

Janne Kauppi

EXPERIENCES OF NEW APPROACHES TO UI SOFTWARE DEVELOPMENT:
COMPARING THE WATERFALL AND AGILE PROCESSES

EXPERIENCES OF NEW APPROACHES TO UI SOFTWARE DEVELOPMENT:

COMPARING THE WATERFALL AND AGILE PROCESSES

 Janne Kauppi
 Bachelor’s thesis
 Spring 2013
 Degree Programme in Information Technology
 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology

Author: Janne Kauppi
Title of Bachelor’s thesis: Experiences of New Approaches to UI Software Development:
Comparing the Waterfall and Agile Processes
Supervisor: Lauri Pirttiaho
Term and year of completion: Spring 2013 Number of pages: 30

New, light-weight agile software development methods are gaining ground over the more
traditional, heavy-weight sequential software development methods. The objective of this
Bachelor’s thesis was to amend personal experiences of using both a waterfall-like sequential
model and an agile Scrum model in a UI software development environment and to compare
them with each other. The work was done for School of Engineering at Oulu University of Applied
Sciences.

This thesis is based on literature and personal experience of the methodologies in question. My
own experiences were analysed and compared to literature, and based on this comparison the
results were collected for this work. The practical experiences of software development
environment were emphasised in the comparison.

As the result of this work it can be stated that the sequential waterfall still has its uses, but it
would make sense for the software development industry to switch using agile development
methods due to their versatility.

Keywords: Software development, Agile, Scrum, Waterfall, Software development processes

4

TIIVISTELMÄ

Oulun seudun ammattikorkeakoulu
Degree Programme in Information Technology

Tekijä: Janne Kauppi
Opinnäytetyön nimi: Experiences of New Approaches to UI Software Development: Comparing
the Waterfall and Agile Processes
Työn ohjaaja: Lauri Pirttiaho
Työn valmistumislukukausi ja -vuosi: Kevät 2013 Sivumäärä: 30

Uudet, ketterät ohjelmistokehitysmenetelmät valtaavat alaa vanhemmilta vaiheisiin perustuvilta
ohjelmistokehitysmenetelmiltä. Tämän opinnäytetyön tavoite oli käyttää omia henkilökohtaisia
kokemuksia vaiheellisista ja ketteristä ohjelmistokehitysmenetelmistä
käyttöliittymäohjelmointiympäristössä hyödyksi ja verrata menetelmiä toisiinsa. Työ tehtiin Oulun
seudun ammattikorkeakoulun Tekniikan yksikölle.

Tämä opinnäytetyö pohjautuu kirjallisuuteen ja omiin kokemuksiin molemmista
ohjelmistokehitysmenetelmistä. Omia kokemuksia analysoitiin ja verrattiin kirjallisuuteen, ja
vertailun perusteella koottiin tulokset tähän työhön. Vertailussa painotettiin käytännön
kokemuksia ohjelmistokehitysympäristössä.

Työn tuloksena voidaan todeta, että vesiputousmallille on vielä käyttökohteensa, mutta
ohjelmistokehitysalan on järkevä siirtyä käyttämään ketteriä ohjelmistokehitysmenetelmiä niiden
monipuolisuuden vuoksi.

Asiasanat: Ohjelmistokehitys, ketterät menetelmät, Scrum, vesiputousmalli,
ohjelmistokehitysprosessit

5

CONTENTS

CONTENTS 5

1 INTRODUCTION 6

2 SOFTWARE DEVELOPMENT MODELS 7

2.1 Waterfall 7

2.2 Scrum 10

2.2.1 Scrum Theory 11

2.2.2 Scrum in Practice: Team, Events and Artifacts 12

3 EXPERIENCES & COMPARISON OF WATERFALL vs. SCRUM 19

3.1 Experiences of Waterfall 19

3.1.1 Requirements 19

3.1.2 Design 19

3.1.3 Development 20

3.1.4 Testing 20

3.1.5 Operations 21

3.1.6 Example based on past experience 21

3.2 Experiences of Scrum 22

3.2.1 Scrum Team 22

3.2.2 Scrum Events 22

3.2.3 Scrum Artifacts 23

3.2.4 Examples based on experiences 23

3.3 Comparing Waterfall and Scrum 26

4 CONCLUSIONS 28

REFERENCES 29

6

1 INTRODUCTION

Heavyweight waterfall methodologies of developing software are losing ground in SW

development domain to newer lightweight agile and lean software developing methodologies:

Scrum, Kanban and XP to name a few. Agile methodologies are better suited to many software

development projects, as they are not as constraint but more versatile than waterfall

methodologies.

