
AUTOMATED TESTING PERFORMED BY

DEVELOPERS

Tuukka Turto

Master's Thesis

5 2013

Master's Degree Programme in Information Technology

DESCRIPTION

Author(s) Type of Publication Date

TURTO, Tuukka Master's Thesis 5.5.2013

Pages Language

102 English

Con�dential Permission for web

publication

() Until (X)

Title

AUTOMATED TESTING PERFORMED BY DEVELOPERS

Degree Programme

Master's Degree Programme in Information Technology

Tutor(s)

RANTALA, Maj-Lis

SALMIKANGAS, Esa

RINTAMÄKI, Marko

Assigned by

Digia

Abstract

The commissioner of the thesis was Digia Plc and the target of the thesis was to research and

improve automated testing performed by the software developers. The main topics of the thesis

were research, development and training. Various technologies were evaluated in order to �nd

good set of tools to support the teams. Trainings were arranged related to these technologies and

tools for the teams. In addition to that, there were two surveys that were used to evaluate how the

software developers felt about automated testing.

A great deal of attention was given to various problems and challenges that could hinder testing.

Some of the teams were more active in using automated testing; however, in general the developers

felt that the automated testing makes sense and helps them in their daily work. Di�erent teams

had slightly di�erent focus on their testing e�ort, depending on the needs of the team.

It was observed that introducing automated testing into a legacy application is not an easy task

and it might require some unconventional design choices. The tests also require attention and

maintenance as the system evolves and changes.

During the research an improvement in perceived quality of the software was observed. The

developers gained a better understanding how the components of the system work together and

had less defects in their code. The di�erence of regression rate between the developers also

decreased.

Keywords

Automated testing, continuous integration, software quality, action research

Miscellaneous

OPINNÄYTETYÖN

KUVAILULEHTI

Tekijä(t) Julkaisun laji Päivämäärä

TURTO, Tuukka Opinnäytetyö, ylempi

ammattikorkeakoulututkinto

5.5.2013

Sivumäärä Kieli

102 Englanti

Luottamuksellisuus Verkkojulkaisulupa

myönnetty

() saakka (X)

Työn nimi

AUTOMATED TESTING PERFORMED BY DEVELOPERS

Koulutusohjelma

Master's Degree Programme in Information Technology

Työn ohjaaja(t)

RANTALA, Maj-Lis

SALMIKANGAS, Esa

RINTAMÄKI, Marko

Toimeksiantaja(t)

Digia

Tiivistelmä

Opinnäytetyö tehtiin Digia Oyj:lle ja sen tarkoituksena oli kehittää ohjelmistokehittäjien

suorittamaa automaattitestausta. Erilaisiin tekniikoihin ja teknologioihin paneuduttiin kattavasti ja

niitä vertailtiin. Vertailun perusteella valittiin yhteisesti käytössä olevat työkalut. Testauksen eri

painopistealueisiin valikoitui joukko tekniikoita, joiden käyttöönottoon järjestettiin koulutusta.

Lisäksi toteutettiin kaksi kyselyä, joilla kartoitettiin ohjelmistokehittäjien mielipiteitä liittyen

automaattiseen testaukseen ja sen hyödyllisyyteen.

Työssä paneuduttiin erityisesti ratkaisemaan testausta estäviä ongelmia ja esitettiin erilaisia

ratkaisumalleja niihin. Osa kehitykseen osallistuneista tiimeistä ottivat automaattisen testauksen

aktiiviseen käyttöön. Yleisesti ottaen, kehittäjät kokivat automaattisen testauksen mielekkääksi ja

työtä helpottavaksi. Eri tiimeissä testauksen painopiste muotoutui omanlaisekseen, tiimin sen

hetkisisten tarpeiden mukaan.

Samalla huomattiin, ettei automaattisten testien tuominen vanhaan järjestelmään ole helppo

toimenpide ja se saattaa vaatia totutusta poikkeavia suunnitteluratkaisuja. Testit myös vaativat

jatkuvaa ylläpitoa järjestelmän muuttuessa.

Tutkimuksen aikana havaittiin järjestelmän subjektiivisesti havannoidun laadun parantuneen.

Kehittäjät saivan paremman kokonaiskuvan järjestelmän komponenttien toiminnasta ja heidän

koodissaan oli vähemmän virheitä.

Avainsanat (asiasanat)

Automaatiotestaus, jatkuva integraatio, ohjelmiston laatu, toimintatutkimus

Muut tiedot

Contents

1 Introduction 7

1.1 Commissioner . 7

1.2 Objective of Thesis . 7

1.3 Outline of Thesis . 8

2 Testing 9

2.1 De�nition of Testing . 9

2.2 Anatomy of a Good Test . 10

2.3 Summary . 11

3 Motivation for Software Testing 11

3.1 Measuring Quality . 11

3.2 Reducing Costly Errors . 12

3.3 Veri�cation . 12

3.4 Quality Control . 13

3.5 Regression Testing . 13

3.6 Measuring Maturity of the System 14

3.7 Summary . 15

4 Automated Testing 15

4.1 Reasons for Automated Testing . 15

4.2 Cost of Change . 16

4.3 Design . 19

4.4 Refactoring . 19

4.5 Summary . 20

5 Types of Tests 21

5.1 Motivation . 21

5.2 Unit Tests . 21

5.3 Integration Tests . 22

5.4 End to End Tests . 23

5.5 Summary . 24

6 Amount of Testing 24

6.1 Motivation . 24

2

6.2 Focusing Testing . 25

6.3 Deciding on Amount of Tests . 25

6.4 Execution Interval . 26

6.5 Summary . 28

7 Anatomy of An Automated Test 28

7.1 Motivation . 28

7.2 Arrange, Act, Assert . 29

7.3 Focused Arrange . 29

7.4 Clear Assert . 31

7.5 Summary . 33

8 Domain-Speci�c Languages 34

8.1 Introduction to Domain-Speci�c Languages 34

8.2 Types of Domain-Speci�c Languages 35

8.2.1 Internal Domain-Speci�c Languages 35

8.2.2 External Domain-Speci�c Languages 36

8.3 Summary . 37

9 Managing Dependencies 38

9.1 Motivation . 38

9.2 Inversion of Control . 38

9.3 Dependency Injection . 38

9.4 Dependency Injection Container . 40

9.5 Dependencies in Tests . 41

9.6 Summary . 41

10 Legacy Code 42

10.1 Challenges Presented by Legacy Code 42

10.1.1 Original Developer Left And Did Not Leave Documentation

Behind . 42

10.1.2 Database Connection Inside of Business Logic 44

10.1.3 Static Methods Guiding Execution of Business Logic 48

10.1.4 Huge Method That Does Everything 51

10.1.5 Control Freak . 52

10.2 Testing Legacy Code . 53

10.3 Summary . 54

3

11 Test Driven Development 54

11.1 Overview of Test Driven Development 54

11.2 Advantages of Test Driven Development 55

11.3 Challenges of Test Driven Development 56

11.4 Summary . 56

12 Continuous Integration 57

12.1 Introduction to Continuous Integration 57

12.2 Testing Against Interfaces . 58

12.3 Responding to Build Breaks . 58

12.4 Summary . 59

13 Organisational Development 59

13.1 Team Triad . 59

13.2 Competence Development . 60

13.3 Easing the transition . 61

13.4 Summary . 62

14 Implementation in the Host Company 62

14.1 Motivation . 62

14.2 Overview of the System . 62

14.3 Test Execution . 63

14.4 Unit Tests . 64

14.5 Integration Tests . 64

14.6 End to End Tests . 65

14.7 Matcher Library for Assertions . 66

14.8 Domain-Speci�c Language for Testing 66

14.9 Reporting . 67

14.9.1 Reporting Test Results . 67

14.9.2 Test Coverage Reports . 68

14.10Dependency Injection . 69

14.10.1 In-house Service Locator . 70

14.10.2Tackling Dependencies . 70

14.11Continuous Integration . 72

14.12Veri�cation of Customer Test Environment 73

14.13Training . 74

4

15 Surveys 75

15.1 Overview of Surveys . 75

15.2 The First Survey . 75

15.3 The Second Survey . 78

15.4 Analysis of Di�erences . 82

15.5 Summary . 88

16 Results 89

16.1 Comparison to Earlier Studies . 89

16.2 Limitations of the Surveys . 91

17 Conclusions 91

17.1 Objectives of the Thesis . 91

17.2 Future Use of the Results . 92

17.3 Further Subjects for Research . 93

17.4 In Closing . 94

Bibliography 96

Appendices 99

Appendix 1 Survey 99

Appendix 2 Collated Data of The First Survey 100

Appendix 3 Second Survey 101

Appendix 4 Collated Data of The Second Survey 102

List of Figures

1 Overview of the thesis . 9

2 Systems Engineering Process . 17

3 Fully setup Character with ActionFactory 31

4 Custom assertion . 33

5 Test double injection . 41

6 ItemHandler . 45

7 ItemHandler with repository . 46

8 ItemHandler with Command . 48

5

9 TDD in a nutshell . 54

10 Team Triad . 60

11 Integration tests . 65

12 Mishandled dependencies with IOC-container 71

13 Ease of understanding the system 76

14 Ease of veri�cation of functionality 76

15 Defects caused by changes . 77

16 Returning defects . 78

17 Ease of understanding the system 79

18 Ease of veri�cation of functionality 79

19 Defects caused by changes . 80

20 Returning defects . 81

21 Usefulness of the tests . 81

22 Di�erence in understanding local system 83

23 Di�erence in understanding global system 84

24 Di�erence in ease of veri�cation of local changes 84

25 Di�erence in ease of veri�cation of global changes 85

26 Di�erence in local defects caused by changes 86

27 Di�erence in global defects caused by changes 87

28 Di�erence in returning defects . 87

29 Correlation between the di�culty of veri�cation and the likehood of

introducing defects . 88

30 Developer perception . 90

31 Developer perception at the commissioner 90

List of Tables

1 Statistics on quantitative variables of �rst survey 75

2 Statistics on quantitative variables of the second survey 78

3 Original survey in Finnish . 99

4 Translated survey in English . 99

5 Original second survey in Finnish 101

6 Translated second survey in English 101

Listings

1 Testing registering event listener . 22

6

2 Testing saving a customer . 23

3 Testing password validation . 23

4 Setting up vehicle inspection . 29

5 Setting up vehicle inspection, take two 29

6 Setting up more complex object . 31

7 Using pyHamcrest for assert . 32

8 Failed Hamcrest assertion . 32

9 Testing behaviour with internal domain-speci�c language 34

10 Failed assertion . 35

11 Testing purchase order with external domain-speci�c language 37

12 Test as an example of business requirement 43

13 Test as an example of technical implementation 44

14 ItemHandler without repository . 45

15 ItemHandler with repository . 46

16 ItemHandler with NHibernate . 47

17 ItemHandler with command . 49

18 Static control logic . 49

19 Adding a control parameter . 50

20 Passing con�guration . 51

21 Instantiating object with ObjectFactory 70

22 Integrated ObjectFactory and Unity 70

7

1 Introduction

1.1 Commissioner

The commissioner of the thesis was Digia Plc, which is a Finnish software solutions

and services company. Digia delivers ICT solutions and services to various

industries, focusing especially on �nance, public sector, trade and services and

telecommunications. Digia operates in Finland, Russia, China, Sweden, Norway,

Germany and in the U.S. The company is listed on the NASDAQ OMX Helsinki

exchange (DIG1V). (Digia, 2012.)

1.2 Objective of Thesis

Very complex software systems are slow to test manually and there is pressure to

shorten the time that is needed for testing before releasing the software. At the

same time more companies are moving to agile methodologies where the old

�Testing is responsibility of testers� is at least partly replaced with �Testing is

everyone's responsibility�. Automation is used in order to speed up the test

execution and to ensure that the tests are executed without mistakes.

The objective of the thesis is to evaluate di�erent ways of performing automated

testing in a software development company, map out some of the most common

pitfalls and o�er possible solutions to them. The focus is on the testing of legacy

code and introducing new technologies and methodologies to support this

endeavour. This is carried out in order to improve both internal and external quality

of the software systems and improving working conditions of the software

developers. Unit, integration and end to end testing are covered in the thesis. A

literature review and an action research are used as research methods.

Automated testing was taken into use as everyday part of work. The software

developers are responsible of writing, executing and maintaining automated tests

that are used to ensure that the software works as intended. Before and after the

large scale rollout of automated testing, a survey was executed in order to gauge

how the developers view the automated testing and how it a�ects to their views

about the software system.

8

The area of automated testing is huge and the present thesis can cover only a tiny

scratch of it. The thesis does not explore for example automated user interface

testing, performance testing or security testing. It also does not have enough space

to cover parallel execution of tests and automated test environment management.

Chapter 17.3 outlines some of the most interesting subjects that could not be

covered and that could be researched later to build on top of the research done in

the present thesis.

1.3 Outline of Thesis

The �rst part, consisting of chapters from 2 to 13, is a literary review, which forms

the theoretical foundation for the thesis.

The second part, chapter 14, presents how the theory presented in the �rst part was

put into use by the commissioner.

The �nal part, chapters from 15 to 17, is used to wrap up and present the results of

the thesis.

The graph in Figure 1 shows the main concepts covered in the thesis and how they

relate to each other. It also serves as a graphical index, which can be used to

quickly locate some of the main parts of the thesis.

9

automated testing

feedback

creates

substitute
ch.9.5

uses

test case
ch.7

executes

refactoring
ch.4.4

speeds up
manual testing

creates

executes

test driven development
ch.11

guides

uses

continuous integration
ch.12

relies on

uses

dependency
ch.9

replaces

dependency injection container
ch.9.4

injects

dependency injection
ch.9.3manages

may use

design
ch.4.3

loosens coupling

unit test
ch.5.2

integration test
ch.5.3

end to end test
ch.5.4

domain-specific language
ch.8

may construct

improves

Figure 1: Overview of the thesis

2 Testing

2.1 De�nition of Testing

Myers, Sandler and Badgett (2004, 6) de�ne testing simply as a process of

executing a program with the intent of �nding errors.

Loveland, Shannon and Miller (2004, 6) narrows the scope down quite a bit by

stating that the goal is to �nd the defects that matter, instead of exhaustively

trying to �nd each and every one. In a large-scale software, �nding all the defects is

not even possible.

In his master's thesis Pohjolainen (2003, 9) lists many di�erent de�nitions that have

a slightly di�erent focus or scope. Almost all of them have certain common

elements, which are listed below as follows:

10

systematical

Only with systematical testing is it possible to repeat the testing process time

after time. If the testing is neither planned nor structured, it can be impossible

to compare the results from two di�erent testing periods.

test material

Often testing requires test material that is used to simulate various inputs to

the system. At the simplest, these are just lists or tables of values that a

tester manually inputs to the system. A more complex material might consist

of multiple documents laid out in a very speci�c manner that are automatically

processed by the system under test.

speci�cations

The speci�cations of the system are essential, because it is nearly impossible to

test a system without a clear understanding of how it is supposed to work.

evaluation

Tests are used to evaluate the system under test in a way or another. The result

of the evaluation can be as simple as �Runs �ne, doesn't crash under load� or

as complex as a list of tested components and all de�ned special cases they

were not able to handle. The point is that testing produces results and those

results need to be evaluated. Based on the evaluation, actions might or might

not be taken.

In the present thesis, testing is treated as an act of �nding out if a system under

test is working correctly in a given case.

2.2 Anatomy of a Good Test

Quality of the tests is directly related to quality of testing in general. Writing

automated tests is not that di�cult, but writing good automated tests can be

rather hard. In fact, if the tests are not of good quality, they might cause more

harm than good. This is because they might be hard to maintain or they might be

testing wrong things and giving incorrect results. Surveys done by Hutcheson (2003,

3) found out that the test automation is the most di�cult test technique to

implement and maintain.

11

A good test is focused to a speci�c part of the software. It tests that speci�c

functionality and nothing else. Results of the tests should be clear and quanti�able.

The test should be repeatable, so the results can be veri�ed by repeating the test.

Repeatable tests can be used to gauge the maturity and quality of the software.

Because writing a large scale software is a group e�ort, the tests that are used to

test that software should be readily understandable by the group. Often somebody

else than the original author of the test has to maintain and change it. The tests

should therefore be terse, clear and understandable. Preferrably they should have no

conditional logic inside them at all.

2.3 Summary

There are many de�nitions for testing and application of tests. Because of this it

might be hard for people to communicate their intentions clearly, unless common

language is established. When the common language has been de�ned, it is easier

to focus on the details and write good tests that are helpful for the team.

The test code should be treated as equally important as the production code. This

means that they have to be written well, maintained and improved as the time

passes. The test code usually does not get shipped to the customer; however, it is

used to verify the correctness of the production code. By neglecting the test code

the team would be indirectly neglecting the production code.

3 Motivation for Software Testing

3.1 Measuring Quality

Testing alone does not improve the quality of a software system. It can be used to

measure the quality of a system or verify that the quality is on a certain level,

however it alone can not improve the quality. After the code has been written,

testing will not change how it behaves. Whittaker describes that Google has an

approach where they stopped treating testing and development as separate

disciplines. The developers own the quality of the software and are tasked to do

both the testing and the development so close to each other that they become

indistinguishable from each other. (Whittaker 2011.)

12

Tests can be used to gauge the quality of the system under test. With su�ciently

large amount of tests it is possible to analyze which components are most likely to

have unknown defects and would therefore require more testing. The execution time

of tests on the other hand shows how the performance of the system has changed

since the tests were ran last time.

3.2 Reducing Costly Errors

Testing can be used to reduce costly errors. In some domains, operating a faulty

software can have devastating e�ects. Such industries include aerospace, nuclear

and medical industries. These industries have very high requirements for traceability

and delivering as error free software as possible, yet mistakes still happen. For

example, NASA lost Mars Climate Orbiter in September 23, 1999 because of a

software error (Stephenson, Mulville, Bauer, Dukeman, Norvig, LaPiana, Rutledge,

Folta and Sackheim, 1999, 6). There were other contributing factors, but the root

cause was �failure to use metric units in the coding of a ground software �le, Small

Forces, used in trajectory models� (Stephenson et al., 1999, 7). During the

investigation it was concluded that end-to-end testing to validate that the software

in question was working correctly and according to the speci�cations did not appear

to be accomplished (Stephenson et al., 1999, 24).

Another example of costly error is the software glitch that caused initial loss of 440

million dollars to Knight Capital. Essentially, a new trading algorithm was being

tested and it traded shares at loss at very high frequency. (Olds 2012.) The

software error caused abnormal trading that in turn e�ected to the prices of the

traded stocks.

Both of these errors had a very high �nancial impact and had a negative e�ect on

the image of the respective companies. A more strict test and review process might

have caught these errors. It is interesting to note that in the case of Knight Capital

the software was actually being tested when the error occurred and caused the

abnormal trading.

3.3 Veri�cation

Traditionally testing has been carried out to verify that a software system is working

as speci�ed and there are not too many known defects. The problem is that while

13

testing can prove that there are defects in the software, it can not prove that there

are no defects (Graham, van Veenendaal, Evans and Black, 2006, 18). It is

impossible, because any sizeable software system will have so many execution paths

and states that testing each and every combination is impossible. Therefore, testing

is often focused on the most likely cases that can be derived from the customer

requirements and speci�cations.

However, it is possible to take the requirements and the speci�cations, create

corresponding test cases and execute those tests either manually or automatically in

order to show how well the system ful�ls the requirements and matches the

speci�cations. Di�erent types of tests are used to test di�erent levels, as will be

shown in chapter 4.2 and especially in Figure 2. Veri�cation is often a very

important part of testing, since the customer acceptance and ultimately the revenue

are dependent upon it.

