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The purpose of this study was to create a short 3D  animation for 
Open Rendering Environment (ORE) project. The most significant 
result of ORE project is a web service called www.renderfarm.fi 
where volunteers can donate their computer's extra processing 
power to render 3D animations.

As an idea distributed computing  is not new but it has been rarely 
used outside of research and science. ORE project seeks to remedy 
this by bringing the advantages of distributed computing to the art 
and culture while creating a community around the service. ORE 
project is mostly funded by TEKES and it is carried out at Laurea 
University of Applied Science.

Modeling and animating the short movie took about three months. 
Models were created for three separate files (overall size of these 
files was under four megabytes) and the length of the final 
animation was 15 seconds. All the tools and services used to create 
the animation were free and open. Inspired by this, all the model 
and project files were released under an open license. This means 
that anyone can receive, continue and produce new animations 
based on these resources.

The animation was rendered with the ORE service when it was 
technically possible. Only one scene containing physical simulation 
of the cloth was rendered using one local machine. As a result of 
this study, a short animation for advertising purposes was made. 
Also, all the files needed during the process were created and they 
can be reused later to make new animations.

Keywords rendering, 3D, modeling, animation, Blender, ORE, BURP, 
distributed, computing, texturing
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Insinöörityön tarkoituksena oli 3D-mallintaa lyhytanimaatio Open 
Rendering Environmentin (ORE) käyttöön. ORE-projektin merkittävin 
näkyvä tulos on www.renderfarm.fi-palvelu, jossa vapaaehtoiset 
voivat luovuttaa tietokoneensa ylimääräistä laskentatehoa 
animaatioiden renderöintiin.

Hajautettu laskeminen ei ole ajatuksena uusi, mutta sitä on 
aikaisemmin valjastettu lähinnä vain tieteen ja tutkimuksen 
käyttöön. ORE-palvelu on yritys tuoda hajautetun laskennan antamat 
edut myös kulttuurin ja taiteen käyttöön sekä luoda yhteisö palvelun 
ympärille. ORE-projekti on pääosin TEKESin rahoittama ja Laurea 
Ammattikorkeakoulun toteuttama projekti.

Mallinnus ja animointi kesti yhteensä noin kolme kuukautta. Kolmeen 
erilliseen tiedostoon luotiin animaatiossa tarvittavat mallit (näiden 
yhteiskoko jäi alle neljään megatavuun), ja valmista animaatiota 
syntyi 15 sekuntia. Kaikki animaation luonnissa käytetyt työkalut ja 
palvelut olivat ilmaisia ja avoimia. Tästä syystä myös lopullinen 
animaatio ja kaikki siihen liittyvät mallinnus- ja projektitiedostot 
päädyttiin julkaisemaan avoimen lisenssin alaisuudessa — kenellä 
tahansa on siis mahdollisuus ottaa, jatkaa ja tuottaa uusia 
animaatioita näitä resursseja käyttäen. 

Animaatio hahmonnettiin (renderöitiin) käyttäen ORE-palvelua silloin, 
kun se oli teknisesti mahdollista. Tavallisesti yhdellä koneella 
renderöitiin vain fysiikkasimulaatiota sisältävä kohtaus. Työn 
lopputuloksena  oli mainoskäyttöön tarkoitettu lyhytanimaatio ja sen 
luontiin käytetyt tiedostot, joiden pohjalta voidaan toteuttaa uusia 
animaatioita.

Hakusanat renderöinti, hahmontaminen, 3D, mallinnus, animointi, 
Blender, ORE, BURP,  hajautettu laskenta, teksturointi
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Abbreviations and Terms 

Blender 3D modeling software suite, which includes many 
other features as well. Such as texturing, animating, 
rigging, and video editing.

.blend File format in which Blender saves it's files

Vertex Single distinct point in 3D-space 
Face - A surface between (usually) four vertices.

Mesh 3d object that is formed by vertices and faces.

Rig Collection of bones in Blender that control a mesh.

IPO From the word interpolation. IPO-curves are used in 
blender for animating.

Skinning Process of applying a rig to a mesh

Texture Procedurally created or ready made image that is 
applied to material or used as a material.

Material A complete set of textures and effects that is 
applied to the surface of a mesh when rendering

shader A particular way of shading a certain material. 
Different shaders give different impressions of the 
surface

SSS Subsurface Scattering. A method of scattering light 
in textures to achieve more natural and softer 
surfaces.

Rendering The process of calculating a "ready" image from the 
3d models and textures.

Distributed computing
Practice of sharing a heavy computational workload 
to smaller pieces and using a lot of computers to 
calculate it, usually facilitated through internet
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BOINC Berkeley Open Infrastructure for Network 
Computing. A framework for creating distributed 
computing projects.

BURP Big and Ugly Rendering Project. BOINC-based 
rendering service (discontinued)

ORE Open Rendering Environment. BURP-based 
rendering service

Work unit Work package sent to a client computer in BOINC 
for computing.

GPL GNU Public License. A software license which allows 
the modification of source code by all parties, as 
long as they release the modified source with the 
same license.

CPU Central Processing Unit. Where actual computation 
happens in a computer.
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1 Introduction

The  goal  of  the  Open  Rendering  Environment  (ORE)  project  is  to 

create a service for distributed rendering, which means that artists 

everywhere in the World can get access to a powerful rendering farm 

without  a  cost  -  enabling  them  to  create  more  complex  and 

challenging  animations  and  images  with  higher  resolutions.  The 

technological  background  for  ORE  is  formed  by  three  pieces  of 

software: Blender, BOINC, and BURP. 

Blender  is  an open source 3D graphics  suite.  BURP (Big  and Ugly 

Rendering  Project)  was  designed  by  Janus  Kristensen  to  render 

images  using  Blender's  internal  renderer.  It  utilizes  distributed 

computing platform called BOINC, which is designed to enable people 

in  different  fields  to  develop distributed computing projects  easily. 

Later on the technology behind BURP was moved to ORE project in 

the form of www.renderfarm.fi web service.

This  thesis  focuses on creation of  a short  animation for  promotion 

purposes for the ORE project. It approaches the subject from three 

different points of view.

It firstly focuses on the creation of the animation from the traditional 

modeling and animation point of view (chapters 2 and 3). After that, 

attention is given to how the project  was rendered using this new 

service and how the service in itself works (chapter 4). 
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Finally  it  discusses  the  social  side  of  this  rendering  rendering 

platform.  Also  included  in  this  part  is  a  small  questionnaire  about 

interest in this kind of communal creativity. 
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2 Designing and Creating the Character 

2.1 Initial Sketching and Ideas for Animation

The initial concept of the character was discussed a couple of times 

with artist  Antti  Varila  and project  manager Julius  Tuomisto at  the 

beginning  of  autumn  2008.  A  humanoid  like  alien  character  was 

agreed upon and initial sketches were made by Varila.  Based on the 

first  sketch seen in picture 1,  another sketch was made by Varila, 

seen in picture 2. The second sketch had had a front and a side view 

and was to be the basis of the modeling. Different ideas were about 

animations were planned from this point on. The mascot was named 

Ortho from the word orthogonal.