This thesis will focus on Scrum, comparing it to the traditional sequential waterfall model. Both,

Scrum and waterfall, will be reflected based on experiences and literature.

7

2 SOFTWARE DEVELOPMENT MODELS

There are many different software development processes available for software practitioners to

choose from, of which Waterfall and Scrum are discussed in more detail in this paper.

2.1 Waterfall

After the software industry’s inception in the 1950s and 1960s, the industry advanced quickly.

With that, a need to better predict and control ever larger software projects led somehow to

sequential waterfall model. (Leffingwell 2011, 5.)

The waterfall model is a sequential design process, often used in software development

processes, in which the progress flows steadily downwards (like a waterfall) through the defined

phases (Wikipedia 2013, date of retrieval 8.5.2013). Requirements are agreed upon, design is

created and the code follows. Then the software is tested to verify its conformance to

requirements and design. (Leffingwell 2011, 5.)

Herbert D. Benington was the first to describe a sequential software development model

(FIGURE 1) in 1956. The model consisted of nine phases that were used in preparing a large

system program. These nine phases were Operational plan, Machine / Operational specifications,

Program Specifications, Coding Specifications, Coding, Parameter Testing, Assembly testing,

Shakedown and System evaluation. (Benington 1956.)

8

FIGURE 1. Benington's sequential model (1956)

Winston Royce simplified Benington’s sequential model in 1970 (FIGURE 2) down to seven

steps, where one step would be completed before the next would begin. (Royce 1970.)

9

FIGURE 2. Waterfall model (Royce 1970)

However, he saw that this model was flawed by design, as the steps are not really separate –

they have interactions with each other. If not before, in the testing step at the latest. Therefore, he

iterated the waterfall model in the same paper, and introduced iterative model (FIGURE 3)

amended with five additional features needed to eliminate most of the development risk, which he

believed to be a working software development model. (Royce 1970.)

10

FIGURE 3. Iterative model with additional features (Royce 1970)

Unfortunately, the improved iterative model was outshined by the simple sequential waterfall

model, which against Royce’s intention, started to gain ground in the industry. As to why this

happened, we might never know.

However, in practical software development environment, work is always more or less iterative,

following thus the iterative model, actually.

2.2 Scrum

Scrum is one of the agile methodologies currently in use and it follows the Agile Manifesto:

We are uncovering better ways of developing software by doing it and helping others do
it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.
(Agile Manifesto, date of retrieval 19.5.2013.)

11

Scrum Alliance defines Scrum as follows:

Scrum is an agile framework for completing complex projects. Scrum originally was
formalised for software development projects, but works well for any complex, innovative
scope of work. (Scrum Alliance 2013, date of retrieval 8.5.2013.)

Scrum, therefore, is not a process or a technique, but a framework within which various

processes and techniques can be employed, in order to complete a project or a product.

(Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

The following figure (FIGURE 4) depicts the overview of Scrum framework.

FIGURE 4. Scrum Framework Flow (Lacey 2013)

2.2.1 Scrum Theory

Schwaber states that:

Scrum is based on an empirical process control model rather than the traditional defined
process control model (Schwaber & Beedle 2002, 89).

When activities are so complicated and complex that they can’t be defined in advance
and aren’t repeatable, they require the empirical process model (Schwaber & Beedle
2002, 100).

12

Also in a later publication, Schwaber & Sutherland state:

Scrum is founded on empirical process control theory, or empiricism. Empiricism asserts
that knowledge comes from experience and making decisions based on what is known.
Scrum employs an iterative, incremental approach to optimise predictability and control
risk. (Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

So, Scrum is an empirical framework for software development. In addition, theory-wise, there are

three very important aspects in empirical process control: transparency, inspection and

adaptation. (Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

Transparency requires establishing a common standard for the process and the outcome, so

that all relevant parties share a common understanding of what is being done. (Schwaber &

Sutherland 2011, date of retrieval 8.5.2013.)

