

ARCHITECTING AND IMPLEMENTING
DYNAMIC, CROSS-PLATFORM USER

INTERFACE LIBRARY

Juhani Alanko

Bachelor’s Thesis
May 2013

Software Engineering
School of Technology

 DESCRIPTION

Author(s)
ALANKO, Juhani

Type of publication
Bachelor’s Thesis

Date
7.5.2013

Pages
32

Language
English

Permission for web
publication
(X)

Title
ARCHITECTING AND IMPLEMENTING DYNAMIC, CROSS-PLATFORM USER INTERFACE LIBRARY

Degree Programme
Software Engineering

Tutor(s)
PIETIKÄINEN, Kalevi

Assigned by
Star Arcade Oy

Abstract

The thesis focuses on designing and implementing a graphical user interface library. It was an
assignment for Star Arcade Ltd., a Jyväskylä-based game company. The purpose of the library was to
provide the tools for both game programmers and graphical designers for creating user interfaces in
Star Arcade products.

The thesis elaborates on how a dynamic and cross-platform user interface library has been
developed in terms of particular usability and technology requirements. The thesis also discusses
the problems that arose in both design and implementation phases.

The library was developed to replace the old user interface library, which had become obsolete in
terms of usability and meeting the needs of the other developers. Thus the requirements for a new
library were moderately well defined, although they changed a few times during the development
process.

The user interfaces were described using XML for the application code which was written in C++.
The final library was generic and extensive, although defined within set constraints. The interfaces
created according to the specification described in the thesis are cross-platform and automatically
work in the way the designer wanted without having to consider multiple interface definitions for
different target platforms.

The library was adopted in all Star Arcade in-development products and at the moment of writing
the thesis it is a part of Star Arcade’s third-party SDK.

Keywords
user interface, cross-platform, data-driven programming, game programming, XML, C++, MVC

Miscellaneous

 OPINNÄYTETYÖN
 KUVAILULEHTI

Tekijä(t)
ALANKO, Juhani

Julkaisun laji
Opinnäytetyö

Päivämäärä
7.5.2013

Sivumäärä
32

Julkaisun kieli
Englanti

 Verkkojulkaisulupa
myönnetty
(X)

Työn nimi
ARCHITECTING AND IMPLEMENTING DYNAMIC, CROSS-PLATFORM USER INTERFACE LIBRARY

Koulutusohjelma
Ohjelmistotekniikka

Työn ohjaaja(t)
PIETIKÄINEN, Kalevi

Toimeksiantaja(t)
Star Arcade Oy

Tiivistelmä

Opinnäytetyö käsittelee graafisen käyttöliittymäkirjaston suunnittelua ja toteutusta. Työ
toteutettiin toimeksiantona Star Arcade Oy:lle, joka on jyväskyläläinen peliyhtiö. Kirjaston
tarkoituksena oli tarjota työkalut käyttöliittymien toteuttamiseen Star Arcaden tuotteissa sekä
pelikoodareille että graafisille suunnittelijoille.

Opinnäytetyön tarkoitus on kertoa, miten dynaaminen ja alustariippumaton käyttöliittymäkirjasto
on tässä tapauksessa ja tiettyjen vaatimusten ohjaamana toteutettu. Sen tarkoituksena on myös
perustella kehitystyön aikana tehtyjä valintoja sekä selventää, miksi ja miten lopputulokseen on
päädytty. Työssä käsitellään lisäksi esiin nousseita ongelmakohtia ja niiden ratkaisuja.

Motivaationa käyttöliittymäkirjaston kehittämiselle oli korvata aiemmin käytössä ollut, tarpeiden
muuttuessa ominaisuuksiltaan ja käytettävyydeltään vanhentunut UI-kirjasto. Näin ollen
vaatimukset uudelle kirjastolle olivat kohtuullisen hyvin tiedossa, mutta kehitystyön edistyessä
tilanteet muuttuivat usein, ja samalla vaatimuksia jouduttiin määrittelemään uudestaan.

Opinnäytetyö toteutettiin käyttäen XML-kuvauskieltä käyttöliittymien kuvaukseen sekä C++-
ohjelmointikieltä käyttöliittymäkuvauksien integrointiin Star Arcaden tuotteisiin. Tuloksena oli
geneerinen ja kattava, mutta tarpeisiin rajattu käyttöliittymäkirjasto, jolla voi toteuttaa dynaamisia,
suorituskykyisiä ja visuaalisesti näyttäviä käyttöliittymiä. Käyttöliittymät ovat alustariippumattomia
ja toimivat suunnittelijan haluamalla tavalla laitteesta ja näytön resoluutiosta riippumatta.

Käyttöliittymäkirjasto otettiin käyttöön kaikissa Star Arcaden kehitystyön alla olevissa tuotteissa, ja
se on opinnäytetyön kirjoitushetkellä osa kolmansille osapuolille avointa Star SDK-
kehitystyökalupakettia.