3.4 Quality Control

By executing tests and collecting and analysing results, it is possible to estimate the

overall quality of the system. This information can be then used to guide decision on

moving on to the next phase of the project, staying in the current phase or returning

to the previous one. It can also act as an input to process improvement initiatives.

Test execution is only a part of the quality control as it can include inspection of test

plans, design documents and source code among other things (O'Regan, 2002, 23).

For quality control to work, the test suite needs to be well de�ned and repeatable.

Controlling quality depends on the ability to draw trends on test result data,

therefore low signal-to-noise ratio on tests and wildly variable test cases make the

analysis hard. A reliable analysis also needs data collected over a relatively long

period of time. With too short timeframe, there is not enough time for a noticeable

change in the results to occur and small anomalies in the result data might be

misinterpreted.

3.5 Regression Testing

The goal for regression testing is to ensure that already �xed defects do not get

reintroduced to the system and that the other defects have not been introduced

14

(Grubb and Takang, 2003, 212). Especially when multiple versions of the system

exist and are maintained at the same time, risk for the regression is high. This is

because code is being developed in multiple version branches of the software and

then merged to others. The situation is usually under control as long as none of the

customers has to switch to a di�erent branch. When this happens, for example in

order to upgrade to a newer version, not all �xes for defects might be present on the

new branch.

In this model, tests are created to detect issues raised by customers, business owners

or other developers. Since testing is reactive, it is automatically focused on the

areas where most of the problems are. This type of testing might not detect issues

before the code containing them is deployed into customer's system and therefore

needs support from other types of testing. Also, if the amount of defects is very

high, the customer will have a negative view on the quality of the software.

Regression testing shines when the system is maintained and supported for a long

time and new versions are regularly deployed in the production. A regression test

suite can be built by writing tests that cover each and every discovered defect and

executing these tests after the code is modi�ed (Grubb and Takang, 2003, 213).

Test suite will grow over time to cover the parts that customers �nd the most

problematic. Regression tests automatically focus on that area and ensure that

features that are most vital to customer are working correctly.

3.6 Measuring Maturity of the System

Tests and test plans can be used to measure the maturity of the system. The

requirements can be linked to test cases and the results of those test cases give

feedback how well the requirements have been ful�lled. In the beginning of a project

most test cases either fail or can not be executed. As the project progresses and the

maturity of the software grows more test cases can be successfully executed.

However, the tests linked to requirements do not give the whole truth regarding to

maturity of the software. The amount of defects is a part of the maturity level too.

Regression tests give good information that can be combined with the results of the

tests derived from the requirements in order to measure the maturity of the software.

15

3.7 Summary

There are many reasons to perform software testing, ranging from simply verifying

that the software is ful�lling all the requirements placed on it to trying to prevent

costly errors. All testing performed should have a clear de�ned target that is

measurable. Recording results of the tests and keeping them for the future allows

graphing various variables and measuring how the maturity of the software changes

as a function of time. One major reason for testing is that we are not able to

formally prove that the software works (Grubb and Takang, 2003, 206).

Di�erent types of testing might be performed at di�erent stages of the software

lifecycle and selected types depend on the software in question. In a simple desktop

game there probably is less chance for costly errors compared to a software used in a

space probe.

4 Automated Testing

4.1 Reasons for Automated Testing

Automating various things is always tempting. Automated systems can repeat tasks

tirelessly, without mistakes and around the clock, leaving more interesting tasks for

people. However, everything can not be automated and the cost of automation can

be extremely high in some cases. Hass (2008, 362) identi�es following cases where

automation may help solve problems:

• Work that is to be repeated many times

• Work that is slower to do manually

• Work that is safer to do with a tool

Some speci�c types of testing are not possible to do with manual testing. For

example performing a load test that simulates thousands of concurrent users would

not be feasible to do manually. Based on the experience of the author of the present

thesis, automating a test quite often takes more time than running the test

manually. In addition to initial e�ort, the test case needs to be maintained when the

16

software system continues to grow and evolve. When a feature changes, test cases

testing it might need to be updated and sometimes some even completely removed.

Therefore, automating a test that is run only few times during the lifetime of the

software system, might not be cost e�ective. However, in their book Fewster and

Graham (1999, 3) have reported 80% decrease in costs of testing due to automation.

Most of the time test cases are faster to execute automatically than manually.

However, the situation might change if the time required to write the test case and

maintain it is taken into account. Tests that are executed only very few times

during the application lifetime might not bene�t from the automation e�ort in

terms of saved time. Some tests require a large amount of data to be generated and

are excellent candidates for automation. Generating that large amount of test data

would be tedious, error prone and slow if done manually.

Computers are good at doing things exactly like told. This means that as soon as a

test has been automated properly, it can be repeated over and over again.

Computer will not make mistakes because of carelessness or being tired. Therefore

executing complicated tests that require precise calculations are good candidates for

automation.

In his bachelor's thesis (Koskela, 2012, 10) identi�es collecting and reporting of test

results as one of the advantages of automated testing. With su�ciently large

amount of test cases, manually recording results and reporting them is both slow

and error prone.

In their article Thomas and Hunt (2002, 38) voice suspicion that many developers

have a feeling of instability and imminent danger every time they alter code. Having

extensive automated tests in place helps to mitigate this feeling. This in turn lets

developers focus on their speci�c tasks, without the need of keeping track of the

whole system while they work on the code.

4.2 Cost of Change

Sooner or later in the software development project there will be a request for

change. The most common reasons for these requests are defects, changed business

domain, planned improvements and better understanding of the problem that the

software tries to solve. Changes to the software need to be done in a structured

17

way, making sure that the system is still working as expected, otherwise the overall

quality of the system will slowly degrade.

(Osborne, Brummond, Hart, Zarean and Conger, 2005, 20) suggests that:

All design elements and acceptance tests must be traceable to one or

more system requirements and every requirement must be addressed by

at least one design element and acceptance test. Such rigour ensures

nothing is done unnecessarily and everything that is necessary is

accomplished.

Figure 2 shows the connection between di�erent levels of de�nition and validation.

It is worthwhile to notice how upper parts of the process are further away of each

other than lower parts. This represents the di�erence in time: the time from laying

out the initial user requirements to acceptance testing is longer than the time from

detailed design to integration, test and veri�cation.

Concept of

Operations

Requirements

and

Architecture

Detailed

Design

Operation

and

Maintenance

System

Verification

and Validation

Integration,

Test, and

Verification

Implementation

Project

Definition

Time

Project

Test and

Integration

Verification

and

Validation

Figure 2: Systems Engineering Process (Osborne et al., 2005, 20)

The design done in the lower parts of the process depends on the design done at the

upper parts. Essentially this means that changes done at the upper part will

potentially a�ect the lower parts and require that appropriate testing is carried out.

18

Finding the Defects That Matter (Loveland et al., 2004, 27) identi�es the amount of

people involved in defect as a major factor of cost:

A big piece of this expense is the number of people who get involved in

the discovery and removal of the bug. If a developer �nds it through his

own private testing prior to delivering the code to others, he's the only one

a�ected. If that same problem slips through to later in the development

cycle, it might require a tester to uncover it, a debugger to diagnose it,

the developer to provide a �x, a builder to integrate the repaired code

into the development stream, and a tester again to validate the �x.

In their article Thomas and Hunt (2002, 36) underline a very good wisdom that

combining many faulty components to a complex system is a recipe for disaster. It

is advisable to start the testing e�ort as close to the source as possible.

If all the testing is done by people, manually executing test cases, time from

speci�cation to delivery will be long and the v-shape will be very wide. Automation

seeks to bring ends of the v closer together by shortening the feedback loop. Instead

of waiting for somebody to test that his change did not break anything important in

the software, the developer can execute automated tests and get quick feedback

about his change. If he �nds out that some very rarely needed customer

requirement that he did not remember to consider is broken, he can immediately

start working on �xing the situation. Without automation, the developer gets his

feedback when testing can be done manually and it can be rather hard to pinpoint

the change that caused the test to fail.

In their book, Whittaker, Arbon and Carollo explain that over-investing in

end-to-end automation tests often cements a system's design early on. The larger

the automation suite is the harder it is to maintain. Time used to maintain brittle

test cases could instead be used to improve the quality of the system (Whittaker,

Arbon and Carollo 2012, 28.) This showcases the di�culty of test automation well;

too little testing is not enough to help developers in their daily work and too much

testing is hindering their work instead of helping it. Striking the balance between

two ends is a hard and important task that needs to be paid constant attention to

throughout the development of the system. As the time progresses, the needs of the

testing change too.

19

4.3 Design

Automated testing is not always just about trying to �nd errors or verifying that the

software meets the requirements of customer. Testing can also be used as a tool for

learning more about the problem domain, components required by the software and

their needed interactions. This type of prototyping and experimenting can be helpful

especially in the beginning of the development, when a solid architecture has not yet

emerged.

In order for the software to be easily testable, it generally needs to be loosely

coupled, well designed and correctly divided into sub-systems, modules and classes.

If appropriate rigour is shown during development and most, if not all, of the code is

tested automatically, the design tends to be more �exible and easier to maintain

than if the tests were written to only part of the code. This stems from the

requirement to be able to instantiate the system under test easily in test harness

with well de�ned inputs and outputs. Freeman and Pryce (2010, 229) talk about

listening to tests in order to detect so called �code smells�, which are various

common problems with software design. For example, if tests of a completely

unrelated feature tend to break after change in software, there might be an

undesired or unknown dependency in the software. Another common example is a

class that is either hard or tedious to get in the test harness. This might indicate

that the class is trying to do too many things and therefore has many dependencies.

If automated testing is not applied right from the beginning, the e�ort of testing the

system gets harder and harder as the time passes. What might have been a simple

test in the beginning of life-cycle of the system suddenly looks complex, ugly and

hard to do. Whole books have been dedicated to presenting tools to solve this

problem, one of the most notable being Feathers (2011). Automated testing is not

a lost cause in such cases though, although it might require a slightly di�erent

approach.

4.4 Refactoring

Refactoring is the act of making small modi�cations on code in order to improve its

quality, without changing the behaviour of the system (Fowler, Beck, Brant, Opdyke

and Roberts, 1999, xvi). This is done in order to improve the internal structure of

20

the system and to facialite easier changes in the future. Ideally, the system is kept

as close to working condition as possible during refactoring and tested extensively

after each and every modi�cation. This is nearly impossible with manual tests, so

investment in automated testing is in order.

Refactoring is an integral part of test driven development (explained in more detail

in chapter 11) and automated tests are essential for developer being able to change

the code with con�dence. By executing automated tests after each small change,

developer has a greater con�dence that his changes did not break anything

unexpected.

The changes done in refactoring should not a�ect to any public interfaces, i.e. only

the internals of refactored code is changed. The changes are also very small. A

developer might change the name of a variable and run tests to verify that

everything still works. Then he could extract a piece of code from inside a function

and make another function to replace that functionality. And again he would run

tests to see that everything still works. By taking small baby steps, the developer

will know immediately if any of the changes breaks the code and �xing the problem

will be easier than if the changes had been large.

4.5 Summary

Automated testing partly extends manual testing. Some of the things that are

possible with manual testing can also be performed automatically. While the

automation is faster and the test cases can be executed time after time, it is not

free of cost: setting up an infrastructure to support testing takes time and money

and the test cases need to be written and maintained. Testing can be performed

faster and with smaller cost when automated testing is done correctly and focused

to appropriate locations of the software.

Automated testing can be used to help the design of the software. Generally a

software that can easily be tested with automated system is loosely coupled and

modular. A software system like this is easier to change and maintain than a system

that is tightly coupled and monolithic. Having ability to execute automated tests

really fast generally helps the developers to maintain and refactor their codebase.

This gives the developers con�dence to do even bigger changes to code, without a

nagging fear that they missed something crucial when making the changes.

21

5 Types of Tests

5.1 Motivation

There are many di�erent types of tests and the distinction between them tend to be

a little bit blurred. This is complicated by the fact that people tend to give names

to things and hang on those names. A very speci�c classi�cation between di�erent

types of tests is useful when experts of testing are communicating with each other,

but for less specialised people the distinction does not need to be so important.

This chapter introduces 3 types of tests and de�nes their meaning in the context of

the present thesis. This is done because what one developer might consider

integration test, another developer would regard as an end to end test.

5.2 Unit Tests

Unit tests are usually considered being used to test the smallest scope of the

system. They focus on only few objects or functions at a time and aim to test them.

Because the system under test is usually really small, tests are fast to execute and

hundreds of tests can often be run in few seconds. The small scope places some

limitations on what unit tests can do and what they can not. Access to shared

resources like �le system, databases and network interfaces is often avoided and

special components is often created to get around the limitations. These

components include, but are not limited to, stubs, mocks and fakes and are treated

more closely in chapter 9.5.

Because unit tests are testing the smallest pieces of the system, they tend to look at

matters from a very technical point of view. It is not uncommon to write a test to

verify that a function will return certain value when called with certain parameters.

If such a test fails, pinpointing the source of the error can be really fast and the �x

for it tends to be very local. Listing 1 is an example of a unit test written in Python.

It creates two objects: model and listener and then registers the listener with the

model. As a �nal step, the model is veri�ed to have the event listener correctly set

up.

22�
de f t e s t_ r e g i s t e r i n g_ e v e n t_ l i s t e n e r () :

model = Model ()

l i s t e n e r = mock ()

model . r e g i s t e r_ e v e n t_ l i s t e n e r (l i s t e n e r)

a s s e r t_ tha t (model , h a s_even t_ l i s t e n e r (l i s t e n e r))
� �
Listing 1: Testing registering event listener

These tests are valuable for developers when they are working on the software;

however, they give very little information to business owners and product managers.

Their main purpose is to help developers with the internal quality of the software

system. They test methods and functions directly and give a great deal of indirect

information regarding the state of the source code: e.g. are classes easy to use in

isolation, are functions short and to the point, are there not too many dependencies.

Freeman and Pryce (2010, 229) call these clues �test smells� and instruct developers

to actively pay attention to them. By listening to the tests, developers can improve

the quality of the code and make the maintenance easier in the future.

5.3 Integration Tests

Integration tests have a broader scope than unit tests. They exercise a much

broader part of the system and often make calls to database or access services on

other computers. These tests are much slower than unit tests, however cover a

larger part of the system. If integration test fails, pinpointing the source of the error

can be more time consuming than in the case of unit tests because of the amount of

code that is being exercised.

Depending on the context, the results of these tests can be understood by business

owners. A test could for example verify that interest can be calculated correctly for

a given customer and account. Listing 2 is an example of an integration test written

in VB.Net. The test �rst creates a customer object and then saves it to the

database. There is no explicit veri�cation part; however, the test is deemed

successful if saving does not cause an error.

23�
<Test ()> _

Pub l i c Sub TestSav ingCustomer ()

Dim customer = Cus tomerBu i l d e r . C rea te () _

. withName ("Test Customer ") _

. w i t hN a t i o n a l i t y (" F i n n i s h ") _

. b u i l d ()

customer . Save ()

End Sub
� �
Listing 2: Testing saving a customer

5.4 End to End Tests

End to end tests are the largest of the three types of tests. They may exercise even

a larger part of the system than the integration tests and their focus is already on

the business level. These tests are the slowest to execute and they o�er good a

medium for business owners and developers to communicate with each other. These

tests can often be derived directly from the customer requirements and can be

written with a tool that supports processing natural language.

Koudelia (2012, 54) presents an example shown in Listing 3 for a behaviour driven

test, which can be used to express behaviour of the system on a very high level. It

describes four di�erent passwords that are given to the system for veri�cation and

their expected outcome. This description itself does not specify what methods are

called or how the results of the veri�cation are displayed. These details are hidden

out of the sight, because they would just add unnecessary complexity to the test.�
Given a password v a l i d a t i o n a l g o r i t hm

When a u s e r p r o v i d e s a new password

Then the system shou ld r e a c t as f o l l o w s :

| Password | Message |

| PassWord | a password must c on t a i n a number |

| 4 ssWord | a password must be at l e a s t 8 c h a r a c t e r s l ong |

| p4ssword | a password must c on t a i n uppe r ca s e l e t t e r s |

| P@ssw0rD | the password i s accep ted |
� �
Listing 3: Testing password validation

End to end tests are important, as they are used to verify what matters in the end:

functionality of the whole software system as it is presented to the end user. These

24

tests ultimately verify that the system works as the end user expects it to work. If

these tests are faulty, either not testing correct things or testing them incorrectly,

the software system might not be what the customer wants it to be. Because

customers are usually paying for the software, getting these tests right or wrong can

have a direct e�ect on the future of the people writing them.

5.5 Summary

There are many kinds of tests, testing a system from di�erent points of view and

giving di�erent kinds of reports about the state of the system. They all have their

own strengths and weaknesses. A single type of tests usually is not enough to verify

the correctness of the system. They are complementary in a sense that while

looking at the same problem from di�erent angles, they verify di�erent aspects of

the system and together produce a comprehensive estimate about the current

correctness of the system.

It is important to identify why testing is being carried out and choose appropriate

tools for it, before investing a great amount of money and time into them. If

developers are already producing really high quality code and the biggest obstacles

are in getting developers to understand business rules, high level acceptance tests

might be a good solution. On the other hand, if developers already understand

business well, but are having hard time in integrating their components together,

integration tests might be helpful.

6 Amount of Testing

6.1 Motivation

The amount of testing required is a controversial subject. In traditional development

models, especially in waterfall, testing is one of the last steps and usually lasts only

as long as there is budget left. As soon as the budget has been spent, testing is

stopped, regardless of the results or state of the system. The question about the

amount of testing is actually threefold: what, how much and how often.

25

6.2 Focusing Testing

The most important question when testing is the question what to test. If there is

enough time and money, everything in the software could be tested; however,

usually this is not the case. Therefore it is important to focus the testing on �nding

the defects that matter.

The �rst candidates for automated testing are issues found by testers and

customers. Generally, the defects raised by customers are the defects that matter

most, otherwise they had not bothered to mention it. By creating an automated

test before �xing the issue developers can ensure that an identical issue is never

raised again.

Other good candidates for automated testing are new features. These have been

deemed useful enough to be implemented and somebody is most likely paying

money to get to use them. Here the goal is to verify that the features work as

intended and catch possible issues before they are shipped to customers.

Knowing how the system is structured can help when choosing where to target the

automation e�ort. Modules that are known to be central or very complex are good

candidates for testing. Another good focal point can be found if there are few core

modules that contain often used business logic and defects in this code would a�ect

large portion of the functionality of the software.

Even when talking about automated testing created by developer, it pays to keep in

mind the following: executing tests automatically may be fast and cheap compared

to running the same tests manually; however, writing and maintaining those tests

cost time and money.

6.3 Deciding on Amount of Tests

When testing is done automatically as a part of development process, the situation

is somewhat di�erent. Instead of spending what ever is left of a budget in the end

of the project for testing, testing as part of development needs to be taken into

account from the beginning. Automated testing and development are very

interleaved, especially when dealing with unit tests, and it does not make sense to

write detailed testing plans for this type of tests. Writing a good and detailed plan

26

for testing something that only exists as an idea, even if that, is impossible. Instead

of that, there can be rules like �One test case for each public function� or �One test

case for each best-case scenario� and �One test case for each bug discovered�. Rules

like these can be useful, if they are decided based on facts and are mutually agreed

and followed.

Modern tools are capable of analysing execution of tests and produce various reports

that state how large percentage of statements of code is covered during tests and

even show what sections of the code are executed. It might be tempting to say �We

need to have code coverage of 85% before we will ship the product.� This can be

detrimental for the quality of both the code and the tests, because decisions like

that guide testing and development to the wrong direction. Marick (1999, 8)

explains how people tend to optimise their performance according to how they are

measured, because often those measurements are used to decide how incentives are

handed out. With criteria like this, there might be 85% code coverage; however, the

quality of the tests is not necessarily very good. It is also worth remembering that

statement or line coverage is a very narrow criterion. Kaner (1996, 7-13) lists 101

di�erent types of testing coverage that will detect di�erent kinds of errors. It would

be foolish to focus only on one of them and leave others outside of any

consideration.

