

Huiwen Duan

3D Relics

A Standalone Augmented Reality Mobile Application

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Media Engineering

Thesis

01 May 2013

 Abstract

Author(s)
Title

Number of Pages
Date

Huiwen Duan
3D relics, a standalone augmented reality mobile application

45 pages + 3 appendices
01 May 2013

Degree Bachelor of Engineering

Degree Programme Media Engineering

Specialisation option Mobile Application Development, Hybrid Media

Instructor(s)
Supervisor(s) Kari Salo, Principal Lecturer

This project was carried out by Media Engineering and Media degree programmes at

Metropolia University of Applied Sciences, with the purpose of showcasing 3D models of

historical sites to tourists as an augmentation of reality. To address the requirements, a

system consisting of a server side web application and an Android mobile application were

designed and implemented.

The web application was built on Amazon EC2 cloud, using Linux, MySQL, PHP and

Apache as a server environment. An admin site was created for user to upload 3D models,

and a web service was built using the principle of representation state transfer (REST) to

provide a public interface to outside world. The mobile application was developed on the

Android platform using Android SDK and Metaio SDK. It is a standalone Android

application capable of displaying AR content with no dependency to internet.

The results proved that a system of deploying 3D models through a web client and

displaying them as a form of augmented reality on an internet-disabled mobile client was

feasible. With the rapid growth of mobile computing power and accuracy of inertial

sensors, more features can be brought to the mobile client, such as location based

tracking.

Keywords Augmented reality, 3D, Android, Mobile Application

 Abstract

Abbreviations

AR Augmented Reality

AV Augmented Virtuality

API Application Programming Interface

VR Virtual Reality

SDK Software Development Kit

App Application

3D 3-dimensional

HTTP Hypertext Transfer Protocol

URL Universal Resource Locators

REST Representational State Transfer

CRUD Create, Read, Update, Delete

GPS Globle Pointing System

XML Extensible Markup Language

JSON Javascript Object Notation

LLA Latitude/Longitude/Altitude

QR Quick Response

COS Coordinate System

Contents

1 Introduction 1

2 Augmented reality 2

2.1 Definition 2

2.1.1 Marker-based 2

2.1.2 Location-based 3

2.2 AR fundamentals 3

2.2.1 Display types 3

2.2.2 Workflow of AR system 4

2.2.3 Typical AR coordinate systems 5

2.3 AR in real life 7

2.4 Mobile AR development toolkit 8

3 Project architecture 11

3.1 Web application 11

3.2 Mobile application 11

3.3 Use cases 12

4 Design and implementation of mobile application 14

4.1 Development platform and toolkits 14

4.2 User experience design 15

4.3 Application class diagram 17

4.4 Implementation of the main Android component 19

4.4.1 SQLite database 20

4.4.2 Request and parse data 21

4.4.3 Load and cache online image 22

4.4.4 Download manager 24

4.4.5 Event complete receiver 24

4.4.6 Background service 25

4.5 Implementation of AR features 27

4.5.1 Content creation 27

4.5.2 Setup configuration file 28

4.5.3 AR as an Android activity 31

5 Testing 35

5.1 Controlled environment testing 35

5.2 Field testing 37

6 Result and discussion 39

7 Future development 40

8 Conclusion 41

References 42

Appendices
Appendix 1. 3D Scene content creation
Appendix 2. Web client user manual

Appendix 3. Mobile client user manual

1

1 Introduction

In the last few decades, people have been making great efforts on utilizing digital

technology in various fields. One of the achievements lies in the augmentation of the

real world scene with virtual information, which is nowadays the augmented reality (AR)

technology. The concept of this technology was first introduced in 1960s by Boeing [1],

and was then effectively used in the medical field, military and movie making. With the

growing acceptance of multimedia and big leaps in performance in personal computing

device, this technology was brought back to limelight in recent years.

Augmented reality is a multi-disciplinary technology that requires the collaboration of

people from different fields, such as image processing, human computer interaction,

human factor, networking, computer vision and some other fields. With the combination

of the aforementioned technologies, an augmented reality system is designed to

enhance the human perception of the world.

This project was initiated by Media Engineering and Media degree program at Helsinki

Metropolia University of Applied Sciences as a research project. The initial intention of

this project was to bring the historical ruins back to life with 3D models.

As a result of recent development in augmented reality technology, the concept of

demonstrating the virtual 3D content in a form of AR is becoming increasingly popular,

which is why this technology was chosen as a topic for this project. Targeted towards

tourists, the client application should be portable to let them access it at anytime and

anyplace. Considering the fact that foreign tourists may lack WI-FI connection or have

relatively limited data roaming plan, accordingly the application should be able to

function under no internet access. Eventually, the project was defined to be a

standalone augmented reality application on mobile platform.

2

2 Augmented reality

The term "Augmented Reality" has been a trending word on the Internet lately, as well

as two other terms: augmented virtuality (AV) [2] and virtual reality (VR) [3]. In fact

there is no strict boundary between AR, AV and VR, as shown in the continuum in

Figure 1, at one end of the continuum is the real world which is the scene the viewer

sees through his naked eyes, and at the other end is completely computer generated

virtual content.

The more virtual content there is, the more the scene tends to be AV. And by today's

conventions, anything that fits into the middle of the continuum can be classified as AR.

Figure 1. Simplified Reality-Virtuality (RV) Continuum [4]

2.1 Definition

Augmented reality is a live, direct or indirect, view of a physical, real-world environment

the elements of which are augmented by computer-generated sensory input such as

sound, video, graphics or GPS data [5]. In real life, the augmented elements can be

anything, furniture, human faces, trees, buildings and so on. All of these elements can

be generalized into two categories, marker and markerless.

2.1.1 Marker-based

To make the detection process easier, a marker is often introduced in a simple AR

system.

http://en.wikipedia.org/wiki/Computer-generated

3

Figure 2. Marker [6]

As showed in Figure 2, a marker is a black and white square-shape. It needs to be

positioned in front of the camera during the detection process. The captured video

stream is analyzed and the marker is used to determine the coordinate system of the

world captured by the camera. The 3D engine obtains the coordinate system and

renders the virtual object onto the corresponding position in the original video.

2.1.2 Location-based

Questions arise that it might not always be feasible or aesthetic to attach a marker onto

the object which is going to be overlaid with virtual information. As a result, markerless

tracking was introduced. Besides camera, various types of sensors, for example

accelerometer, compass and GPS sensor, have been applied in the tracking process.

2.2 AR fundamentals

2.2.1 Display types

The key part of an AR system is to overlay a virtual layer on top of the real scene. To

make it possible there must be a device in between to connect the end user with the

system. Three types of displays will be introduced below.

Head mounted display (HMD)

HMD is one kind of display that the user should wear on the head, on which a pair or

single optical is right up against the user's eye(s) to display the output data [7].

Wherever the user turns his/her head, a real time augmentation should be presented to

the user's field of view. HMD frees the user’s hands, which imposes no limitation to

4

movement of hands. Before the release of Google Glass, most of the optics on HMD

blocks the users' view and a cable is usually required to connect power supply or

computing devices, thus making this type of display not portable. However, with the

advent of Google Glass, as shown in Figure 3, more intriguing features in the realm of

HMD for AR can be expected.

Figure 3. Google Glass [8]

Handheld display

With a series of smart phones coming to the market, AR has become a technology that

is accessible to customers. With a simple application installed on the mobile phone, the

phone can "interpret" what the camera "sees", rendering the virtual contents and

eventually showing them to the end user on the small screen. During the rendering

process, the mobile system will adopt the data from different on-board sensors [1], for

example GPS, accelerometer and compass, which determines the location, distance

from the ground to the device and the field of view respectively and displays the

corresponding information received from the internet.

Spatial display

Instead of wearing a HMD or carrying a handheld device, the spatial display projects

graphic information onto physical surfaces [1]. The biggest advantage of this kind of

display is that it separates the users from the systems, which on the other hand

enables groups of users to collaborate concurrently since the system is not associated

to any specific user. Superior to HMD and handheld devices, the spatial display has no

limitation on screen resolution, and a series of projectors can expand the view. The

drawback of this display is that it does not work well under sunlight [1].

2.2.2 Workflow of AR system

5

The key part of AR workflow lies in the marker detection process. As shown in Figure 4,

the real scene is captured by an input device (camera), the stream is sent to the

system and analysed, and then the position of the augmented element is obtained. The

graphic system renders the virtual object on the detected position. After the detection

and rendering process are done, the virtual content is merged with the original real

world scene, and at last sent to the display.