Avainsanat (asiasanat)
käyttöliittymä, alustariippumattomuus, tieto-ohjattu ohjelmointi, peliohjelmointi, XML, C++, MVC

Muut tiedot

Contents

1 Background 6

1.1 Star Arcade as a project environment 6

1.2 Out with the old library, in with the new 7

1.3 Time and human resources . 8

2 Designing a reusable UI library 9

2.1 What is user interface? . 9

2.2 Who uses the system? . 10

2.3 What is generic enough? . 11

2.4 Meeting the requirements . 11

2.5 Thinking from a third-person point of view 12

2.5.1 Star SDK . 12

2.5.2 In-house usage . 13

3 Implementing a dynamic UI library 15

3.1 System features . 15

3.2 Describing a UI... 16

3.2.1 ...in the pipeline . 16

3.2.2 ...for machines . 17

3.2.3 ...for humans . 18

3.3 Replicating the description in code 20

3.3.1 Widget hierarchy . 20

2

3.3.2 Dynamic approach . 24

3.3.3 Generic special cases . 26

3.4 View-based environment . 27

4 Conclusions and implications 30

4.1 The project's outcome . 30

4.2 Cycles of development . 30

4.3 The future of the library . 31

References 32

3

List of Figures

1 Star Arcade company logo . 6

2 Star Arcade Technology . 7

3 The design of a UI system . 9

4 The users of the UI system . 11

5 Widget updating inside Container 14

6 Features of the library . 15

7 The in-house Positioner tool . 16

8 Data �ow in the UI pipeline . 17

9 The XML description . 20

10 The widget class hierarchy . 21

11 C++ code utilising the UI library 24

12 The sequence of UI event handling 28

13 The UI library in use . 29

14 A development sprint . 31

4

Glossary

client layout, client UI

Any UI layout that is provided by the Star Arcade Client. These are provided

by the system and the individual games do not need to describe them.

cross-platform

Developing software for, or running software on, more than one type of

hardware platform (PCmag).

data-driven programming

A programming paradigm, in which the program statements describe the input

data to match and process rather than a sequence of program steps (Stutz

2006).

Diesel Engine

The multiplatform game engine used internally in Star Arcade.

game client, Star Arcade Client, Star Lounge

A layer of code in Star Arcade technology that handles the network

interaction and provides graphical UIs and functionality for common tasks in

Star Arcade games.

game layout, game UI

Any UI layout that is provided by the game. The Star Arcade Client does not

contain knowledge about these, but they are loaded into its UI manager.

layout

The graphical representation of user interface elements that are related to

each other and displayed together, in this project's scope the elements of a

page or a view.

user interface

A layer of interaction between human and computer. In the case of this

thesis, it is assumed that the user interface is graphical.

widget

An object that represents a graphical element. May contain properties such as

size, position, text and image.

5

Acronyms

API Application Programming Interface.

MVC Model-view-controller software pattern, in which the data (model) is

separated from its representation (view) and the user interaction is handled

via a third, separate module (controller).

UI User interface.

6

1 Background

1.1 Star Arcade as a project environment

Star Arcade is a small to medium-sized game company located in the centre of

Jyväskylä. It employed around 30 people at the time of working on this thesis. The

company had a few game projects going, each of which utilised an in-house game

engine. The logo of the company is seen in Figure 1.

Figure 1: Star Arcade company logo

Structurally, Star Arcade's departments are divided roughly into programmers,

graphic artists and marketing people. Some programmers work on game titles, while

others are focused on the "core technology", the building blocks for the games. The

core technology people also developed a third-party game SDK, which at the time

of writing of this thesis was about to be released to other developers globally.

As Star Arcade focuses on mobile social games, the projects are on the smaller side

compared to big game projects such as The Elder Scrolls or Call of Duty. Typically,

a game project employes one programmer and artist, and all projects are steered by

the company managers.

The thesis was an assignment in the core technology department, and its goal was

to produce a user interface library to be integrated in the game client from which it

could be utilised in game projects.

7

1.2 Out with the old library, in with the new

The main reason for the UI library was the old UI library which had served for a

time, but lacked in usability and had partially become obsolete in terms of new

features. The old library was developed by a person who was no longer working for

the company, and most people found the library as too hard to use e�ectively. Thus

the new UI project was started and the author of this thesis began designing and

implementing a new, slightly less intimidating UI library.

The scope and size of the project was known even in the beginning of the project,

but as the project went on, it grew larger than anticipated and took considerably

more time than it would have according to the initial plan. This was mainly because

of rapidly changing requirements and also other reasons that are outside of the

scope of this thesis.

