
Helsinki Metropolia University of Applied Sciences
Degree Programme in Media Technology

 Lassi Haaranen

3D short animation utilizing
distributed computing

Final Year Project. 19 November 2009

Instructor: Julius Tuomisto, Project Manager
Supervisor: Harri Airaksinen, Director

Helsinki Metropolia University of Applied Sciences Abstract

Author
Title

Number of
Pages
Date

Lassi Haaranen

3D short animation utilizing distributed computing

60

19 November 2009
Degree
Programme

Media Technology

Degree Bachelor of Engineering

Instructor

Supervisor

Julius Tuomisto, Project Manager

Harri Airaksinen, Director

The purpose of this study was to create a short 3D animation for
Open Rendering Environment (ORE) project. The most significant
result of ORE project is a web service called www.renderfarm.fi
where volunteers can donate their computer's extra processing
power to render 3D animations.

As an idea distributed computing is not new but it has been rarely
used outside of research and science. ORE project seeks to remedy
this by bringing the advantages of distributed computing to the art
and culture while creating a community around the service. ORE
project is mostly funded by TEKES and it is carried out at Laurea
University of Applied Science.

Modeling and animating the short movie took about three months.
Models were created for three separate files (overall size of these
files was under four megabytes) and the length of the final
animation was 15 seconds. All the tools and services used to create
the animation were free and open. Inspired by this, all the model
and project files were released under an open license. This means
that anyone can receive, continue and produce new animations
based on these resources.

The animation was rendered with the ORE service when it was
technically possible. Only one scene containing physical simulation
of the cloth was rendered using one local machine. As a result of
this study, a short animation for advertising purposes was made.
Also, all the files needed during the process were created and they
can be reused later to make new animations.

Keywords rendering, 3D, modeling, animation, Blender, ORE, BURP,
distributed, computing, texturing

Metropolia Ammattikorkeakoulu Insinöörityön tiivistelmä

Tekijä

Otsikko

Sivumäärä

Aika

Lassi Haaranen

3D-lyhytanimaatio käyttäen hajautettua laskentaa

60 sivua

19.11.2009

Koulutusohjelma mediatekniikka

Tutkinto insinööri (AMK)

Ohjaaja

Ohjaava opettaja

projektipäällikkö Julius Tuomisto

yliopettaja Harri Airaksinen

Insinöörityön tarkoituksena oli 3D-mallintaa lyhytanimaatio Open
Rendering Environmentin (ORE) käyttöön. ORE-projektin merkittävin
näkyvä tulos on www.renderfarm.fi-palvelu, jossa vapaaehtoiset
voivat luovuttaa tietokoneensa ylimääräistä laskentatehoa
animaatioiden renderöintiin.

Hajautettu laskeminen ei ole ajatuksena uusi, mutta sitä on
aikaisemmin valjastettu lähinnä vain tieteen ja tutkimuksen
käyttöön. ORE-palvelu on yritys tuoda hajautetun laskennan antamat
edut myös kulttuurin ja taiteen käyttöön sekä luoda yhteisö palvelun
ympärille. ORE-projekti on pääosin TEKESin rahoittama ja Laurea
Ammattikorkeakoulun toteuttama projekti.

Mallinnus ja animointi kesti yhteensä noin kolme kuukautta. Kolmeen
erilliseen tiedostoon luotiin animaatiossa tarvittavat mallit (näiden
yhteiskoko jäi alle neljään megatavuun), ja valmista animaatiota
syntyi 15 sekuntia. Kaikki animaation luonnissa käytetyt työkalut ja
palvelut olivat ilmaisia ja avoimia. Tästä syystä myös lopullinen
animaatio ja kaikki siihen liittyvät mallinnus- ja projektitiedostot
päädyttiin julkaisemaan avoimen lisenssin alaisuudessa — kenellä
tahansa on siis mahdollisuus ottaa, jatkaa ja tuottaa uusia
animaatioita näitä resursseja käyttäen.