Picture 1: Original sketch for the mascot[1]



10

Picture 2: From Sketch to Model [2]

The  finished  product  would  be  a  short  animation  to  be  used  for 

promotion of the service. Part of this promotion is also the openness 

of this animation: anyone can get the animation and the production 

files  and  start  creating  their  own  projects  based  on  those.  The 

animation also acts as a showcase for www.renderfarm.fi. 

2.2 Modeling Ortho 

While  modeling  the  character  Tony  Mullen's  Introducing  Character 

Animation With Blender was co,nsulted frequently. In his book Mullen 

shows how he models, textures and animates  a superhero character 

step by step. Workflow and basic modeling principles of this project 

were mainly taken from Mullen's book and from personal experience 

from previous projects. [3]
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Rough modeling of the shape was primarily done using a technique 

called box modeling. In box modeling the work is begun with a simple 

cube and geometry is gradually added to it  to achieve the desired 

shape. It  helps to keep the geometry of  the object being modeled 

relatively  simple  and  malleable  which  is  important  in  character 

modeling.  This  is  especially  true  when  there  will  be  complex 

animation (such as bipedal walking).

Starting the modeling from a cube can be done in two different ways. 

One way of doing this is by extruding more geometry to the object 

and the other one is dividing the cube to smaller pieces and shaping 

those like in picture 3. Both methods were used in this production. 

Picture 3: Subdividing the cube
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Blender has a wide variety of modifiers to help the modeling process 

which were also frequently used [4]. The most important of these was 

a mirror modifier, which enables mirrored modeling  essential when 

modeling  symmetrical  shapes,  such  as  most  creatures  [4].  Mirror 

modifier was set to reflect z-axis, so that Ortho's left side was created 

automatically while the right side was modeled.

Modeling  was based on Varila's  second sketch  [2],  which  included 

front  and side view.  The sketch was placed on the background in 

Blender and used as a reference when modeling. Mullen [3] starts his 

modeling from the legs; in the case of Ortho it was started from the 

most defining characteristic,  his head. Geometry was added to the 

cube by loop cuts and the shape was gradually defined to resemble 

the original sketch. During the construction of face, special focus was 

given to the complexity of the mesh as the goal was to keep it as 

simple as possible to ease the animation of the facial expressions.

After  finishing  the  head  torso,  hands,  legs,  boots  and  collar  were 

modeled in a similar manner. Starting from a box and refining the 

shape until it matched the original sketch or was otherwise deemed 

as ready. For usability reasons all these meshes were kept separate 

until  they were ready and only then joined. Having different pieces 

separate allowed keeping them in separate layers, which meant that 

it  was possible  to hide and show them as need be,  allowing easy 

access and visibility from all directions to the relevant part that was 

being modeled. 
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After the shape of the head was done, focus was turned to the eyes. 

Because  of  the  planned  close  up  scene,  they  needed  to  be  as 

expressive as possible. A lot of the details and ideas for textures were 

taken from Building a Better Eyeball Tutorial by Jon McKay [5]. Since 

the current animation didn't call for animating the pupils, the vertex 

keys to handle pupil  dilation from McKay's tutorial  were not made. 

However, they could be easily implemented later on if necessary.

While the eyes received a lot of detail, the eyelids were not modeled 

due to time constraints. In retrospect, this might have been a poor 

decision since the eyelids give a lot of expressive detail to the face. 

And  adding  anything  to  finished  model  afterwards  can  be 

cumbersome.

In  addition  to  mirroring  subdivision,  a  surface  modifier  was  also 

extensively used throughout the process. Sub surface modifier divides 

to  surface  in  such  a  manner  that  it  gives  it  a  more  rounder  and 

natural shape. This can be seen in picture 4 where cube (in the upper 

left corner) is given five levels of subdivision.
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Sub surface modifier divides the current faces into two or more pieces 

giving more detail and smoother result. While modeling two levels of 

subdivision were used to give a general idea how the modifier would 

affect  the  final  work.  In  the  final  rendered  version  three  levels  of 

subdivision  were  used  to  ensure  that  no  jagged  edges  or  rough 

shapes were present in the models. The subdividing method  utilized 

was Catmull-Clark [7] which gives a natural and smooth result suited 

for organic modeling.

Without the sub surface modifier the character of Ortho uses little less 

than 4,000 vertices (see left side of picture 5) and with two levels of 

sub surfing  about  60,000  vertices  (right  side  of  picture  5).  Vertex 

count rises up to to 240,000, with three levels of sub surfing, which is 

used  while  rendering.  While  the  increase  in  time  to  render  is 

considerable (it doubles or triples the time in a simple scene with only 

monkey primitive found in Blender in the scene with two lamps) when 

so much more geometry is added to the model.
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However, the amount of geometry does make a noticeable difference 

in the outcome in terms of smoothness, as can be seen on the picture 

5.  On  the  left  side  of  the  picture  is  the  textured  and  wireframe 

versions  of  the  character  without  any subsurfing  which  look  more 

jagged and edgy than the subsurfaced versions on the right side.

2.3 Modeling Everything Else

Even  though  Ortho  was  definitely  the  most  important  part  of  the 

animation  it  also  had  other  elements  (see  chapter  3.1  for  script 

details to see how these models where used). A visually important 

part of the animation was of course the ORE logo, which was done 

before the animation was started. It is just a simple text converted 

into meshes. 

Another  element  in  the  animation  was  the  opening  scene.  The 

animation  starts  with  theater  curtains  being down and a  bunch of 

monkey, seen in picture 6, silhouettes as an audience.  
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The audience in front of the curtains were originally supposed to be 

drawn by hand, acting as a metaphorical  link between 2D and 3D 

world. This would have been done by scanning the original drawing 

(the  2D  part  of  the  metaphor)  and  placing  it  in  front  of  the  3D 

animated scene. Due to time constraints of the artist that was meant 

to do them this idea was scrapped and a new idea was chosen. 

The  audience  in  the  final  product   consists  of  Blender's  mascot 

monkey Suzanne, featured in picture 6. Blender has a built in monkey 

primitive of Suzanne, so the heads of the audience did not require 

any actual modeling at all. The tails were simply extruded cylinders, 

with narrowing at one end. 