Structurally, the UI library resides at the core of the Star Arcade technology. In

Figure 2 the UI code is located in the Star Social Lounge layer (Star Arcade

promotion material).

Figure 2: Star Arcade Technology

8

1.3 Time and human resources

In the beginning of the project, October 2012, it was scheduled to be complete in

roughly a month or a bit more, and the main motive was to build the system

without worrying too much about time. However, the project scope grew during the

development and also due to the author's inexperience in architecting complex

systems the project took more time than anticipated.

Nearing December, there started to be pressure to �nalise the library before the end

of the year. After January 2013, it was decided that since the UI library was bound

to Star Arcade products as a whole, the upcoming games would only be released

when all aspects of the game were complete. This also meant that the UI library

would be worked on until everyone was satis�ed with it.

As the project went on, multiple people took part in it. The main work was done by

the author of this thesis, but some additional code (UI manager, for instance) was

done by the Star Arcade lead coder, Arto Katajasalo. Many design-related problems

were also tackled with Arto and Mika Kytöjoki, the author of Star Arcade's in-house

design tool called Positioner. From the design side, the library was used �rst by Jari

Saarinen, who designed UI layouts using Positioner that were exported to game

assets. Jari supplied valuable feedback and bug reports from the user's point of view.

This thesis focuses on the author's part in the development process, and other

people's work is clearly credited and the authors mentioned where needed. At the

moment of writing this thesis, the UI system is in its �nal testing phase and it has

been contributed by many people. This thesis focuses on the earlier development

process and shaping of the library.

9

2 Designing a reusable UI library

2.1 What is user interface?

A user interface library is a system that is going to provide basic building blocks for

almost everything that is interactable on the screen. Thus, it has to be as reusable

and generic as possible, so that many di�erent layouts can be produced with it.

That leads to a basic princible in designing a UI system: it has to rely on current

speci�cations and requirements, but it cannot rely on current layout functionality.

This means that it has to provide ways to function in any kind of layout, not just

the current ones. For example, if the current layout design has a button that

expands upon clicking it, and shrinks upon releasing the mouse button, the UI

library has to take into consideration that in other layouts the animation might not

be desired at all. So the library should provide di�erent ways of animating the

button, from which the library user can choose, instead of hard-coding any one idea

into the implementation.

A well designed and planned out system is tremendously easier to implement as the

big picture has already been formed and broken into manageable features. The

di�erent parts of a UI system are illustrated in Figure 3.

Figure 3: The design of a UI system

10

2.2 Who uses the system?

The UI system consists of the design part, which produces a UI description in XML

format. This is done by an artist in Star Arcade's case, utilising an in-house design

tool that exports the design into XML. However, more generally, this is the start of

the UI pipeline, in which the graphical idea is formed. The designer is asking

questions such as "What does the UI look like?".

The second part of the pipeline is importing the XML description into game code.

This is where the UI library is actually used and the XML description is parsed into

Widget nodes forming a tree. The Star Arcade client layouts are automatically

loaded upon starting the game, and the game code handles loading of game layouts.

Constructing the layouts into user interfaces is the game programmer's territory, and

she or he decides how the UIs work. They ask questions such as "How does one

interact with the UI?".

The third part of the pipeline is presenting the UI to the actual player who is

enjoying the game. It is very important that the experience is as �uid and intuitive

as possible. This means that even if the designer has succeeded in creating a visually

impressive layout, and the game programmer has done a good job with animating

and presenting it, the UI system itself still has to provide good performance to

ensure that there are no delays, freezing or any weird functionality happening on

screen. The interface user should probably not be asking questions such as "How do

I use this UI?", as the UI is ideally so intuitive that the user will not notice it at all.

The relations of the users to the system is illustrated in Figure 4.

11

Figure 4: The users of the UI system

2.3 What is generic enough?

When designing a system that is generic, one inevitably faces a point where the

system is in danger to become over-generic. This is mostly prominent when the

project has tight time constraints. The problem is that a completely generic system

is an idea, something that can not be constructed in the real world. The architect of

the system has to decide when to stop making the system more generic to be able

to construct a functional system at all.

During the development of the UI system this had to be kept in mind when deciding

about di�erent features. For instance, the Container widget (which handles list

functionality) had to be simpli�ed a couple of times to keep it functioning as a

simple container and not an entire UI subsystem of its own.

2.4 Meeting the requirements

The UI system was built on requirements that de�ned what was expected from the

system and how it had to function as a part of a bigger system. These requirements

had partially formed during the reign of the last UI system, and some other

requirements were invented when people were designing new Star client. As an

opposing force to the generic behaviour and re-usability, the needs from the Star

client often dictated how exactly the UI system had to behave and this resulted in

12

many situations where a decision had to be made between keeping a feature generic

and making a "special case" of it.