Figure 4. Workflow of AR system [9]

In the real world, the detection process can be relatively complex, especially in the

markerless detection. However, under the efforts of mathematicians, series of

algorithms are already there for the programmers' advantage. The most frequently

used algorithms include skin a detection algorithm which is the process of finding skin-

colored pixels and regions in an image or a video [10]. A gesture detection algorithm

will draw a convex hull over the detected hand and count the amount of defects inside

that hull [11]. If nine defects are found then it is a hand with five fingers. There are

more algorithms in use, but in the scope of this thesis, they will not be discussed.

2.2.3 Typical AR coordinate systems

To make an AR system effective and interactive and to give users the feeling of being

immersed in the augmented world, the motions of the user must be reflect ed onto the

user's view appropriately and concurrently, which in other words is to maintain the

computer graphic coordinate system aligned with the real scene coordinate system.

6

Figure 5. Computer vision coordinate system [12]

As shown in Figure 5, there is no nature connection between those coordinates,

thereby a series of mathematics calculations are performed to realize the alignment, as

shown in Figure 6 and Equation 1.

Figure 6. The relationship between marker coordinates and the camera coordinates [12]

Equation 1.



















=


























 ××
=





































=



















11
1000

1333

11000
333231
232221
131211

1
Zm
Ym
Xm

Tcm
Zm
Ym
Xm

WV
Zm
Ym
Xm

WzVVV
WyVVV
WxVVV

Zc
Yc
Xc

7

(Xc, Yc, Zc) represents the camera's coordinate system, while (Xm, Ym, Zm)

represents the marker's coordinate system. V3x3 is the rotation component and W3x1

is the translation component. This calculation is performed to get the translation matrix

of the marker's coordinate system with respect to the camera's coordinate system.

After the two irrelevant coordinate systems have been aligned to each other, the

central project model is used to project 3D points in the camera coordinate systems

into the image plane, which is seen by the screen users.

2.3 AR in real life

AR has existed for more than forty years, and it has been applied in numerous fields. It

has made profound improvements on how people view the world. However, prior to

1999, the expensive and software dependent technology which worked on bulky

equipment had always been an unknown yet growing field to individual customers,

though they were massively used in military, surgery and other industries [13].

However, with the flourishing of mobile computing devices in recent years, and the

release of ARToolkit, which will be discussed later, now AR is making its way to

general populations. Several applications are showed below.

KARMA

Figure 7. KARMA [14]

KARMA (Knowledge-based Augmented Reality for Maintenance Assistance), as shown

in Figure 7, is an HMD AR system. KARMA was one of the functioning AR systems in

the early phase of the AR history. These systems helps the user load and install the

machine without reading the instructions [14], as a 3D model is drawn on top of the

object to guide the user.

Live sports game

8

AR technology is nowadays widely used in broadcasting [15]. For example, the

advertisements and logos at the sides of the pitch that usually do not physically exist,

but still audiences see them on TV. That is because when the video is beamed through

airwaves and additional graphical information is often overlaid onto the original pictures.

Special effects

AR has been helping movie makers for years. Davy John, the character with an

"octopus face" in Pirates of the Caribbean is one of the cases.

Figure 8. Pirate of Caribbean [16]

With the rectangular markers that the actor wore on his head, as shown in Figure 8, the

AR software can easily detect the right position when analysing the video stream, and

superimpose those areas with a virtual 3D model.

2.4 Mobile AR development toolkit

One of the key difficulties in AR development lies on the tracking of the user's field of

view. In order to know from what viewpoint to draw the virtual imagery, the application

needs to know where the user is looking at in the real world, which imposes great

challenges to programmers because of the massive mathematic calculations.

Thanks to the talented programmers, a good number of development toolkits

nowadays offer programmers easy approaches to develop simple AR applications,

either marker based or non-marker based. One of the features that made these toolkits

so handy and welcome is that those toolkits can auto detect the marker position and

with that data programmer can overlay virtual content on top of it (based on computer

vision algorithm), which alleviates the calculations from the programmer’s side.

9

Layar

Layar is a mobile platform for discovering digital information. They provide two

approaches to view the AR contents, as can be seen in Figure 9. The first approach is

through their Layar browser, to which all the data comes in as the form of “layers”.

These layers can contain digital information related to both geo-location as well as

object such as images and videos. Developers have to obtain a developer key, create

their custom layer and then publish to the layar publishing site. The other approach is

through native application, which is also referred to as layar player on their official

document. However, developer also needs to publish his “layer”, as mentioned in the

first approach. By sending request to the layar server, the native application can

demonstrate the AR content.

Figure 9. Layar platform.[17]

However, neither of the methods provide a “offline” mode, as the application always

has to request the remote layar server, and internet connection should be guaranteed

for the application to be functioning.

Metaio

Metaio SDK is a software development toolkit for developing native AR applications,

which has libraries for IOS, Android and Windows. Metaio SDK includes a powerful

3D rendering engine, which wraps up functions calls to OpenGLES and implements

their own mathematical algorithms of detecting and tracking the markers. Figure 10

reveals how Metaio SDK works as a middle man on different platforms.

10

Figure 10 [18]. Metaio architecture

By the time this project was started, Metaio SDK was the only major SDK on the

market that supports 3D rendering.

Wikitude

Simillar to Metaio and Layar, Wikitude provides Wikitude browser as an independent

application, Wikitude SDK for developing native augmented reality application on

mobile platforms, Architect for integrating the AR features to the native application by

using web technologies (HTML, Javascript, and CSS)[19], and Wikitude plugin for

seamless PhoneGap integration. However, at the time the project was started,

Wikitude SDK did not support 3D rendering and, it was not selected by the project.

11

3 Project architecture

The users groups of this project are mainly students and teachers of Media degree

program in Metropolia and tourists, whose purposes of using the system are different

from each other. The students and teachers at Metropolia want to deploy their 3D

models of ancient times in a meaningful way, while the tourists want to gain more

knowledge about the place they are visiting. The system was designed to have two

parts, the server side web application which was developed by Carol Rodriguez Torres

and mobile application, separating the user group from each other.

There are three components involved in this communication system, and they are

interacting in the way shown in Figure 11.

Figure 11. System communication diagram

3.1 Web application

The web application was deployed on Amazon ec2 cloud, using LAMP as a web server.

It has a user interface for students and teachers to upload their 3D scenes and related

information. All the files and information will be stored in the MySQL database and hard

disk on the server. In order to support effective interaction between server and mobile

phones, a web service is provided to the outside world.

3.2 Mobile application

By requesting the web service URL, the mobile application will receive a bundle of data

which consists of all the information about the available scenes. After been properly

handled, those data will be presented to tourists. Therefore, visitors can choose to

download the scene(s) and launch it (them) at any time. Considering that the visitors

12

may be in lack of internet connection as they arrived at the historical spot, the

augmentation functionality was also designed to be usable under non Wi-Fi or 3G-

enabled situation. In other words, the mobile application can be a standalone

application, as long as the models were downloaded beforehand.

3.3 Use cases
This section discusses about the functionality of he end products from user’s point of

view. Figure 12 depicting all the actions user can perform at different states. As

explained in earlier section, there are two end user groups for the system. The only

connection between the two groups exists virtually, i.e., through the server, thus no

direct communications is required or necessary. Figure 12 and Figure 13 demonstrate

the two cases of use; each one is independent from the other.

Use case of web client

Figure 12. Use case diagram from the perspective of web client user.

As can be seen from Figure 12, the user can conduct five operations once (s)he has

entered the web client interface. If the user is not familiar with the system, (s)he can

refer to the user manual for guidance, which is available for downloading on the main

page. For adding 3D scenes, the user has to go through several steps, input the name

and description of that scene, upload the markers files separately and upload a zip file

consists marker files and model related files. To update the information of one scene,

User

Open web client from
browser

Add 3D scene

View available scenes

Delete scene

Edit scene

Download user manual

13

for example to replace the old 3D model with a newer version, the user can click on the

edit button to accomplish such action.

Use case of mobile client

Figure 13. Use case diagram from the perspective of mobile client user.

Figure 13 displays the steps user should accomplish in order to trigger the augmented

reality functionality. When the user enters the mobile application, several view of

instruction and introduction to the application is offered, however, the user can skip this

part at his or her desire. The user then will be presented all the available scenes reside

on the server, (s)he can browse through and choose the one that interests him or her.

As the user enter the detail view of the scene, (s)he can read about the description of

the scene and decide whether to enable the for offline use, or if the scene has already

been download, the user can start to explore the AR contents through the camera.