Inspections need be frequently held to Scrum artifacts and progress to detect undesirable

functionality or direction, however these inspections must not get in the way of actual work.

(Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

Adaptation must be done as soon as possible, if an inspection detects deviation in functionality

or direction resulting in unacceptable results. Scrum defines four formal points for inspection and

adaptation: Sprint Planning, Daily Scrum, Sprint Review and Sprint Retrospective. (Schwaber &

Sutherland 2011, date of retrieval 8.5.2013.)

2.2.2 Scrum in Practice: Team, Events and Artifacts

Scrum is all about the Scrum Team and roles, events, artifacts and rules linked to it. All of the

components serve a specific purpose, and are needed in the successful instrumentation of

Scrum. (Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

The Scrum Team

The Scrum Team consists of a Product Owner, Scrum Master and Development Team. Scrum

Teams are cross-functional and self-organising, meaning that there are multiple competencies

13

best suited for the task at hand available, and that teams can structure themselves the way they

see fit to accomplish the task. (Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

The Product Owner is responsible for maximising the value of the product and the work of the

Development Team, through Product Backlog. The Product Owners job is to manage the Product

Backlog. The Product Backlog needs to be clear, visible to all relevant parties and up-to-date.

(Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

The Product Owner interfaces with management and both internal and external stakeholders,

who want to influence to the Product Backlog. The Product Owner has to be convinced, if a

priority of an item needs to be changed, or a new item added. No one else, but the Product

Owner is allowed to change the priorities on items the Development Team is working on.

(Schwaber & Beedle 2002, 34.)

The Scrum Master is responsible for the success of Scrum and ensuring that Scrum values,

practices and rules are enacted and enforced (Schwaber & Beedle 2002, 31).

The Scrum Master has a three-way role; to the Development Team, to the Product Owner and to

the organisation. Scrum Master serves the Development Team by coaching, facilitating and

organising Scrum Events and removing impediments. Scrum Master serves the Product Owner

by helping to manage the Product Backlog, communicating the vision and goals to the

Development Team and teaching the Development Team in creating clear and concise Backlog

items. Scrum Master serves the organisation by leading and coaching in Scrum adoption,

planning Scrum implementations and working with other Scrum Masters to make Scrum more

effective in the organisation. (Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

The Development Team is responsible for delivering a “Potentially Shippable Increment” of the

project or product at the end of each Sprint. Development teams are structured and empowered

by the organisation to organise and manage their own work for efficiency and effectiveness.

(Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

Development Teams are self-organising, and they figure out themselves how to turn a set of

tasks from the Sprint Backlog to a working product. They are cross-functional, having members

14

from different fields with different backgrounds come together as one team with no titles.

Everybody does everything, regardless of the background. The optimal team size is seven, plus

or minus two. (Schwaber & Beedle 2002, 35-38.)

Scrum Events

Sprint is the core in Scrum. It’s a time-box of a month or less, during which a Potentially

Shippable Increment of the product needs to be completed. A new sprint starts right after the

previous has ended, and they have consistent durations throughout the development effort.

(Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

The sprint contains and consists of the following: Sprint Planning Meeting, Daily Scrums, the

development work, Sprint Review and Sprint Retrospective. (Schwaber & Sutherland 2011, date

of retrieval 8.5.2013.)

When the sprint starts, the development team is on its own. The Sprint Backlog agreed upon in

the Sprint Planning Meeting is what guides the team for the duration of the sprint and no one has

the authority to order them to do something else. The goal is set, and the team has the authority

to organise itself and the work the way they best see fit, in order to accomplish the goal, as long

as they hold Daily Scrums and keep the Sprint Backlog up-to-date. (Schwaber & Beedle 2002,

50-53.)

The Product Owner has the authority to cancel an on-going sprint – this is however done only in

exceptional circumstances. And since the sprints are short in nature, cancelling a sprint is rarely a

necessity. (Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

A sprint starts with a Sprint Planning Meeting, where the work to be done during a sprint is

discussed and agreed upon. This plan is devised collaboratively by the entire Scrum Team.

(Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

The Sprint Planning Meeting consists of two parts, where the first part agrees what is the

increment to be delivered during the sprint, and the second part discusses how the increment will

be delivered. (Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

15

In the first part of the meeting, the Development Team tries to forecast what it is able to deliver

during the sprint. The Product Owner presents the Product Backlog as a prioritised list and the

whole Scrum Team (and possibly other stakeholders) discusses what items from the Product

Backlog seem feasible for this sprint. After the team has selected the items from the Product

Backlog, a Sprint Goal is crafted – which is basically an objective, fulfilled by the implementation

of the selected Product Backlog items. (Schwaber & Beedle 2002, 48-49.)

In the second part of the meeting, the Development Team decides how it will implement the

selected Product Backlog items, or the Sprint Goal. This is done by breaking the Sprint Goal

down to smaller stories or tasks, which are then compiled in a list, called the Sprint Backlog.

(Schwaber & Beedle 2002, 49.)

During the sprint, 15-minute Daily Scrum meetings are held every 24 hours (weekends and

holidays excluded), where all the Development Team members synchronise their activities and

plans for the day. The Scrum Master queries the status and plan from every team member with

three formalised questions (What has been accomplished since the last meeting? What will be

done before the next meeting? What obstacles are in the way?), which are answered turn-by-

turn, giving the Scrum Master a good overview of the situation. (Schwaber & Sutherland 2011,

date of retrieval 8.5.2013.)

The Daily Scrum is used to evaluate the progress toward the Sprint Goal, and to see how the

progress is trending toward completing the items on the Sprint Backlog. Daily Scrum optimises

the team’s possibilities to reach the Sprint Goal. (Schwaber & Sutherland 2011, date of retrieval

8.5.2013.)

Schwaber & Sutherland wrap up the Daily Scrum as:

Daily Scrums improve communications, eliminate other meetings, identify and remove
impediments to development, highlight and promote quick decision-making, and improve
the Development team’s level of project knowledge. This is a key inspect and adapt
meeting. (Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

The Sprint Review is held at the end of Sprint, to inspect and review the increment the team has

implemented during the Sprint. This is also an opportunity to adapt the Product Backlog, if

16

needed. The Sprint Review is an informal meeting, and the presentation of the implemented

increment should prompt discussion and feedback, fostering collaboration within the team and

with possible stakeholders. (Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

During the review, the Product Owner identifies the items that are “Done”. Then the Development

Team discusses how the sprint went, in terms of what went well, what didn’t work, if there were

problems and how they were solved. After that the team demonstrates the work done and

answers possible questions regarding the implemented increment. After the team presentation,

the Product Owner discusses the Product Backlog as it stands now, one Sprint later. Then the

whole group collaborates on what to do next, to provide input to the subsequent Sprint Planning

Meetings. Sprint Review results in a revised Product Backlog, defining the Product Backlog items

for the next Sprint. (Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

Finally, the last thing in a Sprint is the Sprint Retrospective providing opportunity to the team to

inspect itself and plan for improvements in the team way of working for the future Sprints. By the

end of this meeting, the team should have identified improvements, which are then carried out in

the next Sprint. By implementing these changes, the team adapts the Scrum Team itself.

(Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

Scrum Artifacts

Schwaber & Sutherland define Scrum Artifacts in general as follows:

Scrum’s artifacts represent work or value in various ways that are useful in providing
transparency and opportunities for inspection and adaptation. Artifacts defined by Scrum
are specifically designed to maximize transparency of key information needed to ensure
Scrum Teams are successful in delivering a “Done” Increment. (Schwaber & Sutherland
2011, date of retrieval 8.5.2013.)

The Product Backlog is one of these artifacts - it’s an ordered list of everything that needs to be

implemented for a product, effectively a single source for requirements for a given product. The

Product Owner is responsible for it, keeping it up-to-date and available. Due to the nature of

Product Backlog, it’s never complete, but all the time a work in progress. It evolves with the

product it’s related to, identifying what the product needs to be appropriate, competitive and

useful. (Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

17

The Product Backlog is a priority list of items. The most important items are at the top, and lesser

value items in the bottom of the list – consequently, the high priority items have more detail to

them, as they need to be estimated in such detail that the Development Team can take an item

and complete it during a Sprint. (Schwaber & Beedle 2002, 33.)