Accessories were originally planned for Ortho but these were skipped 

due to lack of  time. Among some of the things that were planned 

Picture 6: Suzanne 
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were cloak, laser gun, some sort of spaceship, and a space helmet. In 

the end none of these were required for the actual animation, even 

though different ideas of using them in future short animations were 

bounced around.

Only space helmet was actually modeled but it was not used in the 

final animation. The helmet used a simple cube mesh which was split 

up five times to ensure enough vertices so that a smooth and round 

shape would be possible. After that a lattice modifier was added to it 

to  get  the  desired  shape  (which  would  resemble  shape  of  Otho's 

head) as easily as possible.

Even though modeling  space ships  were  discussed,  they were not 

designed  or  modeled.  However,  a  space  ship  from  an  unrelated 

project  was used in a promotional  poster for  a related flash game 

project  in  which  Ortho  was  starring  as  well,  see  chapter  5.4  for 

details. 
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2.4 Texturing 

The visual look planned for Ortho was a mixture of looking friendly 

and yet 'edgy'.  Also, most of the desired visual  look was achieved 

during  the  modeling  phase  which  meant  that  most  of  the  used 

textures were fairly simple and contained no special tricks. Texturing 

is  the general  process of  applying different  surfaces on top of  the 

modeled geometry. [8]

Simplicity holds true for the cloth textures used in Ortho's pants and 

shirt. They have no ray tracing features or other special techniques, 

they are just Blender's basic textures with fairly high specular value 

to give shiny 'space age' look. 

Because the large role  of  eyes  and eye movement in  the closeup 

scene they were formed with four different objects with each of them 

having their  own material.  The objects  (and materials) are cornea, 

veins, pupil, and iris. Most of these are just normal materials, but iris 

uses procedurally created textures as a basis for the uneven look. Iris-

like look is achieved by creating a texture with musgrave algorithm 

shown in picture 7. This was then mapped on to the eye with blend-

type texture to get a smooth fading effect to the iris. 
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Ortho's  skin  in  head  and  hands  also  utilizes  more  complicated 

materials.  They  use  advanced  light  scattering  method  called 

subsurface scattering which tries to mimic the behavior of soft and 

smooth  surfaces  typically  found  in  organic  objects  (such  as  skins, 

fruits,  etc).  These  surfaces  typically  let  some  light  through  them 

which then bounces inside the object and finally scatters out at some 

angle. Subsurface scattering gives the material soft and natural look, 

an  effect  which  can  be  hard  to  achieve  using  traditional  shading 

methods.  Blender's  Subsurface  scattering  [9]  is  based  on  Henrik 

Wann  Jensen's  and  Juan  Buhler's  paper  "A  Rapid  Hierarchical 

Rendering  Technique  for  Translucent  Materials"  [10]  which  was 

presented at ACM SIGGRAPH. 

This method is based on two separate passes. First, the irradiance is 

calculated in certain points (points are found by Turk's point repulsion 

algorithm [10]).  On the second pass the SSS shader is used instead 

of  the  normal  light  one  -  brightness  of  a  point  is  based  on  its 

neighbors brightness.

Because the curtain was a late addition and not originally planned 

readymade  material  was used for the curtain's rope and curtain in 

itself uses a basic material created for it. Material for the rope was 

taken from  Blender Open Material Repository [11] and it is a fairly 

simple gold material without textures and reflection with ray tracing. 



20

2.5 Rigging and Skinning 

In order to animate something with more complexity and fluidity than 

simply having object's location, rotation or size differ more advanced 

techniques are called for. Making a skeleton to a 3D-character that 

allows movement of different limbs and appendixes is called rigging. 

Most of Ortho's rig is based on Mullen's [3] book. The only exception 

to this is the foot rig which is based on a different tutorial [12]. The 

created rig  proved to be very handy and easy to work with when 

creating the walk cycle and rest of the animations.

The process of actually attaching bones of a rig to specific regions of 

model is called skinning.  In Blender this can be done in a couple of 

ways. The simplest one is to select vertices by hand and create vertex 

groups  from  them  and  attach  them  to  the  desired  bone.  This 

technique was used mainly on the head where all of the head were 

require to move using a single bone (for instance to turn the head). 

A more advanced technique of weight painting [13] was used for the 

rest of the bones. In weight paint mode different bones were selected 

and after  that by painting with mouse cursor the desired areas of 

movement where chosen. The advantage of weight painting is that 

there can be vertices of differing weights near joints or other areas 

where  complex  deformations  happen.  This  means  that  near  joints 

vertices move a little when the bone connected to them is moved, but 

not as much as the vertices which are further away from joints. This is 

a  crude  way  to  mimic  muscle  movement  in  the  character  but 
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compared to creating vertex groups by hand it is very efficient. No 

actual  muscle  or  fat  deformations  were  used  in  anything  in  the 

animation. 

In picture 8 Ortho's leg and related weight map is created by painting. 

Blue areas mean that no deformation will happen when current bone 

is moved. Green areas deform slightly when the bone in question is 

moved and red areas move completely with the bone (unless there 

are other constraints and bones controlling those specific vertices). 

The weights of the vertices range from 0 to 1.000 and the colored 

weight paint map is simply a representation of that.
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3 Creating Animation

3.1 Basic Script 

Due  to  the  relative  complexity  of  the  rig  and  the  walk  cycle  of 

bipedals the actions chosen for the animation were fairly simple and 

straightforward  to  implement.  The  actual  script  and  timeline 

developed itself fairly organically once the original of the animation 

idea was agreed upon.

Basic  script,  depicted  by  screenshots  on  picture  9,  is  that  the 

animation opens with theater curtains with silhouette of audience in 

front of them. Curtains are pulled up and the main scene is revealed. 

Picture 9: Screenshots from The Final Animation
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In the scene there is Ortho pushing O from ORE-logo to its place. He 

notices that curtains are already up and he is late so he glances at 

the audience and then hurries to put the O in its place. After that he 

shows the thumbs up and the show can begin. Finally the small text 

explaining the meaning of ORE drops down from the sky in a smooth 

manner.

Several different techniques for animating were used. The simplest 

ones were transformations of location and rotation.  More advanced 

techniques involved shape keys for the facial expressions and a full 

bipedal rig for movement of the main character.