Open mobile client on
Android phone

browse instructions

View available scenes View the detail of one
specific scene

Download the scene
for offline use

View scene in AR
world

User

Refresh to get latest
available scenes

14

4 Design and implementation of mobile application

4.1 Development platform and toolkits

During the past few years, the adoption rate of smart phones has increased

dramatically, meanwhile, one question is prompted to the developers, on which mobile

platform should they build their application.

At the time the project was started, there were four operating systems excelled in

respect to their market share. As shown in Figure 14, they were Android, IOS,

Blackberry OS and Windows Phone OS, among which Android dominated the market

with a share of 61%, almost three times as much as the runner-up. According the

statistics from Google, 850000 Android devices are activated every day. The total of

Android devices in the world would be 300 million [20]. In addition to its penetration in

the market, Android was and still is the only platform that comes with an open source

development toolkit, enabling developers to study the lower level implementation of

Google’s elegant design pattern.

Therefore, to obtain a larger audience for the application, Android was chosen as the

project’s build environment.

Figure 14. Mobile operating system market share at the time the project was started

[21]

15

Android SDK

Android SDK provides a set of development tools to develop mobile application on

Android operation system, which includes debugger, libraries, and a handset emulator

[22]. Currently it supports development on Linux, Max OS X10.5.8 or later, windows

XP or later.

Metaio SDK

As discussed in previous chapter, Metaio SDK enables the application to be

programmable of implementing all the interactions features with 3D AR content and

all the tracking and rendering will be done locally on the mobile device.

To use the Metaio SDK on Android device, there is a minimum requirement on the

device hardware, which is listed as follows:

- Android 2.2

- ARMv7(Cortext) processor

- OpenGLES 2.0 support

- Camera

- GPS(location), Accelerometer and Magnetic sensors for GPS/Compass based

tracking [23]

As mentioned before, due to the particularity of the target user, the mobile application

is supposed to be used under non Wi-Fi or 3G environment in most of the cases, which

is also the key and crucial point of this application. Apart from most AR web services

nowadays, whose calculation and processing are done in a robust remote server

maintained by the AR provider, all the AR related functionalities in this mobile

application are done locally, including detect and track the marker, render the 3D scene

and overlay the AR content on top of the real world in correct position. To simplify the

development process of rendering the AR content, Metaio SDK was utilized.

4.2 User experience design

16

User experience is what a person feels about the relevance and effectiveness of the

digital solution they interact with. It is also about the meaningful aspects of how people

see, hear and touch it. Good user experience involves various factors, including clear

user interface, smooth operation, and the ease of understanding. Many applications

nowadays tend to be very task focused, instead of providing multiple scattered features

within one application; each app serves one single purpose. The popularity of Any.Do

[24] tells the story.

To bring a pleasant user experience to the users of 3D Relics, the design process was

carried out in two folds, design in the perspective of user interface and the functional

performance of the application. The user interface of 3D Relics can be classified into

three categories.

The first category is the landing view, which contains one welcome view and several

instruction views. This category was mainly designed to familiarize the users with what

the application is about and how it should be used. Swipe gestures were implemented

in the instruction views, thus the user can navigate back and forth from one view to

anther freely and thereby make browsing and consuming data a more fluent

experience [25].

The second category is the views to present available 3D model scenes. As each

scene has a list of meta-data, displaying all the data will occupy rather large section of

space. As the size of mobile screen is quite limited, the user needs to scroll up and

down in order to find the exact scene he is interested in, which as a result is time

consuming and leads to a bad user experience. To solve the problem and give the user

a direct observation of the available scenes, the application uses two of the most

informative and representative data of each scene and display the all the scenes in a

list view. Once user finds their desired scene, he or she can click on the scene and

new view prompts to demonstrate more detailed information of that scene.

The last category is the AR view. Because this view requires most of the interaction

between user and device, it is import to keep the user not to be distracted by any

elements irrelevant to the interaction. Although this view is comparatively straight

forward, it overlays the AR content on top of the camera view, while no additional UI

components are included.

17

4.3 Application class diagram

The mobile application consists of seven packages, each package performs different

tasks independently or sometimes in collaboration. The classes’ inner-relationship and

the methods and attributes are illustrated in the following diagrams.

ARActivity

- myModel: IGeometry
- intent: Intent
- trackingConfigFile: String
+ getGUILayout()
+ onDrawFrame()
+ onStart()
+ onButtonClick()
+ loadContent())
+ getMetaioSDKCallbackHandler()
+ onGeometryTouched()

MetaioSDKViewActivity

+ onCreate()
+ onStart()
+ onPause()
+ onResume()
+ onStop()
+ onDestroy()
+ onConfigurationChanged()
+ setScreenRotation()
+ getWindowSize()
+ updateLayout()
+ onTouch()
+ onSurfaceCreate()
+ onDrawFrame()
+ onSurfaceChanged()
+ onScreenshot()

<<Interface>>
MetaioSurfaceView.Callback

- mSensors: SensorsComponentAndroid
- mSurfaceView: MetaioSurfaceView
- mGuiView: View
- metaioSDK: IMetaioSDKAndroid
- mRenderInitialized: Boolean
- mWakeLock: PowerManager.WakeLock
- mHandler: IMetaioSDKCallback
- mCameraResolution: Vector2di
- mRenderResolution: Vector2di
- mSeeThrough: Boolean

ShowSingleSceneActivity

- context: Context
- decompressReceiver: DecompressReceiver
- receiveDecompressionNotification: BroadcastReceiver
- imageLoader: ImageLoader
- db: DbHelper()
+ onCreate()
+ onDestory()

ShowSceneActivity

+ onCreate()
+ updateList()
+ onDestroy()

<<Interface>>
OnTouchListener Activity

WelcomActivity

+ onCreate()

Figure 15. Class diagram part 1.

Figure 15 demonstrates the classes in fi.metropolia.threedrelics.activities package.

This package contains all the activities in the application. There are four views

designed to be shown at different stages of the application.

When user enter the application, WelcomActivity is created to instruct the user step-

by-step on how the application should be used. After the user has gone through or

skipped the instruction views, the ShowSceneActivity is presented to show the

available scenes on server. When user clicks on one scene, the

ShowSingleSceneActivity will provide a detailed view of the scene, while ARActivity

implements the AR related features.

18

XMLParserTask

- URL: String
- dbHelper: DbHelper
- ifInsert: Boolean
- availableScenes:
ArrayList<Hashmap<String, String>>
- myParser: XMLParser
- myListActivity: ShowSceneActivity
+ doInBackground()
+ onPostExecute()
+ onPreExecute()
+ onProgressUpdate()

<<Interface>>
AsyncTask

DbEntry

- TABLE_NAME: Stirng
- COLUMN_NAME_DOWNLOAD_ID: Stirng
- COLUMN_NAME_SCENE_ID: Stirng
- COLUMN_NAME_MODEL_PATH: Stirng
- COLUMN_NAME_DATE: Stirng
- TEXT_TYPE: Stirng
- INTEGER_TYPE: Stirng
- COMMA_SEP: Stirng
- SQL_CREATE_ENTRIES: Stirng
- SQL_DELETE_TABLE: Stirng

DbHelper

- DATABASE_VERSION: Stirng
- DATABASE_NAME: Stirng
+ DbHelper()
+ onCreate()
+ onUpgrade()

SQLHelper

LaunchOnClickListner

- path: Stirng
- activity: Activity
+ LaunchOnClickListen()
+ onClick()

SingleSceneOnClickListner

- availableScenes: ArrayList<HashMap<String, String>>
- mActivity: Activity
+ SingleSceneOnClickListener()
+ onItemClick()

DownloadCompleteReceiver

- DOWNLOAD_ID: String
+ onReceive()

DecompressService

- downloadId: String
- context: Context
+ onBind()
+ onStartCommand()

DecompressCompleteReceiver

+ onReceive()

<<Interface>>
OnItemClickListe
ner

<<Interface>>
OnClickListen
er

Service

+ onStartCommand()

BroadcastReceiver

+ onReceive()

+ memberName

Figure 16 class diagram part 2.

Five packages are shown in Figure 16, which contain the implementation of

communication with device’s local database, background running services, broadcast

receivers, asynchronous tasks and on click listeners.