Analysing statement coverage is better, if the number can be broken down to

sub-systems, modules, classes and methods. This way the numbers can be analysed

and cross-referenced with bug-reports, resulting with a rough idea where it would be

good to have a look. If there is a sub-system that had much more reported bugs

than any other sub-systems and there exists a central class or two that have very

few tests, it might be a good idea to analyse that class more and see if it makes

sense to do something about it.

6.4 Execution Interval

Tests run by an automated system are usually constrained by time and availability of

hardware. As the amount of time needed to run the test suite grows, the amount of

times they can be executed during a working day goes down. By dividing tests into

di�erent suites according to their focus and execution speed, a team can create a

staggered solution for testing. Fast tests are run more often than slower ones and

27

o�er the quickest feedback. Slower tests are run less often and their results

complement those of the faster tests.

If a team is doing test driven development (see chapter 11 for more details), tests or

a subset of them is run often, every couple of minutes as a part of development

process. These tests need to be fast, because if they take approximately more than

30 seconds to run, developers will stop running them after each code change

(Meszaros, 2007, 15).

A modern source control system o�ers a possibility to use hooks to perform actions

before or after a change has been commited. It is possible to run unit tests

automatically before each and every commit and abort the operation if they do not

pass. This can be used as an additional safeguard against accidentally introducing

bugs into code in source control. Again, this needs careful balancing, since even

short delays in the very core part of developer's work are undesirable. If the team is

already doing rigorous test driven development, this step might be super�uous and

would only slow down development.

If the team has access to a continuous integration system (see chapter 12 for more

details), tests or subset of them are executed after a suitable amount of changes

have been commited into version control. Some continuous integration systems can

be con�gured to run a build when there are untested changes and there have not

been new changes during a given time. This can be used to group several changes

into a single build. This is often the �rst build and test cycle that collects all the

changesets together for a single build and so it is the �rst step to verify the work of

the team as a whole.

It is possible to schedule tests to be executed at a given time. If the test suite is

slow, it might be run during night against all the changes done during previous day.

Essentially the team would be getting feedback on what they did one day later.

Depending on the case, this might be su�ciently soon, especially if compared with

manual testing where the feedback loop can be even longer.

The �nal possibility is to start test execution manually when the moment has been

deemed to be right. This has the advantage that the person triggering the process

can use his judgement and ask other developers if they are about to �nish

28

something that could be tested. A drawback is that if nobody has time or

remembers to start tests, they are not executed.

Thus, the type of the execution a�ects the interval how often the tests are

executed. Various test suites take a di�erent amount of time to execute and based

on that, they can be selected to a speci�c type of test execution. A suite that can

be executed really fast is a prime candidate for being executed as a part of test

driven development, whereas a long running suite is best run during the night.

6.5 Summary

Deciding how many test cases to write, where to target them and how often to

execute them is crucial for the testing e�ort to succeed. A large amount of test

cases is often more costly to write and maintain than smaller amount and does not

necessarily perform any better. Focusing the testing to the most crucial parts of the

software will yield better results than testing without well thought plan.

There is always a compromise between cost and amount of test cases. Similarly, the

decision of how often test cases are executed needs to consider costs and bene�ts. If

the tests are executed rarely, the developers do not enjoy immediate feedback

regarding to their changes. On the other hand, executing tests require resources like

processor time, databases and perhaps dedicated hardware that all cost money. The

developers can identify what tests are the most important and o�er the most

important feedback to them and execute those tests more often. Rest of the tests

can be executed less often.

7 Anatomy of An Automated Test

7.1 Motivation

This section will present a general outline of a good automated test and the

reasoning behind it. It will also go into details how tests were implemented in the

case study to achieve this. The section focuses mainly on unit and integration tests.

29

7.2 Arrange, Act, Assert

A good test has three distinct parts: arrange, act and assert, commonly referred as

3A. In arrange part the system under test (SUT) is set up to a known state, in act

the system is exercised and �nally the assert veri�es that everything worked as

expected. There are multiple ways of doing each of the steps, none being always

superior or the only right solution. The persons writing the test need to use their

judgement and prior experience to choose a suitable method.

7.3 Focused Arrange

The ideal arrange part is short, focused on the relevant objects and showing only a

necessary level of detail. When the system under test is simple and the objects are

not composites of multiple other types, this can be easy to achieve. When the

objects are very complex and have multiple values that need to be set, a simple

arrange is not enough anymore. The examples in Listings 4 and 5 set up the same

type of object; however, they have a di�erent way of doing it.�
<Setup ()> _

Pub l i c Sub Setup ()

Dim exhaus tMete r = new ExhaustMeter (500)

Dim t y r e I n s p e c t o r = new Domes t i cTy r e I n sp e c t o r ()

Dim r u s tD e t e c t o r = new Rus tDetec to r (I n s p e c t i o n L e v e l . Regu l a r)

Me. v e h i c l e I n s p e c t i o n = new V e h i c l e I n s p e c t i o n (exhaustMeter , _

t y r e I n s p e c t o r , _

r u s tD e t e c t o r)

End Sub
� �
Listing 4: Setting up vehicle inspection

�
<Setup ()> _

Pub l i c Sub Setup ()

Me. v e h i c l e I n s p e c t i o n = V e h i c l e I n s p e c t i o nB u i l d e r . C rea te () _

. w i t hExhau s tL im i t (500) _

. b u i l d ()

End Sub
� �
Listing 5: Setting up vehicle inspection, take two

30

Both accomplish the same thing, setting up a VehicleInspection object for a car with

domestic tyres, exhaust limit of 500 and regular level of rust checkup. The

di�erence between these two setup routines is that the former exposed all the gritty

little details about the internals of VehicleInspection, while the latter shows only

interesting parts (exhaust level, in the case of this test). All the other parts of the

setup are hidden away inside of the VehicleInspectionBuilder. This is in accordance

of don't repeat yourself - principle (DRY). When the creation of VehicleInspection

object eventually changes, there is a chance that only the builder needs to be

changed and tests do not have to be modi�ed at all. Meszaros (2007, 411) calls

using methods to create SUT as delegated setup and recommends them to prevent

code duplication.

The second advantage in the latter example is that the setup is more precise and

only presents values that are interesting. TyreInspector and RustDetector are both

created with default settings and the focus of the test is most likely centred around

the exhaust limit on ExhaustMeter - object. The test could be checking that an old

and polluting car will not pass inspection. For such a test, inspection of tyres is

fairly irrelevant.

Nothing prevents chaining builders and creating a complex object in the way shown

earlier. The example in Listing 6 creates a Character object with fully setup

ActionFactory, which structure is shown in Figure 3.

Again, the setup shows that important parts of the test are:

• Character

• ActionFactory and especially the MoveFactory

• Location of the character

The test is probably about the character moving around and it is used to verify that

the location of the character changes correctly when a move is executed. The object

diagram of Character is much more complex than what the test setup implies, but it

is all details that do not matter from the point of view of the test.

31�
de f s e tup (s e l f) :

s e l f . c h a r a c t e r = (Ch a r a c t e rBu i l d e r ()

. w i th_ac t i on_fac to r y (A c t i o nF a c t o r yBu i l d e r ()

. with_move_factory ()

)

. w i t h_ l o ca t i on ((10 , 10))

. b u i l d ())
� �
Listing 6: Setting up more complex object

Character

location

Move(direction)

ActionFactory

CreateAction(parameters)

MoveFactory

CreateAction(parameters)

mock

CreateAction(parameters)

Figure 3: Fully setup Character with ActionFactory

7.4 Clear Assert

The assert part is where the state or interactions of a system under test are veri�ed.

As it is important to have a focused arrange part, it is equally important to have a

clear assert part. A good assert is short, to the point and unambiguous. Again, it is

often a good idea to hide the actual implementation details and write helper

functions or classes to do the veri�cation. If these helpers have interfaces de�ned to

spell out what is being veri�ed, the test is also easier to read. Chapter 8 approaches

this subject from the point of view of domain-speci�c languages.

A very often used tool for writing clear asserts is Hamcrest. Hamcrest is a library for

designing matcher objects that can be used for validation, �ltering and testing

(Denley, 2012). Hamcrest can be used to move the focus from little technical

details, like attributes of objects to more domain focused testing. Listing 7 shows an

32

example, where pyHamcrest is used to verify that Pete is no longer hungry after

eating some soup.�
de f te s t_eat ing_prevent s_hunger (s e l f) :

Pete = s t r ong (Adventu re r ())

meal = he a l t h y (soup ())

make (Pete , ea t (meal))

a s s e r t_ tha t (Pete , i s_not (hungry ()))
� �
Listing 7: Using pyHamcrest for assert

The ability to give a detailed report why something did not match is a powerful

feature of Hamcrest. The report contains information about what was expected and

what was actually encountered. In case of very complex businness logic, this can

help the developer to understand the problem better. Listing 8 has an example of a

failed assertion that could result from the test in Listing 7.�
A s s e r t i o n E r r o r :

Expected : Charac te r , who i s not hungry (hunger f a c t o r l e s s than 5)

but : Charac te r , who i s v e r y hungry (hunger f a c t o r o f 45)
� �
Listing 8: Failed Hamcrest assertion

Writing clear and understandable assertions does not depend on tools like Hamcrest

though. With sensible structuring of the code, it is possible to write clear asserts by

using the tools provided by the language and unit testing framework. One example

how to do this is outlined in Figure 4. Meszaros explains that by extracting and

encapsulating complex assertion login into a single function with an intent revealing

name, the test suite is much easier to write and maintain (Meszaros, 2007, 475).

33

Setup

Exercise

Teardown

Verify

Custom

Assertion

Assertion

Method

Assertion

Method

SUT

Fixture

Figure 4: Custom assertion (Meszaros, 2007, 474)

One of the advantages of encapsulating complex assertion logic into a single

function that has no side-e�ects besides failing a test suite is the possibility to test

the logic (Meszaros, 2007, 475). This enables the developers to create common

building blocks for tests that have been tested and veri�ed to work. Naming the

custom assertion using terms of the problem domain is a step towards a domain

speci�c language, which are explained in more detail in chapter 8.

7.5 Summary

By following some guidelines and structuring tests to have distinctive parts for

arrange, act and assert, the developers can create tests that are easy to understand

and maintain. The test code should be treated with the same care and attention as

the production code in order for it to stay maintainable.

While there are many tools that can be used to make the tests look nice and clean,

there is no strict requirement to use them. Similar e�ects can be achieved by careful

design and maintenance of the test code.

Code duplication can be reduced by extracting common logic appearing in multiple

tests into helper classes and functions. These helper constructs can then be tested

and veri�ed to work correctly before taking them into use in tests. As the developers

work on the infrastructure of the testing framework, they slowly create a common

language than can be used in discussions regarding to tests and problem domain.

34

8 Domain-Speci�c Languages

8.1 Introduction to Domain-Speci�c Languages

Domain-speci�c languages (DSL) are languages that have been written for a very

speci�c task. Common examples are Latex for document markup, Mathematica for

symbolic mathematics and GraphViz for graph layout. In their book, Fowler and

Parsons (2011, 27) de�ne domain-speci�c language as a programming language of

limited expressiveness focused on a particular domain.

Taha (2008, 1) explains how by trading functionality to expressiveness it is possible

to create a language that is more accessible to general public than traditional

languages. Often with very complex software systems the people writing the system

do not really comprehend how it is supposed to be used and what the data handled

in the system actually means. On the other hand, the people who understand the

business domain very well often are not capable of translating that knowledge into

code.�
de f t e s t_tha t_h i t t i ng_reduce s_h i t_po i n t s (s e l f) :

"""

Ge t t i n g h i t shou l d r educe h i t p o i n t s

"""

Pete = s t r ong (Adventu re r ())

Uglak = weak (Gob l i n ())

p l a c e (Uglak , middle_of (L e v e l ()))

p l a c e (Pete , r i g h t_o f (Uglak))

make (Uglak , h i t (Pete))

a s s e r t_ tha t (Pete , ha s_ l e s s_h i t_po in t s ())
� �
Listing 9: Testing behaviour with internal domain-speci�c language

Listing 9 shows a simple test case for an adventure game that has been written with

an internal DSL. Many of the details have been hidden behind the functions that

implement the test case, making it easier to understand the main point of the test.

Only the assertion method is used from an external library called pyHamcrest, while

everything else has been de�ned speci�cally for this test.

35

If this test case fails, assertion error is raised with informative explanation as shown

in Listing 10. The error message contains information of which test failed, where it

failed, why it failed and what the status of the object that caused failure was. It can

be used by both domain experts and developers to e�ectively communicate and

identify where to start looking for a possible error. Messages like this bridge the gap

that often exists between domain experts and developers, because it gives them a

common language that they can use to communicate.�
FAIL : Ge t t i n g h i t shou ld r educe h i t p o i n t s

−−

Traceback (most r e c e n t c a l l l a s t) :

F i l e " nose \ ca se . py " , l i n e 197 , i n runTest

s e l f . t e s t (∗ s e l f . a rg)

F i l e " test_combat . py " , l i n e 51 , i n t e s t_h i t t i n g_r educ e s_h i t_po i n t s

a s s e r t_ tha t (Pete , ha s_ l e s s_h i t_po in t s ())

A s s e r t i o n E r r o r :

Expected : Cha r a c t e r w i th l e s s than 10 h i t p o i n t s

but : Cha r a c t e r has 10 h i t p o i n t s
� �
Listing 10: Failed assertion

8.2 Types of Domain-Speci�c Languages

DSLs can be divided into two main groups: internal and external. The major

di�erence is that while internal languages are essentially just a programming API

that forms the language, the external languages have their own parser and syntax.

8.2.1 Internal Domain-Speci�c Languages

The earlier shown Listing 9 is an example of an internal DSL written with Python. It

is readily apparent that the test has been written with a programming language,

because of the usage of parentheses and other programming language constructs.

However, the test hides many unimportant details with clever use of functions and

objects and only shows those concepts that are important for understanding the test.

Essentially, an internal domain-speci�c language exists completely inside of the host

language: the language the program is written with. Using constructs like method

chaining as explained by Fowler and Parsons (2011, 373) it is possible to write code

that looks closer to natural language than regular programs.

36

At the core of DSL is often a semantic model, which is a representation of what a

DSL describes (Fowler and Parsons, 2011, 373). While not always necessary it is

often a good idea to build a semantic model because having one makes it easier to

move from internal DSL to external DSL. Using semantic model also makes it

possible to test the semantics and populating the semantic model separately (Fowler

and Parsons, 2011, 162). In case of very complex DSLs this advantage can make

working with the model a much easier task.

Because internal domain-speci�c languages are embedded in the host language, they

are most often also edited with the tools that are used to edit a program written in

the host language. Working with internal domain-speci�c language might be

confusing at �rst if there is no prior programming experience. This makes the

developers best candidates to work with internal DSL, because the domain

specialists might not have the required skills and experience.

8.2.2 External Domain-Speci�c Languages

External languages have their own syntax and parser that can be independent from

the language constructs of the calling system. This gives greater freedom in

designing the language; however, it also means more work because the need of

parser. Listing 11 shows how to use Gherkin, which is a business readable,

domain-speci�c language, to write a test case.

The test reads almost like a small story written in English, albeit with somewhat

clumsy sentences. Concepts of the problem domain (securities trading) are in

central role. One does not really need to know anything about programming in

order to understand what is being tested. This is what makes external languages

very powerful in bridging the communication gap between software developers,

domain specialists and customers.

Because an external domain-speci�c language does not have access to capabilities of

the host language they tend to be somewhat more limited than internal

domain-speci�c languages. Each and every feature needs to be separately coded

with support from both the parser and model tree. On the other hand, because an

external domain-speci�c language is not bound by the limitations and design

constraints of the host language the possibilities of the language are virtually

37�
Fea tu r e : Order s

I n o r d e r to t r a d e s e c u r i t i e s

As a customer

I want to be ab l e to manage o r d e r s

Background :

Given User has l ogged i n

And s e c u r i t y "Test " i s s h a r e

And s e c u r i t y "Test " has p r i c e 10

Sc ena r i o : C rea te a pu rchase o r d e r

Given "Pete " i s a pe r son customer

And "Pete " has a p o r t f o l i o w i th an account

When "Pete " makes a pu rchase o r d e r o f amount 100 f o r "Test "

Then "Pete " shou l d have 1 open pu rchase o r d e r f o r "Test "
� �
Listing 11: Testing purchase order with external domain-speci�c language

limitless. For example, it is possible to write a language that resembles natural

language like Finnish or English and use it to specify tests.

8.3 Summary

One of the goals of both internal and external domain-speci�c language is to create

a language that has a limited set of features and is easier to use inside of the

problem domain. This language is easier to use than a general purpose

programming language and allows non-technical people to work with the software.

Because a domain-speci�c language can be understood by both the developers and

the domain experts, it can be used as an ubiquitous language allowing more

e�ective and error free communication. Domain experts can use the terms that they

are familiar with in the context of the problem domain and the developers will have

a handy dictionary that maps those terms directly into code. In most extreme cases,

domain experts can use the domain-speci�c language to write test cases or

con�gure how the software works in a speci�c situation.

Since internal and external domain-speci�c languages can share similar constructs

like the model tree, it is possible to start with an internal domain-speci�c language

and later on add a parser in order to support an external one. This splits writing an

external language to two major tasks: creating the model tree and using it to drive

38

the language. Testing an internal domain-speci�c language is a little bit easier, since

the intricacies of writing and testing a parser do not get on the way. After the

structure of the semantic model and behaviour of the language is better know, the

parser can be developed in order to support an external language.

9 Managing Dependencies

9.1 Motivation

A large software system may consist of hundreds or thousands of components that

relate to each other in a way or other. Some components rely on others to o�er their

services. In such a case, it is said that a component depends on another component.

Managing dependencies of a large software system is a crucial task. Without proper

attention to it, the codebase will slowly deteriorate and dependencies between

components will get out of hand, making expanding and maintaining the system a

nightmarish task.

9.2 Inversion of Control

Inversion of control (IoC) originally meant a programming style where an overall

framework or runtime controlled the program �ow (Seemann, 2012, 42).

Programmer essentially relinquishes some control over his software to a framework

or runtime. The framework might for example be used to control lifetime of objects

in the system, their instantiation or calling specialized methods. The programmer

does not have full control of the system anymore; however, he has gotten an easier

environment to program with.

9.3 Dependency Injection

Dependency injection is a speci�c case of IoC, where dependencies are controlled by

a framework. It is one of the many tools for writing loosely coupled code. The basic

idea behind it is to construct a software system from loosely coupled components

that are wired together at the startup of the system. Objects that create the

software system can be thought to form an object graph, where components are

connected to their dependencies.

39

Dependencies are best speci�ed as interfaces and not as concrete classes. This

enforces loose coupling between components and enables substituting one

component with another, as long as they both conform to the same interface.

Technical implementation may be an interface or abstract class, but the main

principle is the same. This principle is named to Liskov Substitution Principle (LSP)

after Barbara Liskov, who presented it in her presentation at Conference on

Object-Oriented Programming Systems, Languages, and Applications in year 1987.

The original de�nition as presented by Liskov (1987, 25) is as follows:

If for each object o1 of type S there is an object o2 of type T such that

for all programs P de�ned in terms of T , the behaviour of P is

unchanged when o1 is substituted for o2, then S is a subtype of T .

LSP is one of the core principles in modern software development and located in the

heart of dependency injection.