3.2 Curtains

 

The  ability  to  simulate  clothes  and  cloth-like  movement  is  a  hard 

problem  to  solve  and  several  years  of  hard  work  was  put  into 

development of cloth simulation in Blender. It seems that Blender is 

the first free 3D software suite to add cloth simulation to its tools, 

which happened in version 2.46. [14] 

One way of simulating cloth is to create it out of of masses (points) 

and  then  connect  them to  each  other  via  springs.  Blender's  cloth 

algorithm is based on Xavier Provot's [15] method of calculating the 

deformations. In this method, additional calculation is performed in 

order to ensure that the cloth doesn't become super-elastic, creating 

a fabric that behaves like a sheet of rubber. This is done by adding 

additional stiffness to the springs, as shown in picture 10.
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Lengths  of  all  the  springs  are  noted  down  in  the  beginning  of 

simulation and then recalculated in each frame. Values are given how 

much  springs  are  allowed  to  stretch  and  contract.  If  the  springs 

exceed the given stretching values (which would lead to rubber-like 

behavior), they are recalculated with their neighbors so that offending 

lengths  are  corrected.  In  relatively  stiff  cloths  such as  cotton,  the 

stretching is usually lower than 10 per cent of the original length [15]. 

The curtains in the animation were simulated with Blender's cotton 

preset which allows 15 per cent of stretching, rest of the parameters 

were as seen in picture 10.

The animation starts with theater curtains being down and pulled up. 

Cloth-like movement of the curtains was done with a cloth-modifier. 

Some additional  movement was added with a wave-modifier.  Thea 

ctual lifting of the curtains was done with just two simple shape keys, 

in the first one the curtains are in a rest position (starting position) 

and in the other half a dozen of vertices in the bottom of the curtain 

were moved up above the rest of the curtain. Keys were added for the 

two shapes to the start and the end of the 100 frame animation. With 

the  start  and  end  frames  being  in  place  the  only  needed  user 

interaction for the animation is to just start the calculation process.

Picture 10: Cloth parameters
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There are many different tools in Blender which require computation 

before the actual result of these is visible. Usually these tools have 

something to  do with physical  simulation  or  particle  systems.  This 

process of calculating some animation with a given algorithm (be it 

simulation for cloth or water movement, or how particles behave in a 

particle system) is called baking in Blender [16].

Baking process means that Blender will calculate the different steps 

for  the cloth to get from the starting position to the end position, 

taking all the modifiers into account. Baking creates number of small 

files on the computer it is run on that contain shapes of vertices or 

similar information that changes in the animation of the simulation. 

Using modifiers and shape keys in this manner really simplifies the 

animation process and takes the workload from human animator to 

the computer. From the user side the "animating" only consisted of 

setting  the  parameters  for  the  start  of  the  animation  as  seen  on 

picture 11.

The curtains were done in a separate .blend-file to keep the scenes as 

simple as possible. Everything in that is completely separate from the 

main scene, most notably including the lighting which was specifically 

to the curtains. The lighting of the Ortho and logo was done in the 

main file. Once the curtains were rendered to stack of images they 

were put on top of the animation with the sequence editor in blender.
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The bobbing and tilting monkey head (seen in picture 11) animations 

at the start were done with simple location and rotation changes. The 

tails  were  animated  by  very  simple  armatures  which  consisted  of 

chain  of  similar  bones  all  linked  to  previous  one  and  one  inverse 

kinematic  (IK)  constraint  at  the  tip  of  the  tail  [3,  130].  The  IK 

constraint was used to achieve natural looking curving of the tail in a 

way that was not  time consuming.

3.3 Actions of Ortho

Movements of  Ortho were divided into five separate actions:  walk, 

faster walk, turning at the end, pushing and glance in the middle of 

the animation. These actions were edited in Blender's Action Editor 

and put  together  with  Non-Linear-Animation  tool  (NLA),  which  was 

Picture 11: Start parameters for the curtains
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added in Blender version 2.40 [17]. Interface and the different actions 

used  are  seen  in  picture  12.  NLA  editor  allows  easy  editing  for 

different actions and their timings. It also makes it possible to blend 

together two actions that are happening at the same time.

The most visible and important action is the walking (depicted by first 

three pink bars in picture 12), which was made using a technique of 

creating the movements of the legs and feet while the character is 

actually standing still and only afterwards adding actual movement of 

the character. This method is generally used with walk animations, 

regardless of the used software suite. The motion forward in Blender 

is controlled by a separate bone  called the stride bone [18], which in 

Ortho's  case  is  his  root  bone.  Stride  bone  defines  how much  the 

character moves forward in one step of one foot. 

Animating a walk cycle is usually done by finding four key poses for 

the walk, as seen in picture 13,  and then adjusting the motion paths 

between them. This leads to animation where the character is walking 

in one place, like on a conveyor belt. After these poses are done the 

actual  movement  in  the  3D  world  is  added  to  the  character.  The 

Picture 12: Non-Linear Aniation tool
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position can be controlled by a curve that the character follows, or as 

was done in this  case a stride bone. Blender's  stride bone feature 

calculates the distance traveled by measuring how much a certain 

bone is moving. In other words, how long is one stride or step of the 

character. [19]

Picture 13: Four key poses of walking [19]

 

The four basic poses are called contact, recoil, passing, and high-point 

as seen in picture 13. Ortho was first positioned to the contact pose 

and the rotations and locations of the bones were saved. After this, 

the bones were positioned in the recoil pose and the rotations and 

locations  were  once  again  saved.  This  resulted  in  a  very  crude 

walking animation which was further refined by adding more detail to 

the movement between passing pose (number 3 in picture 13) and 

high-point pose (number 4 in picture 13). Ortho can be seen in the 

poses in picture 14.



29

Picture 14: Ortho in walking poses

At  this  point  Ortho  was  walking  on  a  conveyor  belt,  not  moving 

forward at all. The poses in picture 14 differ from the poses in picture 

13  because  the  hands  do  not  follow  the  traditional  walk  poses 

because  they  are  already  positioned  in  the  pushing  movement 

required in the animation

To get Ortho actually moving forward in the 3D space, a stride bone 

was  added  which  moves  between  contact  and  recoil  pose  the 

distance that Ortho travels.  When a bone has been designed as a 

stride  bone (or  stride  root)  it  actually  moves the  character  at  the 

same time. Walk cycle was then further refined by varying the speed 

of the stride bone, since the speed of a bipedal doesn't stay the same 

during one step. Motion is faster near and during the contact pose 

and then slower on recoil. This gives the walking animation a more 

lifelike feel as opposed to robotic walk in which the character moves 

in a constant speed and creates the impression of flowing forward.
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In  total,  five  different  actions  were  used  to  achieve  all  that  was 

desired.  Two  of  these  were  walks,  the  first  walk  is  used  in  the 

beginning when Ortho pushes the O slowly  forward.  Latter  walk  is 

used after glance-action, this walk is modified from the original one. It 

was made faster by shortening its duration and adjusting the spine so 

that it  would be leaning more forwards,  creating the impression of 

speed and urgency. 