Animaatio hahmonnettiin (renderöitiin) käyttäen ORE-palvelua silloin,
kun se oli teknisesti mahdollista. Tavallisesti yhdellä koneella
renderöitiin vain fysiikkasimulaatiota sisältävä kohtaus. Työn
lopputuloksena oli mainoskäyttöön tarkoitettu lyhytanimaatio ja sen
luontiin käytetyt tiedostot, joiden pohjalta voidaan toteuttaa uusia
animaatioita.

Hakusanat renderöinti, hahmontaminen, 3D, mallinnus, animointi,
Blender, ORE, BURP, hajautettu laskenta, teksturointi

Contents

Abbreviations and Terms

1 Introduction 7

2 Designing and Creating the Character 9

2.1 Initial Sketching and Ideas for Animation 9
2.2 Modeling Ortho 10
2.3 Modeling Everything Else 15
2.4 Texturing 18
2.5 Rigging and Skinning 20

3 Creating Animation 22

3.1 Basic Script 22
3.2 Curtains 23
3.3 Actions of Ortho 26
3.4 IPO-Based Animations 30
3.5 Shape Keys 33
3.6 Compositing in Blender 34

4 ORE, BOINC, and BURP — The Technical Side 36

4.1 Idea of Distributed Computing 36
4.2 History of BURP and Blender 38
4.3 Evolution to BOINC and How It Works 39
4.4 The Problem of Parallelization 42
4.5 Rendering the Animation 44

5 The Social Side — www.renderfarm.fi 46

5.1 Earlier Applications & Cultural Significance 46
5.2 Home of ORE 47
5.3 Interest in Distributed Computing 49
5.4 Other Uses for Ortho 51

6 Conclusions 54

References 56

5

Abbreviations and Terms

Blender 3D modeling software suite, which includes many
other features as well. Such as texturing, animating,
rigging, and video editing.

.blend File format in which Blender saves it's files

Vertex Single distinct point in 3D-space
Face - A surface between (usually) four vertices.

Mesh 3d object that is formed by vertices and faces.

Rig Collection of bones in Blender that control a mesh.

IPO From the word interpolation. IPO-curves are used in
blender for animating.

Skinning Process of applying a rig to a mesh

Texture Procedurally created or ready made image that is
applied to material or used as a material.

Material A complete set of textures and effects that is
applied to the surface of a mesh when rendering

shader A particular way of shading a certain material.
Different shaders give different impressions of the
surface

SSS Subsurface Scattering. A method of scattering light
in textures to achieve more natural and softer
surfaces.

Rendering The process of calculating a "ready" image from the
3d models and textures.

Distributed computing
Practice of sharing a heavy computational workload
to smaller pieces and using a lot of computers to
calculate it, usually facilitated through internet

6

BOINC Berkeley Open Infrastructure for Network
Computing. A framework for creating distributed
computing projects.

BURP Big and Ugly Rendering Project. BOINC-based
rendering service (discontinued)

ORE Open Rendering Environment. BURP-based
rendering service

Work unit Work package sent to a client computer in BOINC
for computing.

GPL GNU Public License. A software license which allows
the modification of source code by all parties, as
long as they release the modified source with the
same license.

CPU Central Processing Unit. Where actual computation
happens in a computer.

7

1 Introduction

The goal of the Open Rendering Environment (ORE) project is to

create a service for distributed rendering, which means that artists

everywhere in the World can get access to a powerful rendering farm

without a cost - enabling them to create more complex and

challenging animations and images with higher resolutions. The

technological background for ORE is formed by three pieces of

software: Blender, BOINC, and BURP.

Blender is an open source 3D graphics suite. BURP (Big and Ugly

Rendering Project) was designed by Janus Kristensen to render

images using Blender's internal renderer. It utilizes distributed

computing platform called BOINC, which is designed to enable people

in different fields to develop distributed computing projects easily.

Later on the technology behind BURP was moved to ORE project in

the form of www.renderfarm.fi web service.

This thesis focuses on creation of a short animation for promotion

purposes for the ORE project. It approaches the subject from three

different points of view.

It firstly focuses on the creation of the animation from the traditional

modeling and animation point of view (chapters 2 and 3). After that,

attention is given to how the project was rendered using this new

service and how the service in itself works (chapter 4).