Dependency injection is a very pervasive design pattern and therefore it is very hard

to refactor an existing application towards it as pointed out by Seemann (2012, 42).

Dependency injection starts at the very top of the application and reaches the very

bottom depths of object hierarchy. It is not an impossible task; however, it requires

good support from comprehensive automated test suite and a great deal of hard

work.

Like with all patterns, there are anti-patterns relating to dependency injection.

Seemann (2012, 135) identi�es four most common ones as: control freak, bastard

injection, constrained construction and service locator. Control freak pattern is

almost an opposite of dependency injection, because instead of injecting

dependencies from outside, they are created by the object using them and thus

making them hard coded dependencies. The pattern is easy to distinguish, but hard

to �x if the system is large and complex. More on how to tackle this kind of

challenge can be found in chapter 10.1.5.

In the heart of the service locator pattern is a central registry where services are

located. This registry is made available to all of the program usually by a global

variable or singleton pattern. The caller can then use the registry to retrieve a fully

instantiated and con�gured service. Because the registry is available everywhere

40

dependencies of any given module are not visible. Even worse is that the client code

depends on the central repository and cannot function without it. This makes code

reuse harder, because all the components of the system have to use the same kind

of service locator.

Service locator is similar to a pattern called abstract factory. In abstract factory

client code can request an object to be created with given parameters. The

di�erence is that while there is no limitation on number of abstract factories the

system can have at any given time, there usually is only one single service locator.

9.4 Dependency Injection Container

Dependency injection container (DI-container for short) is a framework or library

that can be used to compose object graphs based on their dependencies and

con�guration. Instead of composing an object graph manually, the developer can

simply request a DI-container to compose one for him.

DI-container may look similar to the abstract factory or service locator; however, it

is quite di�erent in the fundamental level: the code never requests for a dependency,

rather it is forced to consume it (Seemann, 2012, 7). This distinction is very

important, because it is easy to misuse the DI-container and end up with an

implementation that is nothing more than a glori�ed service locator.

In general, DI-container should be used as close to the application entry point as

possible (Seemann, 2012, 75). The rest of the application has access to the services

it needs because they have been injected via constructors when the object graph was

resolved by DI-container. Essentially this means that only a very small part of the

system, called as composition root, should be aware that DI-container even exists.

As part of composing object graphs, DI-container can also take care of the lifetime

management of components. This allows software to be con�gured to reuse

component instances that are expensive to create or need to share information

between threads.

41

9.5 Dependencies in Tests

Dependencies between components and external systems can make testing really

tricky or even impossible. This is true especially if the dependencies are static i.e.

not injected from outside. If dependencies are handled outside of the component

that requires them to work properly, situation is much easier. A database is a

common example of such a dependency. Connecting to databases, ensuring that the

data is in correct state and cleaning up after testing can be a tricky and time

consuming process.

A common solution is to use some kind of a fake or mock object that looks and

behaves like dependency, in this case a connection to a database. A developer can

specify how this object behaves and how it will respond to queries. This enables

testing without using the actual database, making it both faster and easier. Figure 5

shows an overview of replacing a dependent on component (DOC) with a test

double. Because SUT does not create DOC directly, but uses the component that

has been supplied to it testing is easy and straightforward.

Test components pretending to be a speci�c dependency can be constructed in

various ways and they have been called with multiple names: mock, stub, duplicate,

fake and similar. In the present thesis the term �substitute� is used, because it is

rather neutral and technical details between di�erent implementations are not

important.

Setup

Exercise

Verify

Teardown

Client

SUT

DOC

Test

Double

Creation

Usage

Exercise

Creation

Usage

Usage

Figure 5: Test double injection (Meszaros, 2007, 70)

9.6 Summary

Inversion of control is a technique where a programmer gives up some of the control

in exchange for easier programming environment. Dependency injection is a form of

42

IoC where dependencies are handed to the components from outside instead of being

created by the components themselves. IoC promotes loose coupling and code reuse.

While IoC does not depend on any speci�c tools, there are some frameworks that

can make dependency injection easier. These DI-containers can automatically create

instances of required components and inject correct dependencies into them

automatically. In addition to that they often can control life time of registered

components and o�er advanced features like lazy initialization.

Testing a component that is written to take advantage of dependency injection is

simpler than testing similar component that creates dependencies by itself. Services

like databases and �le systems can be replaced with substitutes during testing in

order to have a full control of their behaviour. This also can improve the

performance of the tests quite a bit.

10 Legacy Code

10.1 Challenges Presented by Legacy Code

The following chapter takes a look into some of the challenges that testing a legacy

code presents. Instead of trying to cover each and every possible problem some

interesting and varied cases were selected. The selection is partly based on the

personal experiences of the author of the present thesis.

The common theme to all these challenges is that they make developing the new

features and maintaining the old ones slow and error prone. Each and every change

that is done needs to be meticulously tested and veri�ed in order to avoid bugs. Still

the developers often have that nagging feeling that they forgot something while

making the change and sometimes seemingly unrelated part of the software stops

working correctly.

10.1.1 Original Developer Left And Did Not Leave Documentation

Behind

Sometimes software systems are developed over a span of decades. New features are

added and existing ones are removed or changed. Tools and techniques used might

change over time; however, some of the code is left untouched and still uses old

43

technology. New developers are hired and old ones leave or retire. Even if the

developers have good intention to keep the documentation up to date with all the

changes, eventually it will fall out of sync. At this point tacit information starts to

be valuable, but when original developers leave, the situation gets bad. At this

point, there might exist a very complex software system that nobody really

understands. Developers have fragmented information and changes are very risky

and slow because of this.�
de f test_poison_causes_damage (s e l f) :

Pete = s t r ong (Adventu re r ())

a f f e c t (Pete , with_ (weak_poison ()))

a s s e r t_ tha t (Pete , ha s_ l e s s_h i t_po in t s ())
� �
Listing 12: Test as an example of business requirement

In this kind of situation automated tests can work as an executable speci�cation.

After all, they specify start conditions, actions taken and expected outcome.

Meszaros (2007, 33) mentions how tests can be seen as examples of how the system

is supposed to work. Listing 12 shows an example of how test can be used as an

example to communicate how poison should a�ect characters. This example is from

the business point of view and does not go into little technical details.

A more technically oriented example is shown in Listing 13. It exposes more of

technical implementation, while still being as terse as possible. The test is also

focused on verifying behaviour instead of state. It speci�es how Model and

Character objects interact, when an e�ect is added and removed from Character.

The advantage that tests have as a documentation over traditional documentation

is that they can be veri�ed easily. Every time the test suite is executed, the tests are

either passing or failing. As long as the tests are kept valid and passing, they can

also be treated as a valid documentation about how the system is supposed to work.

This is much easier to remember to do than updating a design document or

programmer's guide.

44�
de f t e s t_e f f e c t_exp i r a t i o n_ev en t_ i s_ r a i s e d (s e l f) :

model = mock (Model)

add_event = mock (Event)

remove_event = mock (Event)

c h a r a c t e r = (Cha r a c t e rBu i l d e r ()

. w i t h_e f f e c t (E f f e c t B u i l d e r ()

. w i th_dura t i on (0)

. with_add_event (add_event)

. w i th_exp i r a t i on_even t (remove_event)

. with_model (model)

. b u i l d ())

c h a r a c t e r . r emove_exp i r ed_e f f e c t s ()

v e r i f y (model) . r a i s e_ev en t (add_event)

v e r i f y (model) . r a i s e_ev en t (remove_event)
� �
Listing 13: Test as an example of technical implementation

10.1.2 Database Connection Inside of Business Logic

Often there is need for a business logic to access the data stored in a database. The

most straightforward way of doing this is to open a database connection when

needed, query the data and then close the connection when it is not needed

anymore. Since opening a database connection is a rather slow operation,

connections to the database are often pooled. There is a central location in the

software system where client code can request a database connection. The problem

with this approach is that while getting a connection to a database is easy for client

code, there is a hard dependency on the central location where the database

connections are retrieved. Setting up a database connection for each test is a slow

operation and it increases likehood of tests interacting with each other.

The diagram in Figure 6 shows how ItemHandler class is using Item class to connect

to the database. Because the database connection is handled inside of the Item

class, there is a hard dependency for database. If the developer would want to test

the ItemHandler class, the database would need to be set up, connected and

populated with the test data.

45

ItemHandler

RemoveItemFromStock(int)

Item

Load(int)
Save()
Delete()

Database

Figure 6: ItemHandler

Listing 14 shows an example code where ItemHandler class has a method

RemoveItemFromStock. The method is used to load an item with itemID from the

database, decrease the quantity in stock and save the item back in the database.

Database connection that is used is retrieved from a static class called Application.

Writing a unit test for RemoveItemFromStock method requires the developer to set

up the Application class with session, database connection and the other things it

might require. If the only method for con�guring the Application class is via

con�guration �le, the test needs to access �le system too.�
Pub l i c Sub RemoveItemFromStock (ByVal i temID As I n t e g e r)

Dim item As Item

Dim dbConn as Connect ion

dbConn = App l i c a t i o n . Cu r r e n t S e s s i o n . Connect ion

dbConn . Beg i nTran sac t i on ()

i tem = New Item ()

i tem . Load (i temID)

i tem . q u an t i t y = item . q u an t i t y − 1

i tem . Save ()

dbConn . CommitTransact ion ()

End Sub
� �
Listing 14: ItemHandler without repository

One possible solution to this problem is shown in Figure 7, which illustrates how

ItemHandler class can be written using a simple repository pattern. The

46

corresponding code can be found in Listing 15. The basic idea is to remove basic

database operations (creation, read, update and delete, commonly known as CRUD

operations) from the business class and place them into a repository. The reposity

now has the responsibility to perform all CRUD operations regarding to the Item

class. Since the ItemRepository implements interface IItemRepository that exposes

CRUD operations, it can be replaced by a substitute during testing. As a �nal step

the constructor of ItemHandler class has a parameter for supplying IItemRepository

that it is then used to access database.

ItemHandler

ItemHandler(ItemRepository)
RemoveItemFromStock(int)

IItemRepository

loadItem(int)
saveItem(item)
deleteItem(item)

ItemRepository

loadItem(int)
saveItem(item)
deleteItem(item)

Database

Figure 7: ItemHandler with repository

The corresponding code is shown in Listing 15. It is very similar than the one shown

in Listing 14; however, some key di�erences are present. The method does not

depend on a global variable or a static class. The database connection is abstracted

behind IItemRepository and supplied to it from outside. These changes make it

possible to test the method in isolation, without setting up the Application class or

a database.�
Pub l i c Sub RemoveItemFromStock (ByVal i temID As I n t e g e r)

Me. r e p o s i t o r y . Beg i nTran sac t i on ()

i tem = Me. r e p o s i t o r y . LoadItem (itemID)

i tem . q u an t i t y = item . q u an t i t y − 1

Me. r e p o s i t o r y . SaveItem (i tem)

Me. r e p o s i t o r y . CommitTransact ion ()

End Sub
� �
Listing 15: ItemHandler with repository

47

Nhibernate is an entity mapping framework that can be used to hide database

details from business logic (Perkins, 2011, 2). On a surface the code in Listing 16 is

very similar with the one using repository. The major di�erence is hidden out of the

sight: in repository pattern the developer has to write the sql queries that update

the database; however, the NHibernate can take care of all that after the developer

has con�gured the mapping between database �elds and object properties.�
Pub l i c Sub RemoveItemFromStock (ByVal i temID As I n t e g e r)

Dim s e s s i o n As I S e s s i o n

Dim t r a n s a c t i o n as IT r a n s a c t i o n

s e s s i o n = Me. s e s s i o n F a c t o r y . g e t S e s s i o n ()

t r a n s a c t i o n = s e s s i o n . Beg i nTran sac t i on ()

i tem = s e s s i o n . Get (Of Item) (i temID)

i tem . q u an t i t y = item . q u an t i t y − 1

s e s s i o n . Update (i tem)

t r a n s a c t i o n . Commit ()

NHibe rna teHe lpe r . C l o s e S e s s i o n ()

End Sub
� �
Listing 16: ItemHandler with NHibernate

Adding NHibernate to a software system later than very beginning might prove to

be a very tricky business. NHibernate works best when all the access to a database

is done via it because sharing the sessions and database transactions with a legacy

code is not easily possible. In the worst case scenario the source code of the

application will be divided into two portions: old and new. The old side of the code

can access database using legacy methods like direct sql-queries or business objects,

while the new side uses NHibernate. This makes session management hard and

sometimes a process has to be tailored to work around the limitations of the system

and not the other way around.

Advantage of NHibernate is that it makes working with di�erent databases really

easy. The developers do not usually have to concern themselves with the di�erences

of sql dialects and the code is more straightforward to write. The performance

might su�er a little bit from using NHibernate; however, using various caching

strategies can remedy that to a degree.

48

A third option that can sometimes be used is shown in Figure 8 and Listing 17. In

this option ICommand is used to abstract the database connection and is supplied

from outside during the call. This again makes it possible to substitute it during

testing. Command can be used to execute commands and queries directly, without

much abstraction like business classes. This method works very well in cases where

database operations can be performed directly. The advantage of this approach is

that the batch operations where a large amount of data is updated are relatively

fast to perform compared to using business classes where objects are loaded,

updated and then saved back into the database. A disadvantage of this method is

that it scatters sql commands and queries all over the system. This makes changing

the database schema harder, since the changes are spread over larger portion of the

code.

ItemHandler

RemoveItemFromStock(int)

ICommand

Query(String, List(Of Object))
Command(String, List(Of Object))

Command

Query(String, List(Of Object))
Command(String, List(Of Object))

Database

Figure 8: ItemHandler with Command

The code shown in the Listing 17 is again removing a single item from the stock

with a given item identi�cation number. This time the operation is performed

directly in the database, without loading or saving Item business object. It is clearly

visible how this approach scatters sql commands and queries in much wider area

than using business objects. However, depending on the design constraints of the

system this may be acceptable.

10.1.3 Static Methods Guiding Execution of Business Logic

Sometimes a con�guration �le is used to control how the software works in speci�c

situations. It is tempting to place these values in a static class where they are easily

accessible. The problem with this approach is that it introduces a hard dependency

that is hard to substitute and is not visible from outside of the client method. If

49�
Pub l i c Sub RemoveItemFromStock (ByVal i temID As I n t e g e r ,

ByVal command As ICommand)

command . Beg i nTran sac t i on ()

pa ramete r s = New L i s t (Of Object) ({ itemID , i temID })

command .Command("UPDATE ITEM SET QUANTITY = " +

" (SELECT QUANTITY FROM ITEM WHERE ID = ?) − 1" +

"WHERE ID = ?" , pa ramete r s)

command . CommitTransact ion ()

End Sub
� �
Listing 17: ItemHandler with command

multiple such methods or classes are used, the amount of tangled dependencies start

to grow and the software soon turns into a maintenance nightmare.�
Pub l i c Func t i on D i s t ance (ByVal s t a r t As I n t e g e r ,

ByVal d e s t i n a t i o n As I n t e g e r) As I n t e g e r

Dim d i f f e r e n c e = d e s t i n a t i o n − s t a r t

I f d i f f e r e n c e < 0 AndAlso Con f i g u r a t i o n . NoNegat ives Then

Return 0

E l s e

Return d i f f e r e n c e

End I f

End Funct i on
� �
Listing 18: Static control logic

Listing 18 shows a simple routine that is used to calculate the distance between two

points on a line. The system can be con�gured to ignore negative values and return

0 instead. The problem here is that in order to test this simple function, the

developer needs to set up static Con�guration class with correct parameters. In a

very bad case, the Con�guration class can only be instantiated with values loaded

from a database, so testing the routine also needs the database. Setting up all these

dependencies just to test a simple routine is slow and cumbersome.

There are multiple possible solutions for this problem. A simple one is to add a new

parameter that can be used to inform the function on whether it should return

50

negative values or not. Implementation of this is shown in Listing 19. In this simple

example this solution works just �ne and now the function can be tested in isolation.�
Pub l i c Func t i on D i s t ance (ByVal s t a r t As I n t e g e r ,

ByVal d e s t i n a t i o n As I n t e g e r ,

ByVal noNega t i v e s As Boolean) As I n t e g e r

Dim d i f f e r e n c e = d e s t i n a t i o n − s t a r t

I f d i f f e r e n c e < 0 AndAlso noNega t i v e s Then

Return 0

E l s e

Return d i f f e r e n c e

End I f

End Funct i on
� �
Listing 19: Adding a control parameter

This approach works when the function does not have multiple con�guration

parameters. In the case of complex business logic the function's parameters list

would quickly get big and unwieldy to use. The code would not look particularly

elegant and using the function would also be dangerously error-prone. Adding a new

control parameter would also mean that all the locations where the function is being

called from would have to be updated to pass the new parameter.

In our simple case it would be possible to write two di�erent versions of the method

and give them intent revealing names. The �rst one would return negative values

while the second one would substitute them with a zero. In case of a complex

business logic this approach would not work, because amount of combinations of

di�erent control parameters could be too high to easily maintain. A better approach

would be to remove the static dependency and pass it from the client code. This

helps in testing the function in isolation, although the caller still needs to get an

instance of the Con�guration class from somewhere. Example of this approach is

shown in Listing 20

The end result is almost identical to the original code example shown in the Listing

18. By using an interface instead of a concrete implementation the developer has

made the function easier to test. The ICon�guration can be substituted in tests

easily and setting it up at the beginning of a test is a fast operation.

51�
Pub l i c Func t i on D i s t ance (ByVal s t a r t As I n t e g e r ,

ByVal d e s t i n a t i o n As I n t e g e r ,

ByVal c o n f i g as I C o n f i g u r a t i o n) As I n t e g e r

Dim d i f f e r e n c e = d e s t i n a t i o n − s t a r t

I f d i f f e r e n c e < 0 AndAlso c o n f i g . NoNegat ives Then

Return 0

E l s e

Return d i f f e r e n c e

End I f

End Funct i on
� �
Listing 20: Passing con�guration

It is worth observing that ICon�guration should contain only the minimal amount of

data. While it might contain only a value or two in the beginning it is possible that

as the time progresses more values are added. Eventually the ICon�guration will

contain a large amount of �elds that are not really related to each other anymore

and using the interface will not be easy anymore. The interface segregation principle

states that the client should not be forced to depend on the methods of interface

that it does not need (Martin, 1996, 5). The reason behind this is that if multiple

clients depend on the same interface, they are in essence coupled together. If the

client depends on methods of an interface that it does not need, that coupling is

unnecessary. The interface could also use a better name like

IDistanceCalculationCon�guration instead of just ICon�guration.

10.1.4 Huge Method That Does Everything

Huge methods that have a lot of responsibilities cause common problems with

legacy software. Huge methods might have started out as a small, well de�ned

functions; however, as the time passed and more functionality was added to the

system, the new features were added by modifying the existing functions. These

large functions are hard to maintain, test and debug, because they can be hundreds

if not thousands lines long and contain loops within loops. Just understanding how

the function is supposed to work can be a daunting task.

Because these huge functions have multiple responsibilities they tend to have lots of

dependencies too. More often than not those dependencies are hard and can not be

52

easily substituted during testing. In order to make the situation more manageable

the function needs to be broken into sensible parts that can be independently tested

in isolation. The original function would then call these other functions to perform

the same operations that it used to take care of all by itself.

Feathers (2011, 14) suggest to �rst cover the main functionality of the huge

function with integration tests that capture the business requirements of the

function. After this a developer can start slowly breaking the function apart into

smaller chunks while verifying constantly that the integration tests are still passing.

The small chunks that the developer creates by extracting functionality from the

original function should be written in a way that they can be tested in isolation.