19

Decompress

- zipFile: String
- location: String
- service: Service
+ Decompress()
+ unzip()
+ dirChecker()
+ run()
+ notifyDecompressFinished()

<<Interface>>
Runnable

FileCache

+ FileCache()
+ getFile()
+ clear()

ExtensionFinder

- filename: String
+ FindCertainExtension()
+ GenericExtFilter()
+ getFile()

ImageLoader

- memoryCache: MemoryCache
- fileCache: FileCache
- imageViews: Map<ImageView, String>
- executorService: ExcutorService
+ ImageLoader()
+ displayImage()
+ queuePhoto()
+ getBitmap()
+ decodeFile()
+ photoToLoad()
+ imageViewReused()
+ clearCache()

MemoryCache

- cache: Map<String,
SoftReference<Bitmap>>
+ get()
+ put()
+ clear()

MDownloadManager

- dm: DoanloadManager
- c: Context
- title: String
- model: String
- id: Long
+ MDownloadManager()
+ startDownload()
+ getDownloadId()

SceneAdapter

- activity: Activity
- data:
ArrayList<HashMap<String,
String>>
- inflater: LayoutInFlater
- imageLoader: ImageLoader
+ SceneAdapter()
+ getCount()
+ getItem()
+ getItemId()
+ getView()

BaseAdapter

Utils

+ CopyStream()

StaticString

- OBJECT: String
- TITLE: String
- SCENE_ID: String
- PICTURE: String
- DESC: String
- MARKER_FRONT: String
- MARKER_RIGHT: String
- MARKER_LEFT: String
- MARKER_BACK: String
- DATE: String
- MODEL: StringXMLParser

+ XMLParser()
+ getXmlFromUrl()
+ getDomElement()
+ getElementValue()
+ modifyXml()

Figure 17. Class diagram part 3.

The package fi.metropolia.threedrelics.classes is demonstrated in Figure 17, which

contains the supporter classes for the packages mentioned earlier.

4.4 Implementation of the main Android component

Just as a mobile device is designed to be used anywhere at any time, so is also 3D

Relics. To enable the offline capability of AR functionality, the application has to go

through a series of operations, as demonstrated in Figure 18.

20

Figure 18. Process of enabling offline mode.

4.4.1 SQLite database

SQLite is an open source database management system which is embedded in

Android. SQLite supports standard relational SQL syntax, transactions and prepared

statements [26]. In this project, SQLite database is used to keep references to the

downloaded 3D model files in Android file system.

The package fi.metropolia.threedrelics.db contains two classes which are responsible

for the communication between the application and the SQLite database. DbEntry

class consists of the column names, create statement and delete statement as static

strings. The DbHelper, as an inheritance of Android SQLiteOpenHelper, enables the

application to conduct the CRUD operation to the scenes.db. Table 1 illustrates the

structure of scene.db.

_id scene_id title path date download_id

Table 1. Structure of scenes.db

Register decompression finish receiver

Enqueue download

Post a decompression task to
service handlerthread

Decompress
finish?

Download
finish?

Register on download complete receiver

Update UI

Update SQLite databse

Insert folder path to secene.db

YesDownload button
clicked?

Yes

Yes

21

4.4.2 Request and parse data

As Figure 11 demonstrates, the mobile application needs to request the web API for

the scenes’ data. When the application starts, it will first send HTTP requests to server,

and wait for the response in order to proceed with next task, which is parsing the data.

However, if the internet connect is slow, this process will take up to several seconds

and during this time user will not be able to interact with the application, which as result

will bring a bad user experience. Thus an Android asynchronous task is utilized to

handle this process in the background of the application. The AsyncTask class enables

proper and easy use of the UI thread, which allows application to perform background

operations and publish the results on the UI thread [27].

First, the asynchronous task sends a HTTP requests the web API and an XML

formatted data is returned in response, as showed in listing 1.

<root>

 <object>

 <title></title>

 <scene_id></scene_id>

 <picture>http://54.247.2.103/page/descPics/watermill.jpg</picture>

 <desc>....</desc>

 <marker_front>http://54.247.2.103/page/markers/front.jpg</marker_front>

 <marker_back>http://54.247.2.103/page/markers/back.jpg</marker_back>

 <marker_left>http://54.247.2.103/page/markers/left.jpg</marker_left>

 <marker_right>http://54.247.2.103/page/markers/right.jpg</marker_right>

 <date></date>

 <model>http://54.247.2.103/page/objects/mill.zip</model>

 </object>

</root>

Listing 1. Sample XML data returned from the server.

Once the application receives the response, it will store the HTTP message body into a

HttpEntity object. Then the XMLParser object starts to parse the data in the

background. If the data is parsed successfully, the application will create a scenes.db

in the android local SQLite database, and insert all scenes to table if the application is

22

running for the first time, or only insert the newly added scene. Figure 19 demonstrates

the details of the flow from start application to update the UI.

Figure 19. XML data handling in the background.

When the whole process of updating UI is finished, scenes.db has the data shown as in

Table 2, where the “scene_id” represents the unique id of each 3D scene, the “path”

represents the absolute path of the folder in Android file system that contains this

specific scene’s model file, texture file and markers’ files. As the user has not launch

any model downloading operation, the fields “path”, “date” and “download_id” remains

null.

_id scene_id title path date download_id

1 23 mill null null null

2 34 church null null null

Table 2. scenes.db

4.4.3 Load and cache online image

Start application

Request web API

Parse xml

If the app is
running for the

first time?

Insert all scenes information to
SQLite database

Update UI

Check new scenes and update
SQLite database

Store parsed data to
ListArray<HashMap<String,String>>

Yes No

23

In this application, there are several occasions that require loading online images. It is

time consuming and waste of bandwidth to set up an HTTP connection and stream the

file to mobile device every time the images are needed. So the application implements

cache to solve this problem.

There are two types of cache in this application, the memory cache and file cache. The

memory cache will store the image as a key value pair to a Map<String,

SoftReference<Bitmap>> object, where the key is image URL and value is a reference

to a Bitmap object. The soft reference to the bitmap will be cleared at the discretion of

the garbage collector in response to memory demand [28]. Meanwhile, the image will

be stored to the device’s file system as a file cache.

ImageLoad

Thread poolUI thread

Ph
as

e

If image is in Memory
cache

Start to load
image

Display a
default
image

If the image is in
file cache

Display the
image

yes no

Download the
image from internet

and store to file
cache

Store to
memory

cache

Replace the
default
image

yes no

Figure 20. Display an online image.

24

Figure 20 illustrates how the system will handle the request of displaying an online

image. A substitute image will be displayed when the application finds no memory

cache for that image, later on the substitute image will be replaced by the actual image.

Usually this flow can be accomplished instantly.

4.4.4 Download manager

There are several ways to implement the download functionalities, however the

Android DownloadManager class would be the ideal solution in this case, and it was

enabled after Android API level 9. The download manager is a system service that

handles long-running HTTP download [29].

As listed in Listing 1, a “model” element is returned for each scene to provice a link to

the 3D model zipped file on the server. Once the user chooses to download that model,

an DownloadManager.Request object with the model URL as a parameter will be

queued to the download manager. Also a unique id for this download will be returned

and then stored to the SQLite database. The reason to store the download id is to

associate this download task with its scene. When the download has been finished, the

DownloadManager will broadcast an Intent with download id as its extra information, by

querying this download id in database, the application will acknowledge which scene

has been finished downloading and proceed the next task related to this scene. This

methodology enables multiple downloads concurrently, bringing a smooth user

experience.

4.4.5 Event complete receiver

As the application is designed to be capable of multitasking, a mechanism is required

to notify the application when the task is accomplished in each thread. Therefore, the

broadcast receiver was introduced to this application. A broadcast receiver is an

Android component which allows the application to register for system or application

event, enabling a cross-process communication.

There are three types of broadcast receivers registered within the application. Two

custom broadcast receivers are registered statically in android manifest file, with the

purpose to receive the download complete event and decompress complete event

25

respectively in the scope of the whole application. Once the

DownloadCompleteReceiver receives the event, it will post a decompression task to

DeompressService. Later when decompression is finished, the

DecompressCompleteReceiver will be notified and the scene information will be

updated in database accordingly, as demonstrated in Figure 11. The third broadcast

receiver is registered dynamically in ShowSingleSceneActivity. Once user quits this

activity, this receiver is unregistered simultaneously. The concept of third broadcast

receiver lies in the fact that user may stay in the ShowSingleSceneActivity during the

whole decompression process, and thus it is necessary to notify the foreground to

activate the “launch” button once background running service finishes the

decompression task, therefore user can immediately launch the 3D model.

4.4.6 Background service

Since the application was designed to enable multiple download tasks at the same time,

a mechanism is required to handling the decompression job once the zip files are being

downloaded. This mechanism should also be capable of updating the “path” in

scenes.db to the current location of the unzipped files, thus a service is utilized to suit

the purpose. Meanwhile, a handler is implemented to enqueue the decompress job.

