adhesives. 

 

The testing of parallel quality control samples resulted in higher delamination percent-

ages at Kiilto when compared with tested at Kontio.  Of the 36 parallel samples tested, 

35 achieved accepted status at Kiilto and 36 at Kontio.  Out of the adhesives tested with 

the modified EN 302-2 method, two samples passed the test while 6 failed.  The sam-

ples that passed were the short closed assembly time commercial 1K PUR sample and 

the short closed assembly time sample for an experimental 1K PUR formulation.  

 

The results from comparing quality control samples from Kontio show that drying con-

ditions affect EN 391 results greatly, and thus there is a need for a specific drying 

chamber.  The comparison of adhesives formulated in the laboratory showed the im-

portance of assembly time for good bonding performance and resulted in a possible new 

method for determining assembly time.  In addition, the performance of adhesives could 

be compared, using instructions prepared for the thesis.  The results for EPI were mixed, 

and require further study on the causes.   
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Puuliimojen delaminointivastuksen määrittäminen käyttäen alipaine – paine kyllästys 

menetelmää 

 

Opinnäytetyö 56 sivua 

Huhtikuu 2013 

Opinnäytetyön tavoitteena oli tutkia lamellihirren sekä liimapuun delaminoitumista.  

Opinnäytetyö tehtiin Kiilto Oy:n tuotekehitysosastolle.  Työn tarkoituksena oli uuden 

easyQ delaminointilaitteen käytön aloittaminen, sekä uusien testausmenetelmäohjeiden 

kehittäminen.  Delaminointilaitteen avulla voidaan simuloida sään aiheuttamaa pitkän 

ajan kosteusrasitusta rakenteellisissa puutuotteissa.  Suomessa heinäkuussa 2013 voi-

maan tuleva lainsäädäntö edellyttää, että kaikki lamellihirsi- ja liimapuutuotanto on CE-

merkittyä.  Jotta rakennustuote voidaan CE-merkitä, on siinä käytettyjen liimojen oltava 

EN standardien mukaisia.   

 

Työn tarkoituksena oli vertailla Kiilto Oy:n ja Kontion laadunvalvonnassa saamia testi-

tuloksia ja arvioida saatujen tuloksien perusteella mahdollisen kuivauskaapin tarvetta. 

Vertailu tehtiin delaminoimalla tuotantokappaleita standardin EN 391 mukaisesti yh-

teistyössä Kontion kanssa.  Lisäksi työssä vertaillaan rinnakkain neljää Kiilto Oy:n 

valmistamaa liimaa. Kolmea kosteuskovettuvaa polyuretaaniliimaa (1K PUR) ja yhtä 

kaksi-komponenttista emulsiopolymeeriisosyanaattiliimaa (EPI) vertailtiin menetelmäl-

lä, joka pyrkii noudattamaan standardin EN 302-2 laboratoriomenetelmää Kiilto Oy:n 

olosuhteissa.   

 

Rinnakkain tehdyssä laadunvalvonnassa Kontion delaminointitulokset olivat kautta lin-

jan matalampia.  Kuivattaessa palat 65 ˚C:n lämpötilassa ja 9 %:n suhteellisessa kosteu-

dessa erot olivat pienempiä.  Kaiken kaikkiaan Kontiolla läpäisivät kaikki palat, ja Kiil-

lolla 35 palaa 36:sta.  Vain kaksi kahdeksasta laboratoriomenetelmällä tehdyistä näyt-

teistä saavuttivat hyväksyntärajan. 

 

Kiillolla valmistettujen liimojen keskinäisessä vertailussa selvisi, että koontiajalla oli 

erityisen suuri merkitys 1K PUR-liimojen delaminointitulokseen.  EPI-liiman tuloksista 

samaa ei voitu päätellä.  Eri kuivausolosuhteiden tulosten perusteella kuivauskaapin 

hankinta olisi suositeltavaa.  Jatkossa liimojen delaminointivastuksen tutkimista jatke-

taan easyQ DLA laitteella. 

 

Asiasanat: delaminointi, lamellihirsi, liimapuu, 1K PUR, EPI 
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1 INTRODUCTION 

 

 

Kiilto Oy is a Finnish chemical company based in Lempäälä, Finland.  Kiilto specialises 

in providing preparation, bonding and surface coating products (Kiilto Oy 2013).  This 

thesis was completed in the research and development laboratory of Kiilto Oy.  Re-

search and development is important for Kiilto, which aims to receive 20 % of annual 

sales for each year from new products.  The research and development laboratory at 

Kiilto focuses on creating tailor-made, environmentally sustainable, efficient solutions 

for customers.  

 

The background purpose of the thesis is to study the delamination of glued solid timber 

and glued laminated timber.  Kiilto has invested in an easyQ DLA vacuum-pressure 

delamination appliance, used to simulate stresses created in glued solid and laminated 

timber exposed to weather over a long period of time.  Delamination is the adhesive 

failure between layers of bonded wood.  From 1.7.2013, a CE-mark will become com-

pulsory for building products.   For manufacturers to brand their glued solid and lami-

nated timber products as CE - certified, the adhesive bonds must pass delamination 

quality control standard SFS EN 391 included in the standard SFS EN 14080:2005, 

which also includes the delamination laboratory method standard SFS EN 302-2 for 

certifying adhesives.     

 

The first objective of the thesis is to provide usage instructions for the easyQ DLA de-

lamination appliance for assessing quality control specimens produced in a glued solid 

or laminated timber factory, as well as evaluate the need for a drying chamber to ac-

company the device.  The aim is to use parallel SFS EN 391 method B test samples 

from the quality control process at Kontio, a glued solid timber factory located in north-

ern Finland.  Kontio is one of the largest producers of log cabins, built from glued solid 

timber, in the world (Kontio, 2013).  Kontio kindly agreed to supply quality control 

samples from their normal production for this objective.  The results would provide a 

starting point for comparing customer results to the new results from Kiilto.  The second 

objective of the thesis is to create a method for comparing the delamination perfor-

mance of adhesives available or formulated in the research and development laboratory 

at Kiilto, and use it to compare the performance of three single component moisture 

curing polyurethane adhesives and one emulsion polymer isocyanate adhesive.  The 
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method is needed to study the effect of different adhesive formulations on delamination 

test performance for development and certification purposes.  For this reason the aim is 

that the method should follow SFS EN 302-2 as closely as possible.  
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2 BACKGROUND 

 

 

Wood as a building material is light, strong and environmentally friendly.  However, 

using solid wood for buildings is not efficient, or economically viable, because of the 

long time needed to grow large enough trees for large structures.  The forestry industry 

is very efficient in using all the parts of the trees, but adhesives are needed to fully ex-

ploit the potential of wood as a construction material.  Glued solid or laminated timber 

when made with a certified adhesive is stronger and much more versatile in shape than 

solid timber.  The chemical composition of wood, however, presents bonding challeng-

es as it is heterogeneous.  New wood adhesives are being developed constantly around 

the world.  The main advancements in wood adhesives have been in increasing water 

resistance, environmentally friendly components, shorter pressing times, easier produc-

tion and innovative new applications for adhesive products.  As safety is important 

when constructing buildings, there are strict requirements on adhesives used to manu-

facture glulam, as well as strict quality control requirements to ensure product quality. 

 

 

2.1 Adhesives used in the study 

 

The samples that were used for comparing Kontio’s quality control with the easyQ DLA 

appliance EN 391 method B were bonded with a commercial moisture-cure polyure-

thane adhesive.  The adhesives compared using the created test method were one com-

mercial moisture-cure polyurethane formulation, two experimental polyurethane formu-

lations and one commercial emulsion polymer isocyanate adhesive.  The experimental 

adhesives chosen for the study were formulated in the research and development labora-

tory from commercially available raw materials. 

 

 

2.1.1 One-component moisture-cured polyurethane adhesives 

 

One-component moisture-cured polyurethane adhesives (1K PUR) were first used for 

gluing glulam in 1985.  They belong to the polyurethane family.  1K PUR adhesives 

have since their first use gradually received acceptance for gluing load bearing struc-

tures, with the first adhesive receiving certification in the 1994.  1K PUR adhesive ad-
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vantages are: no mixing, easy application, low coating weight, no formaldehyde, clear 

or wood colored weather resistant bond lines. (Wang 2012.)  

 

Dr. Otto Bayer, working for I.G. Farben, discovered basic polyurethane chemistry in 

1937.  The first polyurethane was formed by reacting 1,8-octane diisocyanate with 1,4-

butanediol, which formed the ester of a carbamic acid, commonly now known as a ure-

thane or PU or PUR.  Polyurethanes are formed when a diisocyanate or polyisocyanate 

is reacted with a diol or polyol. (Szycher 2012, 1.) An example of polyurethane synthe-

sis is shown in equation (1) from Öertel (1985, 11).   

 

  HO—R’—OH + OCN—R—NCO + HO—R’—OH + OCN—R—NCO + … 

       (diol)              (diisocyanate)         (diol)                  (diisocyanate) 

 

      O   O                          O                              O (1) 

 

  …O—R’—O—C—NH—R—NH—C—O—R’—O—C—NH—R—NH—C…    

  (polyurethane) 

 

The reaction in equation (1) is called a polyaddition reaction, and the variation of the di- 

or polyisocyanate (R) and di- or polyol (R’) components can form any imaginable num-

ber of polyurethane products (Öertel 1985, 11).  The Polyols used in polyurethanes are 

hydroxy functional macro molecules.  Polyethers are the most important molecules 

used, but also polyester or any combination can be used.  The molecular weight varies 

from 250-1000 for highly branched polymers to 1000-8000 for linear or slightly 

branched polymers.  The hydroxyl nature, primary or secondary, as well as its hydroxyl 

functionality and molecular weight are important in determining the properties of the 

polymer. (Ulrich 1996, 399.) 