10.1.5 Control Freak

The control freak anti-pattern was already mentioned in chapter 9.3. Essentially it

is a pattern where dependencies are not controlled from outside of the components,

but rather from inside. Components are responsible for creating the dependencies

they need and thus there exists a hardcoded dependency between the components.

This makes automated testing harder and the structure of the software feels sluggish

and hard to change.

Seemann (2012, 143) lists three steps that can be taken in order to refactor a

system into a more suitable state:

• Ensure you are programming to an interface.

• Move the creation of a particular dependency to a single location and ensure

that it is represented as an interface.

• Move the single location of creation outside of the class by implementing DI

pattern, such a constructor injection.

If for a reason or another the constructor injection is too hard to do, one can apply

a pattern called parametrised constructor (Feathers, 2011, 379). In this pattern, a

new constructor is created that can be used to supply the dependency outside. The

original constructor is kept around and default implementation of the dependency is

created there. This allows fast refactoring in order to make unit testing easier;

53

however, it does not require changes at each and every location where the

component is created.

Depending on the dependency being injected via parametrised constructor, this

stage should be treated only as a temporary step towards full constructor injection.

The component still has a static dependency and reusing it might drag along

components that are not needed in the new system.

It is also worth noting that the whole object graph does not have to be refactored in

one go. Depending on the situation, refactoring can be started either from the top

or bottom of the graph and dependency creation is slowly pushed upwards, until it

reaches the composition root. For some time, dependencies might look really ugly

and big, especially if the refactoring was started from the top; however, eventually

the situation will get better and the code will transform into a more readable and

maintenable form.

10.2 Testing Legacy Code

Testing legacy code can be a tricky business. The code might have evolved over a

course of years or even centuries in extreme cases and during that time it has faced

many changes. Developers have changed, requirements are di�erent now than what

they were in the beginning and development paradigms have risen and fallen. Some

of the temporary modi�cations done in a hurry were never removed and only

half-understood methods litter the codebase. All these events have left their mark

on the code and it is not as easily maintainable as it was when it was young.

Interestingly these are also the most common excuses cited when asked why people

do not want to test their code. Granted, some of them might be very valid reasons,

but usually people tend to exaggerate the negative aspects in order to justify

skipping the testing.

While working with the legacy code it is important to remember that a complete

rewrite usually is not an option. The customers depend on the current version of

the software and require maintenance and maybe even new features. Therefore it is

prudent to �rst ensure that the software does not break because of the changes by

writing su�cient amount of integration tests. After the integration tests are in

place, the code can be slowly restructured to allow writing unit tests.

54

10.3 Summary

Working with legacy code can initially feel di�cult because making changes is slow

and prone to errors. The temptation to just abandon the codebase and rewrite the

program from scratch might be quite big too. However, with a methodical approach

and constant attention to the technical excellence the obstacles can usually be

solved.

It is often useful if the developers can identify the most common problems in their

codebase and come up with an agreed solution on how to avoid them in the future.

Because there often are multiple ways to solve a single problem, it is important that

the team has an agreement on how they will approach the probem. This way the

codebase will not deteriorate further and this gives the team chance to start

improving it.

11 Test Driven Development

11.1 Overview of Test Driven Development

Test Driven Development uses various tests not only to verify the code, but also to

guide its design. Freeman and Pryce (2010, 6) suggest that �As we develop the

system, we use TDD to give us feedback on the quality of both its implementation

(�Does it work?�) and design (�Is it well structured?�).�

TDD breaks writing software into three distinct parts: test, development and

refactor.

Write failing unit test

Make test pass

Refactor
Write failing acceptance test

Figure 9: TDD in a nutshell (Freeman and Pryce, 2010, 6)

55

Adding a new feature starts with a new acceptance test being written. This test

captures the user requirement for the feature. Developers will then start

implementing the feature by adding a unit test identifying what they need to change

�rst, making necessary changes and cleaning up the code as the last step. Then new

unit test is added and the whole cycle repeats until the acceptance test shows that

the user requirement is ful�lled.

If acceptance tests can be written in collaboration with customers (either end users

or domain experts), they become a very important bridge between people with

business domain knowledge and people with technical domain knowledge. In his

master's thesis Koudelia recognised that for various reasons, customers are not very

willing to invest enough time and e�ort in this (Koudelia, 2012, 81). This places a

major burden on the shoulders of developers, since their task is now to read and

understand speci�cations, translate appropriate parts of them to acceptance tests

and write the software to pass those tests. Instead of this, a part of the

speci�cations could have been written as acceptance tests, instead of a traditional

speci�cation document.

11.2 Advantages of Test Driven Development

Freeman and Pryce (2010, 57) list three aspects in test driven development that

help in designing the software. By writing a test �rst, the developer has to consider

what the object is supposed to do and this in turn helps him to manage the scope.

Secondly, unit tests are supposed to stay small and compact. If they start to grow,

it is an indication that the object in question is doing too many things and needs to

be split up. Third, for an object to be unit testable, all dependencies have to be

exposed and given to it from outside. This helps maintaining a loosely coupled

system. Seemann has reached a similar conclusion and explains that TDD is the

safest way to ensure that the system is testable (Seemann, 2012, 20).

Test driven design gives developers very fast feedback if the code they have written

is working as it should be (Erdogmus, Morisio and Torchiano, 2005, 226). Ideally

the �rst step to implement anything is to write a test that will show if the

functionality is working so a developer always has a proof of how well the system is

working. In practice this is not always possible, but the developers should try to

minimize the amount of code that is not tested automatically.

56

Another advantage is that the developer is encouraged to decompose the problem

into small, manageable tasks thus helping maintaining the focus and providing

steady, measurable progress (Erdogmus et al., 2005, 226). Because the developers

see steady progress being made they feel more encouraged to keep working even on

very large tasks that take long time to �nish. And having that large task split into

smaller pieces helps them to focus on a single problem that they can easier manage

and keep the details in their mind.

11.3 Challenges of Test Driven Development

Test driven development requires a signi�cant investment of time during coding of a

feature. While Erdogmus et al. (2005, 236) indicate increase in the productivity

they also highlight that productivity seem to have increased variation. Erdogmus

et al. continue and theorize that the variation might be due to relative di�culty of

the technique and their research results indicate that too. If a product schedule is

very tight the developers might feel an urge to cut corners and skip the automated

testing part.

Another challenge is the maintenance of the tests. When the software system

evolves and changes sometimes the tests have to change too. If the tests are

written in a way that couples them very tightly with the production code, the need

to change them arises more often than if they were loosely coupled. In a way the

tests bring in�exibility to the design instead of making it more �exible. It is possible

to use a domain speci�c language to alleviate this to a degree.

11.4 Summary

Test driven development interleaves testing and coding very closely and gives the

developer constant feedback regarding the progress. As an automated test suite is

built during the development of a feature it is easy to run those same tests to check

for regression. An extensive test suite helps in refactoring because the developer can

feel more safe when making changes in the code.

Test driven development requires strict discipline and understanding that the e�ort

made on the tests will pay back both in short and long term. For example, cutting

corners because of a tight schedule will often eventually back�re and the team ends

57

up spending more time compared to doing the testing and development correctly in

the �rst place.

12 Continuous Integration

12.1 Introduction to Continuous Integration

Moreira (2010, 126) de�nes continuous integration (CI) as a process of integrating

code frequently in order to reduce large integrations, complexity and to make

functional software readily available. Cauldwell notes that the more often

integration is performed, the easier it will be (Cauldwell, 2008, 22). This is because

the amount of changes to be integrated is smaller and easier to manage. In case of

problems in the software system after integration, the amount of changed code is

smaller and it is easier to try and �nd the cause of error.

Holcombe (2008, 31) identi�es CI as a major source of con�dence that the team is

getting somewhere. Since integration and testing are not left until the very end

phases of a project, the team will have a better understanding of how much work

they have actually completed and what the current status of the system they are

building is. The amount of second guessing is reduced, because the team has results

of the CI-builds. It is even possible to gather some statistics from the builds and

graph them as a function of time to give the team a better understanding how the

project is progressing.

Because the system is being built, deployed and automatically tested several times a

day, the testers have access to an up to date system all the time. This can also be a

challenge, because the system they are testing can be changing quite often and later

builds might be invalidating test results of the previous build. One solution to this is

to automate as many of the tests as feasibly possible. Another solution is to have a

separate environment for manual testing, which is not being updated as often as the

CI-build is done. This can be dangerous, because the system being tested is not the

latest one anymore.

Cauldwell (2008, 22) suggests that the best way to set up a CI is to have a

dedicated hardware and automate building and testing the software system.

CI-builds will be performed often, usually multiple times a day. The amount of work

58

to build, deploy and test the system multiple times a day is so staggering that

automation is the only sensible solution.

12.2 Testing Against Interfaces

In a continuous integration environment tests are being run several times a day,

often against services that do not exist yet. It is tempting to skip testing in those

cases or defer it until the required service is ready and can be used in testing. Doing

so would lose some important feedback from the client side of a library though.

According to Whittaker et al., Google has solved this problem by extensive use of

testing against pre agreed interfaces instead of concrete implementations. This also

speeds up development, because services can be constructed in parallel fashion

(Whittaker et al. 2012, 21.) Another good e�ect is that pieces of software system

are isolated from each other with interfaces and the library behind the interface can

be switched to another implementation.

However, it is crucial that the interfaces are speci�ed and understood when

programming in this fashion. Chapter 3.2 showed an example where Mars Climate

Orbiter crashed because the data interfaces were used incorrectly. Similar situation

could happen if two components are developed in isolation and only unit tested

against interfaces. Luckily integration tests can sometimes detects mistakes like

these.

12.3 Responding to Build Breaks

One reason for using continuous integration is to detect possible problems as soon

as possible, preferably within some minutes after the o�ending code has been

commited in to the version control. An automated system will detect the changes

and subsequently run a build and test it. If all the tests pass, nothing else happens;

however, if the build fails, an alert is given to the team that they know to start

�xing the problem.

Whittaker et al. (2012, 32) describe how most of the large projects at Google

started rotating team members into the role of �build cop� , whose job is to respond

quickly to any issues uncovered in a project's CI-build. A single responsible person

tends to react faster than a team with shared responsibility. Rotating the role

59

naturally spreads knowledge on the builds and tools used to make them to a wider

group in team.

Some CI-tools have web interface that can be used to view results of any given build

and drill down in test results. While these are nice and very informative, they are

not mandatory. A very basic setup where changes in source control are detected

automatically and the build and test cycle are triggered is enough. Good example

for such a tool is nosy that detects changes in disk and triggers test execution

(Latornell, 2011).

12.4 Summary

Continuous integration seeks to detect mistakes in a software as early as possible by

automatically integrating changes done by the developers and running the test suite

against the build results. The system needs to be automated in order for it to be as

fast and e�cient as possible. Because tests are run automatically the team

members are encouraged to commit their change as often as possible. The sooner

they commit their code the faster they get feedback regarding to their changes.

Continuous integration does not usually require very expensive tools and there are

many open source alternatives to choose from. If the codebase is very large, the

continuous integration process will of course be slower. Then it might make sense

to run only part of the test suite during the CI-build and execute the full suite

during a night.

Since CI-builds are a sort of a heartbeat for a project all the developers should be

concerned on the results and strive to keep the builds working. The developers

should not be afraid of breaking the build now and then; it only means that the

safety net was working and helped them to detect the problem before it got any

further.

13 Organisational Development

13.1 Team Triad

Every well functioning team requires three main elements, which are: dedication,

skills and required tools. The most important of these is the dedication or will to

60

perform. Tools can be handed out by upper echelon and skills can be trained by

coaching or in courses, but without dedicated people the performance of the team

will not be optimal.

Dedication

Skills Tools

Figure 10: Team Triad

Dedication or motivation is an easy thing to destroy and hard to build. A close

two-directional communication is a good start in ensuring that the developers do

not feel like their opinions are not valued. Because the developers are working daily

with the code and software tools they also know the best what parts of the process

feel clumsy or tedious. By listening to their opinions one can gain a very valuable

input and improvement ideas. This should also apply when rolling out a new process

or toolchain.

13.2 Competence Development

Thomas and Hunt (2002, 38) explain how writing tests will a�ect the way the code

is designed. If writing tests are done in parallel with development work, designers

are provided with constant feedback on which classes and methods are easy to use

in isolation and which have a tangled mess of dependencies all around the system.

Since writing tests for loosely coupled, well designed code is easier than writing

them for a really messy code, developers' design skills tend to improve almost

automatically. (Thomas and Hunt 2002, 38.)

Developers who actively work on acceptance level tests or code that is being tested

by acceptance level tests are exposed to how domain experts see the system and

what kind of terms they use to describe its functionality. They will naturally learn to

use the same terms and understand them in at least a quite similar way as the

domain experts. This accumulated business knowledge can be extremely important

when a domain specialist is unavailable for a reason or another.

61

Because the tests capture how the functions, classes and modules are intented to be

used, they slowly create an encyclopedia for the developers to work with. Instead of

digging inside of a module in order to understand how to use it, a developer can

check the tests that are written for it. Those tests show how the module is

supposed to be used and what kind of methods it supports. They can also be used

to document how the module behaves in case of errors.

13.3 Easing the transition

Whittaker et al. (2012, 54-58) describe how Google wanted to make testing

activities a part of every feature developers' daily work. After making it a light

hearted competition between teams and providing guidance and help the progress

was still slow and hard. Eventually they had to scale things down somewhat and

start with really simple tasks, like setting up a CI build and classifying their tests to

small, medium and large. The goal was to get the people started with something

easy that would provide quick grati�cation and get them hooked to continue

further. (Whittaker et al. 2012, 54-58.)

Karten (2009, 22) points out very important lesson: �How you implement a change

this time will a�ect how people respond to future changes.� Mistakes made now will

have negative e�ect in the future. Therefore it is important to give everybody a

chance to participate to the roll out of new tools or practices. Realistically speaking

there is not enough time or space for everybody to participate, but simply giving

them a chance is often good enough. The people who are more inclined to

participate and voice their opinion will do so and the more silent people will feel that

their opinions are valued too. Karten has come to similar conclusion and identi�ed

that �even a minimal sense of control can go a long way toward easing the stress

people feel� (Karten, 2009, 38).

When communicating plans or upcoming changes it is good to remember that the

way you communicate the upcoming change a�ects the duration and intensity of the

chaos that the change will bring (Karten, 2009, 56). Too much information too

early might lead to unnecessary speculations and the plans might still change

multiple times before they are actually implemented. Too little information or giving

information too late is not a good thing either because the change might come as a

surprise and have too negative e�ect on daily work. Finding a good compromise

62

between these two extremes depends quite a deal about the people involved and the

organisational culture. The skills and experience of the superiors will most likely be

useful in situations like this.

13.4 Summary

Even when the change is about tools or technology the people a�ected are one of

the most important factors. Without motivated people no tool or process will work

well. Open communication and trust are the corner stones that a succesfull change

is built upon. Sometimes technically oriented people might forget that the people -

not the tool - are important. They also might have di�culties in communicating

their plans well to all respective parties. In such cases the superiors could step in

and o�er their help. The team, group and department leaders could have useful

experience that could be utilised.

14 Implementation in the Host Company

14.1 Motivation

Chapters from 14.3 to 14.13 will summarize implementation phase of the thesis in

the host company. The chapters cover roughly the same subjects as the theoretical

part and show how the theory was put into practice.

14.2 Overview of the System

The software system that was the target of the testing in the present thesis is rather

old, roughly around 20 years and it is still under active development. It has 2.5

million lines of code and can be tailored to customer needs very well. This in turn

means that the code is rather complex in some places. Since the domain of the

system is �nances, there are some very speci�c requirements mandated by the

Finnish legislation and requirements for error free operation of the system are strict.

The host company was using TeamCity for the build management. It is a Java

based build management and continuous integration system which, among other

things, features automatic build triggering based on commits in version control

system, noti�cations and code coverage tools (Melymuka, 2012, 9-10).

63

For test case management the host company was using SpiraTest. The tool o�ers

ability to manage requirements, tests, bugs and issues in a very comprehensive suite

(In�ectra, 2013).

14.3 Test Execution

The tests were grouped by the technology they were built upon and their execution

speed. Very quickly executed unit tests are run several times a day as a part of

continuous integration build (see chapter 12 for more information). More time

consuming integration tests are run during night, when the server load is low. A

subset of integration tests was selected to be run during day as a smoke test that

can be used to verify general state of the software system.

In NUnit, it is possible to assign a category for tests, which can be used to select

only a subset of them to be executed. This was used to label some of the

integration tests for smoke testing. The problem with this approach is that while

TeamCity is able to �lter tests based on their categories, it is possible to assign only

a single category for each test. The same test can not be labelled as belonging to a

certain customer and as a smoke test easily. One possible solution is careful

management of categories and compounding di�erent tags together, e.g.

�customer_A� and �smoke� together becomes �customerA_smoke�. This will get

unwieldy as the amount of tags grow and complicate management of test cases.

Another option is to separate test cases to di�erent dll �les based on their usage

and run tests only for a speci�c set of them. This will run into the same problems

as using categories, since a single test case naturally can not exist in multiple dll

�les. Also the management of builds becomes harder, since the tests can not be

picked up easily by wildcard �lters anymore.

The current solution is to assign tests to a category based on information whether

they are common or customer speci�c. Few tests were picked for smoke testing and

because they are not customer speci�c there is no clash in categories. However, In

the future the situation might change as the amount of the tests keeps growing.

64

14.4 Unit Tests

Writing unit tests for an old and complicated legacy system is not an easy task and

it took several tries before a suitable method of working was found. Especially when

existing code was being modi�ed and extended, writing unit tests was a real

challenge, because of the �test smells� which were mentioned in chapter 5.2. Usually

the best approach was to �rst write some integration tests to cover the feature in

question and use them to verify the correctness of the functionality, while breaking

the code into smaller components. Those smaller components could then in turn be

tested with unit tests to verify that they are working as expected. After that the

development of new features could start for that speci�c component or subsystem.

This of course was a rather slow approach and it was hard to justify the time spent

in the beginning, especially because most of the bugs were revealed by integration or

end to end tests.

NUnit and NSubstitute were testing frameworks used. While NUnit can be used to

de�ne and run tests, NSubstitute can be used to substitute dependencies in unit

tests. Both tools are in a widespread use and it is easy to �nd examples and studies

regarding to them.

14.5 Integration Tests

The case system had integration test platform that had been modelled after

examples given by Freeman and Pryce (2010). The platform was expanded with

more builders and matchers were introduced to help veri�cation of results. A similar

platform was created for unit testing.

The integration tests were built using NUnit. The tool was chosen, because it is

used widely for testing and o�ers the basic functionality needed for running the

tests. Because of the widespread usage of xUnit tools there are plenty of other tools

to choose from for reporting and test management. This helped to integrate

integration tests later with TeamCity and SpiraTest.

Figure 11 shows on a conceptual level the relation of client-side classes and

integration tests. From the point of view of the application server the integration

tests behave just like any other client application. They log in to the application

65

server and start executing the business logic accessible to them via web services.

While this ensures that the tests resemble the actual usage patterns of the system

as closely as possible it also means that the tests are rather slow. Communication

over a network adds latency to the tests and possible point of failure in the form of

network errors.

DatabaseServer

UI classes

Client
Business Classes

Integration tests

Figure 11: Integration tests

The advantage of reusing client side business classes is that it is easy to

communicate with the application server and all the changes done on the business

classes are readily available for the integration tests. Since duplicating logic present

on UI layer in the test classes is tedious, this also encourages the developers to move

the logic away from the UI layer and into the client or server side business classes.

14.6 End to End Tests

While the choice of the platform for unit tests was easy, especially end to end tests

proved to be a subject of heated debate. Because end to end tests are potentially

used in communication with stakeholders like product owners, domain specialists

and customers, the clarity of tests was an important matter. Various tools were

investigated, FitNesse and SpecFlow being the prime candidates of choice.