Special cases are rules that are hard-written into the code and serve no logical

purpose if the reader is not familiar with the requirement set for the system. Most

often they are a sign of a system that is in need of a layer of abstraction or some

new API functionality, but sometimes special cases have to be made to get things

done without investing many hours to build new complex systems that may be

di�cult to use. In most cases the UI library was developed without special cases, and

those that were implemented, were clearly marked and commented to �x them later.

2.5 Thinking from a third-person point of view

2.5.1 Star SDK

The UI library was developed to be a part of a software development kit (SDK)

which was to be released to third parties later on. This caused a lot of additional

planning and thinking, as you could not only restrict the use cases to those that

were relevant in Star Arcade. This also proved to be bene�cial, as every

development decision had to be thought out from all points of view, you could not

just rush the coding.

Preparing a system for all possible use cases is also something that is impossible to

implement, so there have to be limits that are recognised during the development

process. These constraints form the "sandbox" for any developer using the library,

and when de�ned appropriately, they ensure that the library is used correctly and in

the way the developer wanted it to be used.

When designing any system, the developer should make interfaces easy to use

correctly and hard to use incorrectly (Meyers 2005, 78). Following this simple rule

made it easier to shape the API of the UI library. The constraints should not feel

like a limiting factor, and thus the API had to be as logical and easy to use as

possible, so that the unknown developer would follow the same reasoning while

using the system that the developer of the system itself when architecting it.

13

2.5.2 In-house usage

Using the system in Star Arcade provided valuable feedback and helped �nding and

correcting mistakes in the library, but the use cases and the purpose of the library

was limited to Star Arcade's projects and as such it was di�cult to predict how the

system was going to be used outside Star Arcade. However the SDK release was a

secondary purpose, and the primary raison d'être of the library was to be an

in-house tool for Star Arcade projects. So the features of the library originated from

the needs of the Star Arcade developers, and were implemented so that any

third-party developer could use them.

Sometimes it is hard to think outside the box, and especially so when other people

to get their work done as quickly as possible. There was no place for quick and dirty

solutions, and sometimes it took some e�ort to convince other people that a certain

feature could not work the way they wanted to, because it had to be more generic

to be used outside the company. On the other hand, this also helped the developer

of the UI library to identify unneeded features, or features that had to be

re-designed from a completely di�erent point of view.

Especially designing the Container widget proved to be a di�cult task, because it

had to be kept simple to use, but often it had to perform complicated arranging of

child widgets, to be scrollable to any direction, dynamically add and remove child

widgets and keep other widgets' relative positions in tact. A short look to the

container implementation is illustrated in Figure 5. In short, it took a lot of e�ort

to keep the Container from becoming a completely new subsystem within the UI

system, and this required co-operation from the layout designers to convince them

that sometimes their wishes could not be ful�lled if the system was to be kept sane

enough for other people to use.

14

Figure 5: Widget updating inside Container

15

3 Implementing a dynamic UI library

3.1 System features

The implementation process took place in parallel with the design process in a way

that the features were planned and prototyped one by one, and already implemented

features were refactored or �xed when the requirements changed or bugs were

found. Initially the API was not yet in use in Star Arcade, so breaking changes were

allowed. This enabled quick prototyping without the need to keep the header �les

unchanged in the future.

The library had to work on multiple platforms without taxing the system memory or

CPU too much, as the UI had to give room for the actual game to run smoothly.

This had some implications in layout construction and drawing that had to be taken

into consideration, such as culling the drawing of inactive views and adding some

additional data properties to widgets to remove the need to re-parse XML �les after

the initial loading.

Finally, the system had to be re-usable and modular in a way so that parts of it

could be extended or changed without the rest of the system needing any changes.

This is achieved by using the MVC pattern in the code to separate the data from

the controls and representation.

Main features of the system are illustrated in Figure 6.

Figure 6: Features of the library

16

3.2 Describing a UI...

3.2.1 ...in the pipeline

The layouts are represented di�erently in various parts of the UI pipeline. As

multiple people work on the layouts with di�erent tools, the data has to be

transferred from one tool to another and each tool handles the data in an optimal

way for the tool, containing the relevant information about the layout.

At �rst, the layout designer has an idea in her head, which she transforms into an UI

description by using the in-house Positioner tool. This process creates the rules that

the game code uses to display the elements with correct graphics and texts in

correct places. It can be seen as drawing the image of the layout, as it contains no

functional data. The Positioner tool is presented in Figure 7.

Figure 7: The in-house Positioner tool

From the design tool, the layout data is exported to XML. This representation is

called the UI description. It is a tree of elements that contain properties, of which

some are common to all elements and others unique to the element type in question.

17

The XML description can be changed with a text editor, but as a rule it is not

tampered with in Star Arcade UI pipeline to prevent arduous and error-prone manual

labour and to keep the Positioner descriptions synchronised with the XML data.