Every once and a while, the Development Team engages Product Backlog grooming, which

means adding detail, estimates and priorities to Product Backlog items. This is a part-time activity

that is done in collaboration with the Product Owner during a Sprint. The Development Team

must do this, as they are the only ones who can give schedule estimates on the Product Backlog

items. (Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

In order to get visibility to all stakeholders on the progress of the work specified on the Product

Backlog, the remaining work is monitored by the Product Owner at least for every Sprint Review.

Various trend charts, such as burndown and burnup, are commonly used to forecast progress.

(Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

The Sprint Backlog is a subset of the Product Backlog – the items the Development Team has

selected for implementation during the Sprint. It’s the best estimate of what functionality is going

to be implemented in the next Increment and what work it requires. The Sprint Backlog makes the

work needed to realise the Sprint Goal visible. (Schwaber & Sutherland 2011, date of retrieval

8.5.2013.)

The Sprint Backlog is maintained by the Development Team during the Sprint. When new tasks

emerge, they are added to the Sprint Backlog. As tasks are done, the remaining work on the

Sprint Backlog is updated correspondingly. If some tasks become obsolete, they are removed. As

the Sprint Backlog is highly visible, the real-time depiction of the work done and planned to be

done by the Development Team, only the team itself can update the Sprint Backlog. (Schwaber &

Sutherland 2011, date of retrieval 8.5.2013.)

The remaining work is tracked at least for every Daily Scrum, to project the reachability of the

Sprint Goal. The Development Team can manage its progress by tracking the remaining work

throughout the Sprint. (Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

18

Product Increment is the sum of all the completed Product Backlog items, during this Sprint and

before. At the end of each Sprint, a new Increment must be “Done”, meaning it must pass the

team-specified Definition of Done. It is transparent quality criteria the team has set on its

deliverables. (Schwaber & Sutherland 2011, date of retrieval 8.5.2013.)

19

3 EXPERIENCES & COMPARISON OF WATERFALL vs. SCRUM

3.1 Experiences of Waterfall

I have personally worked following the Waterfall model (or better, the improved iterative model

depicted earlier) for many years and during that time discovered it to be rather cumbersome

method for developing UI software in large scale. I’ll discuss my experiences step-by-step below.

3.1.1 Requirements

As the model suggests, everything starts from Requirements, which should be well understood

and strictly defined by the client when delivering them onwards. They should also be constant in

order for the Design and Development work to be effective. However, to my experience, this is

rarely the case. Requirements change as the work progresses – if working in the waterfall model,

it causes unnecessary backtracking, which can be quite costly.

3.1.2 Design

When the Requirements come through to Design step, system design and user interface design

take place. If the Requirements are well defined and the changes are trivial, this is quite straight-

forward activity. In large scale development projects though, the Requirements can only give

some guidance to the system and user interface design, and this activity is very time consuming.

If creating something novel, both the system design and the detailed user interface design take

time. The architecture of the system needs to be figured out, interfaces thought about and some

documentation done, too. When designing user interfaces, the design for the system needs to be

created, proposed solutions prototyped and even user tested before making the final judgment on

the design. When there is a consensus of what the user interface should be like, then a go ahead

to software development is given. This is also the first phase where discrepancies to

Requirements are discovered, and they need to be revised.

20

3.1.3 Development

In the waterfall model, a step must be completed before the next begins. Therefore Development

starts only after Design is completed. The actual implementation work of the software is begun

and especially in large projects, problems may arise. If so, then either Design, Requirements or

both need to be revised, even modified, costing valuable time (and money).

But, on the contrary to the model, software developers rarely wait for the user interface designers

to complete their tasks before starting their work. This can cause extra development work, if the

user interface design changes.

Also, depending on the organisational structure, development teams may have maintenance

duties alongside the new development tasks, so the full potential of the workforce cannot be

utilised in the new development.

3.1.4 Testing

Even though the waterfall model makes a clear separation between the steps in the model, it

makes sense to start testing activities already during the code implementation, and continue them

beyond the code completion. In practice, the development and testing are parallel activities,

especially in large projects. For example, a unit testing (and possibly feature functionality testing)

should be carried out as soon as the relevant piece of code has been implemented – otherwise

there is a high risk of running into severe problems later on in the development. Also a high inflow

of errors is practically guaranteed, if the unit testing is not done in due course.

During testing, different kinds of testing activities are run on the developed code, ranging from

functional to non-functional, manual to automated testing. Testing activities also depend on where

the software is targeted; mobile devices, computers, medical instruments, and so forth.