 

The most important component of a moisture cured 1K PUR adhesive is called a NCO- 

prepolymer. A NCO-prepolymer is formed by the polyaddition reaction described in 

equation (1), but with using an excess molar amount of the di- or polyisocyanate, to 

create a polymer with reactive NCO groups at each end of the polymer chain (Öertel 

1985, 20).  A common di-isocyanate used for prepolymer production is MDI, or me-

thyldiphenyl isocyanate.  When a NCO-prepolymer comes into contact with water, usu-
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ally from atmospheric humidity or water in the substrate to be bonded, the reaction in 

equation (2) taken from (Öertel 1985, 8) occurs.  

 

                                          O  

 

 R—N=C=O + H2O          R—NH—C—OH       

 (prepolymer + water) (carbamic acid) (free isocyanate) (2) 

                O 

 

 R—NH—C—NH—R   + CO2 

              (urea + carbon dioxide) 

 

In equation (2) the NCO-prepolymer reacts with water, forming a carbamic acid that is 

unstable.  Carbon dioxide is split, and an amine is formed.  The amine then reacts with 

isocyanate remaining in the NCO-prepolymer, forming a urea.  The excess isocyanate in 

the prepolymer serves to crosslink the polyurea or polyurethane that is formed forming 

a poly (urea urethane) film.  Carbon dioxide also acts to form bubbles, which can evap-

orate if the film is thin, however, in thick films the carbon dioxide creates a foamy 

structure. (Öertel 1985, 8-9.)  The main morphological feature of a 1K PUR film is the 

separation into hard and soft segments.  The hard segments are formed from the di- and 

polyisocyanate sections and the soft segments are formed from the polyol sections. (Ren 

2010, 19.)  

 

In addition to the prepolymer, 1K PUR adhesives can contain various solvents, fillers, 

extenders, defoamers and catalysts.  These can change the final properties of the adhe-

sive, modifying the viscosity and mechanical properties such as elongation at break of 

the adhesive.  In addition, fillers can be used to improve the heat resistance of the adhe-

sive.  A common filler used is calcium carbonate (CaCO3).  In general, unfilled 1K PUR 

adhesives are used for bonding glulam.  Catalysts are used to adjust the curing rate of 

the adhesive which in turn adjusts the pressing time required for a good adhesive bond.  

The composition of 1K PUR adhesives greatly affect the bonding behavior and delami-

nation resistance of adhesively bonded members. 

 

 

R—NCO  
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2.1.2 Emulsion polymer isocyanate adhesives 

 

Emulsion polymer isocyanate (EPI) adhesives are two-component dispersion and isocy-

anate adhesive systems.  Because the dispersion component is thermoplastic and the 

isocyanate hardener thermosetting, EPI adhesives have versatile properties.  The two 

components of EPI adhesives are stored separately but mixed just before use.  EPI adhe-

sives were first developed in Japan in the 1970’s and named aqueous polymer isocya-

nate adhesives (API), and have spread to Europe and the US over the past 15 years 

named EPI adhesives.  The components are a water based polymer dispersion and an 

isocyanate hardener.  Common polymers used in the dispersion are: polyvinyl alcohol 

(PVA), polyvinyl acetate (PVAc), ethylene vinyl alcohol (EVA), vinyl acetate-acrylate 

copolymerized emulsion (VAAC), acrylic-styrene emulsion (AcSt) and styrene-

butadiene latex (SBR).  In addition to polymers, the dispersion can contain fillers, dis-

persion agents, extenders, defoamers and anti-fungal agents as well as water.  Fillers can 

be CaCO3, wood flour, talc, clays, silica’s and shell flours.  Fillers affect the viscosity 

and final properties, including wear on planing tools which is an important woodwork-

ing consideration. (Grøstad & Pedersen 2010, 1358-1360.)     

 

The isocyanate portion is usually Polymeric MDI (pMDI).  Polymeric MDI is a byprod-

uct of pure MDI production.  The chemical structure of MDI is shown in figure 1.  MDI 

consists of two phenyl groups with two reactive isocyanate groups providing a func-

tionality of 2.  The MDI in figure 1 is the 4,4’ isomer, with the isocyanate attached op-

posite to the methylene and is also known as pure MDI.   Polymeric MDI consists of a 

mixture of about 50% pure MDI (2,2’, 2,4’ and 4,4’ isomers) and the other 50% is com-

prised of oligomeric forms of isocyanate with a high functionality of 2,5-2,7. (Ulrich 

1996.)  Polymeric MDI is a low viscosity liquid and contains about 30% isocyanate 

(Ren 2010, 14).  Because of its high functionality, pMDI is an effective crosslinker.  A 

new type of pMDI is called emulsifiable pMDI (EPMDI).  EPMDI is formed by attach-

ing a hydrophilic chain to pMDI, making it water soluble.  EPMDI could be particularly 

useful in EPI adhesives to provide easy and even mixing of the two components which 

is important for good bond results. 
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FIGURE 1. The chemical structure of 4,4’ MDI and pMDI (Greenberg & Sekizawa 

2000 edited)  

 

 

EPI adhesives differ from 1K PUR adhesives in that they need to be mixed before use. 

The EPI components are mixed either manually or mechanically, before application on 

to the surface to be bonded.  The mixing ratio for an EPI adhesive is usually 100 parts 

dispersion and 5-20 parts isocyanate cross-linker.  The two components are stored sepa-

rately, which allows them to have a long shelf-life.  The curing of an EPI adhesive oc-

curs gradually, with the isocyanate hardener acting as a cross-linker and an adhesive 

film of cross-linked polymers coalescing.  Several reactions are taking place simultane-

ously during the curing process.  Water is removed from the bond line by evaporation 

and capillary action into wood.  The emulsion is coalescing to form a film of the poly-

mer particles.  The isocyanate in the hardener reacts with water, PVA, hydroxyl groups 

on the wood surface, hydroxyl groups in the emulsion and itself.  These reactions form 

urethanes and biurets.  After mixing, the EPI adhesive has a pot life, which is dependent 

on the components used and the ratio of the mixed adhesive.  A good quality EPI bond 

line is formed when the adhesive is used within its pot life, which can be checked via 

testing bonded assemblies using the EN 302-2 standard. (Grøstad & Pedersen 2010, 

1361-1364.)  

 

EPI adhesives can be cured at low temperatures, which is an advantage.  In addition, 

EPI adhesives have good heat and moisture resistance.  The dried bond line is light col-

ored, which is important for aesthetic reasons.  The viscosity can be adjusted to be used 

with contactless finger-jointing machinery, and the curing time is adjustable by varia-

tion of the composition.  EPI adhesives are currently used in laminated solid wood pan-

els, window frames, veneer boards, plywood, parquet flooring, and glulam and glued 

solid timber.  In addition, EPI adhesives attach well to metals, making it an ideal adhe-

sive system for composite structures. (Grøstad & Pedersen 2010, 1370-1378.) 

OCN NCO

4,4' MDI
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2.2 Wood composition  

 

Successful bonding of wood lamellae into glulam is dependent not only on the adhesive 

used, but also on the wood substrate being bonded.  Wood in general is composed of 

wood polymers, extractives and moisture.  The wood surface being bonded is polar, 

anisotropic, hygroscopic and has a heterogeneous surface.   Scots pine and spruce that 

are used for glued solid timber and glulam are both coniferous, softwood wood species. 

(Ren 2010, 3; Frihart 2005, 216,225; Forest.fi 2012; Rowell 2005, 11.) 

 

 

2.2.1 The macro structure of wood lamellae 

 

Wood lamellae are made up of two main zones, sapwood and heartwood.  Sapwood is 

lighter in color, while heartwood is darker.  Both sapwood and heartwood are character-

ized by earlywood and latewood sections, which are known as annual rings, and can be 

seen as alternating dark and light stripes.  Annual rings in Scots pine can be 0,1 mm to 

10 mm apart, depending on the speed of growth.  Other macroscopic features which can 

be seen are the pith, resin canals, knots, rays, and reaction wood known as juvenile-, 

tension and compression wood.  The cells of coniferous softwoods are made up of 90-

95% longitudinal tracheid cells, and 5-10 % transversal ray parenchyma cells. (Sjöström 

1981, 1-20.) 

 

Sapwood is defined as the part of the tree which is metabolically active.  Sapwood has 

several functions that affect its composition. Sapwood provides transport of water and 

nutrients, it conducts sap and also creates and stores biochemicals such as starch and 

lipids (Rowell, 2005, 12; Sjöström 1981, 2).   Sapwood is generally considered easier to 

bond than heartwood, as it is more polar and contains fewer extractives than heartwood 

(Frihart 2005, 225).   

 

Heartwood is formed from sapwood cells into the center of a tree trunk.  Heartwood is 

made up of dead cells, filled with biochemically produced extractives.  The extractives 

give heartwood it’s typical darker color as can be seen in picture 1.  These extractives 

are produced by sapwood cells in a layer around the heartwood, and deposited for stor-

age.  Because of the high extractive content in heartwood compared to softwood 

(Sjöström 1981, 91), heartwood is less polar and harder to bond (Frihart 2005, 226).   
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Phenolic compounds in scots pine heartwood give protection against biological attack.  

In particular decay resistance can be linked to the stilbene content. (Verta et al 2008.)  

PICTURE 1. Several macroscopic features of Scots Pine 

 

Earlywood is formed in the spring and summer in the northern hemisphere.  Latewood 

is typical of autumn and winter growth.   Earlywood is characterised by thin walls and 

large cavities in the trachial cells.  Cavities and pits are important for transport between 

cells.  Latewood has thicker cell walls and less cavities, which gives it a higher density 

and darker color.  (Sjöström 1981, 4-8.)  The smaller amount of cavities and thicker cell 

walls of latewood cells makes it harder to bond, because the adhesive cannot penetrate 

easily to the lumen which is the central part of dead wood cell (Frihart 2005, 227). 

 

Resin canals are empty spaces in wood surrounded by parenchyma cells that produce 

resins.  Pines contain larger resin canals that can be seen, whereas they are smaller in 

spruce.  (Frihart 2005, 21-22).  Resin canals or pockets typically contain resins that are 

difficult to bond and liquify in the high temperatures of the drying process of the delam-

ination standards. 