The XML �le is then given to the program code, which parses it during the start-up

initialisation of the game to create a tree of widget objects into the device memory.

Those widgets represent the elements described in the XML, and contain similar

properties that are initialised according to XML data.

The data �ow in the UI pipeline is illustrated in Figure 8.

Figure 8: Data �ow in the UI pipeline

3.2.2 ...for machines

Although XML is considered human-readable (discussion about the validity of that

sentiment is outside the scope of this thesis), the data described in it is eventually

consumed by program code to construct objects represented by the XML data.

Thus the data has to be read and understood by the code at some point before the

construction of the UI code.

Especially in a CPU- and memory-constrained environment such as a mobile phone,

the UI parsing can take up time and memory and has to be optimised to keep the

18

loading times short and the �ow of the program smooth. A lot of this optimisation

can be done in designing the XML layout syntax, so that there is as little additional

logic in reading the description as possible. Unfortunately, this can result in

repetitive XML that consists of long lists and is fairly unreadable. In this thesis's

case, there is one tag in the XML that is somewhat monstrous to read (the area tag

list for di�erent device aspect ratios) but it makes the parsing a bit faster and easier

to do in the code.

An example of the area tag:

<e lement name="example_element">

<areas>

<area t a r g e t_a sp e c t_ ra t i o ="1.33333"

x="0.1" y="0.5" width ="0.8" h e i g h t ="0.3" />

<area t a r g e t_a sp e c t_ ra t i o ="0.75"

x="0.2" y="0.25" width ="0.7" h e i g h t ="0.5" />

[. . . more a r ea t ag s f o r each a sp e c t r a t i o]

</areas>

. . .

</element>

The real description contains more attributes and properties but they are not shown

to keep the example simple.

3.2.3 ...for humans

The UI description in XML is not intended to be edited by humans during the UI

description process, but nothing prevents from doing so. This means that

somewhere, someone is going to edit it fully by hand. And for this reason, the

description needs to be human readable. This was achieved by asking questions

such as "What does this tag really describe?" and "What does this tag not

describe?" when coming up with tags. Naming and terminology plays a big part in

this and good XML tag names can really help the designer to understand how the

elements work.

It was also helpful to defend the developer's point of view when challenged about

di�erent UI tags, as you could justify your decisions by rationalising the ideas behind

19

names. For instance, a Container element was named so because it contains other

elements. Thus it should not a�ect any peer elements on its level, it should care

only about its child elements.

Below is an example of a fully described element in XML:

<e lement name="example_element " type=" l a b e l "

v i s i b l e ="1" touchab l e="1" touch_propagat ion="0">

<areas>

<area t a r g e t_a sp e c t_ ra t i o ="1.33333"

x="0.1" y="0.5" width ="0.8" h e i g h t ="0.3" />

<area t a r g e t_a sp e c t_ ra t i o ="0.75"

x="0.2" y="0.25" width ="0.7" h e i g h t ="0.5" />

</areas>

<c o l o r argb="n/a" />

<g r a d i e n t argb1="n/a" argb2="n/a" d i r e c t i o n="n/a" />

<image s r c="n/a" frame="n/a" frame_x="n/a" frame_y="n/a"

stretch_mode="n/a" />

<t e x t_ f i e l d >

<tex t_va l u e s l o c a l_ i d ="42" s t r i n g="Some example t e x t " />

<c o l o r argb=" f f f f f f " />

<fon t name=" a r i a l " s i z e ="0.3" />

<a l i gnment h o r i z o n t a l="c e n t e r " v e r t i c a l ="bottom" />

<mu l t i l i n e v a l u e="1" />

</t e x t_ f i e l d >

</element>

The text �eld element was broken into multiple child elements for the purpose of

keeping it readable. It was initially a list of attributes in a single XML tag, but it

grew too long. The same treatment was done to a few other elements, as well.

The features of the XML description are illustrated in Figure 9.

20

Figure 9: The XML description

3.3 Replicating the description in code

3.3.1 Widget hierarchy

The XML description resides as a �le in the game assets, from where it is read into

the device's memory as a hierarchy of widget objects. The widget hierarchy is found

in many other UI libraries as well, such as Qt, SFML and wxWidgets. The widget

hierarchy is based on inheritance, which was suggested by the technical lead in Star

Arcade. The original plan was to base the library on composition instead of

21

inheritance, which would have been a more modular and modern way of

programming the library.

Every widget is based on the Widget class, which contains default functionality for

drawing and positioning. Specialised widgets, such as Button and Label, are derived

from Widget and they add special functionality relevant to their purposes. For

example, Button contains functionality to display a click animation when it is

touched, although every Widget handles the basic touch event. This kind of

extending upon existing functionality is present commonly in all specialised widget

types.