When the software has gone through and passed all the testing activities, sellable software

package is created. This is the end result provided to the client.

21

3.1.5 Operations

In this phase the software product is ready, and provided to the client. Usually, especially in larger

software projects, some amount of maintenance-type work is needed. Maybe an upgrade of the

software is needed after initial market reactions, or customer testing fails, and some

improvements are required as a result.

3.1.6 Example based on past experience

A company with a large distributed organisation received very detailed requirements from a

customer, to develop a customer-spec user interface to a device. At the time, the company still

utilised a waterfall-like process in software development.

The requirement was clear. System design was to develop the user interface on top of the

company’s proprietary software, as a delta. Creative user interface design was virtually non-

existent, as the customer provided a very detailed spec coupled with the requirements, however

technical writing was needed due to the nature of delta – the customer specification needed to be

added to the proprietary UI specifications, too.

The development started in parallel with the technical writing, as well as testing activities – all

three having interactions with each other. Testers and technical writers worked together to create

a better spec, as well as better test plan. Developers worked both ways, getting feedback from

testers and guidance from technical writers. A strict sequential waterfall model was not utilised,

but rather the iterative version of it. Unfortunately, the project didn’t get to operations phase, as it

was cancelled during the development due to a change in the business focus.

Learnings from the example

Even though the organisation uses waterfall-like model in the development environment, it seems

quite difficult to apply a “pure” sequential waterfall in software development environment, because

of the obvious dependencies between the Design, Development and Testing phases. These three

activities work well together, providing constant feedback loops to each other. Testing already

during the development helps identifying the biggest blunders at an early stage, the development

22

and design can agree on details as the work progresses, and testing gets a good feedback from

design on what to test.

3.2 Experiences of Scrum

After years of following the Waterfall model in a UI software development environment, I was

introduced to Scrum. Initially, I was sceptical, but it did not take long for Scrum to win me over.

This robust, light-weight, team-oriented software development model convinced me of its benefits

quite fast. In essence, all the same components that are present in the waterfall model

(requirement handling, system design, code development, testing and delivery) are present in the

Scrum model as well, but they are managed differently making the process agile.

3.2.1 Scrum Team

As the Scrum Team is a key to all development efforts, the team composition and chemistry

between team members is really important. In order to function effectively, the rules and practices

for the team need to be set and enforced. Trust is also a significant factor. Team members need

to trust each other, and the Scrum Master as well as the Product Owner. In addition, Scrum

Master and Product Owner need to gain a level of respect from the team.

3.2.2 Scrum Events

Scrum works within a Sprint, in my experience a period of 2 weeks. Theory suggests max. 30

days per Sprint, but reasonable results can be achieved in 2 weeks. Sprint Planning starts the

Sprint, where the deliverables for the current Sprint are discussed and agreed. In the Sprint

Planning, it takes some time from the team to learn how to best estimate the items. Practise

helps, and after a few Sprints, the team starts to understand how much they, as a unit, can

deliver in the given timeframe. Daily Scrum is a very important meeting to keep, as the progress

and possible impediments are checked there. Personally, I find that Daily Scrum works best if

kept in the morning, as a day starter. Having the whole team there, face-to-face, sharing

information is crucial. Sprint Review, is as the name suggests, a review meeting, where the

delivered increment is reviewed with needed stakeholders – usually the Product Owner is

23

enough. Sprint Retrospective enables the team to go through its own way-of-working, team

dynamics or anything related to the team itself. It enables team improvement.

3.2.3 Scrum Artifacts

The Product Backlog is a prioritised wish-list, of what a product should be. This always changing

list is managed by the Product Owner. The items can be really vague, but then low in priority and

vice versa, very detailed and high priority. This is because the Development Team picks items

from the Product Backlog to the Sprint Backlog, which it will deliver during a Sprint. Therefore, it

is in the Product Owners best interest to keep the most important items detailed enough for Sprint

content selection.

3.2.4 Examples based on experiences

Design hijack

A company had internally decided to pursue a big challenge, and established a really big project

allocating hundreds of developers to the project in geographically dispersed locations. If the

challenge was not great enough already, the company decided to go agile with this project, and

Scrum was selected as the framework for the work.