However, as clarified in the Android official document, a service runs in the main thread

of its hosting process, and as a result the handler generated within the service will also

work in the main thread. For this reason, a worker thread is spawned within the service

to avoid blocking main thread from being blocked by heavy tasks. This worker thread is

an instance of HandlerThread class which inherits all the features from Thread class.

The service is triggered once a zip file is finished downloading, as demonstrated in

Figure 11. Along with the absolute path of the downloaded zip file, the desired

destination for storing the unzipped files will be sent to the decompress object as

parameters. In android handler documentation, handler is defined that only Message or

Runnable objects can be sent to the associated message queue. Thus, in order to

send Decompress object to the message queue, the Runnable interface is

implemented by the Decompress class. The decompress object is post to the message

queue anonymously, because there is no way for the application to estimate the time

that the system takes to decompress the zip file and thus there is no point to keep a

reference to this decompress object.

26

Figure 21. Work flow of decompress service.

To notify the application when the decompress process has finished, a

notifyDecompressFinished() function is implemented in Decompress class, and it is

been called after unzip(). In the notifyDecompressFinished(), an intent with the

destination of unzipped files folder is sent as a broadcast. When application receives

this intent, the scene’s information will be updated in scenes.db, Figure 21 shows the

updated columns after the download and decompression have completed, where the

date is obtained from the XML data for that scene returned in HTTP response.

Start from Android API level 8, the function getExternalFilesDir() is available to the

Context class. By calling this function, a private folder to the application itself will be

returned. And the content in the folder will be removed once the application is

uninstalled, in prder to release the memory on mobile phone.

path date download_id

/mnt/sdcard/Android/data/fi.metropolia.threedrelics/3dModelsUnZipped/23 02-02-2013 3245

Table 3. Updated contents in scenes.db

Eventually, after a round of processes and inner communications behind the scene,

the folder which is named after scene’s id will reside in the application’s private folder,

which contains all the files related to the scene, including front.jpg, back.jpg, left.jpg,

back.jpg, model’s .OBJ file, material library file and texture file(s).

looper

Decompress object N

Decompress Object 2

Decompress Object 1

.

.

.

.

.

compressHandler(looper)
Post(new Decompress())

HandlerThread
getLooper()

Message queue

27

4.5 Implementation of AR features

4.5.1 Content creation

To unleash the creativity of the content creators, Metaio SDK offers AR content

supports in three areas: image, movie and 3D animation. In this project, all the AR

contents were 3D models.

There are three supported model formats in Metaio SDK, which are OBJ for static

objects, MD3 and FBX for animation objects [30]. To create model files for Metaio SDK,

3D computer graphics software is needed. The major 3D computer graphics software

on the market now, such as Blender and 3ds Max, offer exporting choices to the above

formats. Each file format has different purposes to serve, illustrated in Table 4,

therefore the content creator should consider the upsides and downsides of each

format and make a selection based on the content of their 3D models.

 advantages disadvantages

MD2

1. Supports animation, but vertex

animation only .

2. Very efficient for devices with

weak processor.

3. File size is small.

1. Only one texture file is

supported.

2. Comparatively old format.

3. No vertex color.

OBJ

1. Supports multiple meshes with

different textures and materials.

2. Meshes can be assigned to

different materials to their

polygons.

1. Only for static meshes.

FBX

1. Contains almost everything

from 3D model data to animation

or even movie data.

1. Metaio SDK only supports

subset of its numerous features.

2. An additional conversion step

is need to strip all unwanted items

from the file and turn it into a fast

runtime format.

3. Larger file size.

Table 4. Advantages and disadvantages of Metaio supported file formats.

28

In this project, all the 3D models provided by 3D animation students are static ones,

thus the OBJ file format was recommended as an exporting choice. When successfully

exported, each model should have three type of files, the OBJ file, the material library

files and the texture files, where the material library files contain one or more material

definitions each includes the color, texture and reflection map of individual materials

[31].

4.5.2 Setup configuration file

Currently, Metaio SDK provide several optical tracking technologies, including ID

marker tracking, picture marker tracking, Latitude/Longitude/Altitude(LLA) marker

tracking, markerless tracking, markerless 3D tracking and Quick Response(QR)

code reader. In this project, markerless tracking is used to suit the application

purpose [32].

There are two kinds of markerless tracking offered in Metaio SDK, namely fast and

robust methods. The fast method is applicably under most of the cases, it runs

fluently on smart phones and it is very stable on moderate textured targets [33]. This

kind of sensor tracks planar objects by matching their intensities. It works at higher

frame rate, and it can be sensitive to occlusions, secularities and light changes.

While a robust method fits well with the highly textured target, however in order to

obtain a satisfying result, more time is required for the user to hold the device in front

of the tracked target. Due to the fact that the models will be rendered on the mobile

phone screen, user will not be able to notice the details on model’s texture. Thus it is

recommended to reduce the complexity of the model’s texture thereby to increase

the rendering speed. Besides, to bring a better interact experience, the model should

be render at high frame rate. Based on the reasons stated, the “fast” method was

chosen for this project.

The FeatureDescriptionAlignment has four feature descriptor types to choose from,

which are “regular”, “upright”, “gravity” and “rectified”. The “regular” feature

descriptor is default for this parameter; it fits well in most of the cases. The “upright”

feature descriptor assumes that during the tracking process, the camera is not

rotating with the respect to the optical axis, thus not selected by the project. The

“gravity” feature descriptor can only be used with the device that has inertial sensors

that measures gravity. It is used to localize static objects that are either on a vertical

29

surface or close to it. The orientation of the features will then align with gravity. Like

the “gravity” descriptor, the “rectified” feature descriptor requires device with inertial

sensors. It is used only for planar objects on a horizontal surface, thus is not chosen

in this project. Hence, as explained above, only “regular” and “gravity” suit the

purpose of this project. To examine which descriptor has the better tracking result,

both were tested in the application. Both descriptors worked well with no significant

difference in tracking results. Considering some devices may have unstable or no

inertial sensors, the project finally chose “regular” as value for

FeatureDescriptionAlignment.

The SimilarityThreshold is a threshold value used to decide whether the tracking was

failed or succeed. The Metaio’s tracking quality is represented as a float value

ranging from -1 to 1, where 1 stands for the best tracking quality. After series of

testing under various lighting condition utilizing different marker targets were carried

out. The lower the threshold value was, the faster the application detects the marker.

However, as a result, many markers were not interpreted correctly. When the

SimilarityThreshold was set to 0.6, the application detected all the marker correctly

with less than one second, thus 0.6 was chosen as the threshold value for this

project.

Listing 2. Configuring sensors section in markerless tracking configuration file.

For showing the front view of the 3D model, a SensorCOS with “Front_Patch” as its

SensorCosID and front.jpg as its ReferenceImage were defined. The reference

30

image tells the application which object to track. And based on detected image, as

the red rectangular area showed in Figure 22, a virtual coordinate is drawn on the

center of that area. In the later part of the configuration file, a connection will be

established between coordinate system (COS) entities and SensorCOS.

Figure 22. Metaio coordinate system and marker detecting

The SensorCOS represents the pose of the tracked object relative to the sensor, and

the COS is the pose that will be used when augmenting contents. To correlate the

SensorCos to COS, they must share the same SensorCosID.

Figure 23. Poses [34]

When the pose’s is been detected, as shown in Figure 23, the application will iterate

through the COS tags until it finds the COS with the same SensorCosID as the

detected pose. Then according to the COSOffset, a rigid transformation is set to the

coordinate. In this project, a rotation transformation is obligatory for transforming the

model from front view to left view, right view and back view respectively. Those

rotations were set to the augmented object programmatically in the Android code. So in

the configuration file, no rotation was set.

31

Listing 3. Correlate COS to SensorCOS.

The X,Y,Z,W surrounded by <RotationOffset></RotationOffset> is a notation of

quaternions, where X, Y, Z are the unit vector representation of the axis multiplied by

the sine(rotation angle/2) while W represents cosine(rotation angle/2), as 0 rotation

angle was set, the X, Y, Z, W are calculated as follow:

X = [1 0 0] sin(0/2) = [0 0 0]

Z = [0 1 0] sin(0/2) = [0 0 0]

Y = [0 0 1] sin(0/2) = [0 0 0]

W = cosine(0/2) = 1.

Thus the value assigned to X, Y, Z, W are 0 0 0 1 respectively.

4.5.3 AR as an Android activity

To experience augmented contents in real time, Metaio SDK proposed a methodology

that is to overlay views on top of each other and only renders the augmentation in

MetaioSurfaceView.