As seen in Figure 12, the widget hierarchy is small and each widget has a logical

real-world role. Introducing intermediary widgets (such as di�erent layout

con�guration widgets) to the widget family would have made the system

signi�cantly more di�cult to comprehend and it would have caused implications on

the UI description itself, which has to be comprehensible to non-programmers.

The class names conform to the Star Arcade naming conventions, but are here

simpli�ed for the thesis.

Figure 10: The widget class hierarchy

The View class is a little bit di�erent to other derived widgets, as it is the container

for a single layout or UI page. The View handles all the drawing, input and other

common tasks of its child widgets, and the views in turn are managed by a UI

manager class, which was created by the Star Arcade lead coder Arto Katajasalo.

22

The UI manager takes care of activating and deactivating views, and it also handles

their input.

The XML parsing is done in a loader class that constructs widgets according to the

XML data. It reads the widget's type �rst, and constructs an object of that type.

Then it proceeds to parse and �ll name, size, position and other data.

Calling the UI loader is simple in game code:

// s t a r t by i n i t i a l i s i n g UI l o a d e r

UILoader pLoader ;

pLoader . S t a r t up () ;

// t e s t v i ew

TestView∗ pTestView = TestView () ;

pTestView−>Sta r tup () ;

r e t c od e = pLoader . LoadFromFi le (L" t e s t v i ew . xml " , pTestView) ;

i f (OK != r e t c od e)

{

pTestView−>Shutdown () ;

d e l e t e pTestView ;

r e t u r n r e t c od e ;

}

// add v iew to UI manager h i e r a r c h y

m_pUiManager−>AddView (pTestView) ;

// a c t i v a t e the view , d i s p l a y i n g

// i t on s c r e e n wi th a c t i v a t i o n an imat i on

m_pUiManager−>Act i v a t eV i ew (pTestView−>Get Id ()) ;

// shutdown UI l o a d e r

pLoader . Shutdown () ;

Another way to construct UI objects is to create them by hand in program code.

This is often needed when completely new objects are created to re�ect some data,

such as player lists. One of the main features of the UI library was to be able to

23

construct widgets and widged hierarchies without any external XML description.

Here is an example of constructing a view by hand and adding it to the manager:

1. First create a test view:

// c r e a t e t e s t v i ew

CD i e s e l F l o a tRe c t v i ewArea (0 . 0 f , 0 . 0 f , 1 . 0 f , 1 . 0 f) ;

TestView∗ pTestView = new TestView () ;

pTestView−>Sta r tup () ;

// s e t v i ew p r o p e r t i e s

pTestView−>SetArea (v iewArea , Widget : : O r i e n t a t i o n_Po r t r a i t) ;

pTestView−>SetArea (v iewArea , Widget : : Or i en ta t i on_Landscape) ;

pTestView−>SetName (L" te s t_v i ew ") ;

pTestView−>SetMode (Mode_Ful l sc reen) ;

pTestView−>S e t F i l l C o l o r (0 x f f f f 0 0 0 0) ;

2. Create a test widget to display inside the view:

// c r e a t e t e s t but ton

Button∗ pTestButton = new Button () ;

pTestButton−>Sta r tup () ;

// s e t but ton p r o p e r t i e s

pTestButton−>SetImage (L"button_image . png " ,

Widget : : StretchMode_Normal) ;

pTestButton−>Se tO r i e n t a t i o n (Widget : : eO r i e n t a t i o n_Po r t r a i t) ;

CD i e s e l F l o a tRe c t but tonRect (0 . 0 f , 0 . 0 f , 0 . 5 f , 0 . 5 f) ;

pTestButton−>SetArea (buttonRect ,

Widget : : eO r i e n t a t i o n_Po r t r a i t) ;

pTestButton−>SetArea (buttonRect ,

Widget : : eOr i en ta t i on_Landscape) ;

pTestView−>AddChi ld (pTestButton) ;

3. Add the view to UI manager:

// add to UI manager

m_pUiManager−>AddView (pTestView) ;

24

A real-world example is seen in Figure 11:

Figure 11: C++ code utilising the UI library

As soon as views are added to UI manager, they are updated and drawn

automatically. The widgets use an Observer pattern to inform observers about

changes in their state, such as activation, deactivation or touch.

3.3.2 Dynamic approach

The UI design produces a description that is a snapshot of the layout in its default

state. As the program runs, the layout needs to display the data according to the

state of the program and the positioning and visibility of UI elements will change.

As a data-driven system, it has no need to know what kind of information it is

displaying, as long as it is given instructions which objects to display and what data

to replicate. Sometimes the user has to be able to re-arrange items on screen and,

for example, scroll lists.