Glance in between these two walks is simply a turn of the head to 

look  towards  the  audience  shown  in  the  close  up  part  of  the 

animation. It does not involve forward moving, so only the neck and 

head bones needed animating. In addition to those, shape keys (see 

chapter  3.5)  were  used  at  this  point  to  create  different  facial 

expressions.

Last  action  in  the animation is  the turning when Ortho and the O 

reach their  destination.  One more action was used during the two 

different  walks.  It  was  an action  for  pushing  and in  that  only  the 

hands were positioned forward and a slight looping pushing motion 

was added.

3.4 IPO-Based Animations 

Word  IPO comes  from interpolation  which  means  interpolating  the 

movement in the animation between two or more key frames. Key 

frames are frames where the objects and parameters of everything 

are  set  by  the  animators.  They  can  occur  every  frame  or  every 
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hundred or thousand frame. The movement of the objects and the 

changes  in  parameters  in  other  frames  than  key  frames  are 

interpolated from the key frames. So the animated parameters will 

gradually change from previous key frame to the next one to fulfill the 

start and end parameters. This is illustrated in picture 15 below. [3, 

242-243]

Picture 15: Interpolation curve

Simple IPO-curve can be seen in picture 15 where the yellow line is 

the  actual  IPO-curve.  Y-axis  describes  the  amount  of  movement, 

which  is  about  1.5  blender units.  X-axis  describes  the time of  the 

animation in frames and the green line in the center is the play head 

currently in frame 220. Only the LocZ IPO was used in this,  which 

describes the location of the object in z-dimension. The value of the 

location  is  shrinking as the time progresses  forward,  which means 

that the object is falling. The following picture (picture 16) illustrates 

the way  the change happens in time.
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There are three different interpolation methods for curves in Blender: 

constant, linear, and bezier seen in picture 16 [3, 252-253]. Bezier 

interpolation was used in most of the IPO-animations, which means 

that the objects accelerate and decelerate faster in the start and end 

of the sequence. This gives them smooth movement, as opposed to 

linear interpolation which would mean that the speed of the object 

remains the same during the whole duration. This technique gives an 

especially clunky result when the letter is at the end of the animation.

 

Rolling  of  the  big  O  in  the  logo  was  keyed by  hand  after  Ortho's 

actions were done. The earlier method of trying to copy the IPO curve 

of the root bone in Ortho's walk action didn not work well  and the 

movement  looked  choppy  and  was  hard  to  sync.  Keying  all  the 

movements by hand means that there are a lot of key frames and the 

further  adjustments  in  the  animation  were  cumbersome  to  do.  In 

retrospective,  some sort  of  parenting  of  O  to  Ortho's  hand  bones 

would have been more ideal.

Picture 16: Interpolation modes



33

3.5 Shape Keys 

At the final stages when an additional  camera was added close to 

Ortho's  face  it  created  a  need  for  facial  expressions.  These  were 

carried out by using shape keys [3, 188]. Different expressions for the 

face  were  created  and  changes  in  these  were  then  animated  by 

keying different expressions (shapes) to certain times. Three different 

expressions were used, one which is the basis for the other two, in 

other words,  the normal expression.  Actual facial  expressions were 

the surprised look when he glances at the audience and the smile 

Ortho gives once he gets the O in place.

Shape  keys  are  based  on  vertex  transformation.  In  the  basis  key 

vertices are in the same position as they were modeled in. Creating a 

new shape key means moving the vertices into a new position and 

saving that as the new expression. One limitation of using vertex keys 

is  that  once they are added,  you can't  add or  remove vertices  or 

some  unexpected results  may happen.  Since  the need for  vertex 

keys developed so late in the production process, the pitfall of doing 

them too early and having to do them again after some remodeling 

was avoided. [3, 188-198]

Ready expressions are animated by adding values on certain frames. 

This produces regular blender IPO-curves which can then be refined to 

suit  the animation.  One particular advantage of shape keys is that 

they can be mixed freely. So a character can have one expression, for 

instance, raising eyebrows with value of 0.5 which means half way 

between  not  having  that  expression  at  all  and  having  the  full 

expression. And at the same time there can be another expression 
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either  controlling  the  eyelids  or  some  other  part  of  the  face 

altogether. [3, 192] 

An alternative method of  animating the facial  features would have 

been to use actual  bones to control  the expressions  directly  or  to 

have the  bones  control  the  shapes.  [3,  195-197]  While  this  would 

allow more detailed expressions and easier handling during lengthy 

animations it was not used because the longer setup time and the 

questionable advantages in short animations.

3.6 Compositing in Blender

Contrary  to  most  3D  modeling  softwares,  Blender  contains  a 

sequence editor  which  has  all  the  necessary  tools  for  basic  video 

editing. It also has more advanced features with which more complex 

effects can be achieved. Due to the sequence editors similar fast and 

simple workflow, the final editing of the animation also happened in 

Blender. Picture 17 presents the sequence view in Blender.

Picture 17: Different animation strips
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Different  stacks  of  images  which  were  different  parts  of  the 

animation, were put together in different video channels and mixed 

using alpha under meta strip,  which stacks images on top of  each 

other  using  the  alpha  channel  [20].  This  allows  combining,  for 

instance, of the curtains and the main scene, which were rendered 

separately. 

The final animation uses three stacks of images (image sequences, 

purple in picture 17) and 2 meta strips (red and yellow in picture 17). 

Another meta strip that was used was cross, which simply crosses the 

the ending frame of the animation to white, giving the fade to white 

effect.
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4 ORE, BOINC, and BURP — The Technical Side

4.1 Idea of Distributed Computing 

Distributed  computing means splitting  tasks  which require  a lot  of 

time to compute on one computer (even if that computer happens to 

be a super computer) to smaller tasks which are then carried out by a 

large number of "normal" computers. This is a variation of an older 

computation method called parallel computing. Because Internet was 

readily  available  by  the  time  first  distributed  computing  project 

started, it was a natural way to transfer the work units. It is worth 

noting that distributed computing is only suitable when high latency is 

allowed, in other words, when a task can easily be split up in such a 

way that the computations are not dependent on each other. [21]

A concept related to distributed computing is cloud computing (the 

cloud in picture 18), but they do not mean exactly the same thing. As 

a  term  cloud  computing,  where  the  cloud  refers  to  the  general 

metaphor for the Internet as a cloud, still lacks a clear and concise 

definition, but many define it loosely as some kind of utility or service 

computing  that  happens  outside of  your  firewall.  In  contrast  with 

distributed  computing  where  the  computing  happens  in  your  own 

computer.  But  since  there  is  no  clear  definition,  sometimes 

distributed computing is included in the cloud computing. [22]
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Distributed computing was first popularized by SETI@home project, 

which  analyzes  radio  signals  from  space  in  hopes  of  finding 

extraterrestrial life or something else of interest. Their public website 

was  launched  in  1999,  and  they  showcased  that  distributed 

computing works and caught the imagination of the general public. 