32

In this project, three views are added when the activity is been created. To capture the

real world scene, device camera will be activated when the activity’s onStart() function

is been called, and a camera view will be laid at the bottom among the other views.

Then a MetaioSurfaceView, which in essence is an inheritance of

android.opengl.GLSurfaceView, will be initialized and overlaid onto the camera view. At

last, a GUI view will be displayed on top of MetaioSurfaceView.

To render the 3D model concurrently with the movement of the device, the

MetaioSurfaceView implemented MetaioSurfaceView.Callbacks which is a Metaio

encapsulation of OpenGLSurfaceView.Renderer interface. The onSurfaceCreated() will

be called to initialize a renderer on a rendering thread for this view. Once the

IMetaioSDKAndroid has updated tracking and is ready to render, the onDrawFrame()

callback is called constantly in a loop to render the model in renderer thread. Figure 24

introduces the flow of presenting augmentation.

33

Figure 24. Lifecycle of ARActivity.

Considering the printed marker is supposed to be attached to a vertical surface, the

tourists will see a top view of the model when pointing the device to the marker, and it

is not easy to observe the back view. Therefore, a rotation was set to transform the

model from top view to front view based on the virtual coordinate system of detected

ARActivity

Main Thread Render Thread

Ph
as

e
Activate camera

Overlay Metaio surface view to
camera view

Configure Metaio surface view
according to camera and device

screen size

Overlay GUI view to Metaio surface
view

Initialize render

Render geometries

Initialize Metaio surface view

Load tracking configuration and
initialize geometries

Initialize IMetaioSDKAndroid object

Initialize GUI view

Register callbacks to Metaio surface
view

Loop

Destroy activity

Quit?

Get pose COSId

Set coordinate system to
geometries

Rotate geometries

On Metaio
Surface create

callback

MetaioSDK has
updated tracking

34

marker as demonstrated in Figure 25. Furthermore, to have a comprehensive

observation of all side of the model, four markers were introduced to present front view,

back view, left view and right view respectively.

Figure 25. Transform from top view to front view.

As soon as a marker is detected, the marker’s correlated coordinate system is set to

the model, a certain rotation is added to the model programmatically after model has

been loaded.

Top view Front view

35

5 Testing

The testing of the mobile application consists of preliminary tests and final tests. The

preliminary tests were carried out in different phases of the development process,

either with the teachers, students or developers. That way, many subtle bugs were

eliminated before the final tests.

5.1 Controlled environment testing

This test was conducted inside a classroom following the testing plan in Table 5. Four

students were involved in this testing, among whom two had no IT background, thus

creating some diversity in the tester group.

The device used in testing sessions was Samsung Nexus S with Android version 4.1.2.

There was three 3D scenes obtained beforehand from the project’s 3D model support

Mr. Ale Torkkel, all of which were already exported to .obj file format correctly as

instructed in Appendix 1. For each scene, four markers representing front, back, right,

left were attached to the wall to be read by the device.

As Table 5 indicates, the results of the testing were almost positive, except in Test No.

5 one tester found out that when he pressed the back button immediately after launch

button was clicked, the application stopped suddenly. The cause of the bug was

identified later to be a null pointer exception, which after a series of debugging and

discussions with Metaio developers, turned out to be a Metaio design flaw, because the

OpenGL renderer is not unregistered properly by IMetaioAndroidSDK object after the

OpenGL drawing context is destroyed. The Metaio developers are expecting to fix this

bug in their next release.

36

Test No. Test Description Steps Result

1
Install mobile

client.

1. Open browser on the device and

type the URL of the application.

(http://users.metropolia.fi/~huiwend/3D

Relics/threedrelics.apk)

2. Carry out installation

Successful

2
Launch the

mobile client.
1. Launch the application. Successful

3
Download 3D

Scenes.

1. Click on one of the available scenes

and download the scene.

2. Quit the current scene view and

choose another available scene to

download.

3. Wait for a while until you see the

launch button is activated in both

scenes.

Successful

4

Update the

existing 3D

scene.

1. Wait for the staff to upload a new

version of each scene through web

client.

2. Return to the available scenes view.

3. Click on the scene you have

downloaded in previous test.

4. Check if the update button is activate

for this scene. Click update button to

download the newer version.

Successful

5

Launch the scene

and interact with

it under no

internet

connection.

1. Return to the available scenes view.

2. Disable the internet connection.

3. Click on one scene you have

downloaded and launch the scene.

4. Find the related four markers of the

scene, move the camera around the

marker to view the scene in different

angels.

5. Quit the application

Partly

successful

Table 5. Testing plan and results.

37

During the test, some feedback was received from the testers concerning the user

experience, such as to add a short step-by-step instruction on how to use the

application at the beginning and add notifications when the model is been downloading

and decompressing. Because during this process both “download” and “launch”

buttons were inactive and the users were not sure what to do next. These features

were later implemented in the final version of the application.

5.2 Field testing

This test took place at Vanhankaupungintie 9, Helsinki, where the oldest church of

Helsinki used to reside. The church was built in 1550, when Helsinki was moved to

Vironniemi in the 1640s. The church was then left to the local hospital, but it soon fell

into decay and was abandoned. Eventually, all that left was the stone base [34].

In this test, “3D Relics” was installed into two devices, which were Samsung Galaxy S3

and Samsung Galaxy Tab 2. The church scene was then downloaded for later use.

As Figure 26 demonstrates, a marker was attached to a pole that was planted into the

ground. Both devices detected the markers and rendered the scene successfully under

non-internet environment. Figure 27 shows the screenshot of the testing results.

marker

Figure 26. Detecting the marker. Photo taken by Huiwen Duan.

38

Figure 27. Screenshot from Samsung Galaxy S3.

However, it is worth mentioning that there were some factors affecting the tracking and

rendering results. For example because of the wind it was difficult to keep the marker

as flat as it should be. Also, when the sunlight goes through the marker, the application

took longer time to detect the marker due to less image contrast on the marker.

To enhance the tracking results, it is recommended to attach the marker to a cardboard

and use colour image as marker.

39

6 Results and discussion

At the completion of this project, an integrated system has been established; two user

groups were able to perform the desired functionalities through web application and

mobile application. By developing 3D Relics, it was proved that the 3D models can be

presented as an augmentation of the real world. The tracking and rendering results

were satisfying. Apart from most of the AR application on the market, 3D Relics fulfilled

the prime aim of this research project that is to display the AR contents under non-

internet enabled situation.

The project followed the rapid application development methodology. The project

started with the development of preliminary data models and business process models

using structured techniques. In the next stage, requirements were verified using

prototyping, eventually to refine the data and process models. These stages were

repeated iteratively. By apply this methods, the mobile application structure has been

improved several times when the developer found better solutions of optimizing the

performance, and also the structure on the web client has been modified to provide the

desired data for mobile client.

The whole development process has consolidated the developer’s Android

programming skills and brought the developer to a new level in understanding Android

design pattern. The developer also come to know that develop an application for

mobile platform is very different from other platforms, as the limited computing power

and the screen size has put many constrains on the application. Thus to effectively

pass information, the application should be taken care of at the design phase.

Furthermore, it was an opportunity to explore a number of other fields, including

computer graphics rendering flow, image processing, 3D modeling and mathematics.

Most importantly, the developer has gained a more thorough comprehension in

software development.

http://en.wikipedia.org/wiki/Data_model
http://en.wikipedia.org/wiki/Business_process_model

40

7 Future development

The potential of AR on mobile platforms remains vastly untapped, and more new

features can be brought to 3D Relics.

As mentioned in an earlier chapter, there are multiple tracking technologies for AR

applications to adopt, one of which is the location based tracking. By utilizing the

device’s embedded sensors, the system can overlay the virtual content on a specific

latitude, longitude and altitude. This tracking technology was implemented at the

beginning phase of this research project, but as the current sensor readings on Android

phones are very unstable and lack of accuracy, this approach was abandoned.

Nonetheless, with the rapid growth of mobile hardware performance, this method can

be reactive in the near future.

The AR related functionalities can be explored more, such as gesture interaction with

the virtual content. When user click on certain part of the virtual model, information

related to that part could be prompted. In fact, this functionality was already

programmed in the application. However, due to lack of detailed information to the

corresponded model, this feature was disabled currently.

Another improvement can be adding the “sharing” functionality to the application. As

social network is thriving nowadays, the tourists may want to share the information with

their friends when they “check in” the historical spot. To implement this feature, the

application can easily connect to the user’s SNS account, such as Facebook and

Twitter, by utilizing the public API provided by the SNS. On the other hand, this feature

could also be turned out a way to advertise these historical sites.