All this mutability creates a need for the system to be fully modi�able during

runtime. It also requires the layout designers to acknowledge that their UI designs

will be only the initial snapshot of the �nal layout, and that means that extra work

has to be done to for instance restore designer positions of items that are destroyed

25

and re-built or moved. This kind of co-operation was needed throughout the process

of layout design, and the resulting combination of opinions o�ered valuable insight

from other people's points of view.

The widgets store a lot of data of their position and size, which results in having no

need to read them from XML more than once, at the cost of increased memory

footprint. Below is a snippet of the base class Widget's header to illustrate the data

properties that every widget contains.

Data members:

View∗ m_pEventHandler ;

Su r f a c e ∗ m_pImage ;

i n t m_iFrameIndex ;

u i n t m_ iF i l l C o l o r ;

F l o a tRec t m_rcImageSubRect ;

Widget∗ m_pParent ;

boo l m_bVis ib le ;

boo l m_bTouchable ;

boo l m_bMouseButtonPressed ;

WidgetType m_eType ;

StretchMode m_eCurrentStretchMode ;

u i n t m_uTouchIndex ;

O r i e n t a t i o n m_eCur rentOr i en ta t i on ;

WidgetArray m_arrCh i ld ren ;

P t rA r r ay m_arrObservers ;

boo l m_bIsCloned ;

v o i d ∗ m_pUserData ;

Area de�nitions:

// r e l a t i v e a r e a s

F l oa tRec t m_rcPor t ra i tArea ;

F l o a tRec t m_rcLandscapeArea ;

// draw a r e a s

F l oa tRec t m_rcPortra i tDrawArea ;

F l o a tRec t m_rcLandscapeDrawArea ;

26

De�nitions speci�c to displaying stretched "corner images":

// c o r n e r image

F l oa tRec t m_rcCornerSubRect1 ; // top l e f t

F l o a tRec t m_rcCornerSubRect2 ; // top r i g h t

F l oa tRec t m_rcCornerSubRect3 ; // bottom l e f t

F l o a tRec t m_rcCornerSubRect4 ; // bottom r i g h t

F l oa tRec t m_rcCornerPos1 ; // top l e f t

F l o a tRec t m_rcCornerPos2 ; // top r i g h t

F l oa tRec t m_rcCornerPos3 ; // bottom l e f t

F l o a tRec t m_rcCornerPos4 ; // bottom r i g h t

F l oa tRec t m_rcGapSubRect1 ; // top

F l oa tRec t m_rcGapSubRect2 ; // l e f t

F l o a tRec t m_rcGapSubRect3 ; // r i g h t

F l oa tRec t m_rcGapSubRect4 ; // bottom

F loa tRec t m_rcGapPos1 ; // top

F l oa tRec t m_rcGapPos2 ; // l e f t

F l o a tRec t m_rcGapPos3 ; // r i g h t

F l oa tRec t m_rcGapPos4 ; // bottom

F loa tRec t m_rcCenterPos ;

F l o a tRec t m_rcCenterSubRect ;

f l o a t 3 2 m_fCornerImageWidth ;

f l o a t 3 2 m_fCornerImageHeight ;

3.3.3 Generic special cases

As seen in the class hierarchy, the View class is a derived Widget. The same applies

to Container, yet they both di�er from Button and the other derived widgets in

their logic. They are not special cases per se, but the fact that they do not

represent similar functionality as their peers is a sign that there is room for

improvement in this regard. Many times the requirements handed to the engineer

are prone to constant changing, and they almost always mirror the features of a

system that �ts the needs of the company at current time. However the current

situation is a specialisation of a more generic system that represents the all possible

use cases and features needed for di�erent projects altogether. And since the plans

27

are prone to change, the system should take into account that the requirements

de�ne a special case which needs to be translated into more general terms.

The Container was especially hard to implement in a way that would cater for all

possible situations, when it needed to arrange its child widgets very speci�cally in

di�erent views. It has two ways of obtaining child widgets: as templates and as

normal widgets. The template widgets are not drawn with the Container, but they

act as if they were on a shelf from where the user can quickly access them and clone

new widgets from the template widgets. The cloned widgets are in turn added to

the Container hierarchy to represent the data.

For example, when a player list is displayed, multiple clones of a single player

template are instantiated and added as normal child widgets to the Container. But

what happens when there has to be a set of items already de�ned, which do not

belong to the player list data set, but act as a part of the list? In the example, the

player list contains a search box which is scrolled with the player items when the

user �icks a �nger on the list. The search box is not deleted with the data-spawned

child widgets, but it is moved with them. These situations proved so troublesome to

handle that eventually the pre-de�ned widgets were removed from the speci�cation

altogether and only templates and added clones were allowed inside the Container.

3.4 View-based environment

When a widget is constructed, it is handed to a View that is handed to UI manager.

They form a chain of handlers that take care of a lot of boilerplate iterating, adding,

removing and observer informing. The result is a neat system that performs

complex and laboursome tasks to ensure it is easy and logical to use. The Star UI

consists of a collection of View classes that each implement their own touch

handling, usability interface and business logic.