8

Finally it discusses the social side of this rendering rendering

platform. Also included in this part is a small questionnaire about

interest in this kind of communal creativity.

9

2 Designing and Creating the Character

2.1 Initial Sketching and Ideas for Animation

The initial concept of the character was discussed a couple of times

with artist Antti Varila and project manager Julius Tuomisto at the

beginning of autumn 2008. A humanoid like alien character was

agreed upon and initial sketches were made by Varila. Based on the

first sketch seen in picture 1, another sketch was made by Varila,

seen in picture 2. The second sketch had had a front and a side view

and was to be the basis of the modeling. Different ideas were about

animations were planned from this point on. The mascot was named

Ortho from the word orthogonal.

Picture 1: Original sketch for the mascot[1]

10

Picture 2: From Sketch to Model [2]

The finished product would be a short animation to be used for

promotion of the service. Part of this promotion is also the openness

of this animation: anyone can get the animation and the production

files and start creating their own projects based on those. The

animation also acts as a showcase for www.renderfarm.fi.

2.2 Modeling Ortho

While modeling the character Tony Mullen's Introducing Character

Animation With Blender was co,nsulted frequently. In his book Mullen

shows how he models, textures and animates a superhero character

step by step. Workflow and basic modeling principles of this project

were mainly taken from Mullen's book and from personal experience

from previous projects. [3]

11

Rough modeling of the shape was primarily done using a technique

called box modeling. In box modeling the work is begun with a simple

cube and geometry is gradually added to it to achieve the desired

shape. It helps to keep the geometry of the object being modeled

relatively simple and malleable which is important in character

modeling. This is especially true when there will be complex

animation (such as bipedal walking).

Starting the modeling from a cube can be done in two different ways.

One way of doing this is by extruding more geometry to the object

and the other one is dividing the cube to smaller pieces and shaping

those like in picture 3. Both methods were used in this production.

Picture 3: Subdividing the cube

12

Blender has a wide variety of modifiers to help the modeling process

which were also frequently used [4]. The most important of these was

a mirror modifier, which enables mirrored modeling essential when

modeling symmetrical shapes, such as most creatures [4]. Mirror

modifier was set to reflect z-axis, so that Ortho's left side was created

automatically while the right side was modeled.

Modeling was based on Varila's second sketch [2], which included

front and side view. The sketch was placed on the background in

Blender and used as a reference when modeling. Mullen [3] starts his

modeling from the legs; in the case of Ortho it was started from the

most defining characteristic, his head. Geometry was added to the

cube by loop cuts and the shape was gradually defined to resemble

the original sketch. During the construction of face, special focus was

given to the complexity of the mesh as the goal was to keep it as

simple as possible to ease the animation of the facial expressions.

After finishing the head torso, hands, legs, boots and collar were

modeled in a similar manner. Starting from a box and refining the

shape until it matched the original sketch or was otherwise deemed

as ready. For usability reasons all these meshes were kept separate

until they were ready and only then joined. Having different pieces

separate allowed keeping them in separate layers, which meant that

it was possible to hide and show them as need be, allowing easy

access and visibility from all directions to the relevant part that was

being modeled.

13

After the shape of the head was done, focus was turned to the eyes.

Because of the planned close up scene, they needed to be as

expressive as possible. A lot of the details and ideas for textures were

taken from Building a Better Eyeball Tutorial by Jon McKay [5]. Since

the current animation didn't call for animating the pupils, the vertex

keys to handle pupil dilation from McKay's tutorial were not made.

However, they could be easily implemented later on if necessary.

While the eyes received a lot of detail, the eyelids were not modeled

due to time constraints. In retrospect, this might have been a poor

decision since the eyelids give a lot of expressive detail to the face.

And adding anything to finished model afterwards can be

cumbersome.

In addition to mirroring subdivision, a surface modifier was also

extensively used throughout the process. Sub surface modifier divides

to surface in such a manner that it gives it a more rounder and

natural shape. This can be seen in picture 4 where cube (in the upper

left corner) is given five levels of subdivision.