Sharing the computational work load in this manner opens up new 

possibilities  for all  kinds of tasks and problems which require such 

power to compute.  [24]

Traditionally distributed computing has only been about science and 

ORE  seeks  to  remedy  to  this.  Rendering  images  for  science  and 

entertainment  has  long  been  bound  by  the  computing  power 

available  and  time  constraints.  ORE-project  aims  to  solve  this  by 

offering the world of distributed computing to the field of culture (see 

chapter 5).

Picture 18: Cloud computing [23]
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4.2 History of BURP and Blender

Blender is a free 3D modeling software that is licensed under GPL. It 

is used by artists to create 3D images and animations for all intents 

and purposes ranging from simple hobbyists doing projects for their 

own entertainment to professionals in different fields, such as movies 

or architecture. Blender started its life as a closed source modeling 

tool  for  a Dutch animation studio NeoGeo,  in 1998 Blender's  main 

creator  Ton  Roosendaal  found  a  company  called  NaN  to  develop 

Blender  further.  However,  the  company  failed  and  after  it  went 

bankrupt  "Open  Source  Community"  collectively  gathered  money 

bought  the  rights  for  the  source  code  with  100  000  Euros  and 

released the source under GPL [25].

BURP  started  when  Danish  Janus  Kristensen  got  the  idea  of  using 

distributed  computing  to  calculate  animations  which  were  slow  to 

render. It was originally suggested to him that this was impossible to 

do but the first adaptations to BOINC to render images were done in 

less than a day. From here the development really started and soon 

burp.boinc.dk  domain  was  reserved  for  the  project  [26].  The 

development  effort  from  burp.boinc.dk  has  been  transferred  to 

www.renderfarm.fi  but  BURP  still  lives  a  separate  life  in 

http://burp.rederfarming.net [27]. 

Other software suites also support  some kind of  shared rendering, 

though these are usually renderfarms that one has to create for this 

particular purpose, usually called network rendering. One example of 

network  rendering  would  be  Autodesk's  Maya  software  which 
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supports  network rendering in  three different  ways,  either  through 

rendering  with  Maya  or  rendering  with  mental  ray  (a  separate 

rendering software). [28]

4.3 Evolution to BOINC and How It Works 

BOINC  is  divided  into  two  separate  programs  –  server  and  client. 

Client-side  of  BOINC  is  fairly  simple.  Installing  constitutes  from 

downloading a program (BOINC client), installing it, and choosing to 

which projects to contribute your spare CPU cycles. When the client is 

installed  and  connected  to  a  project,  it  downloads  work  units 

(commonly  referred  to  as  WUs)  and starts  computing  results  from 

them when the computer is idle. When work units are complete, the 

client sends them back to the server to be verified and requests for 

more work. [29] 

Running  a  BOINC  project  means  running  a  BOINC  server  which 

requires  a  little  more  technical  knowledge.  Theoretically,  any 

application  that  requires  computing  power  can  be  adapted  to  use 

BOINC. If the source code of the application is available it eases the 

integration with BOINC, as was the case with Blender. If the source 

code is not accessible, there is a BOINC-wrapper which can be used, 

and which then handles the splitting the jobs to work units. [29] 

In the case of BURP, Blender is used to render the animations on the 

client machines. The blender in question has been modified a little to 

accommodate some special needs of BURP. The modified Blender is 
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sent  automatically  via  the BOINC client  and users  do not  need to 

concern themselves of keeping it updated. Modifications to Blender 

are fairly simple, most importantly there are added hooks in Blender 

so BURP can ask how the rendering is progressing. In addition,  some 

of the Blender's error reporting features have been modified. In case 

of Blender crashing it does not show anything to user, but logs it in 

the BURP files and the logs are sent to the BURP server where an 

administrator  can  take  a  look  what  is  happening.  The  process  is 

illustrated in the following picture. [30]

Picture 19: Overview of BOINC architecture[31]
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Server side of BOINC is divided into four different parts: the feeder, 

the  scheduler,  the  validator,  and  the  assimilator.  These  parts  are 

inside  the  green  box  in  picture  19.  Feeder  takes  work  from  the 

database and distributes it  in memory.  Scheduler takes work units 

provided by the feeder and sends them to clients that are requesting 

more work. It also tries to match the work units to clients that best 

suit them (more powerful clients get work units that take longer to 

calculate). Feeder and scheduler are part of the scheduling servers on 

picture 19. [31]

The validator, BOINC Back-end Interface in picture 19, takes results 

for a single work unit which are validated. Each work unit is calculated 

multiple times and then they are validated against each other to see 

if they match. On a normal BOINC project they are easily checked for 

binary compatibility. On BURP, however, results of the work units can 

differ a bit and this is allowed. Validator checks color of each pixel in 

the image and small  differences are allowed.  These differences,  in 

theory  at  least,  are  too  small  for  human  eye  to  notice,  they  are 

caused by differences in the machines and operating systems that 

are participating in the project.

Last part of  the BOINC-chain is  the assimilator  which takes results 

that have been validated by the validator  and moves them out  of 

BOINC  and  into  the  BURP  storage  (Moving  from  BOINC  Back-end 

Interface  to  Project  Back-end  and  to  Project  Science  Database  in 

picture  19).  After  they  have  been  moved  there,  additional  video 

encoding  may  happen  and  then  they  are  moved  to  their  final 

destination, which in the case of ORE is the web server.
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Downloaded work units are further divided in to parts by Blender and 

rendered in  the minimum part  size  (100x100 parts),  because only 

time Blender can update the progress is just after it finishes a part. 

[30]

4.4  The Problem of Parallelization

Animation itself was rendered with the ORE service. The process was 

the same as with any other project that would be rendered with ORE. 

Firstly you need to register your account at www.renderfarm.fi after 

that it is just a matter of submitting the file to the site. Once the site 

administrator has accepted your work (for instance, that it conforms 

to the laws and doesn't contain copyrighted material), it moves to the 

rendering  queue.  Once  every  single  work  before  that  has  been 

completed, it will be rendered.