A fabricated example view's header �le could look like this:

c l a s s TestView : p u b l i c View

{

p u b l i c : // c o n s t r u c t o r & d e s t r u c t o r

28

TestView () ;

v i r t u a l ~TestView () ;

p u b l i c : // t h i s p a r t i c u l a r view ' s i n t e r f a c e

vo i d Se tS t a t e (S ta t e ∗ pSta te) ;

p u b l i c : // v i r t u a l s f o r upper c l a s s e s

v i r t u a l v o i d HandleWidgetEvent (Widget ∗pSender ,

EventType eventType) ;

v i r t u a l v o i d OnViewStateChange (V iewState eS t a t e) ;

p r i v a t e : // data

S ta t e ∗ m_pState ;

} ;

The events propagate through the UI manager to the views, which handle the

events and return the handled event so that it won't propagate further. The

sequence can be seen in Figure ??.

Figure 12: The sequence of UI event handling

The HandleWidgetEvent function is a pure virtual function that needs to be

implemented by every widget class separately. It receives the information about

29

touches, which are in turn reacted to in view's class code. OnViewStateChange is a

virtual function that is called when the view is activated or deactivated. It can be

used, for instance, to initialise data before displaying it when the user activates the

view.

A screenshot from a game utilising the UI library is seen in Figure 13. King of

Words (c) Star Arcade 2013.

Figure 13: The UI library in use

30

4 Conclusions and implications

4.1 The project's outcome

The project took some six to nine months to get to �nished status, and it was

mainly a success at least at the moment of writing this thesis. The UI system was

taken into use at Star Arcade quite early during the development process. As of

spring 2013, it has been included in one published game and another game utilising

it is waiting to be released. The library is also a part of the Star SDK, which is to

be released during summer 2013.

According to the feedback received from the project, the library was better than the

old UI library in terms of ease of use and functionality. On the other hand, its

functionality was di�erent to the views of the technical lead, which was largely a

result of the constant change in requirements, the inexperience of the author of this

thesis in designing large and complex systems, and corner cutting due to tight time

frames. The help and support of the lead coder and the design tool coder was much

needed.

4.2 Cycles of development

The constantly changing requirements during implementation caused the need to

refactor the code multiple times, which took a large amount of time and was

frustrating from the developer's point of view. This resulted in some big changes in

the code that left the untouched code look like legacy code. This is almost never a

good thing in programming, and yet there was no time for a full re-write of the

system. With this in mind, the system could have been a lot more �nished and

robust at the end of the development process.

As seen in Figure 14, the sprints were interrupted by changing ideas that had to be

implemented immediately. This happened because the whole development platform

in Star Arcade was under re-construction and various ideas were tested out.

31

Figure 14: A development sprint

4.3 The future of the library

During the development process, many changes to existing ideas made it appealing

to refactor large portions of the code at once. However, the time constraints

tightened around the middle point of the timeline, and rendered larger refactoring

simply impossible to do until the launch of the new system. This meant that every

new feature was likely to not change too much even if it was proven to be less than

ideal.

In the future, the library is likely to be either replaced by a new one or refactored

heavily. The change backlog at the end of the project was already quite long, and

contained enough features for a completely new system. However, the core of the

library is quite solid and likely to remain in use in the future, as it enables the actual

implementation to vary and still be a powerful tool that is also easy to use.

32

References

Meyers, S. 2005. E�ective C++, Third Edition: 55 Speci�c Ways to Improve Your

Programs and Designs. New Jersey: Addison-Wesley Educational Publishers Inc.

Company presentation. 2012. Brochure. Star Arcade promotion material.

De�nition of: cross platform. N. d. Article on PCmag website. Retrieved 6.5.2013.

http://www.pcmag.com/encyclopedia/term/40495/cross-

platform#fbid=aHfb3ldkqPq.

Stutz, Michael. 19.9.2006. Get started with GAWK: AWK language fundamentals.

developerWorks. IBM. Retrieved 6.5.2013.

http://www.ibm.com/developerworks/aix/tutorials/au-gawk/section2.html

	Background
	Star Arcade as a project environment
	Out with the old library, in with the new
	Time and human resources

	Designing a reusable UI library
	What is user interface?
	Who uses the system?
	What is generic enough?
	Meeting the requirements
	Thinking from a third-person point of view
	Star SDK
	In-house usage

	Implementing a dynamic UI library
	System features
	Describing a UI...
	...in the pipeline
	...for machines
	...for humans

	Replicating the description in code
	Widget hierarchy
	Dynamic approach
	Generic special cases

	View-based environment

	Conclusions and implications
	The project's outcome
	Cycles of development
	The future of the library

	References