 

 

2.2.2 Longitudinal tracheid cell structure 

 

A tracheid cell in Scots Pine and Norway spruce is generally between 1 and 4 mm in 

length, and 0,02 mm and 0,04 mm in width, which means it can be seen with the naked 

eye.  The finer structure of a tracheid cell is shown in figure 2.  The relative composi-

tion of cellulose, hemicellulose and lignin in each of the layers labeled in the figure: the 

middle lamella, primary wall, inner layer, middle layer and outer layer, are all different.  

The basic structure is similar in each layer.  A layer is made up of cellulose microfibrils 

Heartwood Sapwood Pith Knot 
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providing the backbone, combined with a hemicellulose matrix and surrounded by lig-

nin. The Inner- (S3), Middle- (S2) and Outer- (S1) layers of the secondary wall differ in 

the orientation of the cellulose microfibrils as well as in thickness. (Missouri S&T 2012; 

Sjöström 1981, 12; Peura 2007, 9.) 

 

 

FIGURE 2.  The layered structure of a softwood tracheid cell (Missouri S&T 2012) 

 

 

2.3 The chemical structure of the wood surface 

 

An important factor affecting bond quality in glued laminated timber is the surface of 

the wood being bonded.  The underlying structure of the wood cell is made up of four 

main polymer types: cellulose, lignin, hemicellulose and extractives.  These make up 

the structure of wood in varying percentages, depending on the species and growth con-

ditions of wood.  The distribution of polymers of different types for Scots Pine and 

Spruce are shown in table 1.  In particular, Scots Pine has a higher percentage, 3,5 % of 

extractives, compared to 2,1 % in Norway spruce.  Correspondingly the hemicellulose 

percentage is lower in Scots Pine, 28,5 %, while Norway spruce has 30,6 %.    
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TABLE 1. Distribution of the four main compounds in Scots Pine and Spruce (Sjöström 

1993, 292) 

Type of molecule Scots Pine Spruce 

Cellulose 40,0 % 39,5 % 

Hemicellulose 28,5 % 30,6 % 

Lignin 27,7 % 27,5 % 

Extractives 3,5 % 2,1 % 

 

 

2.3.1 Cellulose 

 

Cellulose is a homopolysaccharide made up of repeating units of D-glucose, which are 

bound together by ß-1,4-glycosidic bonds.  From the chemical structure in figure 3, it 

can be seen that cellulose has a large number of polar -OH groups.  These polar -OH 

groups facilitate hydrogen bonding between cellulose chains, and this results in partial 

crystallization of the cellulose polymers.  Cellulose in Norway spruce is 52 ±3 % crys-

tallized and the remaining portion is amorphous (Peura 2007, 9).  Cellulose polymers 

group together to form fibers that are called microfibrils that are orientated in the 

growth direction (Ren 2010, 29-30).  Cellulose in softwood can form polymers of up to 

10,000 repeating units, such as the ones shown in figure 3 (Ragauskas 2013, 1).  

 

 

FIGURE 3. The chemical structure of cellulose (Senese 2010) 
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2.3.2 Hemicellulose 

 

Hemicelluloses are heterogeneous polysaccharides, which are much smaller than cellu-

lose, with a typical chain length of a few hundred units.   The two main hemicellulose 

polymers in Nordic softwoods are galactoglucomannans and arabinoglucuronoxylan.  

They are amorphous, branched polymers.  The main function of hemicellulose is to 

strengthen the cell wall.  Hemicellulose is attracted to cellulose via Van der Waals forc-

es and hydrogen bonding, and can covalently bond to lignin. (Sjöström 1993, 60-64.) 

 

 

2.3.3 Lignin 

 

Lignin is the substance that binds the cellulose and hemicelluloses together into a cell 

wall.  Lignin has no repeating structure, unlike cellulose and hemicellulose.  Lignin in 

softwoods is mainly made up of polymerization products of coniferyl alcohol with vari-

ous conformations and functional groups.  Lignin is found in large fractions in the mid-

dle lamella, which is in between the individual cells.  There is a lower fraction of lignin 

in the secondary wall sections shown in figure 2, but the secondary wall is much thick-

er, resulting in larger total amounts.  Lignin contains various functional groups such as 

carbonyl, benzyl alcohol, noncyclic benzyl ether, phenolic hydroxyl and methoxyl.  

(Sjöström 1993, 70-82.) 

 

 

2.3.4 Extractives 

 

Extractives that are formed in resin canals are called oleoresins.  Resin canals are sur-

rounded by parenchyma cells, which produce the oleoresins.  Extractive content can 

differ in different parts of the same tree or species.  Extractives can be grouped into ali-

phatic compounds, terpenes and terpenoids, and phenolics.  Aliphatic compounds are 

comprised of different fats and waxes, an example found in wood is the fatty acid stea-

ric acid.  Terpenoids are molecules formed from 2-methybutadiene that have the basic 

formula (C10H16)n.  Phenolic compounds come in many forms.  An example of an im-

portant phenolic extractive is pinosylvin, a stilbene that is found in pines which reacts 

readily.  The extractive content varies according to location and conditions, and is high-
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er in more northerly forests, like the ones from which the samples for this thesis were 

taken from. (Sjöström 1993, 83-97.) 

 

 

2.4 Theories of adhesion with adhesives 

 

Adhesion is the interaction of an adhesive surface with a substrate.  Covalent, ionic and 

hydrogen bonds as well as dispersive forces such as the Van der Waals and London 

forces provide attraction.  Dr. Pocius (1997, 118-146) in his book, Adhesion and Adhe-

sives technology, provides a summary of six different theories concerning adhesion 

while noting there is no unified universal theory of adhesion.  It is likely that such a 

theory would include components from all the theories of the summary.   

 

1. The electrostatic theory is that an electronegative material will attract an electro-

positive material, forming an adhesive bond.  This bond is due to the formation 

in the interface of an electrostatic bilayer, due to the electropositive material do-

nating a charge to the electronegative material.  During tests while in a vacuum, 

it has been shown, that breaking an adhesive bond resulted in electromagnetic 

discharges, providing support for the theory.  In addition measuring with a force 

meter, a charge was found.   

 

2. In the diffusion adhesion theory, adhesion is caused by the substrates dissolving 

partially into each other, creating a mixed interphase.  According to the theory, 

adhesive strength is highest when the substrate and adhesive solubility are simi-

lar.  The theory is particularly useful for describing the adhesion of polymers to 

each other and themselves.  In particular, the diffusion of block copolymers such 

as polyurethane is partially controlled by the lengths of the blocks.   

 

3. The mechanical interlocking theory of adhesion describes how the surface shape 

of the substrates facilitates adhesion.  The rougher the surface, the more surface 

area and openings for the adhesive to fill, the stronger the bond because the ad-

hesive must deform to be torn from the interphase.  For the adhesive to fill the 

gaps provided by a surface, it must efficiently fill pores and wet the surface to be 

bonded.   
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4. The acid – base theory of adhesion is that acidic – base interactions form part of 

the adhesive force.  A general principle that works in practice is to use acidic 

adhesives to bond base substrates, and vice versa.   

 

5. The covalent bonding theory of adhesion is based on the strongest known chem-

ical force, the covalent bond.  The energy needed to break apart a pair of atoms 

that share an electronic pair is far in excess of the dispersive attraction forces.   

 

6. In addition to the adhesive – substrate interaction, an important condition known 

as a weak boundary layer greatly affects adhesion.  A weak boundary layer is a 

thin layer of the substrate or adhesive that has low cohesion.  In wood bonding, a 

layer of wood dust or extractives can cause a weak boundary layer.  

 

When an adhesive is applied onto the surface of wood, in addition to the six theories, 

other factors affect the adhesive bond quality and performance.  In figure 4 a model of 

adhesively bonded wood is shown.  The three main parts are the wood, the interphase 

between the wood and the adhesive, and the adhesive.   The adhesive has to wet, pene-

trate and spread to the opposite surface (figure 5).  The viscosity, molecule size, polarity 

and solubility of the adhesive affect this process.  The general principle applied to the 

wood adhesive bond, is that the bond must be either the same strength or stronger than 

the wood it bonds, in all the conditions the product is subjected to (Selby 1975, 3).  To 

meet this requirement, several factors in addition to the adhesion and properties of an 

adhesive must be taken into account.  The type, density and shape of the wood being 

bonded can cause the internal stresses in the x,y and z directions (figure 4) that lead to 

delamination.  Tensile forces in the normal direction (y) are where the adhesive is 

weakest (Frihart 2005, 244).  The bonding process itself must also be carefully calibrat-

ed. It has to be optimum with respect to conditions, bonding pressure and length of 

time, to prevent over penetration of the adhesive into the wood lamellae, leaving a 

starved adhesive layer (Frihart 2005, 232). 
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FIGURE 4. Model of a wood adhesive bond line (Serrano 2004, 26) 

 

 

 

FIGURE 5. Spreading and penetration in wood bonding (Rowell 2005, 270 edited) 
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Frihart, (2009) in a paper on adhesive groups and their relationship to the durability of 

bonded wood, proposes a model of classifying weather resistant durable wood adhe-

sives into two types, in-situ polymerized and pre-polymerized.  In-situ polymerized ad-

hesives are made up of small molecular weight (<2000) molecules that effectively 

cross-link during the bonding of wood.  They penetrate into the middle lamella between 

cells in wood and into the cell wall layers.  In-situ polymerized adhesives resist delami-

nation by spreading the moisture induced swelling and shrinking stresses away from the 

bond line into the wood (figure 6).  In the figure, the stress of moisture induced swelling 

is distributed into the wood in gradually decreasing steps that illustrate the penetration 

and wood strengthening ability of in-situ polymerized adhesives.  An example of a pre-

polymerized adhesive is phenol-resorcinol formaldehyde, known as PRF, which is the 

control adhesive used to evaluate new adhesives against in long term creep tests 

included in SFS EN 15425:2008.  (Frihart 2009, 601-614; SFS EN 15425:2008.)  