FitNesse is a software testing tool with a focus on collaboration between

stakeholders. It is built on top of a wiki and allows customers, testers and

programmers to learn what their software should do and compare it to what it

actually does (FitNesse - One Minute Description.)

SpecFlow is a pragmatic testing framework for behaviour driven development and

acceptance tests. It aims to bridge the communication gap between domain experts

and developers by providing ability to write human readable behaviour speci�cations

and examples that can be executed as tests (SpecFlow - Pragmatic BDD for .Net.)

SpecFlow was tested by a few developers, the author of the present thesis being one

of them.

66

In the end, the choice was made to use FitNesse for end to end tests. This decision

was made because there already was a substantial amount of tests written with it

and expanding its use would be easy. SpecFlow on the other hand would have been

a completely new tool. A very attractive feature of FitNesse was the internal

wiki-system that is used to run tests. While the tool has not been taken into use by

other than developers, in the future it is possible to publish all the test cases, their

descriptions and explanations on an internal website. This would create a more

transparent way of working regarding the tests and their results.

FitNesse arranges test data in a tabular format that makes it easy to test data rich

application (Koudelia, 2012, 72). This approach is very suitable because the system

under test in the case of the present thesis is a �nancial system. The system

required for testing is slightly more complex, since FitNesse requires own server to

run the wiki. Setting up one is rather simple operation though, even on a

developer's machine.

14.7 Matcher Library for Assertions

As mentioned in chapter 7.4, writing clear assertions will make it easier to

understand what is being tested. For this purpose NHamcrest was chosen for

evaluation. According to Hay, NHamcrest is a C# port of the Java version of

Hamcrest. It o�ers a good set of matcher classes and a possibility to de�ne your

own. (Hay 2010.)

As of writing the present thesis, there has not been a real compelling reason to use

NHamcrest in testing. While it o�ers the ability to write clean and easy to

understand assertions, the assertions needed in testing in this case did not require

those capabilities. The teams felt that using built in assertions of NUnit and some

custom written ones they could achieve the same end results without resorting to a

third party library. The ability to have nicely formatted, close to a natural language

error messages is probably not so important when only the developers are

investigating the error reports.

14.8 Domain-Speci�c Language for Testing

In order to hide some of the less interesting technical details and make tests more

readable, domain-speci�c languages were investigated. Main focus for the DSL was

67

in integration tests, because they would bene�t most from the detail hiding. The

amount of unit tests was smaller compared to the integration tests and one of the

driving forces in adopting FitNesse was the ability to display large amounts of data

e�ciently.

The framework that used writing integration tests was implemented with a �uent

API, essentially it is an internal domain-speci�c language (refer chapter 8.2.1 for

more information). The goal has been to make writing expressive tests as easy as

possible and let developers concentrate on business properties of objects, instead of

their technical details. Partly this has been successful, especially in those tests that

use the more mature parts of the framework. More work is needed though, since the

framework covers only a fraction of the needed cases. Basis of DSL used is in

construction builders (Fowler and Parsons, 2011, 179) which are controlled with

method chaining as de�ned by Fowler and Parsons (2011, 373).

Adding tests to already existing system was somewhat tedious from the point of

view of the DSL too. In the beginning there were no builder, matchers or any other

helpers to rely on, so almost each and every integration test required writing some

helpers. This made developing tests both slow and tedious. The developers felt that

it required writing too many classes to get even a simple test case done. However,

as explained in chapter 8.3, it is possible to use an internal domain-speci�c language

as a springboard for writing an external domain-speci�c language. For example, the

builders could be reused when writing tests with FitNesse.

14.9 Reporting

14.9.1 Reporting Test Results

Tests are not very useful if there are no comprehensive reports showing what tests

were executed, against which system they were executed and what the results were.

At the very start, test execution was started manually and the results were not

stored anywhere. This basic setup served as a sanity check for developers, who could

get a general feeling if certain limited amount of features were working correctly.

The next step was to automate the build process and at the same time automate

the testing process. The build process was automated using TeamCity. TeamCity

can store various data from builds, including test results. This allowed developers to

68

see test results of any previous run, graph them and compare di�erent builds. At

that point it was possible to see on a coarse level how quality of features was

developing over time.

Eventually TeamCity was integrated with SpiraTest. Results from various automated

test suites were automatically imported to SpiraTest for later review and analysis.

This allowed everyone to view the test results, drill down into data and view graphs

showing test results as function of time. Because SpiraTest was also used to store

results of manual testing, it o�ered one stop shop for all things related to testing.

14.9.2 Test Coverage Reports

One of the metrics closely associated with test reporting is code coverage. It is used

to report how big a portion of the software is being covered by tests. As pointed out

by Kaner (1996, 7-13), there are many ways of de�ning and calculating coverage,

each yielding somewhat di�erent focus on the software testing. Since the host

company is using TeamCity for build management, dotCover was natural choice for

coverage analysis. Both tools are developed by the same company and integration

between them is good. DotCover can be used to report the percentage of lines

being covered by the tests and also generate a report highlighting which lines were

executed and which were not.

TeamCity is shipped with console version of dotCover, which enables coverage

analysis out of the box. It was con�gured to collect statistics regarding to the

execution of unit tests. While the coverage analysis of unit tests was easy,

integration and end to end tests proved to be somewhat more di�cult. Because

dotCover needs to be running on the machine that is executing the tested code,

analysing server side code means deploying and running dotCover on the server.

This approach has the advantage that it is possible to gather coverage metrics for

manually executed test cases too and combine them with results from automated

test cases. This gives stakeholders an overview of what parts of the software were

used during testing.

Collecting coverage data during test execution has a negative impact on

performance. Typically it seems to be 3 to 4 times slower to run tests with the

coverage reporting turned on than without it. Therefore the coverage reporting was

turned o� when running CI-builds and only collected during nightly builds. The

69

impact to the total build time is somewhat smaller, since the build process consists

of multiple steps in addition to running the test cases. Based on test builds with CI

con�guration the build times with coverage reporting on are roughly 60% longer

than without it. In the nightly builds where a deployment is done the di�erence is

smaller, around 25%.

14.10 Dependency Injection

Dependency injection (discussed in more detail in chapter 9.3) was not in wide

spread use in the host company before winter 2011-2012. Originally developers

started experimenting with it, using poor man's injection where no inversion of

control container is needed. After all, DI-container is not a hard requirement for

dependency injection (Seemann, 2012, 197). This was a fast and straight way

forward and enabled immediate returns. The style of injection was chosen to be

constructor injection, because it made the required dependencies clear and removed

temporal coupling. As expected, static coupling between components in the

software system decreased as a result of dependency injection. Transition to a new

way of coding was not without problems though. It was often noted that loosely

coupled software based on copious use of interfaces made it harder to understand

how the code works without debugging it.

Originally dependencies were substituted by using statically de�ned test

components, but soon the focus switched over to dynamic substitution and

mock-libraries. The �rst tool taken into use was moq, but after a trial period

NSubstitute was deemed a more promising approach. NSubstitute so far has not

been lacking any really signi�cant features.

As the time progressed and components being injected started getting more

complex, it was noted that a better solution was needed. At this point few

developers started experimenting with Unity, which is an open source IOC-container

and created couple of demos to showcase its usage. Even when the concept is really

simply, it required considerable e�ort to design, develop and test an approach that

would play well with the existing code. Because the software system in question is

old and large, it will most likely never be rewritten to use IOC-container everywhere.

Instead of that, the old and the new architecture will have to live side-by-side in a

way that it is possible for the parts to interact with each other.

70

14.10.1 In-house Service Locator

The software system was using ObjectFactory, a service locator written in-house, to

instantiate objects. Listing 21 shows an example where a Customer object is

instantiated and loaded from the database. The system is type safe and o�ers a

possibility to de�ne custom version of any component and con�gure it in use. In

such a case, instead of returning an instance of Customer, the ObjectFactory could

return instance of Customer_Custom class.�
Dim cus tomers = Ob j e c tFac to r y . C r e a t e I n s t a n c e (Of Customers)

cus tomers . LoadAl lCus tomers ()
� �
Listing 21: Instantiating object with ObjectFactory

The system was not without drawbacks though. The major one was the lack of

ability to create an instance of an object based on an interface, which resulted in

hard dependencies between concrete classes. Eventually this was addressed by

adding Unity into the system and integrating it with the ObjectFactory. The factory

was still used to create instances as before, but if a caller instructed it to create an

interface, the execution was forwarded to Unity. Listing 22 shows an example how

new ObjectFactory could be used.�
Dim r e p o s i t o r y = Ob j e c tFac to r y . C r e a t e I n s t a n c e (Of ICu s t ome rRepo s i t o r y)

Dim cus tomers = r e p o s i t o r y . LoadAl lCus tomers ()
� �
Listing 22: Integrated ObjectFactory and Unity

This made it easier to decouple components from each other, because the

con�guration of the system was not based on concrete classes anymore, but on

interfaces. Developers still have to keep in mind that while earlier every component

could create dependencies it needed, now those dependencies should be injected

from outside.

14.10.2 Tackling Dependencies

New ObjectFactory with integration to Unity of course was not a solve-it-all solution

to handling dependencies. Because the old and the new architecture have to live

side by side for unde�ned time, it was not possible to take a pure approach on

dependency injection. In the pure approach, there would be only one composition

71

root, where all the needed objects are resolved against IOC-container con�guration.

After that point, there would be no calls to IOC-container at all. This was not

possible, because the old and new code had to have a way to access functionality of

the other. Instead of a single composition root, calls to ObjectFactory (and to Unity

in turn) could be made from anywhere from the software.

In essence, if the developers were not paying close attention, the situation presented

in Figure 12 could happen. The system presented in the Figure is hypothetical;

however, it illustrates the problem well. JobManager is an object that sorts objects

by delegating the task to Sorter object. The sorter object in turn uses various

algorithms to sort objects (bubble sort in this example).

IOC-container

resolve(type)

JobManager

Sorter

JobManager(Sorter)
sort(type)

Creates

BubbleSort

sort(type)

Creates

Sorter

Sorter(IOC-container)
sort(type)

Uses

Calls resolve

Uses

Mystery

?

Figure 12: Mishandled dependencies with IOC-container

On the surface everything looks to be in order: instance of JobManager is created

by IOC-container and instance of Sorter is supplied to it via constructor. However,

Sorter has IOC-container as a dependency, because it needs IOC-container to create

an instance of BubbleSort class. This means that even if IOC-container is supplied

through constructor to Sorter object, the caller has no way of knowing that the

72

Sorter needs instances of BubbleSort and Mystery objects in order to work properly.

Even more alarming is the fact that in order to unit test Sorter object, one has to

construct an instance or a mock of IOC-container and con�gure it to return correct

instances. And the only way to know this is to either trial and error or reading the

code of Sorter class. The situation is even worse if an instance of the Mystery

object is created directly by calling the constructor. This way there is no easy way

to use a substitute instead of a production version.

In order to manage the situation, a set of guidelines was developed. All the new

code that is written, should compose as much of the object graph as possible in a

private composition root. Composition root could be placed in a suitable seam, like

beginning of a web method, inside of a facade, or other suitable location. After that

point, calls to ObjectFactory and Unity would be avoided at all costs. This would

ensure loosely coupled software and testability. Legacy code was harder beast to

tame. Developers could refactor code, provided that it was covered by integration

tests, to accomodate testing where it made sense. Where refactoring was too

di�cult or otherwise impractical, old code could create a private composition root

when making a call to code written with new architecture. Calls from old code to

old code were left alone. This was used to contain tangled dependencies and keep

them from spreading from old side to the new side.

14.11 Continuous Integration

The host company was already using continuous integration (see chapter 12.1) for

all teams. The solution chosen for this was TeamCity. Depending on the team, the

build was scheduled to run 15 minutes after the latest commit and build either full

or part of the software. This was improved by adding unit tests as a part of CI-build

using TeamCity's NUnit test runner. The initial solution was further improved by

decoupling building of client and server software. In this model, if only client-side

code is changed, only client is built and tested. If there are changes both on client

and server, they are built and tested in parallel, thus speeding up the execution.

To facilitate quick response on build breaks several methods are used. TeamCity has

a built in capability to send email to people who have made changes that might

have caused a build break. Similar information is available from a small Windows

tray noti�er program that shows status of selected builds and will pop-up a

73

noti�cation when a build succeeds or fails. Melymuka (2012, 63) lists other options

for noti�cation, like RSS-feeds and Jabber. They were considered, but not taken

into use at this point.

The latests method of staying informed on build status is an internal web page

called �radiator�. This page displays each selected project as a green or red box,

depending on the status of the latest build. From the start the radiator was

available for anyone via a web page. Later on, a spare computer and screen were

setup to continuously show the build status so that anyone stepping into o�ce

would see it immediately.

The role of build cop (mentioned in chapter 12.3) was taken into use in one team.

The system seemed to work rather well in the beginning and responses to build

breaks were quick. Slowly it fell from favour though and practice was discontinued.

However, this did not mean that builds were left in a broken state for days. Even

when there was no speci�cally assigned role that was responsible for broken builds,

team members actively started investigating why builds broke and what was needed

to �x them. At this point the team understood the value of tests and the feedback

that they provide and wanted to keep that feedback system working.

14.12 Veri�cation of Customer Test Environment

Many customers of the commissioner have one or more test environments that they

use to test the software before deploying it into production. These environments

can be as complex as the production ones, with multiple external systems which

they have to integrate with. Traditionally verifying deployment done to environment

like this has been performed manually and the content of the veri�cation has varied

from person to person.

Because integration tests verify large parts of the system, from the client to the

database, they are well suited for verifying that the test environment is in working

state. Some of the external systems are not available to the commissioner at all and

they have to rely on interface speci�cation and various test programs in order to be

able to develop the software, so testing against them in the customer's test

environment is an extremely valuable opportunity.

74

14.13 Training

Testing of a legacy system is probably the hardest possible way to start with

automated testing. The software system in question is old, large and complex. End

to end and integration tests were relatively easy to apply, but unit tests were really

di�cult. To get everybody in the same line regarding to what kind of software design

and code is required for writing a testable system, series of general software design

trainings were held. In these trainings, developers were shown certain patterns and

methods that allow them to write code that is easier to maintain and test. The

trainings were relatively short, concentrating only on few topics at the time, so that

developers would have time to properly digest the material before the next training.

Training for testing was arranged in a similar way. Few short sessions where held

where basic principles of automated testing were presented. Most of the training

was conducted in hands-on approach, where more experienced developers provided

help and guidance for others.

The teams share a development blog, where anyone can post about development

related matters. While testing practices evolved and new information was obtained

regarding to the problem domain, developers were encouraged to share their

experiences, ideas, tips and tricks with others via a blog. This made the information

readily available to everyone and at the same time it was collected and preserved in

a single location. In the spring 2013 the blog was enhanced by adding a forum

where the developers could discuss with each other in a transparent manner. The

information would be readily available and the communication would not be bound

to a speci�c time or place.

Between autumn 2012 and sprint 2013 teams arranged test automation camps,

where they allocated half a day for whole team to work on test automation. They

were given free hands by leaders of the department to arrange it in a way they liked

and work on the matters that they deemed most important or interesting. The only

constraint was that the teams had to present their results to the management.

Feedback from the camps was very positive and many developers said that they

were having a really great time and felt productive.

75

15 Surveys

15.1 Overview of Surveys

During the summer of 2012 developers were presented with the survey that is shown

in Appendix 1. The data collected from it was collated and is presented in Appendix

2. The original answers for the survey are held by the author of the present thesis.

Chapter 15.2 takes a closer look at the data and some of the deductions that can be

drawn from it. Chapter 15.3 does the same, but focuses on the second survey,

which was done on January 2013.

In between of the surveys the work described in chapter 14 was carried out. The

aim of the surveys was to measure the e�ect of the aforementioned work would

have. Chapter 15.4 contains an analysis of the di�erences between results of the

�rst and the second survey.

15.2 The First Survey

Table 1 shows some key �gures on qualitative variables of the �rst survey. The

survey was sent to 33 participants and 17 answers were received.

Table 1: Statistics on quantitative variables of �rst survey

Variable Minimum Maximum Arithmetic

Mean

Standard

deviation

Median

verify_local 2 5 2.823529 0.808957 3

verify_global 2 6 3.882353 0.992620 4

understand_local 2 4 2.882353 0.600245 3

understand_global 1 5 3.705882 0.919559 4

returning_bugs 2 5 3.176471 0.882843 3

bug_local 2 5 3.000000 0.866025 3

bug_global 2 4 3.000000 0.866025 3

As expected, both understanding how the software works in the broader scale and

verifying that changes done by a developer have not broken any functionality in

broader scale is harder than understanding and verifying only the functionality that

76

was changed. This was expected, since the software system in question is large and

very complex. 50% of the developers who answered the �rst survey cited lack of

business knowledge as one of the major challenges in testing in general. The data is

presented in Figure 13.

ve
ry
ea
sy

ea
sy

re
lat
ive
ly
ea
sy

re
lat
ive
ly
ha
rd

ha
rd

im
po
ssi
ble

0

20

40

60

80

100

P
er
ce
n
ta
ge

of
an
sw
er
s

Local system
Global system
Standard deviation of local system
Standard deviation of global system
Mean of local system
Mean of global system

Figure 13: Ease of understanding the system

Figure 14 presents the data that shows how veri�cation of changed functionality was

perceived being easier than veri�cation of the system in general.

ve
ry
ea
sy

ea
sy

re
lat
ive
ly
ea
sy

re
lat
ive
ly
ha
rd

ha
rd

im
po
ssi
ble

0

20

40

60

80

100

P
er
ce
n
ta
ge

of
an
sw
er
s

Local system
Global system
Standard deviation of local system
Standard deviation of global system
Mean of local system
Mean of global system

Figure 14: Ease of veri�cation of functionality

Figure 15 shows how often changes done by developers caused defects in a changed

functionality and in a completely unrelated functionality. The results are somewhat

77

surprising, because almost an equal amount of developers selected �Very rarely� ,

�Relatively rarely� and �Relatively often� to the question �How often the changes

you make (including database changes) create unexpected problems, in somewhere

completely unrelated part of software (so called house of cards e�ect)�. Answers to

the �How often the changes you make (including database changes) create

unexpected problems, in the functionality you changed� however roughly followed

standard distribution and were clustered toward �Very rarely� and �Relatively rarely�.

Based on the answers given it seems that the developers are as likely to cause

defects in the local part of the software as on the global part. The original

expectation was that the local software would be easier to work with than the global

one.

ne
ve
r

ve
ry
ra
re
ly

re
lat
ive
ly
ra
re
ly

re
lat
ive
ly
of
te
n

ve
ry
of
te
n

alw
ay
s

0

20

40

60

80

100

P
er
ce
n
ta
ge

of
an
sw
er
s

Local system
Global system
Standard deviation of local system
Standard deviation of global system
Mean of local system
Mean of global system

Figure 15: Defects caused by changes

Figure 16 shows how the majority of developers have problems with regression

relatively rarely. The standard distribution is relatively large though, being 0.88.

Only a very few developers had problems with regression very often.

78

ne
ve
r

ve
ry
ra
re
ly

re
lat
ive
ly
ra
re
ly

re
lat
ive
ly
of
te
n

ve
ry
of
te
n

alw
ay
s

0

20

40

60

80

100

P
er
ce
n
ta
ge

of
an
sw
er
s

Returning defects
Standard deviation of returning defects
Mean of returning defects

Figure 16: Returning defects

15.3 The Second Survey

Table 2 shows some key �gures on qualitative variables of the second survey. The

survey was sent to 33 participants and 16 answers were received.