Due to restrictions of the ORE the opening scene with curtains could 

not be rendered using it. This is because of the cloth simulation in the 

curtains. ORE does not work with any of the physic simulations found 

in Blender. The reason for this is that Blender calculates cache files 

that are not contained in the .blend file in it self. If these simulations 

were supported, every client machine participating in the rendering 

would  need  to  calculate  the  physic  simulations  again.  Calculating 

these simulations can be time consuming and it  is  unnecessary to 

calculate  them  again  with  every  client,  especially  since  they  are 

always calculated in a single thread so multi-core processors are of no 

help.
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In normal animation the order in which the frames are rendered does 

not depend from each other.  In other words,  it  does not matter in 

which  order  they  are  rendered  so  they  can  be  rendered 

simultaneously by different machines, which is the basic idea of ORE. 

However,  parallelization  of  physics  simulations  is  a  particularly 

difficult problem because the result of the next frame is dependent of 

the current one and can not be predicted. So in order to know the 

shape of the mesh in cloth simulation in frame 50 you first need to 

know the shape of the mesh in frame 49, and before that you need to 

know it in frame 48 and so on.

Methods for parallel simulation of cloth have been presented, such as 

Bender & Bayer (2008)  on their  paper about Parallel  Simulation of 

Inextensible  Cloth [32].  They use a method of  impulses instead of 

mass spring systems. In this the mesh is split into strips that behave 

independently  and,  thus,  can  be  calculated  in  parallel  [32].  This 

method is suited for realtime cloth calculation, and it remains unclear 

whether it   can be calculated in high latency environment such as 

distributed computing. 

If  complicated  and  time  consuming  cloth  simulations  need  to  be 

rendered  by  using  ORE,  there  are  workarounds.  These  involve 

calculating the simulation on one machine (and still only on one core) 

and then baking the mesh. After this the animation of the cloth is 

stored in the mesh and is the same as normal vertex key animation 

and can then be rendered using distributed computing. This, however, 

means that the simulation aspect is lost and the animation is "locked" 
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to  the  baked  mesh  and  can  not  be  further  refined  in  the  future, 

except  by  going back to  the original  simulation and repeating the 

process.

4.5 Rendering the Animation

The resolution of the final animation is 1920x1080 pixels. Discounting 

all of the test renders and experiments, the total number of frames 

that  were  rendered  for  the  animation  was  513.  Out  of  these  513 

frames 375 were used in the animation with the frame rate of  25 

frames  per  seconds  (FPS)  giving  15  seconds  of  animation.  The 

difference  between  number  of  frames  rendered  and  used  can  be 

explained by two things. Firstly, more frames were rendered to give 

more  creative  freedom in  the  final  cutting  and  compositing  state. 

Secondly, some of the separate animation strips blend into each other 

which means that it takes double the amount of rendered frames in 

those parts.

Due the problem described in  the previous  chapter,  not  all  of  the 

animation was rendered using the www.renderfarm.fi-service. Since 

the first  scene uses cloth-modifier  to achieve the animation of  the 

curtains, it had to be rendered locally on a single computer. This part 

of  the animation contains 150 frames and it  took approximately  5 

minutes per frame to render. So, this sequence took a little over 12 

hours to render.
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Unfortunately, www.renderfarm.fi in its current state does not list how 

long it took to render a single animation or how long it would have 

taken to render on a single machine. Of course a single machine can 

be considered as anything, but the example times provided here were 

taken from test renders with a few years old desktop computer. The 

two parts that were rendered with this service were the logo part and 

the  close  up  part.  However,  some  idea  of  the  timescales  can  be 

achieved by examining the close up part of the animation.

A close up contains 85 frames in the final animation and 91 frames 

were rendered for it. It took a little over a day to render these using 

the service and on a single machine it takes over two hours average 

to render a frame which means it would have taken over a week to 

render this part. The single factor that raises rendering time is the 

subsurface scattering used, which means that a separate pass has to 

be done for each frame to calculate the scattering.
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5 The Social Side — www.renderfarm.fi

5.1 Earlier Applications & Cultural Significance

David  Anderson  [33,  p.  69]  aptly  wrote  about  the  social  side  of 

distributed computing:  "For scientific computing, it could contribute  

to  a  democratization  of  science:  a  research  project  that  needs 

massive  supercomputing  will  have  to  explain  its  research  to  the 

public  and  argue  the  merit  of  the  research.  This,  I  believe,  is  a 

worthwhile  goal  and  will  be  a  significant  accomplishment  for  

SETI@home even if no extraterrestrial signal is found."

Most of the distributed computing efforts focus in the field of science 

and research. Ranging from researching cures for diseases, protein 

folding,  finding  prime  numbers,  or  analyzing  noise  from space  for 

signs of extraterrestrial intelligence [34]. ORE differs from all of these 

projects because its main goal is to produce something of cultural - 

not scientific -  value, something which has no direct application in 

the realm science. Of course, scientific image rendering can also be 

done  with  ORE  but  it  is  mainly  targeted  for  digital  artists  and 

enthusiasts  to  enable  them to  create  something  which  would  not 

otherwise be possible or feasible for them. 

Some  mentions  of  previous  efforts  to  create  distributed  rendering 

farm  can  be  found  but  none  of  them  seems  to  be  active. 

Distributedcomputing.info mentions two similar projects [34]. The first 
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one is RenderFarm@Home but it seems to be completely abandoned 

in 2007. Any information related to project is hard to find and most 

likely outdated. The official  website of the project just informs that 

“Renderfarm@Home indefinitely suspended”. [35]. The other one is 

Internet Movie Project that seemed active at some point, but its home 

page currently only show the text: “hello again POVers.” [36].

More than being just a technological achievement, ORE also tries to 

build a community for artists, people interested in 3D animation, and 

distributed  computing.  An  important  part  of  this  is  the  website  – 

www.renderfarm.fi – which is the main outcome of ORE project, the 

website is explored more in chapter 5.2 and communal side of the 

project is examined in chapter 5.3 alongside with some results from a 

small  questionnaire  regarding  electronic  communities,  distributed 

computing, and content creation.

5.2 Home of ORE

A very important aspect of ORE is its website www.renderfarm.fi. Of 

course  one  of  the  most  important  functions  of  the  website  is 

submitting work to be rendered with ORE but it  also serves many 

other  functions.  And the significance of  the website  for  submitting 

works  will  diminish,  when  Blender  script  is  released  and  one  can 

submit  works  straight  from  Blender  [37].  Already  completed  and 

rendered animations can be seen in the gallery and it is possible to 

rate  them  and  discuss  the  works.  Users  can  also  participate  in 

discussion  in  the  more  general  message  forums.  It  is  the  general 

meeting  ground  for  both  Blender  and  BOINC  enthusiasts  where 
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discussion  about  ORE,  www.renderfarm.fi,  3D-graphics,  distributed 

computing, culture, and life in general happen. Picture 20 shows the 

main gallery of the website.