41

8 Conclusion

The way people obtain information has changed dramatically in recent years. Instead

of passively receiving the information, they expect to interact with the information

source. To meet these new behavioural transformations, technologies from different

fields were brought together in a form of augmented reality applications to address

these needs. Augmented Reality is a technology that enables the interaction between

the user and the machine in real time and offers the user a new vision of the

surrounding world. Though AR has been utilized in diverse fields for decades, it was

never close to individual customers until last few years. With the rapid growth of

smartphone users, AR will become more accessible to a broader audience.

In this project, AR technology was used to present the tourists with a more in-depth

tour of the historical sites. A system consisting of a web client and a mobile client was

designed to fulfill this goal. One specific requested feature for the mobile client was that

the tourists should be able to view the AR content without internet access. In other

words, the mobile application should be capable of all the tracking and rendering of the

AR contents locally. After months of efforts, the whole system was established, and it

worked as desired.

In this thesis, a number of AR use cases were examined, the structure of the system

has been described and a whole flow of developing a standalone AR mobile application

have been presented. However, what AR can do in the future cannot be predicted。

With the efforts of scientists all over the world, in the not-so-distant future a more

splendid world with the help of AR technology can be expected.

42

References

1. Johnson L., Levine A., Smith R. The 2010 Horizon Report [online]. Texas, United
States: The New Media Consortium; January 2010.
URL: http://wp.nmc.org/horizon2010/chapters/simple-augmented-reality/.
Accessed 1 May 2013.

2. A new world of gaming: creating mixed reality [online]. United States: Orbotix; June
2011.
URL: http://www.gosphero.com/tag/augmented-virtuality/. Accessed 6 May 2013

3. Botella C, Quero S. Virtual reality and psychotherapy [online]. Amsterdam,
Netherland; 2004.
URL: http://www.cybertherapy.info/cybertherapy/3_Botella.pdf. Accessed 3 May
2013.

4. Milgram P. Augmented reality: a class of display on the reality-virtuality continuum
[serial online]. 1994;2351:12.
URL:http://etclab.mie.utoronto.ca/people/paul_dir/SPIE94/SPIE94.full.html.
Accessed 3 May 2013.

5. Cassella D. What is augmented reality [online]. Designtechnica Corporation;
November 2009.
URL: http://www.digitaltrends.com/mobile/what-is-augmented-reality-iphone-apps-
games-flash-yelp-android-ar-software-and-more/. Accessed 2 May 2013.

6. Smart Grid augmented reality [computer programme]. Version 2. US: General
Electric Company; 2012.

7. A helmet-mounted virtual environment display system [online].Ohio, United States:
Wright-Patterson Air Force Base; December 1989.
URL: http://www.dtic.mil/dtic/tr/fulltext/u2/a203055.pdf. Accessed 2 May 2013.

8. Baron. Google Glass [online]. PixelDrunk; February, 2013.
URL: http://www.pixeldrunks.com/2013/02/27/google-glass/. Accessed 16 May
2013

9. Denis K, Bernhard R, Petter R, Alexander B, Reinhard B, Dieter S, Eigil S.
Integrated Medical workflow for augmented reality applications [online].
URL:http://www.icg.tugraz.at/Members/denis/publication/kalkofen__integrated_wor
kflow.pdf. Accessed 6 May 2013.

10. Maxim B. Image processing: skin detection [online]. CodeProject; July 2009
URL:http://www.codeproject.com/Articles/38176/Image-Processing-Skin-Detection-
Some-Filters-and-E. Accessed 6 May 2013.

11. Zhou R, Junsong Yuan, Zhengyou Z. Robust hand gesture recognition based on
finger earth mover’s distance with a commodity depth camera [online].
URL:http://eeeweba.ntu.edu.sg/computervision/people/home/renzhou/Ren_Yuan_
Zhang_MM11short.pdf. Accessed 6 May 2013.

12. Coordinate system [online]. Seattle, United States: University of Washington.

http://wp.nmc.org/horizon2010/chapters/simple-augmented-reality/
http://www.gosphero.com/tag/augmented-virtuality/
http://www.cybertherapy.info/cybertherapy/3_Botella.pdf
http://etclab.mie.utoronto.ca/people/paul_dir/SPIE94/SPIE94.full.html.%20Accessed%203%20May%202013
http://etclab.mie.utoronto.ca/people/paul_dir/SPIE94/SPIE94.full.html.%20Accessed%203%20May%202013
http://www.digitaltrends.com/mobile/what-is-augmented-reality-iphone-apps-games-flash-yelp-android-ar-software-and-more/
http://www.digitaltrends.com/mobile/what-is-augmented-reality-iphone-apps-games-flash-yelp-android-ar-software-and-more/
http://www.dtic.mil/dtic/tr/fulltext/u2/a203055.pdf
http://www.pixeldrunks.com/2013/02/27/google-glass/
http://www.icg.tugraz.at/Members/denis/publication/kalkofen__integrated_workflow.pdf
http://www.icg.tugraz.at/Members/denis/publication/kalkofen__integrated_workflow.pdf
http://www.codeproject.com/Articles/38176/Image-Processing-Skin-Detection-Some-Filters-and-E
http://www.codeproject.com/Articles/38176/Image-Processing-Skin-Detection-Some-Filters-and-E
http://eeeweba.ntu.edu.sg/computervision/people/home/renzhou/Ren_Yuan_Zhang_MM11short.pdf
http://eeeweba.ntu.edu.sg/computervision/people/home/renzhou/Ren_Yuan_Zhang_MM11short.pdf

43

URL:http://www.hitl.washington.edu/artoolkit/documentation/cs.htm. Accessed 6
May 2013

13. Current augmented reality applications [online]. PBworks; May 2009.
URL:http://augreality.pbworks.com/w/page/9469034/Current%20Applications%20o
f%20AR. Accessed 6 May 2013.

14. Macintyre B. Knowledge-based augmented reality for maintenance assistance
[online]. New York, United States: Columbia Univeristy; May 2007.
URL: http://monet.cs.columbia.edu/projects/karma/karma.html . Accessed 6 May
2013.

15. Kim S. An architecture of augmented broadcasting service for next generation
smart TV [online]. Seoul, South Korea: IEEE International Symposium; June 2012.
URL:http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6264289&url=http%3A
%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6264289.
Accessed 1 May 2012.

16. Hines M. AR in movie making [online]. Trend Hunter; March 2011.
URL:http://www.trendhunter.com/trends/the-witness. Accessed 1 May 2012.

17. Layar code example for developers [online]. SlideShare; June 2011.
URL: http://www.slideshare.net/layarmobile/layar-code-examples-for-developers.
Accessed 1 May 2013.

18. Metaio developer portal overview [online]. Metaio; December 2012.
URL: http://dev.metaio.com/overview/. Accessed 1 May 2013.

19. Start with the augmented reality Android SDK [online]. Wikitude; November 2011.
URL: http://www.wikitude.com/developer/get-started/android/. Accessed 1 May
2012.

20. Google: 850,000 Android devices activated every day [online]. Mashable; February
2012.
URL:http://mashable.com/2012/02/27/android-daily-activations/. Accessed 1 May
2013.

21. Mobile-os-market-share-1q-2012 [online]. Solostream; April 2012.
URL:http://androidheadlines.com/2012/12/malware-on-android-should-i-be-
worried.html/mobile-os-market-share-1q-2012-2. Accessed 1 May 2013.

22. Android software development [online]. SlideShare; March 2013.
URL: http://www.slideshare.net/quiver78tub/android-application-development-
steps-to-the-building-blocks-17666828. Accessed 1 May 2013.

23. Setting up the Development Environment [online]. Metaio; May 2012.
URL:http://dev.metaio.com/sdk/getting-started/android/setting-up-the-development-
environment/. Accessed 1 May 2013.

24. Swipe views [online]. Anroid Developers; March 2012.
URL: http://developer.android.com/design/patterns/swipe-views.html. Accessed 1
May 2013.