Table 2: Statistics on quantitative variables of the second survey

Variable Minimum Maximum Arithmetic

Mean

Standard

deviation

Median

verify_local 2 5 2.75 0.856349 3

verify_global 2 6 3.8125 1.167262 4

understand_local 2 4 2.875 0.806226 3

understand_global 2 5 3.25 0.930949 3

returning_bugs 2 3 2.8125 0.403113 3

bug_local 2 4 3.0 0.516398 3

bug_global 1 4 2.8125 0.75 3

�xing 1 3 1.733333 0.593617 2

quality 1 4 1.875 0.957427 2

debugging 1 4 1.8125 0.910586 2

Figure 17 shows how understanding the local system is easier than understanding

the system as a whole. The standard deviation in the case of the local system is

79

slightly smaller than in the case of the global system (0.81 as opposed of 0.93). The

arithmetic mean in both cases is at �relatively easy�.

ve
ry
ea
sy

ea
sy

re
lat
ive
ly
ea
sy

re
lat
ive
ly
ha
rd

ha
rd

im
po
ssi
ble

0

20

40

60

80

100

P
er
ce
n
ta
ge

of
an
sw
er
s

Local system
Global system
Standard deviation of local system
Standard deviation of global system
Mean of local system
Mean of global system

Figure 17: Ease of understanding the system

Figure 18 highlights how big a di�erence there is in verifying the changes in the

local context compared to the global context. Some of the developers even feel that

they are unable to verify that their changes did not break anything in system's

global scale. This is a rather alarming �nd, because the �nancial system in question

has very strict requirements for being error free.

ve
ry
ea
sy

ea
sy

re
lat
ive
ly
ea
sy

re
lat
ive
ly
ha
rd

ha
rd

im
po
ssi
ble

0

20

40

60

80

100

P
er
ce
n
ta
ge

of
an
sw
er
s

Local system
Global system
Standard deviation of local system
Standard deviation of global system
Mean of local system
Mean of global system

Figure 18: Ease of veri�cation of functionality

80

The developers feel that changes they do cause defects in the global context of the

system more often than in the local context as shown in Figure 19. While the

arithmetic mean in both cases are close to each other, the standard distribution has

larger di�erences. The standard distribution is 0.52 in the case of local context and

0.75 in the case of the global one. The di�erence which is quite signi�cant can be

explained by the complex system where it is not always easy to understand all the

e�ects of a single change.

ne
ve
r

ve
ry
ra
re
ly

re
lat
ive
ly
ra
re
ly

re
lat
ive
ly
of
te
n

ve
ry
of
te
n

alw
ay
s

0

20

40

60

80

100

P
er
ce
n
ta
ge

of
an
sw
er
s

Local system
Global system
Standard deviation of local system
Standard deviation of global system
Mean of local system
Mean of global system

Figure 19: Defects caused by changes

In the second survey the developers felt that they have problems with regression

relatively rarely. The Figure 20 shows how the answers are clustered around �very

rarely� and �relatively rarely�. When comparing to the earlier graphs, it can be

concluded that while the veri�cation of the system as a whole is relatively hard, the

defects that get introduced are relative rarely returning ones.

81

ne
ve
r

ve
ry
ra
re
ly

re
lat
ive
ly
ra
re
ly

re
lat
ive
ly
of
te
n

ve
ry
of
te
n

alw
ay
s

0

20

40

60

80

100

P
er
ce
n
ta
ge

of
an
sw
er
s

Returning defects
Standard deviation of returning defects
Mean of returning defects

Figure 20: Returning defects

The second survey had some additional statements that were used to gauge how

helpful the developers think automated testing done by them is. The statements

were �When �xing a problem in the system, I �nd it useful to write tests to verify

my �x� , �Tests help me to product higher quality code� , �Tests are useful while

debugging, when I �nd a fault� and results are shown in Figure 21. The mean

average is at �agree� in all cases; however, there is quite a large distribution from

�strongly agree� to �disagree� .

str
on
gly

ag
re
e

ag
re
e

ne
ut
ra
l

dis
ag
re
e

str
on
gly

dis
ag
re
e

0

20

40

60

80

100

P
er
ce
n
ta
ge

of
an
sw
er
s

�xing
quality
debugging
mean of �xing
mean of quality
mean of debugging

Figure 21: Usefulness of the tests

82

The standard deviation in the statement �Tests help me to product higher quality

code� was 0.96 and it was the largest. Over 70% of the developers felt that

automated tests helped them to produce better quality code; however, few

developers disagreed with this. It is unclear if the reason was that not all developers

are actively writing automated tests or if writing automated tests do not help some

of the developers to produce higher quality code.

The next largest standard deviation was in the statement �Tests are useful while

debugging, when I �nd a fault� where it was 0.91. Around 80% of the developers

felt that tests are helpful when they are debugging a fault. Small portion of the

developers disagreed with this statement and felt that the tests did not help them in

debugging a fault.

The smallest standard deviation was in the statement �When �xing a problem in the

system, I �nd it useful to write tests to verify my �x� where it was 0.59. Over 90%

of the developers agreed that writing automated tests to verify a �x is useful.

Nobody disagreed and only a small percentage had a neutral stance towards this.

This indicates that the developers clearly see the usefulness of the automated

testing in verifying their own work.

15.4 Analysis of Di�erences

Figure 22 shows answers of both the �rst and the second survey on question �How

hard is it for you to see how classes and methods work?�. Answers are clustered

around �easy�, �relatively easy� and �relatively hard� . In the �rst survey, answer

�relatively easy� dominated, while in the second survey answers are more evenly

distributed. Somewhat surprisingly while �easy� got more answers in the second

survey, so did the �relatively hard� .

Analysing some of the qualitative variables of the results shows that the arithmetic

mean has stayed constant between surveys. It has a value of 2.9, which falls

between �easy� and �relatively easy�, while being very close to �relatively easy�.

Standard deviation however rose from 0.6 to 0.8. This would indicate that while in

general there was no shift in perceived di�culty of understanding the local system,

the deviation between developers grew larger.

83

ve
ry
ea
sy

ea
sy

re
lat
ive
ly
ea
sy

re
lat
ive
ly
ha
rd

ha
rd

im
po
ssi
ble

0

20

40

60

80

100

P
er
ce
n
ta
ge

of
an
sw
er
s

1st survey
2nd survey
Standard deviation of 1st survey
Standard deviation of 2nd survey
Mean of 1st survey
Mean of 2nd survey

Figure 22: Di�erence in understanding local system

Figure 23 shows answers to the statement �How hard is it for you to see how

components work together�. There are answers to categories �very easy� , �easy� ,

�relatively easy�, �relatively hard� and �hard�. Only �impossible� got no answers at

all.

The standard deviation between the �rst and the second survey stayed at the value

of 0.9, while the arithmetic mean fell from 3.7 to 3.2. While both values fall into

�relatively easy�, the answers in the �rst survey are closer to �relatively hard� , while

the answers of the second survey are closer to �easy�. This would indicate that in

general, developers found it easier to understand how the system in general works in

the second survey.

84

ve
ry
ea
sy

ea
sy

re
lat
ive
ly
ea
sy

re
lat
ive
ly
ha
rd

ha
rd

im
po
ssi
ble

0

20

40

60

80

100

P
er
ce
n
ta
ge

of
an
sw
er
s

1st survey
2nd survey
Standard deviation of 1st survey
Standard deviation of 2nd survey
Mean of 1st survey
Mean of 2nd survey

Figure 23: Di�erence in understanding global system

Figure 24 shows answers to �How easy it is for you to verify the changes related to

other parts of the functionality?� . Answers in both surveys range from �easy� to

�very hard� . Key �gures in both surveys are almost the same, with the arithmetic

mean being 2.8 in both and the standard deviation being 0.8 in the �rst survey and

0.9 in the second survey. There does not seem to be any notable di�erence between

the results of the �rst and the second surveys.

ve
ry
ea
sy

ea
sy

re
lat
ive
ly
ea
sy

re
lat
ive
ly
ha
rd

ha
rd

im
po
ssi
ble

0

20

40

60

80

100

P
er
ce
n
ta
ge

of
an
sw
er
s

1st survey
2nd survey
Standard deviation of 1st survey
Standard deviation of 2nd survey
Mean of 1st survey
Mean of 2nd survey

Figure 24: Di�erence in ease of veri�cation of local changes

Figure 25 presents the results of both surveys to the question �How easy it is for you

to verify the changes related to rest of the system?� While the arithmetic mean of

85

3.81 in the second survey is slightly better than 3.88 in the �rst one, the di�erence

is not statistically notable. Somewhat surprising is the fact that the standard

deviation grew from 0.99 to 1.17. This would mean that even when the developers

in general felt more con�dent that they can verify the changes in related to the rest

of the system, the di�erence between developers grew somewhat.

ve
ry
ea
sy

ea
sy

re
lat
ive
ly
ea
sy

re
lat
ive
ly
ha
rd

ha
rd

im
po
ssi
ble

0

20

40

60

80

100

P
er
ce
n
ta
ge

of
an
sw
er
s

1st survey
2nd survey
Standard deviation of 1st survey
Standard deviation of 2nd survey
Mean of 1st survey
Mean of 2nd survey

Figure 25: Di�erence in ease of veri�cation of global changes

The result is di�erent than what would be expected, if there is a global safety net,

that is provided by a comprehensive suite of automated tests. One possible reason

for the results is that the automation e�ort drew the team's attention to the fact

that verifying changes in the global context is both di�cult and not suitably covered

by the tests. This in turn may have caused them to doubt their current ability to

verify changes in global context and produced the given results.

Figure 26 shows comparison between the �rst and the second survey on question

�How often the changes you make create (including database changes) unexpected

problems in the functionality you changed?� It is very notable that while the

arithmetic mean stays at 3 between the surveys, the standard deviation falls from

0.87 to 0.52. This is quite a signi�cant change.

86

ne
ve
r

ve
ry
ra
re
ly

re
lat
ive
ly
ra
re
ly

re
lat
ive
ly
of
te
n

ve
ry
of
te
n

alw
ay
s

0

20

40

60

80

100

P
er
ce
n
ta
ge

of
an
sw
er
s

1st survey
2nd survey
Standard deviation of 1st survey
Standard deviation of 2nd survey
Mean of 1st survey
Mean of 2nd survey

Figure 26: Di�erence in local defects caused by changes

While the average did not change, the di�erence between the developers grew

noticeably smaller. This can be attributed to writing tests to cover the changed

functionality and this in turn produced better quality code with less defects. It is

worth noting, that it was not always possible to cover the changed functionality with

tests, because of the architecture of the system and huge amount of legacy code.

The di�erences in question �How often the changes you make create (including

database changes) unexpected problems in somewhere completely unrelated part of

software?� between the �rst and the second survey are graphed in Figure 27. Both

surveys had the answers clustered around �relatively rarely� with the second one

being a slightly better. The di�erence is very small though. The standard

distribution was smaller in the second survey: 0.75 versus 0.87. One explanation for

these changes could be that the automated tests form a safety net that helps the

developers to avoid introducing bugs. On the other hand the changes are relatively

small and the amount of tests compared to the actual code so there most likely is

no correlation here.

87

ne
ve
r

ve
ry
ra
re
ly

re
lat
ive
ly
ra
re
ly

re
lat
ive
ly
of
te
n

ve
ry
of
te
n

alw
ay
s

0

20

40

60

80

100

P
er
ce
n
ta
ge

of
an
sw
er
s

1st survey
2nd survey
Standard deviation of 1st survey
Standard deviation of 2nd survey
Mean of 1st survey
Mean of 2nd survey

Figure 27: Di�erence in global defects caused by changes

One of the major �ndings is shown in Figure 28, which shows answers of both the

�rst and the second survey to the question �How often already �xed bug reappear?� .

While the arithmetic mean in both cases is around �relatively rarely� the second

survey had much smaller standard deviation. The �rst survey had a standard

deviation of 0.88 while the second one had only 0.43. This would indicate that the

automated tests levelled the �eld between developers that are really well familiar

with the system and those who have focused on a smaller area. This helps

everybody since the likehood of the software breaking because of a change should

be smaller than without the tests.

ne
ve
r

ve
ry
ra
re
ly

re
lat
ive
ly
ra
re
ly

re
lat
ive
ly
of
te
n

ve
ry
of
te
n

alw
ay
s

0

20

40

60

80

100

P
er
ce
n
ta
ge

of
an
sw
er
s

1st survey
2nd survey
Standard deviation of 1st survey
Standard deviation of 2nd survey
Mean of 1st survey
Mean of 2nd survey

Figure 28: Di�erence in returning defects

88

When results from questions �How easy it is for you to verify the changes related to

rest of the system?� and �How often the changes you make create (including

database changes) unexpected problems in somewhere completely unrelated part of

software (so called house of cards e�ect)?� are plotted on the same plot, one can

easily see that there is a linear correlation between them. One can see from the

graph that the feeling of something being di�cult to verify is linked to that nagging

feeling that there will be bugs left in the code. If this could be changed by some

means the developers most likely would feel better when working on a complex

software.

ve
ry
ea
sy

ea
sy

re
lat
ive
ly
ea
sy

re
lat
ive
ly
ha
rd

ha
rd

im
po
ssi
ble

never

very rarely

relatively rarely

relatively often

very often

always

Di�culty of veri�cation

L
ik
eh
o
o
d
of

in
tr
o
d
u
ci
n
g
d
ef
ec
ts 1st survey

2nd survey

Figure 29: Correlation between the di�culty of veri�cation and the likehood of

introducing defects

A positive side in Figure 29 is that it shows how the developers' view has changed

over time towards more positive aspect. A likehood of introducing bugs is less in the

second survey than in the �rst one. Views towards di�culty of veri�cation does not

seem to have changed signi�cally though.

15.5 Summary

It was notable that the same problems that Whittaker et al. (2012, 58) point out

were noticed during the project: inertia, bad tests, no tests, testing is the problem

of someone else. Even the smallest things seemed to take a long time to get

moving, quality of the tests was not that good in the beginning and testing seemed

89

to receive only a half-hearted focus. But over the time as developers got started and

understood the bene�ts, all these obstacles were crossed one by one.

The comparison between the two surveys show overall improvement and give a

positive message regarding to automated testing that is performed by the developers.

While the automation is time consuming and sometimes di�cult it seems to help

the developers to perform their work better and produce higher quality code.

The major improvement according to the surveys were in questions �How hard is it

for you to see how components work together?�, �How often the changes you make

create (including database changes) unexpected problems in the functionality you

changed?� and �How often already �xed bug reappear?�. In the �rst case the

arithmetic mean fell from �relatively hard� to �relatively easy� while in both the

cases the standard ditribution was smaller.

16 Results

16.1 Comparison to Earlier Studies

In their study Williams, Kudrjavets and Nagappan concluded that in general,

developers found unit testing worth their time and it helped them to �nd easy bugs

before delivering the software to the testing team (Williams, Kudrjavets and

Nagappan, 2009, 86). The results shown in Figure 31 from research done for the

present thesis are similar compared to the results Williams et al. had, which are

shown in Figure 30. The results of Williams et al. have a more positive view

towards automated testing in general. Only in the statement �Unit tests help me

debug when I �nd a problem� the research done in the present thesis showed that

the developers value automated testing more than in the study by Williams et al..

90

0 20 40 60 80 100

When a bug is found in my code

writing a unit test that covers

my �x is useful

Overall unit tests help me

produce higher quality code

Unit tests help me debug

when I �nd a problem
strongly agree
agree
neutral
disagree
strongly disagree

Figure 30: Developer perception (Williams et al., 2009, 87)

0 20 40 60 80 100

When a bug is found in my code

writing a test that covers

my �x is useful

Overall unit tests help me

produce higher quality code

Unit tests help me debug

when I �nd a fault

strongly agree
agree
neutral
disagree
strongly disagree

Figure 31: Developer perception at the commissioner

Williams et al. (2009, 86) state that the quality of the software was increased during

the research; however, the development seemed to take longer. This is similar to the

results in the present thesis. It depends on the case if the increased quality is worth

the longer development time. Since the system that was under development by the

commissioner has a very long life-cycle the tests are most likely worth the extra

e�ort.

Writing automated tests might be a reason why the quality of code from di�erent

developers is more consistent (Erdogmus et al., 2005, 236). The results of the

surveys would indicate similar e�ect, since in all questions the standard distribution

was smaller in the second survey than in the �rst survey.

91

16.2 Limitations of the Surveys

The amount of participants in the research surveys were relatively small and the

results might not be very conclusive because of that. Only roughly half of the

people who were invited to participate to the survey actually answered, which might

skew the results.

The research is based on the developers' subjective view and their opinions

regarding automated testing and the quality of the system. While it can be used as

an indicative of the quality in general it does not give the full picture. The system in

question is very large and most likely the developers were working only on some

parts of it. Their answers to the surveys might be a�ected by this.

17 Conclusions

17.1 Objectives of the Thesis

The �rst objective of the present thesis was to evaluate di�erent ways of performing

automated testing, map out some of the common pitfalls and o�er possible

solutions to them. This was achieved well. Chapter 5 outlines types of tests that

were examined and taken into use in the company, while chapter 10 shows some of

the common pitfalls and o�ers solutions to them.

Three di�erent approaches for automated testing was taken into use: unit testing,

integration testing and end to end testing. Since they focus on di�erent aspects of

the software system, they complement each other well. While unit tests help

maintaining the internal quality of the software, integration and end to end tests

help maintaining the external quality. As of writing the present thesis, the biggest

return on investment is probably coming from the integration and end to end

testing. They catch errors that have been introduced while the system is being

developed. Bene�ts from the unit tests are realised in a longer time scale. While

they ensure that single functions and algorithms work as intended, the unit tests

also help to make the software loosely coupled and built from reusable components.

The second objective was to improve the quality of the software system. This was

partly achieved as shown in chapter 15.4, where di�erences between the �rst and

92

the second survey are analysed. Especially the external quality of the software was

improved as the di�erence in regression rate between the developers grew noticeably

smaller. The fact that the developers feel they have harder time understanding local

parts of the software system, i.e. the parts they are actively working with, is

interesting. While this might be normal statistical variation it could also mean that

the new technologies and ways of writing software are not yet familiar to them.

Therefore it might be prudent to o�er more training, although the real expertise is

ultimately gained by working.

17.2 Future Use of the Results

During the time the research was ongoing there were multiple changes in the

commisioner company and the organisation was focused on improving the quality of

the software. Therefore all of the improvement cannot be attributed to the

automated testing. This also highlights the di�culty of a research in the software

industry: software projects are almost always one of the kind and are often initiated

to create something that has not been built by the team before. Performing a

research and analysing the results is challenging because arranging a control group is

not always that simple. By performing multiple case studies in di�erent companies a

better understanding can be achieved; however, that requires a signi�cant

investment in time and money. By combining results from several di�erent research

it is possible to see if there are any major trends that are visible in most of them.

Analysis and comparison done in chapter 16.1 show that the developers in the host

company have similar views towards unit testing as the participants in the study by

Williams et al.. This might indicate a trend, but more similar studies would be

needed to validate it. The results from the present thesis and the research by

Williams et al. can be used in further studies of the same subject.

Analysis in chapter 15.4 can be used when a software company is evaluating

advantages and disadvantages of automated testing. The analysis shows how

di�erence in regression rate between di�erent developers grew smaller and how

changes caused fewer bugs in the changed functionality. Both are important factors

for software quality. Again, if there is similar study done in a di�erent company, the

results from the present thesis can be used as a reference.

93

17.3 Further Subjects for Research

The domain of automated software testing is rather wide and sometimes very

complicated. the present thesis could only touch some of the aspects related to it

and further research and study would be needed in order to deepen the

understanding regarding automated testing and its applications in the host company.