The developers were assigned to Scrum Teams and the work was begun, with some difficulties of

course, as a Scrum way of working was new to most team members. Adapting to new, more

collaborative working environment took some time. This became evident e.g. in the first Sprint

Planning Meetings, where people were expecting the team leader, now called Scrum Master, to

tell them what to do next, instead of the team working together to select their own tasks from the

Product Backlog. Clearly the most difficult thing to embrace was the “we” spirit – everyone had

been an individual, doing one’s thing – now it was expected that instead of an individual, there is

a collective team, which is doing one’s thing. The other was the expectation, that management

will still dictate what to do, when and almost even how, instead of figuring that out as a team.

Scrum Teams worked on the project for several sprints and progressed quite well against the

targets, when suddenly Design Management hijacked the UI concept and redesigned it

24

completely. Up until this point, the user interface design and decisions were made either within

the team, or locally in collaboration with other user interface designers. After the redesign, the

user interface governance transferred off-site to another organisation, which made the work much

more difficult than before – basically all the design decisions were either made by them, or had to

be approved by them, diminishing the role of the user interface designer in the Scrum Team. By

taking this much of control away from the Scrum Team, they actually effectively hindered the way

of working, changing it much closer to the iterative waterfall than that of Scrum, as in the context

of user interface, the team did not have any say on what they were doing – it was laid out to them

by an outside party.

Product Owners were involved to re-examine the Product Backlog and reprioritise. Lots of work

was done for nothing, but luckily lots of the work done could also be saved by only visual tweaks,

keeping the functionality hidden behind the changing user interface. The Product Owners jotted

down new items on the Product Backlog, and the Scrum Teams pushed onwards.

Collaboration channels were established and the work continued. To this day, I’m surprised that it

went as well it did – and it demonstrated the Scrum’s adaptability to change.

Team chemistry

Having been in a few Scrum Teams and a Scrum Master in one, I have noticed how important it

is to have a good team spirit. An atmosphere of mutual trust and respect, where every member is

willing to adapt for the sake of the team, is the driving force behind any team towards an

environment, where collaboration thrives.

Unfortunately, not everyone wants to adapt, trust or respect their peers. Such team members are

rather hard to work with, and they hinder the Scrum way-of-working. The theory suggests, that

such people could be voted off the team, but that does not really suit to our working culture –

such drastic measures could actually foster more distrust among other team members. Also, in

practical terms, getting rid of a team member seems a long shot – management makes capacity

allocations, and once allocated, it is not that easy to move around. It is better to try to find ways to

cope with such people, and try to coach them as better team players.

25

Scrumban in a maintenance project

A team in a company was assigned to productisation phase of a product, to help in getting the

product on the market. Very little new development was done on the product, but the error inflow

was quite high due to lots of last mile testing conducted by internal and external resources in

different parts of the world.

As new development was scarce and unknown amount of errors were due, Scrum as such did

not feel a feasible solution anymore to tackle a division of labour. However, Scrum Framework

contained lots of things that were seen useful in this situation, too, such as the team composition,

the idea of a Backlog of items and Daily Meetings. This is a mixture of Scrum and Kanban –

Scrumban.

Wikipedia defines Scrumban as follows:

Scrum-ban is a software production model based on Scrum and Kanban. Scrum-ban is
especially suited for maintenance projects or (system) projects with frequent and
unexpected user stories or programming errors (Wikipedia 2013, date of retrieval
20.5.2013).

The idea was to take the incoming errors and possible new development items to the Backlog,

and have a simple whiteboard with a few columns, like e.g.: Backlog, Development ongoing,

Under testing, Done. Once a new error or a development item came in, it was placed on the

Backlog. The priority of an item was determined by the location of it on the board, the higher the

priority, the higher the location on the board. Then a developer took the item from the Backlog

and placed it on the board to the column “Development ongoing”. When it was ready for testing, a

tester moved the item on the board to the column “Under testing”. When the item was tested and

deemed OK, it was placed on the column “Done”. And the process started again from the

beginning.

Daily meetings were held to check that everyone had something to do (and that nobody had too

much to do) and to identify possible impediments.

26

Learnings from the examples

Scrum is really fast to react to changes, adapting to changing conditions in no time. Deploying

Scrum is easy on paper, but much harder to implement successfully than it seems.