 

FIGURE 6. Mechanism of delamination resistance by in-situ polymerized adhesives 

(Frihart 2009, 611 edited) 

  

The second group, pre-polymerized adhesives, includes the two adhesive types used in 

this thesis, 1K PUR adhesives and EPI adhesives.  Pre-polymerized adhesives have 

long, large molecular weight backbones, which allow movement even when cross-

linked.  In 1K PUR the long flexible sections are the soft segments, from the polyol 

component, and in EPI adhesives they are made up of the polymer dispersion used.  

Because they have a large molecule size, these adhesives do not penetrate into the cell 

wall, however, they can fill the lumen, which is the space inside the inner layer, as well 

as the middle lamella to form lock and key polymerized structures.  In figure 7, the 

stress release mechanism of pre-polymerized adhesives is shown.  Because the adhe-

sives retain some flexibility, stress maxima points do not form as easily and the wood 

swelling induced dimension changes are handled by the adhesive stretching cohesively.  

Moisture induced swelling 

strain in the wood close to 

the bond line is reduced 

by the strongly cross-

linked adhesive    

Moisture induces less 

swelling in the adhesive 

layer  
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Especially for 1K PUR adhesives, the carbon dioxide released during curing creates a 

foamy structure effectively dissipating strain without delamination. (Frihart 2009, 611-

612.)  

 

FIGURE 7. Behavior of pre-polymerized adhesives during moisture induced swelling 

(Frihart 2009, 611 edited) 

 

 

2.5 Glued solid and laminated timber  

 

Glued laminated timber or glulam, is made out of layers or laminations of finger jointed 

timber glued together along the grain direction.  Glulam was used for the first time in 

1893, in Basel, Switzerland to construct an auditorium (Forest products laboratory 

1999, 11-3).  Glulam was first produced in Finland in the 1940’s and gained popularity 

from the 1960’s onwards (Carling 2003, 9).  In 2011 a total of 330,000 m
3
 of glulam, 

duo and triolam was produced in Finland.  Duo and triolam are glulam beams made out 

of two and three laminates and are also called glued solid timber.  A large part of the 

Finnish glulam production is exported to Japan.  Glulam production has been growing 

over the past decade, and Finland is one of the largest producers of glulam in Europe. 

(Suomen liimapuuyhdistys, 2011.) 

 

Glulam is used because of its many advantages over solid timber. According to the For-

est products laboratory Wood handbook (2010), the five main advantages of glulam are 

as follows: size capabilities, architectural effects, seasoning advantages, varying cross 

sections and varying grades of timber.  Size capabilities means that large trees are not 

required to produce large glulam beams but cost effective small trees can be used in-

stead.  Architectural effects can be created by bending the glulam beams into curved 

Moisture induced swelling 

strain in the wood close to 

the bond line is matched 

by swelling in the inter-

face and adhesive layers 

dissipating stress. 



22 

 

shapes.  Glulam is manufactured from seasoned i.e. dried timber, which is less likely to 

warp and crack in use.  Very different sizes of beams can be produced, to match the 

required strength needed in different applications.  Grading timber means assessing its 

quality.  Because glulam is comprised of many pieces of graded timber together, it 

means the faults in the timber are spread out and affect the strength of the finished 

product less. (Forest products laboratory, 2010 11-17 -- 11-18.) 

 

In addition to these benefits, glulam is also considered to have other useful properties.  

It is aesthetically pleasing, fire resistant, has a good strength/weight ratio, is resistant to 

chemical attack, is a good insulator and can be produced with very little waste.  The life 

cycle of a glulam beam can be extended by reusing, if the original classification is 

known. (Carling 2003, 9.) 

 

A comprehensive product certification for glulam is in place in Finland.  Certified glu-

lam produced in Finland has to be manufactured from Norway spruce (Picea abies) or 

Scots Pine (Pinus sylvestris) (Carling 2003, 209).  The glued solid timber used for the 

thesis as well as the raw material used for sample preparation was Scots Pine.    

 

 

2.5.1 The manufacturing process of glulam 

 

Glulam goes through many stages during production.   In figure 8, the typical phases of 

glulam production are summarized (Carling 2003, 11).  The focus of this thesis is on the 

factory lamellae pressing quality control, as well as developing adhesives for the glue 

application and lamellae pressing phase of production.  However, each production stage 

is important for a good final product. 

 

The production process starts with harvesting timber from forests.  After the timber is 

sawn, it is dried in large kilns to remove excess moisture.  The timber is dried to a max-

imum moisture content of 18 % in glued solid timber production (RAK 21 2004, 5).  

The factory humidity and temperature environment must be equivalent to the equilibri-

um of the dried timber.  The stress grading can be an automated or visual process, in 

which the number of faults are checked and the wood is graded into a strength grade 

according to SFS 5878 INSTA 142.  After grading, the lamellae are finger-jointed with 

an adhesive that is suitable for finger jointing.  This process and quality control of fin-
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ger joints are also covered by standards.  Finger-jointing enables different length lamel-

lae to become the same length for manufacturing into a glulam beam.  The lamellae are 

then knife-planed, which means the surfaces are cut so that the lamellae is the same 

thickness throughout.  A tolerance of 0,1 mm is allowed between thickness measure-

ments from both sides of the lamellae.  Knife-planing also produces a good surface for 

the adhesive to be applied on, because it removes a layer of wood that can be dirty, have 

broken cells or excess amounts of extractives.  Knife-planing is preferred over abrasive 

planing.  Abrasive planing crushes the cells close to the bond line, resulting in worse 

delamination resistance under accelerated and actual weathering (Murmanis, River & 

Stewart 1983, 115). This is due to the formation of a weak boundary layer.  The lamel-

lae to be made into glulam have to be bonded within 24 hours of planing. (RAK 19 

2004, 1-13.)  

 

Adhesive application onto lamellae in a factory is done according to the adhesive manu-

facturer’s instructions.  An even spread of a prescribed adhesive amount is important.  

The open and closed assembly time of the adhesive must also not be exceeded.  The 

open assembly time of an adhesive is the time it takes from application to the lamellae 

being stacked.  The closed assembly time is the time from being stacked to the bond line 

pressure being applied.  If the open and closed assembly time is exceeded, poor bond 

quality will result.  This can be due to premature curing or over penetration of the adhe-

sive. Thus the certified adhesive chosen for production should meet the time require-

ments of production.  (Frihart 2005, 221.) 

 

The lamellae are pressed for at least the minimum time specified by the adhesive manu-

facturer.  The pressure under which they are pressed depends on the thickness of the 

lamellae.  Lamellae of 35 mm thickness or under are pressed at 0,6 N/mm
2
 and lamellae 

of 35 mm - 45 mm thickness are pressed at 1,0 N/mm
2
.  After pressing, the glulam has 

to be allowed enough time for the bond line to harden.  Then the beam is planed into its 

final shape and wrapped for transportation to a building site.  Wrapping protects the 

beams from dirt and weather conditions before installation. (RAK 19 2004, 9.)   
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FIGURE 8. Schematic of the phases of glulam production (Carling, O. 2003, 11 edited) 

 

 

2.6 Delamination tests of glulam and glued solid timber 

 

The development of accelerated weather exposure tests started during the Second World 

War.  There was a need to build ships quickly and from the materials available, which 

were laminated beams. (Truax & Selbo 1956, 2.)  Laminated beams that are exposed to 

weather undergo moisture changes, which causes the dimensions of the wood to change.  

Wood swells with increasing moisture content up to its fiber saturation point.  When the 

moisture content is decreased, wood shrinks.  These changes create stresses at the bond 

lines, which can lead to delamination of bond lines.  The development of new adhesives 

would not be practical, if every new adhesive would need to be tested for the duration of 

its typical service life, which is at least 50 years.  Accelerated exposure tests aim to pro-

duce similar stresses in the bond lines in a much shorter time than outdoor exposure.   

 

A March 1956 report from the Forest products laboratory in Madison, Wisconsin, USA 

describes the development of the first accelerated weather tests.  The first accelerated 

tests took 180 days, and were a cycle of 30 days water soaking and 30 days drying at 
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normal temperatures.  A low amount of delamination in this test was found to correlate 

with low amounts of delamination in beams exposed to weathering over longer periods 

of 1-4 years.  It was also found that delamination increased only slightly after 1 year 

exposed to weather.  This is due to irreversible relaxation of internal stresses.  Bond 

strength measured by block shear tests was found not to correlate well with the amount 

of delamination due to weather exposure over a long period. (Truax & Selbo 1956, 3-6.)  

 

The discovery that application of vacuum and pressure alternately under water increases 

the wood moisture content quickly to the fiber saturation point and beyond, led to an 

even faster test method being developed.  The new method involved a cycle of vacuum 

and pressure and soaking for one day under water, then drying for 6 days in a controlled 

environment of 27 °C and 30 % relative humidity.  This test cycle was repeated a total 

of three times, for a test period of 21 days.  The test samples were cut from beams that 

were placed outside and subjected to weather for 1 year and the results were compared.  

Individual results were not consistent, but a clear general trend was visible, which was 

that small and large delamination amounts in the samples subjected to the 21 days test 

correlated with small and large delamination amounts in the beams which were exposed 

to weather for 1 year.  This relationship was plotted below (figure 9), which is taken 

from the report.  In figure 9, it can be seen that the correlation between the 21 days three 

cycle test and outdoor weather exposure results with pine and fir is very good.  The cor-

relation for oak and maple is not as good, but a similar trend is present.  (Truax & Selbo 

1956, 3-23.) 
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FIGURE 9. Correlation of delamination under cyclic exposure and weather exposure 

(Truax & Selbo 1956, 21) 

 

With increased experience, the delamination cycles were shortened further.  Increased 

drying air temperatures and a higher velocity air stream contributed towards shortening 

the test to 12 days in 1950, 8 days in 1959, and further to the three days and one day 

cycles in use today.  The process of shortening test cycles may have affected the corre-

lation with the original weathering exposure tests. (Winandy & River 1986, 28.) A three 

cycle vacuum-pressure delamination test, SFS EN 302-2 that takes four days to com-

plete, is the current form in Europe for evaluating the suitability of adhesives for struc-

tural timber use.  The one or two cycle, two, three or four day test methods that are de-

scribed in SFS EN 391 are in use currently as factory production quality control tests in 

Finland.   