While there already are required tools for writing executable speci�cations in a form

of acceptance level tests, their usage is mostly con�ned to developers. Because of

this a really strong tool for bridging communication gap between developers and

domain experts is not being fully utilised. It would be a good idea to continue work

done by Koudelia and the author of the present thesis and try to get domain experts

and developers to de�ne the software system together, in form of executable

speci�cations. Especially FitNesse is a promising tool for this.

A combined amount of tests in various tests harnesses at the time of �nishing the

present thesis was relatively low, only several hundreds. The time required to

execute all of them was not yet a problem, even though most of them were run in a

sequence on a single machine. As the amount of tests will grow, so will the time

required to execute them. In the future it would be a good idea to do some research

to identify and implement a solution that would allow executing tests in parallel and

measure the impact on execution time.

In the host company, integration and end to end tests were executed against a

known test environment that was always available. Generally it was not possible to

have tear down methods to clean up a database after a test completes, resulting

test database slowly accumulating a lot of data. The tests also had to be carefully

written to check that certain con�guration options stored in the database were in a

speci�c state and change them if neccessary. This could be avoided by starting a

new virtual environment for each test run and then discarding it after tests have

been completed. Technology and tools for such a system are already readily

available, but the space constraints prevented them to be addressed in the present

thesis in suitable depth.

Narla and Salas write about hermetic servers that can be operated in a machine

without network connectivity. Essentially the whole SUT is isolated, databases are

94

replaced with in-memory databases and externals systems are substituted with test

versions. (Narla and Salas 2012.) Setting up a test system like this would be an

interesting excercise and would probably result with faster execution of tests.

As more time passes and automated testing is treated more as a part of the software

development cycle, the style of code is expected to somewhat change. It would be

interesting to compare the code developed with the new methodology with older

code and see how it has changed. One aspect of such a study could be collecting

metrics automatically from the source code and calculating some key �gures that

measure complexity of the code and tightness of coupling between components and

compare them with the old code. Because the old and the new code would be

available along with the all the changes, the results could be plotted as a function of

time.

17.4 In Closing

Large scale improvements that involve most of the development organisation are not

easy nor fast to implement. In addition to the time and money they require an

organisation that is very committed to improve and is willing to do the hard work

required. Especially in the case of legacy software things are not always as easy as

described in books.

In general, writing the thesis was a very interesting project and I learned a lot while

working on it. In addition to the technical knowledge, I learned more about group

dynamics and working as a member of a group of highly talented software

professionals. Especially interesting it was to see how the automated software

testing could be approached from di�erent points of view and with di�erent focal

points. As mentioned in chapter 17.3 the domain of automated software testing is

very broad. This in turn meant that the scope of the thesis had to be re�ned as the

work progressed and many interesting subjects had to be left out.

Discovering that the developers viewed automated testing as a useful practice and

that it actually improved the quality of the code was delightful. It is quite di�erent

to perform an experiment and measure the results than just read about them in a

book.

95

While the present thesis is focused on automated testing the role of manual testing

is equally important in software development. Regression testing for example is well

suited for automation; however, e.g. usability and exploratory testing are something

that computers are not capable of doing well. By combining human and automated

e�ort with well planned and �exible ways, an organisation can most likely achieve

better results than focusing only on one of them.

96

Bibliography

Digia - Annual Report 2012. (Accessed 1st of May 2013), URL

http://annualreport2012.digia.com/.

FitNesse - One Minute Description. (Accessed 7th of October 2012), URL

http://fitnesse.org/FitNesse.UserGuide.OneMinuteDescription.

SpecFlow - Pragmatic BDD for .Net. (Accessed 7th of October 2012), URL

http://www.specflow.org/specflownew/.

SpiraTest Feature Tour. (Accessed 1st of May 2013), URL

http://inflectra.com/spiratest/Highlights.aspx.

Cauldwell, P., 2008. Code Leader: Using People, Tools, and Processes to Build

Successful Software. Wiley.

Denley, T., 2012. The Hamcrest Tutorial. (Accessed 7th of October 2012), URL

http://code.google.com/p/hamcrest/wiki/Tutorial.

Erdogmus, H., Morisio, M. and Torchiano, M., 2005. On the e�ectiveness of the

test-�rst approach to programming. IEEE Transactions on Software Engineering.

Feathers, M. C., 2011. Working E�ectively with Legacy Code. Prentice Hall.

Fewster, M. and Graham, D., 1999. Software Test Automation: E�ective Use of

Test Execution Tools. Addison-Wesley.

Fowler, M. and Parsons, R., 2011. Domain-Speci�c Languages. Addison-Wesley.

Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D., 1999. Refactoring:

Improving the Design of Existing Code. Addison-Wesley.

Freeman, S. and Pryce, N., 2010. Growing Object-Oriented Software, Guided by

Tests. Addison-Wesley.

Graham, D., van Veenendaal, E., Evans, I. and Black, R., 2006. Foundations of

Software Testing: ISTQB Certi�cation. Cengage Learning Business Press.

Grubb, P. and Takang, A., 2003. Software Maintenance. World Scienti�c Publishing

Co.

Hass, A. M. J., 2008. Guide to Advanced Software Testing. Artech House.

http://annualreport2012.digia.com/
http://fitnesse.org/FitNesse.UserGuide.OneMinuteDescription
http://www.specflow.org/specflownew/
http://inflectra.com/spiratest/Highlights.aspx
http://code.google.com/p/hamcrest/wiki/Tutorial

97

Hay, G., 2010. NHamcrest. (Accessed 8th of October 2012), URL

https://github.com/grahamrhay/NHamcrest/wiki.

Holcombe, M., 2008. Running an Agile Software Development Project. Wiley.

Hutcheson, M. L., 2003. Software Testing Fundamentals : Methods and Metrics.

Wiley.

Kaner, C., 1996. Software negligence and testing coverage. In Software Testing,

Analysis & Review Conference.

Karten, N., 2009. Changing How You Manage and Communicate Change. IT

Governance.

Koskela, J., 2012. Test Automation and Robot Framework - Installation, testing and

maintenance. Bachelor's thesis, JAMK University of Applied Sciences.

Koudelia, N., 2012. Acceptance Test-Driven Development. Master's thesis,

University of Jyväskylä.

Latornell, D., 2011. nosy 1.1.2. (Accessed 6th of April 2013), URL

https://pypi.python.org/pypi/nosy.

Liskov, B., 1987. Data abstraction and hierarchy. In OOPSLA '87 Addendum to the

Proceedings.

Loveland, S., Shannon, M. and Miller, G., 2004. Software Testing Techniques:

Finding the Defects That Matter. Charles River Media.

Marick, B., 1999. How to misuse code coverage. In 16th International Conference

and Exposition on Testing Computer Software.

Martin, R., 1996. The interface segregation principle. C++ Report.

Melymuka, V., 2012. TeamCity 7 Continuous Integration Essentials. Packt

Publishing.

Meszaros, G., 2007. xUnit Test Patterns - Refactoring Test Code. Addison-Wesley.

Moreira, M. E., 2010. Adapting Con�guration Management for Agile Teams:

Balancing Sustainability and Speed. Wiley.

Myers, G. J., Sandler, C. and Badgett, T., 2004. Art of Software Testing. John

Wiley & Sons, Inc., second edition.

https://github.com/grahamrhay/NHamcrest/wiki
https://pypi.python.org/pypi/nosy

98

Narla, C. and Salas, D., 2012. Hermetic Servers. (Accessed 5th of October 2012),

URL

http://googletesting.blogspot.fi/2012/10/hermetic-servers.html.

Olds, D., 2012. How one bad algorithm cost traders $440m - a look at the worst

software testing day ever. (Accessed 30th of March 2013), URL

http://www.theregister.co.uk/2012/08/03/bad_algorithm_lost_440_

million_dollars/.

O'Regan, G., 2002. Practical Approach to Software Quality. Springer.

Osborne, L., Brummond, J., Hart, R., Zarean, M. M. and Conger, S., 2005. Clarus:

Concept of operations. Technical report, Federal Highway Administration.

Perkins, B., 2011. Working with NHibernate 3.0. Wiley.

Pohjolainen, P., 2003. Ohjelmiston testauksen automatisointi. Master's thesis,

University of Kuopio.

Seemann, M., 2012. Dependency Injection in .NET. Manning.

Stephenson, A. G., Mulville, D. D. R., Bauer, F. H., Dukeman, G. A., Norvig, D. P.,

LaPiana, L. S., Rutledge, D. P. J., Folta, D. and Sackheim, R., 1999. Mars

Climate Orbiter Mishap Investigation Board Phase I Report. (Accessed 29th of

March 2013), URL

ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf.

Taha, W., 2008. Domain-speci�c languages. In The 2008 International Conference

on Computer Engineering & Systems.

Thomas, D. and Hunt, A., 2002. Learning to love unit testing. STQE Magazine.

Whittaker, J., 2011. How Google Tests Software - Part Three. (Accessed 6th of

October 2012), URL http://googletesting.blogspot.fi/2011/02/

how-google-tests-software-part-three.html.

Whittaker, J., Arbon, J. and Carollo, J., 2012. How Google Tests Software. Pearson

Education.

Williams, L., Kudrjavets, G. and Nagappan, N., 2009. On the e�ectiveness of unit

test automation at microsoft. In International Symposium on Software Reliability

Engineering (ISSRE) 2009.

http://googletesting.blogspot.fi/2012/10/hermetic-servers.html
http://www.theregister.co.uk/2012/08/03/bad_algorithm_lost_440_million_dollars/
http://www.theregister.co.uk/2012/08/03/bad_algorithm_lost_440_million_dollars/
ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf
http://googletesting.blogspot.fi/2011/02/how-google-tests-software-part-three.html
http://googletesting.blogspot.fi/2011/02/how-google-tests-software-part-three.html

99

Appendices

1 Survey

Table 3: Original survey in Finnish

Minkä tiimin jäsen olet

Aikaisempi kokemus automaattisesta testauksesta

Arviosi automaattisten testien käytöstä tiimissä tällä hetkellä

Kuinka helppo sinun on varmistaa muutostesi toimivuus? Erittäin helppoa Helppoa Melko helppoa Melko vaikeaa Vaikeaa Mahdotonta

a) Suhteessa muutettuun toiminnallisuuteen

b) Suhteessa muuhun järjestelmään

Kuinka vaikea sinun on hahmottaa? Erittäin helppoa Helppoa Melko helppoa Melko vaikeaa Vaikeaa Mahdotonta

a) Luokkien ja funktioiden toimintaa

b) Komponenttien toimintaa suhteessa toisiinsa

Ei koskaan Hyvin harvoin Melko harvoin Melko usein Hyvin usein Aina

Kuinka usein jo korjatut bugit tuntuvat tulevan takaisin?

Kuinka usein ohjelmistoon tekemäsi muutokset aiheuttavat yllättäviä

ongelmia (mukaanlukien tietokantamuutokset)

Ei koskaan Hyvin harvoin Melko harvoin Melko usein Hyvin usein Aina

a) Muuttamassasi toiminnallisuudessa

b) Jossain aivan muualla (ns. korttitaloefekti)

Mitkä ovat tärkeysjärjestyksessä suurimmat haasteet liittyen testaukseen

yleensä, mitkä olisivat parhaat keinot puutteiden korjaamiseksi?

Vapaa sana

Table 4: Translated survey in English

Which team do you belong to

Previous experience related to automatic testing

How would you grade current usage of automatic testing in your team

How easy it is for you to verify the changes? Very easy Easy Relatively easy Relatively hard Hard Impossible

a) Related to other parts of the functionality

b) Related to rest of the system

How hard is it for you to see? Very easy Easy Relatively easy Relatively hard Hard Impossible

a) How classes and methods work

b) How components work together

Never Very rarely Relatively rarely Relatively often Very often Always

How often already �xed bug reappear?

How often the changes you make create (including database changes)

unexpected problems

Never Very rarely Relatively rarely Relatively often Very often Always

a) In the functionality you changed

b) In somewhere completely unrelated part of software (so called house of

cards e�ect)

In order of importance, what are the greatest challenges related to testing in

general and what would be the best course of action to �x them?

Comments

100

2 Collated Data of The First Survey

subject;team;verify_local;verify_global;understand_local;

understand_global;returning_bugs;bug_local;bug_global

1;1;3;5;3;4;3;2;4

2;2;2;4;2;4;3;5;3

3;1;2;3;2;3;3;3;2

4;1;2;4;3;4;2;3;2

5;2;3;3;3;4;4;2;2

6;3;3;4;3;5;4;3;4

7;1;2;2;4;4;2;3;3

8;2;2;4;3;4;2;2;4

9;1;3;4;3;4;4;4;4

10;2;3;4;3;4;4;4;3

11;2;5;6;4;4;5;4;4

12;2;2;3;3;1;3;3;2

13;1;4;5;3;4;3;2;3

14;2;3;4;2;3;4;3;4

15;1;3;3;3;3;3;3;2

16;3;3;5;2;5;3;3;3

17;2;3;3;3;3;2;2;2

101

3 Second Survey

Table 5: Original second survey in Finnish

Minkä tiimin jäsen olet

Aikaisempi kokemus automaattisesta testauksesta

Arviosi automaattisten testien käytöstä tiimissä tällä hetkellä

Kuinka helppo sinun on varmistaa muutostesi toimivuus? Erittäin

helppoa

Helppoa Melko

helppoa

Melko

vaikeaa

Vaikeaa Mahdotonta

a) Suhteessa muutettuun toiminnallisuuteen

b) Suhteessa muuhun järjestelmään

Kuinka vaikea sinun on hahmottaa? Erittäin

helppoa

Helppoa Melko

helppoa

Melko

vaikeaa

Vaikeaa Mahdotonta

a) Luokkien ja funktioiden toimintaa

b) Komponenttien toimintaa suhteessa toisiinsa

Ei koskaan Hyvin

harvoin

Melko

harvoin

Melko usein Hyvin usein Aina

Kuinka usein jo korjatut bugit tuntuvat tulevan takaisin?

Kuinka usein ohjelmistoon tekemäsi muutokset aiheuttavat yllättäviä

ongelmia (mukaanlukien tietokantamuutokset)

Ei koskaan Hyvin

harvoin

Melko

harvoin

Melko usein Hyvin usein Aina

a) Muuttamassasi toiminnallisuudessa

b) Jossain aivan muualla (ns. korttitaloefekti)

Täysin samaa

mieltä

Enimmäkseen

samaa

mieltä

En osaa

sanoa

Enimmäkseen

eri mieltä

Täysin eri

mieltä

Kun korjaan järjestelmästä löytynyttä virhettä, minusta on hyödyllistä

kirjoittaa testejä korjaukseni varmistamiseksi

Testit auttavat minua kirjoittamaan laadukkaampaa koodia

Testit auttavat debuggauksessa kun löydän ongelman

Mitkä ovat tärkeysjärjestyksessä suurimmat haasteet liittyen testaukseen

yleensä, mitkä olisivat parhaat keinot puutteiden korjaamiseksi?

Vapaa sana

Table 6: Translated second survey in English

Which team do you belong to

Previous experience related to automatic testing

How would you grade current usage of automatic testing in your team

How easy it is for you to verify the changes? Very easy Easy Relatively easy Relatively hard Hard Impossible

a) Related to other parts of the functionality

b) Related to rest of the system

How hard is it for you to see? Very easy Easy Relatively easy Relatively hard Hard Impossible

a) How classes and methods work

b) How components work together

Never Very rarely Relatively rarely Relatively often Very often Always

How often already �xed bug reappear?

How often the changes you make create (including database changes)

unexpected problems

Never Very rarely Relatively rarely Relatively often Very often Always

a) In the functionality you changed

b) In somewhere completely unrelated part of software (so called house of

cards e�ect)

Strongly agree Agree Neutral Disagree Strongly disagree

When �xing a problem in the system, I �nd it useful to write tests to verify

my �x

Tests help me to product higher quality code

Tests are useful while debugging, when I �nd a fault

In order of importance, what are the greatest challenges related to testing in

general and what would be the best course of action to �x them?

Comments

102

4 Collated Data of The Second Survey

subject;team;verify_local;verify_global;understand_local;

understand_global;returning_bugs;bug_local;bug_global;

fixing;quality;debugging

1;3;2;2;2;2;3;3;1;2;1;1

2;1;2;4;2;3;3;3;3;2;3;2

3;2;3;5;4;2;3;3;4; ;2;4

4;2;3;3;3;3;3;4;2;2;1;1

5;1;5;6;4;5;3;4;4;1;1;1

6;1;3;5;3;4;2;2;3;2;1;2

7;1;2;2;2;3;2;3;3;1;2;1

8;1;4;2;4;4;3;3;3;3;3;3

9;1;3;4;3;4;3;3;3;1;1;1

10;1;3;4;3;3;3;3;2;2;3;3

11;2;2;4;4;4;3;3;3;2;4;2

12;1;2;3;2;2;3;3;2;2;2;2

13;1;2;4;3;3;3;3;3;2;2;2

14;2;3;4;2;2;2;3;3;1;1;1

15;1;2;5;3;4;3;3;3;2;2;1

16;1;3;4;2;4;3;2;3;1;1;2

	Introduction
	Commissioner
	Objective of Thesis
	Outline of Thesis

	Testing
	Definition of Testing
	Anatomy of a Good Test
	Summary

	Motivation for Software Testing
	Measuring Quality
	Reducing Costly Errors
	Verification
	Quality Control
	Regression Testing
	Measuring Maturity of the System
	Summary

	Automated Testing
	Reasons for Automated Testing
	Cost of Change
	Design
	Refactoring
	Summary

	Types of Tests
	Motivation
	Unit Tests
	Integration Tests
	End to End Tests
	Summary

	Amount of Testing
	Motivation
	Focusing Testing
	Deciding on Amount of Tests
	Execution Interval
	Summary

	Anatomy of An Automated Test
	Motivation
	Arrange, Act, Assert
	Focused Arrange
	Clear Assert
	Summary

	Domain-Specific Languages
	Introduction to Domain-Specific Languages
	Types of Domain-Specific Languages
	Internal Domain-Specific Languages
	External Domain-Specific Languages

	Summary

	Managing Dependencies
	Motivation
	Inversion of Control
	Dependency Injection
	Dependency Injection Container
	Dependencies in Tests
	Summary

	Legacy Code
	Challenges Presented by Legacy Code
	Original Developer Left And Did Not Leave Documentation Behind
	Database Connection Inside of Business Logic
	Static Methods Guiding Execution of Business Logic
	Huge Method That Does Everything
	Control Freak

	Testing Legacy Code
	Summary

	Test Driven Development
	Overview of Test Driven Development
	Advantages of Test Driven Development
	Challenges of Test Driven Development
	Summary

	Continuous Integration
	Introduction to Continuous Integration
	Testing Against Interfaces
	Responding to Build Breaks
	Summary

	Organisational Development
	Team Triad
	Competence Development
	Easing the transition
	Summary

	Implementation in the Host Company
	Motivation
	Overview of the System
	Test Execution
	Unit Tests
	Integration Tests
	End to End Tests
	Matcher Library for Assertions
	Domain-Specific Language for Testing
	Reporting
	Reporting Test Results
	Test Coverage Reports

	Dependency Injection
	In-house Service Locator
	Tackling Dependencies

	Continuous Integration
	Verification of Customer Test Environment
	Training

	Surveys
	Overview of Surveys
	The First Survey
	The Second Survey
	Analysis of Differences
	Summary

	Results
	Comparison to Earlier Studies
	Limitations of the Surveys

	Conclusions
	Objectives of the Thesis
	Future Use of the Results
	Further Subjects for Research
	In Closing

	Bibliography
	Appendices
	Appendix Survey
	Appendix Collated Data of The First Survey
	Appendix Second Survey
	Appendix Collated Data of The Second Survey