Team spirit is of great importance to the success of the Scrum Team. The mutual relationships of

team members make or break the team.

Scrum Framework is adaptable, and works well together with e.g. Kanban. Of course, this is not

Scrum anymore, but the basic principles are solid and can be adapted to suit special needs.

3.3 Comparing Waterfall and Scrum

Sequential waterfall and Scrum are fundamentally different, yet there are lots of similarities. The

same work can be done in either way, using Scrum or waterfall, but depending on the case it

makes sense to see which methodology suits better to the specific needs. It is also possible to

mix waterfall and Scrum, as at least three points where Scrum and sequential development might

meet have been defined – waterfall-up-front, waterfall-at-end and waterfall-in-tandem (Cohn

2010, 390).

While waterfall is more biased to individuals, Scrum emphasises collaboration – the waterfall

would assign certain people on certain tasks, but Scrum gives the task to the team, expecting that

the team sorts out the issue as it best sees fit. As long as the end result is what is requested,

means are secondary.

While waterfall deals with changes poorly, Scrum thrives on change - when changes occur in any

point of the development cycle, waterfall would have to backtrack n amount of steps, to reset the

situation and start over. Scrum checks the situation as it stands, and changes direction as per

change requests.

While waterfall is predictable, Scrum is not – the waterfall has all the requirements in place before

the development starts, so it is easy to predict when the code can be completed. Ideally yes, but

practise has proven that the requirements change despite being set in the beginning, rendering

27

waterfall actually unpredictable. Scrum is unpredictable at first, but as the Product Backlog

diminishes, Scrum actually becomes really predictable, as the progress is visible at all times via

e.g. burndown charts.

While waterfall delivers value only at the end, Scrum starts delivering value almost instantly – in

waterfall, the functionality is released as one big increment or release after all development

activities are done. Scrum starts delivering right after the first Sprint, as every Sprint delivers a

Potentially Shippable Increment, of instant value.

28

4 CONCLUSIONS

The sequential waterfall is actually a myth, because there is always some iterative processing.

Especially, the subsequent phases might overlap rather a lot. This is not a bad thing as it

provides feedback loops between the different phases and stabilises the end result – there are

organisations, where waterfall, or iterative waterfall, is the right choice as a development model.

For a software development organisation, going agile makes sense, as the world we live in is

rather volatile, and using agile methods ensure a better preparation to a change compared to the

sequential waterfall. Agile methods are more versatile and therefore also create new

opportunities for businesses. Agile advocates an iterative and incremental way of working, which

also brings immediate value to the organisation, as increments of the product can be productised

earlier.

In the end, it is up to the organisation to decide if it wants to go agile or remain in the traditional

sequential approach.

29

REFERENCES

Agile Manifesto. 2001. Manifesto for Agile Software Development. Date of retrieval 19.5.2013.

http://www.agilemanifesto.org/

Benington, H. 1956. Production of Large Computer Programs. Date of retrieval 13.5.2013.

http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf

Cohn, M. 2010. Succeeding with Agile: Software Development Using Scrum. Upper Saddle River,

NJ: Addison-Wesley.

Leffingwell, D. 2011. Agile Software Requirements: Lean requirements practices for team,

programs, and the enterprise. Upper Saddle River, NJ: Addison-Wesley.

Mitch Lacey & Associates, Inc. 2013. Scrum Framework Flow Diagram. Date of retrieval

8.5.2013.

http://www.mitchlacey.com/resources/scrum-framework-flow-diagram

Royce, W. 1970. Managing the development of large software systems. Date of retrieval

23.4.2013.

http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

Schwaber K. & Beedle M. 2002. Agile Software Development with Scrum. Upper Saddle River,

NJ: Prentice Hall.

Schwaber, K. & Sutherland, J. 2011. The Scrum Guide. Date of retrieval 8.5.2013.

http://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf

Scrum Alliance. 2013. What is Scrum? Date of retrieval 8.5.2013.

http://www.scrumalliance.com/pages/what_is_scrum

30

Wikipedia. 2013. Scrum (development). Date of retrieval 20.5.2013.

http://en.wikipedia.org/wiki/Scrum_(development)#Scrum-ban

Wikipedia. 2013. Waterfall model. Date of retrieval 8.5.2013.

http://en.wikipedia.org/wiki/Waterfall_model