 

 

2.7 Standards and certifications for glulam and glued solid timber  

 

The CE-marking of glulam in Finland is covered by the SFS EN 14080:2005 (Timber 

structures – Glued laminated timber and glued solid timber – Requirements) standard.  

The requirements for the adhesives used for bonding the CE-marked glulam are also 

covered by the same SFS EN 14080:2005 standard and the specific adhesive standards 



27 

 

it refers to.  The CE-marking of products is possible when the product has a harmonized 

product standard, and the product meets the requirements at each stage of production.  

CE-marking is also allowed with a European Technical Approval (ETA), which can be 

issued on a case by case basis.  EN standards are created and approved by the European 

Committee for Standardization, known as CEN, which is mandated by the European 

Union.  The aim of the CEN is to provide harmonized product standards that facilitate 

free trade in safe products among the CEN members.  The CEN has 33 members, 27 EU 

members as well as Croatia, The Former Yugoslav Republic of Macedonia, Turkey, 

Switzerland, Iceland and Norway.  EN standards are voluntary, openly available stand-

ards created by Technical Committees (TC) at CEN.  The standards are then adopted 

into each member nation’s national legislation.  The Finnish standardization body, Su-

omen standardisoimisliitty ry (SFS) is a member of CEN.  The CE-marking of building 

products in Finland is mandatory from 1.7.2013, including glulam and glued solid tim-

ber.  The national bodies in Finland that have a certificate to audit CE-marked glulam 

production are the VTT Technical research center of Finland, Inspecta Oy and Finotrol 

Oy.  (CEN 2010; Ympäristöministeriö 2012.) 

 

The standard specified in SFS EN 14080:2005 for factory production quality control of 

bond lines is SFS EN 391:2001 (Glued laminated timber. Delamination test of glue 

lines).  The standard SFS EN 391:2001 specifies three methods for continuous quality 

control of glulam and glued solid timber.  Methods A and B are for type I adhesives 

(service classes 1,2 & 3) according to SFS EN 301:2006 classes, while method C is for 

type II adhesives.  SFS EN 14080:2005 is in the process of being replaced with a new 

version of EN 14080.  There is a final draft version of a new replacement, FprEN 

14080:2013, that could update the current performance requirements, but the final 

standard is not in use yet as of January 2013.  

 

1K-PUR adhesives for glulam and glued solid timber manufacturing in Finland have to 

meet the requirements in SFS EN 15425:2008 (Adhesives. One component polyure-

thane for load bearing timber structures. Classification and performance requirements).  

To produce CE-marked glulam and glued solid timber, the adhesive also has to fulfill 

extra requirements specified in annex C of SFS EN 14080:2005 (Annex B. of FprEN 

14080).  Currently, there is no standard that specifies producing CE-marked glulam or 

glued solid timber with EPI adhesives in use in the CEN countries.  The new FprEN 

14080 final draft, however, includes EPI adhesives.  In the FprEN 14080 final draft, EPI 

http://www.ymparisto.fi/
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adhesives can be used for service classes 1 & 2 if they meet the same requirements as 

1K-PUR adhesives.  In addition there is a provision for small dimension glulam or 

glued solid timber produced with EPI adhesives, which can be certified by completing 

tests with a 0,3 mm bond line thickness instead of the 0,5 mm specified in SFS EN 

15425:2008. 

 

 

2.8 Development of new adhesives 

 

Developing new adhesives is based on understanding the chemical nature of the surface 

of the substrate, as well as the interface between the adhesive and the substrate.  In addi-

tion to the ability to bond substrates, standard based requirements and production re-

quirements each shape the properties needed for an adhesive to become a commercially 

successful product.  In demand are new adhesives that are faster curing, faster curing at 

lower temperatures, have better resistance to delamination due to chemical stress, are 

better at bonding difficult substrates, as well as have specific optical and electrical prop-

erties.  The means of achieving these functionalities can be synthesis of new raw mate-

rials, adding functional components to the formulations or introducing new combina-

tions of known raw materials.  Tests simulating the lifetime of bonded components are 

based on standards and evaluate the suitability and performance of adhesives.  Infor-

mation about the causes of adhesive failure are essential to develop new adhesives. 

(IFAM 2013.)  
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3 MATERIALS AND METHODS 

 

 

For experience with the easyQ DLA appliance, comparing EN 391 method B test results 

with Kontio production quality control results was chosen.  Kontio provided samples 

that were bonded using a commercial, EN 14080:2005 certified 1K PUR adhesive.  The 

test method specifies taking 2 samples from each batch to be tested, an A and B sample.  

Kontio quality control tested the A sample, and the surplus B samples were sent to the 

research and development laboratory at Kiilto for testing using the new appliance.  A 

total of 36 glued solid timber samples of various shapes and sizes were received to per-

form this section of the thesis.  

 

For comparing adhesives in development, the SFS EN 302-2:2004 method was chosen 

as a reference.  Passing the requirements is one of the prerequisites for an adhesive to 

become a certified product for CE-marked production.  This method is the one used for 

the delamination test in the adhesive certification.  Because of equipment limitations, 

some modifications to the standard were made with regards to the samples.  A test body 

certified adhesive was used as a control sample.     

 

 

3.1 EN 391 method B 

 

The SFS EN 391 method B is described fully in the standard “EN 391:2001 Glued lam-

inated timber. Delamination test of glue lines”.  The method described in the standard 

involves cutting two 75±5 mm wide cross-sections from a laminated beam, and testing 

one of them under a single cycle of vacuum-pressure immersed in water, then drying the 

sample.  The results are analyzed after the sample has dried to within 110 % of its origi-

nal weight.  The total delamination percentage is then calculated according to formula 

(3) and the maximum single bond line percentage calculated according to formula (4) 

(SFS EN 391:2001, 8).  

 

   
          

             
 = Total delamination percentage  (3) 

 

   
          

           
 = Maximum delamination percentage  (4) 
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Only the cut sample surfaces are evaluated.  In formula (3), ltot,delam is the sum of the 

delaminated sections in mm on the bond lines of the two faces of the samples, and 

ltot,glueline is the sum of the bond lines on the same faces.  In formula (4), lmax,delam is the 

sum of the delaminated sections on the two faces of the same bond line, while 2lglueline is 

the total length of the two exposed sections of that bond line.    

 

The sample quality control requirements for the glued solid timber samples used in this 

thesis were; less than 8 % for total delamination percentage (3) after one cycle, and less 

than 40 % delamination (4) for a single bond line.  If the sample does not meet the first 

requirement of less than 8 % delamination, it is subjected to a second cycle of vacuum-

pressure soak, and the delamination percentage is calculated after the second cycle is 

complete.  The limit of acceptance for the second cycle is less than 16 % total delamina-

tion.  In the final draft version of FprEN 14080:2013 the limit for samples tested for two 

cycles is lowered to less than 12 % total delamination.  The limits for glulam are 4 % 

total delamination for the first cycle, and 8 % total delamination after the second cycle. 

If the A sample does not meet the requirements, the B sample is tested in the same fash-

ion.  If both samples fail to meet the requirements, the production batch is rejected.   

 

 

3.1.1 EN 391 method B sample preparation 

 

A total of 36 samples were sent to the research and development laboratory at Kiilto.  

The samples were marked, then weighed, and then the bond line lengths were recorded.  

The samples were of various sizes, differing in the amount of lamellae and the lamellae 

thickness.  The samples were chosen by Kontio.  The samples were kept wrapped in a 

black plastic covering until being tested to keep their moisture content as similar to 

when leaving the factory as possible.   

 

 

3.1.2 SFS EN 391 method B vacuum-pressure soak 

 

The standard, EN 391, specifies using a pressure vessel capable of 700 kPa absolute 

pressure and a vacuum of 85 kPa.  The easyQ DLA appliance is a pressure vessel 

equipped with pumps and a control interface designed specifically for standardized de-
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lamination tests on timber.  The appliance can be seen in picture 2.  The main parts are 

the pressure vessel, a vacuum pump, a water pump, and the control screen. 

 

PICTURE 2. easyQ DLA appliance  

 

The samples should be placed inside the pressure vessel in such a way that they do not 

touch each other, or the walls of the pressure vessel as can be seen in picture 3.  The 

samples are fixed in position using a wire mesh and prevented from floating using a 

lockable bar.  The size of the pressure vessel is 100 liters, which sets a limit on the 

amount of samples that can be tested simultaneously.  The samples were placed in the 

pressure vessel, and the lid was fastened by hand.  The easyQ DLA appliance has a con-

trol interface, from which it is possible to choose the EN391 method B program.  The 

computer program controls automatic valves and the pumps, and the program goes from 

start to finish automatically.   

 

The EN 391 method B vacuum-pressure soak starts by filling the pressure vessel three 

quarters full of water.  This places the samples below the water line, but leaves an air 

space in the top quarter of the pressure vessel.  Then a -75 kPa below ambient air pres-

sure vacuum is drawn by the vacuum pump for 30 minutes.  Following the release of the 
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vacuum, a pressure of 550 kPa above ambient air pressure is created by the water pump 

in the pressure vessel for two hours.  

 

 

PICTURE 3. SFS EN 391 method B samples inside the pressure vessel 

 

The test cycle saturates the samples above their fiber saturation point with water, in-

creasing their weight 1,5 – 2,5 times depending on the sample.  Each sample of wood 

increased in weight by a different amount due to each sample of wood being unique.  

The saturated samples were then dried in a dry heat chamber or in a weather chamber at 

Kiilto.  The SFS EN 391 method B states that samples should be dried at 70 ±5 ˚C, 8-10 

% relative humidity and with an air flow of 2-3 m/s.  The equipment used at Kontio for 

performing SFS EN 391 method B included a drying chamber, which was custom built 

for drying samples, but did not include a wind speed meter or a relative humidity meas-

uring device.  