The website is running with Drupal  6 content management system 

and  customized  theme  seen  in  the  picture  20.  Drupal  can  be 

downloaded for free from http://www.drupal.org.  BOINC itself has a 

simple content management system in itself, but it lacks features by 

modern standards. For instance, changes to user pages (or new users 

etc.) do not happen instantaneously. Instead they are updated when a 

specific task is run by the scheduler. As part of the ORE team,  the 

author's task was to check and accept animations to be rendered that 

complied with the rules of the service. 

Picture 20: www.renderfarm.fi [38]
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Other important aspect was also being active in the forums and in the 

community in general with writing blog posts and helping users install 

ORE-clients via Internet Relay Chat (IRC). Two guides about how to 

get  ORE-client  running  on  one's  computer  were  written:  one  for 

individuals  and  the  other  one  for  instance  for  schools  with  the 

instructions to mass installations. 

Integrating BOINC and Drupal has meant easier development of the 

social side of the site which, one could argue, is as important as the 

technical  side.  The social  side  of  the  website  and integration  with 

Drupal is examined in more detail in Lauri Viitala's (2009) thesis [39].

In what appears to be a pure coincidence, the main BOINC project 

also  seeks  to  integrate  with  Drupal  and  leave  the  old  content 

management  system  behind.  As  of  September  2009,  there  is  a 

conversion project going on in BOINC to integrate Drupal with BOINC. 

This project is till on planning stage and no clear schedule is given. 

[40]

5.3 Interest in Distributed Computing 

A small questionnaire was given out at the end of one week Blender 

course held at the Metropolia University of Applied Science. Among 

the regular feedback and teacher evaluation, there were a couple of 

questions  about  electronic  communities,  Creative  commons  and 

distributed rendering. More specifically students were asked:
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Each  question  had  three  answer  options:  Yes,  No,  or  Maybe.  In 

addition  to  those  questions,  interested parties  were  asked to  give 

their email address to get an invite to www.renderfarm.fi.  Relevant 

questions and results are summarized in table 1.

Yes Maybe No

Do  you  plan  to  join  an  electronic 

Blender  community  such  as 

Blender.org,  Blenderartists.org  or 

Renderfarm.fi?

5 10 3

Would you be willing to license your 

creative  works  under  a  Creative 

Commons license?

8 10 0

Would you be willing to donate you 

computer's  processing power to do 

publicly distributed rendering?

4 13 1

Table 1. Questionnaire results

18  students  filled  the  questionnaire  and  the  results  were  quite 

interesting.  Five  answered  yes  to  the  first  question  about  joining 

electronic community and ten were maybe interested. However, ten 

people  left  their  email  address  to  get  their  invite  to 

www.renderfarm.fi.  Only  three  persons  were  not  interested  in 

electronic communities at all. Similarly eight students were willing to 

license  their  works  under  Creative  Commons  license  and  the  rest 

were maybe willing to do so.
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On the subject of donating one's own computing power to distributed 

rendering,  only  four  answered  yes  and  the  majority  of  thirteen 

answered maybe, leaving only one person not interested in sharing 

his or her computing power. There seemed to be uncertainty o issues 

such as  how easy  this  sharing  would  be  to  the  participant,  which 

could be a major factor in willingness to share resources and help in 

distributed  rendering.  Even  the  simplest  of  setup  or  program 

installation can be too much effort, if one is not particularly interested 

in the topic.

Even  though  the  sample  was  quite  small  and  participants  were 

interested in 3D-modeling, it still shows promising amount of interest 

in services like www.renderfarm.fi. Whether this will actually increase 

the amount of amateur and small production 3D-animations in both 

quality and quantity will remain to be seen. 

5.4 Other Uses for Ortho 

Since  the model  of  the character  Ortho was to be released under 

Creative  Commons  license  (even  though  it  wasn't  yet  publicly 

available), it was used for couple of other projects which were related 

to ORE. The fist one of these happened before even the rig of the 

character was ready and the pose of the character was quickly made 

by just moving vertices to suitable places by hand.

Firstly the character was featured in the promotional material for the 

”Digital / communal creativity” -seminar held in Laurea Leppävaara in 
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the Autumn of  2008.  It  was featured with the original  ORE-logo in 

posters and a bigger print of the face was also handed out to seminar 

guests as well. Picture 21 shows another poster featuring Ortho.

Later on it was featured in a mini game Ortho Wars poster in picture 

21.  It  was  also  created  to  promote  ORE-service  and 

Picture 21: Poster for Ortho wars
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www.renderfarm.fi. The poster also featured spaceships and moonlike 

landscape which were taken from writer's previous projects and are 

also licensed under Creative Commons.
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6 Conclusions 

The  animation  is  the  actual  outcome  of  this  thesis  and  a  part  of 

writer's contribution to the ORE project. However, it may be that the 

actual process of creating the animation and seeing and using ORE 

for  some real  project  might be more valuable than the actual end 

result  in  itself.  An  important  part  of  this  project  was  this  written 

documentation, which  gives  detailed  account  of  the  process  of 

creating animation, and more specifically,  an animation that contains 

humanoids. In addition how to use ORE to enable higher resolution 

rendering with higher amount of detail has been reported in detail in 

this study.

The content of the animation was not completely set in stone from 

the beginning, so naturally it evolved during the process. Even at the 

very late stages, one camera was added and the actions refined. Also 

the audience changed from drawn 2D idea to 3D animation. However, 

the end result is close to what was originally planned. 

As a field, distributed computing is not a new idea but its application 

to  the  realm of  art  instead  of  science  is  fairly  new.  Even  though 

people  are  not  that  familiar  with  the  concept,  there  seems  to  be 

interest  in  it.  This  can be seen in  the results  of  the questionnaire 

presented in chapter 5. 

Final  animation  contains  375  frames  which  give  15  seconds  of 

animation with 25 frames per second. The total number of rendered 
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frames (excluding all of the test renders), was 513. Rendering more 

frames  than  necessary  allowed  more  fluidity  in  cutting  and 

compositing phase and was necessary due to some parts fading into 

each other. 

With the spirit of the free and open tools and services used to create 

this  animation,  the   production  files  and  the  final  animation  is 

released  to  be  distributed  freely  according  to  Creative  Commons 

License.  It  can  be  used  to  create  more  promotional  material  for 

www.renderfarm.fi  or,  alternatively  in  some  completely  unrelated 

project. The animation and the related production files can be found 

at: http://users.metropolia.fi/~lassiha/ore/
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