25. Android SQLite database and ContentProvider [online]. Vigella; January 2013.

http://www.hitl.washington.edu/artoolkit/documentation/cs.htm
http://augreality.pbworks.com/w/page/9469034/Current%20Applications%20of%20AR
http://augreality.pbworks.com/w/page/9469034/Current%20Applications%20of%20AR
http://monet.cs.columbia.edu/projects/karma/karma.html
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6264289&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6264289
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6264289&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6264289
http://www.trendhunter.com/trends/the-witness
http://www.slideshare.net/layarmobile/layar-code-examples-for-developers
http://dev.metaio.com/overview/
http://www.wikitude.com/developer/get-started/android/
http://mashable.com/2012/02/27/android-daily-activations/
http://androidheadlines.com/2012/12/malware-on-android-should-i-be-worried.html/mobile-os-market-share-1q-2012-2
http://androidheadlines.com/2012/12/malware-on-android-should-i-be-worried.html/mobile-os-market-share-1q-2012-2
http://www.slideshare.net/quiver78tub/android-application-development-steps-to-the-building-blocks-17666828
http://www.slideshare.net/quiver78tub/android-application-development-steps-to-the-building-blocks-17666828
http://dev.metaio.com/sdk/getting-started/android/setting-up-the-development-environment/
http://dev.metaio.com/sdk/getting-started/android/setting-up-the-development-environment/
http://developer.android.com/design/patterns/swipe-views.html

44

URL: http://www.vogella.com/articles/AndroidSQLite/article.html. Accessed 1 May
2013.

26. AsyncTask [online]. Android Developers; August 2012.
URL: http://developer.android.com/reference/android/os/AsyncTask.html.
Accessed 1 May 2013.

27. Class SoftReference<T> [online]. Oracle; 2011.
URL: http://docs.oracle.com/javase/6/docs/api/java/lang/ref/SoftReference.html.
Accessed 1 May 2013.

28. DownloadManager [online]. Android Devloper; April 2012.
URL:http://developer.android.com/reference/android/app/DownloadManager.html.
Accessed 8 May 2013.

29. Support model formats [online]. Metaio; May 2011.
URL:https://dev.metaio.com/content-creation/3d-animation/format/supported-
model-formats/. Accessed 8 May 2013.

30. Alias/WaveFront material(.mtl) file format [online]. Wavefront; October 1995.
URL: http://www.fileformat.info/format/material/. Accessed 8 May 2013.

31. ID marker [online]. Metaio; July 2012.
URL:http://dev.metaio.com/sdk/tracking-configuration/optical-tracking-
technologies/id-marker/. Accessed 8 May 2013.

32. Markerless tracking configuration [online]. Metaio; July 2012.
URL:http://dev.metaio.com/sdk/tracking-configuration/optical-tracking-
technologies/markerless/. Accessed 8 May 2013.

33. Coordinate system [online]. Metaio; July 2012.
URL: http://dev.metaio.com/sdk/getting-started/coordinate-system/. Accessed 8
May 2013.

34. Helsingin ensimmäinen kirkko [online]. Art and design city Helsinki Oy; November

2005.
URL:http://www.arabianranta.fi/kulttuuri/helsingin_ensimmainen_kirkko/?show=1.
Accessed 16 May 2013.

http://www.vogella.com/articles/AndroidSQLite/article.html
http://developer.android.com/reference/android/os/AsyncTask.html
http://docs.oracle.com/javase/6/docs/api/java/lang/ref/SoftReference.html
http://developer.android.com/reference/android/app/DownloadManager.html
https://dev.metaio.com/content-creation/3d-animation/format/supported-model-formats/
https://dev.metaio.com/content-creation/3d-animation/format/supported-model-formats/
http://www.fileformat.info/format/material/
http://dev.metaio.com/sdk/tracking-configuration/optical-tracking-technologies/id-marker/
http://dev.metaio.com/sdk/tracking-configuration/optical-tracking-technologies/id-marker/
http://dev.metaio.com/sdk/tracking-configuration/optical-tracking-technologies/markerless/
http://dev.metaio.com/sdk/tracking-configuration/optical-tracking-technologies/markerless/
http://dev.metaio.com/sdk/getting-started/coordinate-system/
http://www.arabianranta.fi/kulttuuri/helsingin_ensimmainen_kirkko/?show=1

Appendix 1

1 (3)

3D Scene content creation

Export the 3D file

The 3D models have to be exported within the modelling program one by one. The

following example will be using 3ds max 2013.

1. Create an empty destination folder for the exported files.

2. Select the 3D model file and open it with 3ds max 2013. When the file is opened,

click the upper left icon as indicate in Figure 1.

Figure 1. Screen shot of 3ds max control panel

3. Mouse over “Export” in the drop down menu, and select “Export Selected” in its

submenu as Figure 2.

Figure 2. Export 3d file.

Appendix 1

2 (3)

4. Give a name for the file to be exported, and save as type *.OBJ as indicated in

Figure 3, and click “save”.

Figure 3. Export file type.

5. “OBJ Export Option” window (most left one in Figure 4) will appear after save is

clicked, configure the settings as follow, and click “Map-Export...”. Set up the export

options as the middle window in Figure 4 and click on “Setup...” in this window. Choose

RGB 24bit for “PNG Configuration” window. After selecting the right settings, click

“Export” in the “OBJ Export Option” window.

Figure 4. Export configuration.

Prepare files for the scene and zip

After the 3D file has been exported successfully, some other files need to be added to

the destination folder, at the last the folder should contain:

- front.jpg

- back.jpg

- right.jpg

- left.jpg

Appendix 1

3 (3)

- material library file(.mtl)

- model file(.obj)

- texture file(.png)

After all these files are ready, compress the folder as a zip file. This zip file should be

upload to server through web client.

Appendix 2

1 (2)

Web client user manual

The web client of 3D Relics is used for deploying the scenes to server.

1. Open the web browser and enter 54.247.2.103/page/ to the address bar and the

web client will open as Figure 1. You can either edit or delete the model by click on

“edit” and “remove” button.

Figure 1. Web client user interface.

2. Click on “Add new model” button the upper left corner, and a box in Figure 2 will

prompt up. Type the corresponding information of this model and upload the zip file,

as shown in Figure 3, containing the marker files and 3D model files

Appendix 2

2 (2)

Figure 2. Upload 3D model

Figure 3. Zipped scene file

Appendix 3

1 (4)

Mobile client user manual

The 3D Relics mobile application is used to present the 3D model of historical sites as

a form of augmented reality. The following instructions describe how to use the

application step by step.

1. Open the application, swipe left to read the instructions on how to use the

application or press “go to app” to start application right away.

Figure 1. Welcome view.

2. Choose one of the available scenes you wish to view in the list, as shown is Figure

2.

Figure 2. Available scenes from server.

Appendix 3

2 (4)

3. When enter the detail view of the scene, as shown in Figure 3, you will see the

description of the scene and four markers (represent front, back, left and right side

of the scene) related to it.

Figure 3. Detailed view of the historical site.

4. Click on “Download” button to download the scene to your device, then a

notification will prompt saying the application starts to download the model, as

shown in Figure 4.

Figure 4. Download the scene.

5. During the downloading phase, you are free to download other scenes. When the

download has been finished, a message will be displayed as in Figure 5.

Appendix 3

3 (4)

Figure 5. Download complete.

6. Before you can launch the scene, the application will first proceed a series of

configuration to enable the augmented reality functionalities of downloaded scene.

When the configuration has been completed, a message as Figure 6 will be

prompted. Meanwhile, the “Launch” button will be activated.

 
Figure 6. Configuration complete.

7. Click on the launch button and point your device to the marker, as shown in Figure

7. Once you have seen the model overlaid on the marker, you can move your

device and view the augmented scene in different angles. The result you will be

able to see is shown in Figure 8.

marker

Figure 7. Interact with augmented reality scene.

Appendix 3

4 (4)

Figure 8. Rendering result from user’s point of view.

8. Once there is an update of the scene on the server, the “Update” button will be
shown on the scene’s detailed view, you can update the model by following the
same pressure as described above.

	1 Introduction
	2 Augmented reality
	2.1 Definition
	2.1.1 Marker-based
	2.1.2 Location-based

	2.2 AR fundamentals
	2.2.1 Display types
	2.2.2 Workflow of AR system
	2.2.3 Typical AR coordinate systems

	2.3 AR in real life
	2.4 Mobile AR development toolkit

	3 Project architecture
	3.1 Web application
	3.2 Mobile application
	3.3 Use cases

	4 Design and implementation of mobile application
	4.1 Development platform and toolkits
	4.2 User experience design
	4.3 Application class diagram
	4.4 Implementation of the main Android component
	4.4.1 SQLite database
	4.4.2 Request and parse data
	4.4.3 Load and cache online image
	4.4.4 Download manager
	4.4.5 Event complete receiver
	4.4.6 Background service

	4.5 Implementation of AR features
	4.5.1 Content creation
	4.5.2 Setup configuration file
	4.5.3 AR as an Android activity

	5 Testing
	5.1 Controlled environment testing
	5.2 Field testing

	6 Results and discussion
	7 Future development
	8 Conclusion
	References