 

Two deliveries of samples were sent to Kiilto from Kontio, and the experiences from 

the first batch were used to partly decide the drying conditions for the second batch.    In 

addition to different drying conditions, the samples were of various shapes and sizes, 

providing a representative cross-section of production.  The smallest samples, com-

prised a single bond line with a total bond length of 344 mm and the largest, 8 lamellae, 

bonded together in two vertical sections of four lamellae, with a total bond length of 

1540 mm.  
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The samples were dried according to table 2 to find out the effect of different drying 

conditions on the delamination results, compared with the equipment used at Kontio for 

quality control purposes.  Samples dried with the different methods were designated A, 

B, C and D using running numbering.  Neither the weather cabinet or dry-heat chamber 

had controllable fans, so it was not possible to adjust the air flow speed.  The weather 

chamber allowed humidity to be set at a specific value but the temperature chamber did 

not have a humidity setting.  The dry-heat chamber has small dimensions, which makes 

it unsuitable for continuous testing.      

 

TABLE 2. The different drying conditions and number of samples per test batch. 

Drying chamber  
Temperature 

(˚C) 

Relative hu-

midity (%) 

Number of 

samples 

Test batch 

designation 

Dry-heat chamber 65 n.a. 4 A 

Weather chamber   65 9 16 B 

Weather chamber 70 9 8 C 

Weather chamber 75 9 8 D 

 

 

3.1.3 Evaluation of EN 391 method B samples 

 

The dried samples were evaluated individually after drying to 100-110 % of their origi-

nal weight.  The evaluation takes place in two stages.  The first stage is weighing the 

samples, then recording the delaminated bond line sections by drawing vertical lines to 

mark the edges using a ball-point pen as in the example in picture 4.  In the SFS EN 

391-B method, using a magnifying glass and 0,1 mm thick feeler gauge are recom-

mended to assist in marking the delaminated bond line sections.   

 

The first evaluation stage should take place within an hour of removing the samples 

from the drying process, and in practice it was completed in under 15 minutes. It is im-

portant to complete this stage quickly, because wood immediately starts returning to its 
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equilibrium size in normal room temperature and humidity, shrinking the delaminated 

sections and making them harder to notice.   

 

The second stage is studying the delaminated sections and recording the results.  The 

SFS EN 391 (2001) standard section 6.4.2.2. gives the criteria for valid delaminations, 

that are:  

 

1. Cohesive failure in the adhesive layer. 

 

2. Bond line failure precisely between the adhesive and the wood layer. 

 

3. Wood failure within the first two wood cell layers, which is not a logical exten-

sion of cracks due to the growth ring or grain angle structure of the wood. 

 

Section 6.4.2.3 of the SFS EN 391 (2001) standard gives examples of delamination that 

are not considered to be due to adhesive failure, and therefore are to be excluded: 

 

1. Wood failures more than two cell layers away from the bond line due to growth 

rings or the angle of the grain. 

 

2. Under 2,5 mm wide openings that are more than 5mm away from other open-

ings. 

 

3. Delaminated sections that are due to knots, visible or hidden, as well as resin 

pockets.  

  

 

 

PICTURE 4. Marking delaminated sections in the first stage of evaluation 

Adhesive bond line between 

two adjacent lamellae 

Vertical lines drawn to 

mark delamination 

Delamination 

Cracks in the wood 

perpendicular to the 

grain caused by the 

vacuum – pressure 

soak, then drying. 
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Hidden knots can be discovered by splitting the samples along the bond line with a 

chisel or wedge and a hammer.  Excluded sections are marked with a cross, as seen in 

picture 5.  The knots are indicated by the dark sections of wood leading to the two ex-

cluded sections.  Valid delaminated sections according to 6.4.2.2. from the SFS EN 391 

standard were then measured with a ruler (± 0,5 mm) and a magnifying glass, and the 

sum for each bond line was entered into an excel chart with the other sample details 

such as the production batch, sample original weight, sample weight after drying, sam-

ple amount and length of bond lines, total bond line length and sample drying time.  

Using formulas (3) and (4) each bond line is given a maximum delamination percent-

age, as well as a total delamination percentage.  An example of an evaluation table is 

given in table 3.  Excel charts such as table 3 with pre-entered formulas are useful for 

quick result analysis.   

   

 

PICTURE 5. Sample with excluded bond line sections marked with a cross 

 

TABLE 3. An example of an evaluation table 

Sample 

 

Original 

weight 

(g) 

Final 

weight 

(g) 

Percent-

age 

original 

weight 

(%) 

Drying 

time 

(h) 

Length of 

bond line 

(mm) 

Length 

delami-

nated 

(mm) 

Maxi-

mum 

delamina-

tion 

% 

Total 

delamina-

tion 

% 

Remarks 

A.1 942 1021 108,6 20 346 46 13,3 13,3 

Second 

cycle 

needed 
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3.2 EN 302-2:2004 laboratory method 

 

SFS EN 302-2:2004 (Adhesives for load-bearing timber structures. Test methods. Part 

2: Determination of resistance to delamination) is a laboratory method used in the adhe-

sive certification process.  Passing the SFS EN 302-2:2004 test is part of the require-

ments included in SFS EN 15425:2008 for one-component polyurethane adhesives for 

CE-marked glulam and glued solid timber.  The method for type I adhesives was cho-

sen.  Type I adhesives can be used in all service classes, which correspond to the condi-

tions likely to be encountered in use.  SFS EN 15425:2008 specifies type I as being ad-

hesives that can have prolonged exposure to high temperatures (such as ≥ 50 ˚C) as well 

as full exposure to weather.  Minimum requirements for resistance to delamination for 

type I adhesives are specified in section 5.3 and 6.3 of the SFS EN 15425:2008 standard 

as being <5 % for all test samples tested according to SFS EN 302-2.  Certified labora-

tories that perform the SFS EN 302-2:2004 test are the Nordisk Treteknisk Institutt 

(NTI) in Oslo, Norway and Materialprüfungsanstalt Universität Stuttgart (MPA 

Stuttgart) in Germany.  A modified test method similar to the SFS EN 302-2 standard 

method was developed for testing adhesives according to table 5. 

 

 

3.2.1 Moisture-cure one component polyurethane adhesive formulation 

 

Moisture-cure polyurethane adhesive sample batches were formulated in the laboratory.  

Because the adhesives cure on contact with atmospheric water content, a quick method 

for adhesive compilation was chosen to prevent premature curing.  The SpeedMixer 

DAC 400 FVZ is a dual asymmetric centrifuge manufactured by Hauschild Engineering 

based in Hamm, Germany.  Dual asymmetric centrifuges are used to mix various sub-

strates, such as liquids, powders and pastes.  Some typical uses according to the manu-

facturer are blending adhesives and sealants. As can be seen (figure 10), dual asymmet-

ric centrifuges (DAC) have dual rotations simultaneously in opposite directions. 

(SpeedMixer 2011.)  The SpeedMixer cup is placed in a basket on the end of an arm.  

The arm is spun clockwise while the basket spins counterclockwise.  This is different 

from a regular centrifuge, which only has one direction of rotation.    The dual rotations 

induce mixing of the substrates quickly.  Homogenous mixing of adhesive substrates is 

usually checked visually, and by measuring the Brookfield viscosity (mPas) of the ad-

hesive.   
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Raw materials were weighed to 0,01 g precision into a SpeedMixer cup on an electronic 

scale. Mixing was performed using a SpeedMixer DAC 400 FVZ.  The sample cup was 

spun at 800 rpm for two minutes, then 2000 rpm for one minute.  The compounded ad-

hesives were then sealed into glass jars with metal lids.  The jars were protected from 

excess amounts of atmospheric moisture by wrapping them with Parafilm “M” laborato-

ry film.  From opening the raw material containers to sealing the jars took less than 5 

minutes per sample.  All the adhesive samples were visually inspected for homogeneity 

after mixing with the SpeedMixer DAC.  

 

FIGURE 10. Principle of the SpeedMixer centrifuge (Tian et al, 2010) 

 

 

3.2.2 Modified SFS EN 302-2:2004 method  

 

The SFS EN 302-2:2004 method was modified to be used for testing experimental ad-

hesives at Kiilto, due to equipment restrictions and raw material availability.  SFS EN 

302-2:2004 standard method for type I adhesives describes a three cycle vacuum-

pressure soak and drying test for testing resistance to delamination.  The test method 

developed for Kiilto modifying the SFS EN 302-2:2004 standard has the following 

steps with the corresponding original SFS EN 302-2:2004 steps in brackets: 

 

1. Two (four) members for each adhesive sample are prepared.  One (two) with 

short closed assembly time and one (two) with long closed assembly time.  

Closed assembly time is the time taken between the assembly being complete 

and the press applying the bonding pressure on the completed assembly.  For 

each closed assembly time sample, 5 (6) lamellae of 145 (150 ± 5) mm wide, 28 
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(30 ± 1) mm thick and 350 (500) mm long Scots pine (spruce) are bonded with 

adhesive applied to both faces.  The bonding pressure is (0,6 ± 0,1) N/mm
2
.   

The amount of adhesive used, pressing time and closed assembly time are re-

ported by the adhesive manufacturer.  In this thesis, they were estimated from 

prior testing of the adhesive properties.  Adhesives were evenly spread on both 

sides of the bond line using a 200 µm spiral bar applicator.  Open assembly 

time is the total time taken to spread the adhesives on the lamellae.  The open 

assembly time should be less than 5 minutes. Picture 6 shows a bonded assem-

bly after completing the first step. 

 

PICTURE 6. Bonded Scots pine assembly for Kiilto EN 302-2 method testing 

 

 

2. For seven days, the bonded members are conditioned in (20 ± 2) ˚C and a rela-

tive humidity of (65 ± 5) %.  Three (two) cross-section samples that are more 

than 50mm from the ends and that are (75 ± 5) mm wide are cut.  These sam-

ples are weighed and the weight recorded into the excel sheet. 

 

3. The samples are placed in the vacuum-pressure vessel and fixed in place as in 

SFS EN 391:2001 method B.  The SFS EN 302-2:2004 test method for type I 

adhesives is selected, which has four phases that are laid out in table 4. 
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TABLE 4.  EN 302-2:2004 Type I adhesive vacuum-pressure cycle 

 

 

 

 

 

 

 

4. After the test cycle is complete, the samples are dried for 20 hours in air that is 

65 ˚C (65 ± 3), has a relative humidity of 12,5 % (10-15) and an air speed of 

(2,25 ± 0,25) m/s until the samples are within 110 % of their weight before the 

next vacuum-pressure cycle. 

  

5. Steps 3 and 4 are repeated twice, for a total of three complete impregnation and 

drying cycles.  

 

6. Evaluation of the samples is carried out within one hour of the end of the third 

drying cycle.  Using a magnifying glass and strong lighting, the bond lines are 

checked for delamination according to the same principles as in SFS EN 

391:2001 method B.  After the evaluation and calculations, if all the six (eight) 

samples have less than 5 % delamination, the adhesive fills the requirements of 

SFS EN 302-2:2004. 

 

The changes to the SFS EN 302-2:2004 method for the above steps 1, 2 and 4 for test-

ing adhesives at Kiilto were mainly to the number of samples and sizes.  Spruce of the 

standard dimensions was not available, therefore Scots pine was chosen as the substrate.  

Scots pine of the dimensions in step 1. was sourced from Lauta Oy.  The four adhesives 

tested are listed in table 5.  A total of 24 samples, six for each adhesive with three paral-

lel samples per short and long closed assembly time were tested.  The three parallel 

samples were obtained by cutting cross sections 75 mm wide cross sections from the 

assembly (figure 11).  Modified EN 302-2 method instructions were written for further 

use at Kiilto.       

Step (values are absolute pressure) Time (min) 

Vacuum: (25 ± 5) kPa 15 

Pressure: (600 ± 25) kPa 60 

Vacuum: (25 ± 5) kPa 15 

Pressure: (600 ± 25) kPa 60 
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FIGURE 11. Cutting scheme for three parallel samples, A, B and C 

 

TABLE 5. Tested adhesives, short and long closed assembly times. 

Adhesive Parallel Samples 
Closed assembly time 

(min) 

Commercial  PUR Control A, B and C 2 

Commercial  PUR Control A, B and C 6 

PUR A A, B, and C 2 

PUR A A, B, and C 6 

PUR B A, B and C 2 

PUR B A, B and C 10 

EPI  A, B and C 7 

EPI  A, B and C 12 

 

During pressing, some assemblies with short closed assembly time slipped horizontally 

while pressure was applied, causing the bond line lengths to differ from the nominal 

value in figure 11.  Kiilto method samples were dried after the vacuum – pressure soak 

cycle in the same weather chamber used with the SFS EN 391 method B, with the set-

tings in step 4.  Picture 7 shows twelve samples in the drying configuration, with a min-

imum of 50 mm between samples to ensure even airflow.  Final results after the two 

evaluation stages were entered into an excel chart, into which formulas (3) and (4) were 

coded.   
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PICTURE 7. Kiilto test method samples drying in the weather chamber 
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4 RESULTS 

 

 

All samples underwent a vacuum – pressure soak cycle in the easyQ DLA appliance, 

and were then dried to between 100 % and 110 % of their original dry weight.  Delami-

nation results were evaluated according to the guidelines posted included in SFS EN 

391 method B, as well as using the experience of a visit to the Kontio quality control 

workstation.  The parallel testing of B samples from Kontio was completed first.  The 

requirements for sample acceptance and rejection were taken from SFS EN 14080:2005.  

Parallel Kontio production quality control results were kindly provided. Evaluating de-

lamination amounts included several judgment factors that are not covered in the guide-

lines in SFS EN 391 method B, or other published standards and were from Kontio.  

 

 

4.1 Evaluation of delamination 

 

 

The presence of knots very often leads to delamination of the bond line.  In the SFS EN 

391:2001 standard, the instructions are: to not regard openings due to knots as valid 

delaminations.  In several cases, however, the delamination of the bond line occurs not 

only directly at the location of the knot, but in an area around the knot.  For the evalua-

tion of results, the immediate knot affected area were disregarded as delaminated, but 

areas perceived to not be caused by the knot in question were included as delaminations 

in the calculations of maximum bond line delamination and total delamination percent-

ages. 

 

In some cases, delaminated sections can have a jagged appearance, with multiple short 

(0,5 - 2 mm) delamination interspersed with non-delaminated bond line sections.  In this 

case, a guideline of the length of the jagged section divided by two was used as a meas-

urement of the delaminated area.  For openings that were less than 2,5 mm wide but 

further than 5 mm away from the nearest delaminated section, a single vertical line was 

drawn through the opening while evaluating the samples.    
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4.2 SFS EN 391:2001 method B results 

 

 

4.2.1 Results in different drying conditions 

 

The maximum (max) delamination percentages and total (tot.) delamination results were 

calculated for all the batches according to formulas (3) and (4) along with the final ac-

cept / reject evaluation of the samples.  Test batch A samples were dried in a tempera-

ture chamber in which the only controllable variable was temperature.  Test batches B, 

C and D were dried in a weather chamber, at different temperatures of 65 ˚C, 70 ˚C and 

75 ˚C.  The weather chamber had larger dimensions than the temperature chamber, al-

lowing for multiple samples to be dried simultaneously and the air to circulate freely.  

The results for test batch A are shown in table 6, results for test batch B in table 7, re-

sults for test batch C in table 8, and test batch D results are in table 9.  The sample A.2 

from test batch A was rejected after the first cycle, due to a total delamination percent-

age of 21,2 %, which was above the 8 % limit for the first cycle, and 16 % limit for the 

second cycle.  None of the samples in test batch D required a second cycle.    

 

TABLE 6. Delamination results according to SFS EN 391 method B. Test batch (A) 

dried in a temperature chamber at 65 ˚C 

Sample Max delam-

ination after 

first cycle 

(%) 

Max delam-

ination after 

second cycle 

(%) 

Tot. delami-

nation after 

first cycle 

(%) 

Tot. delami-

nation after 

second cycle 

(%) 

Result 

(accept / 

reject) 

 

A.1 13,3 15,0 13,3 15,0 Accept 

A.2 21,2 - 21,2 - Reject 

A.3 4,7 - 4,7 - Accept 

A.4 20,1 20,1 9,0 10,0 Accept 

Mean  ̅ 14,8  12,0   
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TABLE 7. Test batch B delamination results according to SFS EN 391 method B. Dried 

in a weather cabinet at 65 ˚C with 9 % relative humidity 

Sample Max delami-

nation after 

first cycle 

(%) 

Max delami-

nation after 

second cycle 

(%) 

Tot. delami-

nation after 

first cycle 

(%) 

Tot. delami-

nation after 

second cycle 

(%) 

Result  

(Accept / Reject) 

 

B.1 1,2 - 1,2 - Accept 

B.2 0,0 - 0,0 - Accept 

B.3 5,7 - 5,7 - Accept 

B.4 0,0 - 0,0 - Accept 

B.5 4,2 - 2,9 - Accept 

B.6 27,8 27,8 10,4 10,4 Accept 

B.7 5,6 - 4,2 - Accept 

B.8 2,2 - 0,7 - Accept 

B.9 7,7 - 3,5 - Accept 

B.10 0,0 - 0,0 - Accept 

B.11 3,2 - 1,6 - Accept 

B.12 11,8 11,8 11,8 11,8 Accept 

B.13 2,0 - 2,0 - Accept 

B.14 2,3 - 2,3 - Accept 

B.15 4,2 - 4,2 - Accept 

B.16 0,0 - 0,0 - Accept 

Mean 

 ̅ 
4,9  3,2  

 

  

 

TABLE 8. Test batch C delamination results according to SFS EN 391 method B.  

Dried in a weather cabinet at 70 ˚C with 9 % relative humidity 

Sample Max delami-

nation after 

first cycle  

(%) 

Max delami-

nation after 

second cycle  

(%) 

Tot. delami-

nation after 

first cycle  

(%) 

Tot. delami-

nation after 

second cycle  

(%) 

Result 

(Accept / Reject) 

 

C.1 21,1 21,1 9,0 11,7 Accept 

C.2 25,1 - 8,0 - Accept 

C.3 8,8 - 7,4 - Accept 

C.4 1,0 - 0,9 - Accept 

C.5 21,3 21,3 12,4 12,4 Accept 

C.6 10,4 - 6,3 - Accept 

C.7 8,4 - 4,2 - Accept 

C.8 5,6 - 3,1 - Accept 

Mean  ̅ 12,7  6,4    

 

 

 

 



45 

 

TABLE 9. Test batch D delamination results according to SFS EN 391 method B.  

Dried in a weather cabinet at 75 ˚C with 9 % relative humidity 

 

 

 

4.2.2 Comparison with Kontio quality control results 

 

For each of the 36 samples tested at Kiilto, data was provided on the parallel samples 

tested routinely as part of the quality control process.  The parallel samples were from 

the same bonded lamellae assemblies as the samples sent to Kiilto, but were cut from an 

adjacent section.  The parallel results were calculated by Kontio using the same formu-

las (3) and (4) as the samples at Kiilto.  A summary of the maximum delamination per-

centage results from the parallel samples and the Kiilto samples is shown in figure 12.  

All the 72 samples tested, by Kontio as well as at Kiilto, passed the requirement of less 

than 40 % maximum delamination of both sides of the same bond line.  The highest 

maximum delamination values were for sample B.6, 27,8 % for the Kiilto sample and 

16,6 % for its corresponding parallel sample (figure 12).  The total delamination results 

comparison is shown in figure 13.  All 36 parallel samples tested by Kontio passed the 8 

% first cycle requirement.  Of the 36 samples tested at Kiilto, one sample failed to meet 

the 8 % and 16 % requirements of the first and second cycle and was rejected.  In gen-

eral the samples tested at Kiilto resulted in higher total delamination percentages than 

those tested by Kontio (figure 13).  The highest Kontio percentage was 7,8 % for paral-

lel sample B.6.  For the samples tested at Kiilto, 21,2 % for sample A.2 was the highest 

total delamination percentage.    

 

 

Sample Max delamination 

after first cycle (%) 

Tot. delamination 

after first cycle (%) 

Result  

(Accept / Reject) 

 D.1 5,4 3,0 Accept 

D.2 9,1 5,2 Accept 

D.3 10,0 5,0 Accept 

D.4 18,2 4,3 Accept 

D.5 10,7 7,5 Accept 

D.6 14,8 7,3 Accept 

D.7 12,9 5,1 Accept 

D.8 10,7 7,0 Accept 

Mean   ̅ 11,5 5,5   
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FIGURE 12. Kontio quality control SFS EN 391 method B maximum delamination 

results compared with Kiilto 

 

 

 

FIGURE 13. Kontio quality control SFS EN 391 method B total delamination results 

compared with Kiilto 
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A comparison of the different drying condition test batches compared with quality con-

trol results for maximum delamination percentage is shown in figure 14.  Total delami-

nation mean results for each test batch compared with quality control mean results for 

the parallel samples is shown in figure 15.  Because the test batches had different sam-

ple amounts and bond line total lengths, weighted means by sample amounts and total 

lengths is shown in table 10. 

 

 

 

FIGURE 14. Maximum bond line delamination comparison by drying method test batch 

 

 

 

FIGURE 15. Mean results of Total delamination percentage by drying method test batch 
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TABLE 10. Mean results of Total bond line delamination percentage  

 

A total of five samples tested at Kiilto had total delamination percentages between 8 % 

and 16 % after the first cycle, and were retested for a second cycle.  Three samples did 

not delaminate further, and two samples delaminated further by a small amount (table 

11).   

 

TABLE 11. Results of samples that were tested for two cycles 

Sample Total delamination 

after first cycle (%) 

Total delamination 

in second cycle (%) 

Final total 

delamination  

(%) 

Result  

(Accept / 

Reject) 

A.1 13,3 1,7 15,0 Accept 

A.4 9,0 1,0 10,0 Accept 

B.6 10,4 0,0 10,4 Accept 

B.12 11,8 0,0 11,8 Accept 

C.5 12,4 0,0 12,4 Accept 

Mean  ̅ 11,4 0,5 11,9  

 

 

4.3 Kiilto test method (modified SFS EN 302-2 test method) results 

 

 

Kiilto test method pass and fail criteria were taken from SFS EN 15425:2008, being less 

than 5 % delamination for all test pieces after the three vacuum pressure impregnation 

cycles for type I adhesives.  A picture of a test piece (Commercial 1K PUR A, short 

closed assembly time) with a low delamination percentage is shown in picture 8.  Of 

note is the extensive cracking caused by the vacuum-pressure impregnation and drying 

cycles.  The second lamellae from the top has slipped during pressing, reducing the 

length of the bond line.  The criteria for valid or invalid delamination was the same as 

for EN 391, and the same principles were used for evaluation.  Where needed, the bond 

lines were opened with a knife and hammer to check for hidden knots (Picture 9). 

 

Calculation Total Delamination (%) 

Kiilto  

Total Delamination (%) 

Kontio  

Mean 

(weighted per sample) 
5,6 2,1 

Mean 

(weighted per total 

bondline) 

5,1 2,4 
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PICTURE 8.  Commercial 1K PUR 2 minute closed assembly time sample A after the 

Kiilto test method 

 

PICTURE 9.  A hidden knot in an opened bond line 
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In the Kiilto method as well as SFS EN 302-2, the maximum delamination percentage is 

not calculated, as only the total delamination percentage is used for passing or failing 

adhesives.  The evaluation results were recorded into an excel chart individually for 

each sample, and the mean of the three parallel samples calculated.  Pass and fail are 

highlighted in green and red (table 12).  Two assemblies achieved a pass status, the 

short closed assembly time samples for the commercial 1K PUR and 1K PUR B.   

 

TABLE 12. Kiilto test method results matrix (modified EN 302-2) 

 

 

 

 

 

Adhe-

sive 

Closed 

Assem-

bly time 

 (min) 

Tot. delami-

nation 

Sample A 

(%) 

Tot. delam-

ination 

Sample B 

(%) 

Tot. delam-

ination 

Sample C 

(%) 

 

 ̅ 

Mean 

(%) 

Pass /  

Fail 

Com-

mercial 

1K PUR 

2 1,5 3,5 4,2 3,1 Pass 

6 17,0 21,6 12,3 17,0 Fail 

1K PUR 

A 

2 7,3 11,9 5,1 8,1 Fail 

6 33,5 37,2 27,7 32,8 Fail 

1K PUR 

B 

2 3,6 1,9 3,8 3,1 Pass 

10 9,2 20,1 15,8 15,0 Fail 

EPI  

7 20,9 13,3 18,2 17,4 Fail 

12 6,0 4,4 6,6 5,7 Fail 
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5 CONCLUSIONS AND DISCUSSION 

 

 

This thesis came about from the decision to invest in a vacuum – pressure impregnation 

device, which could provide Kiilto with the opportunity to perform accelerated delami-

nation tests.  Both goals of the thesis were based upon making the new device as useful 

as possible: to better serve customers and to be prepared for the start of mandatory CE-

marking of building products, starting from the first of July 2013, as well as for internal 

use developing and testing adhesives.  For the purposes of the thesis, the help received 

from the Kontio glued solid timber and glulam factory was invaluable.  Both goals were 

partially successful, with areas for improvement identified. 

 

The samples tested according to SFS EN 391 method B results showed that samples 

tested at Kiilto resulted in a higher delamination percentage mean than Kontio, with a 

total difference of 3,5 %.  Calculating the mean weighted by sample length, to account 

for the sample dimension variations, the results are closer together, with a difference of 

2,6 % (table 10).  The difference in the results means that, compared to Kontio, short 

total bond line length samples tested at Kiilto proportionally delaminated more than the 

samples that had long bond line lengths.  This was caused by the testing of shorter bond 

line length samples in the dry heat chamber, and in the weather chamber at higher tem-

peratures, while large samples were mostly tested in the weather chamber at a lower 

temperature.   

 

Delving deeper into the results of different drying batches (A, B, C and D),  in figure 

15, the total delamination percentage mean in the dry heat chamber was 12,7 %, while 

drying the test samples in 65 ˚C  and 9 % relative humidity (test batch B) resulted in a 

mean of only 3,2 %.  Test batch B had the lowest total delamination percentage mean 

overall and was the closest to the results from Kontio.  The dry heat chamber could be 

unsuitable for drying the samples, because of harsher drying conditions than in the 

weather chambers.  The lack of humidity control can result in extremely dry air, speed-

ing up the drying process and drying the samples too fast, meaning that stresses are not 

released gradually.  In addition, the dry heat chamber has small dimensions, meaning 

the air cannot circulate freely.  From the results it can be concluded that three factors: 

temperature, humidity and air circulation are important in the delamination of test sam-

ples.  The recommendation is for a drying-, possibly a weather chamber with a control-
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lable fan and humidity control, in which it would be possible to control the variables to 

match all the standard requirements. 

 

Even though the samples were wrapped in plastic, moisture and temperature variations 

during the journey from Kontio to Kiilto could have developed stresses in the bond line 

that resulted in more delamination.  The entire evaluation process of the delaminated 

samples could produce slightly different results from similar samples, since it contains 

value judgments to do with invalid delamination.  Vacuum-pressure impregnation 

equipment differences could cause variations in delamination percentages between Kon-

tio and Kiilto.  In addition, as the method deals with wood as a substrate, each sample 

has differences that affect bonding performance.  In particular the presence of a larger 

amount of extractives or compression wood can affect results.  The goal, however, that 

Kiilto can test customer samples and provide results, was achieved to some extent with 

test batches B, C and D, but work for more accurate and representative results needs to 

continue on the basis of the results from test batch B. 

 

The second goal of the thesis was to test adhesives formulated in the research and de-

velopment laboratory with respect to the delamination according to the SFS EN 302-2 

method for type I adhesives.  The results from the modified Kiilto method showed that 

achieving good delamination results was difficult, with only two out of eight assemblies 

managing to fulfill the requirements.  Looking at the results in table 12, for all the 1K 

PUR adhesives, the results from the long closed assembly time are significantly worse 

than for the short closed assembly time.  The EPI adhesive achieved better results with a 

longer closed assembly time.  This difference in the 1K PUR results clearly points to the 

working time of the adhesives having been exceeded, leading to poor bonding perfor-

mance.  When a 1K PUR adhesive is applied, it immediately begins to react with mois-

ture in the air and in the wood lamellae.  If the time taken to begin to press the assembly 

is longer than the working time, the adhesive can prematurely cure, resulting in a weak 

boundary layer.  That the delamination results clearly show the effect of closed assem-

bly time, means that the method can be used to evaluate maximum closed assembly 

times, which can lead to more precise product manuals and recommendations.  In addi-

tion, the method showed a different level of delamination for short closed assembly 

time between the commercial 1K PUR and 1K PUR A, which could be due to signifi-

cant differences in their formulation. 
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The EPI adhesive results were mixed, with the short closed assembly time of 7 minutes 

giving a delamination mean of 17,4 %, which is well above the <5 % limit.  On the oth-

er hand, the longer closed assembly time of 12 minutes gave a result of 5,7 %, which 

was quite close to the minimum requirements and the short assembly time 1K PUR re-

sults.  This result suggests that 12 minutes did not exceed the adhesives pot life, and 

was within the range of working life.  The 17,4 % for the 7 minute assembly sample 

could have been due to uneven mixing of the dispersion and hardener and tests should 

continue to discover the reason. 

 

From analyzing the results from the Kontio samples, as well as samples prepared in the 

laboratory, important information about adhesive performance as well the delamination 

test drying conditions was discovered.  For future use of delamination tests, both for 

samples produced at Kiilto or elsewhere, the goal should be to try and minimize the 

variables involved in the testing process, to make accurate and repeatable results possi-

ble.  The substrate should be as homogenous and of good quality as possible, which 

would mean less need for invalid delamination assessment from results, removing 

judgment issues and increasing the repeatability of the results.  To provide information 

on adhesive properties, samples should be tested well within their working life, instead 

of the theoretical maximum values.  Testing the adhesives should be in the same drying 

conditions each time.  Delamination is a fascinating subject, and with so many factors 

affecting results there is definitely scope for a lot more study. 
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