14

Sub surface modifier divides the current faces into two or more pieces

giving more detail and smoother result. While modeling two levels of

subdivision were used to give a general idea how the modifier would

affect the final work. In the final rendered version three levels of

subdivision were used to ensure that no jagged edges or rough

shapes were present in the models. The subdividing method utilized

was Catmull-Clark [7] which gives a natural and smooth result suited

for organic modeling.

Without the sub surface modifier the character of Ortho uses little less

than 4,000 vertices (see left side of picture 5) and with two levels of

sub surfing about 60,000 vertices (right side of picture 5). Vertex

count rises up to to 240,000, with three levels of sub surfing, which is

used while rendering. While the increase in time to render is

considerable (it doubles or triples the time in a simple scene with only

monkey primitive found in Blender in the scene with two lamps) when

so much more geometry is added to the model.

15

However, the amount of geometry does make a noticeable difference

in the outcome in terms of smoothness, as can be seen on the picture

5. On the left side of the picture is the textured and wireframe

versions of the character without any subsurfing which look more

jagged and edgy than the subsurfaced versions on the right side.

2.3 Modeling Everything Else

Even though Ortho was definitely the most important part of the

animation it also had other elements (see chapter 3.1 for script

details to see how these models where used). A visually important

part of the animation was of course the ORE logo, which was done

before the animation was started. It is just a simple text converted

into meshes.

Another element in the animation was the opening scene. The

animation starts with theater curtains being down and a bunch of

monkey, seen in picture 6, silhouettes as an audience.

16

The audience in front of the curtains were originally supposed to be

drawn by hand, acting as a metaphorical link between 2D and 3D

world. This would have been done by scanning the original drawing

(the 2D part of the metaphor) and placing it in front of the 3D

animated scene. Due to time constraints of the artist that was meant

to do them this idea was scrapped and a new idea was chosen.

The audience in the final product consists of Blender's mascot

monkey Suzanne, featured in picture 6. Blender has a built in monkey

primitive of Suzanne, so the heads of the audience did not require

any actual modeling at all. The tails were simply extruded cylinders,

with narrowing at one end.

Accessories were originally planned for Ortho but these were skipped

due to lack of time. Among some of the things that were planned

Picture 6: Suzanne

17

were cloak, laser gun, some sort of spaceship, and a space helmet. In

the end none of these were required for the actual animation, even

though different ideas of using them in future short animations were

bounced around.

Only space helmet was actually modeled but it was not used in the

final animation. The helmet used a simple cube mesh which was split

up five times to ensure enough vertices so that a smooth and round

shape would be possible. After that a lattice modifier was added to it

to get the desired shape (which would resemble shape of Otho's

head) as easily as possible.

Even though modeling space ships were discussed, they were not

designed or modeled. However, a space ship from an unrelated

project was used in a promotional poster for a related flash game

project in which Ortho was starring as well, see chapter 5.4 for

details.

18

2.4 Texturing

The visual look planned for Ortho was a mixture of looking friendly

and yet 'edgy'. Also, most of the desired visual look was achieved

during the modeling phase which meant that most of the used

textures were fairly simple and contained no special tricks. Texturing

is the general process of applying different surfaces on top of the

modeled geometry. [8]

Simplicity holds true for the cloth textures used in Ortho's pants and

shirt. They have no ray tracing features or other special techniques,

they are just Blender's basic textures with fairly high specular value

to give shiny 'space age' look.

Because the large role of eyes and eye movement in the closeup

scene they were formed with four different objects with each of them

having their own material. The objects (and materials) are cornea,

veins, pupil, and iris. Most of these are just normal materials, but iris

uses procedurally created textures as a basis for the uneven look. Iris-

like look is achieved by creating a texture with musgrave algorithm

shown in picture 7. This was then mapped on to the eye with blend-

type texture to get a smooth fading effect to the iris.

19

Ortho's skin in head and hands also utilizes more complicated

materials. They use advanced light scattering method called

subsurface scattering which tries to mimic the behavior of soft and

smooth surfaces typically found in organic objects (such as skins,

fruits, etc). These surfaces typically let some light through them

which then bounces inside the object and finally scatters out at some

angle. Subsurface scattering gives the material soft and natural look,

an effect which can be hard to achieve using traditional shading

methods. Blender's Subsurface scattering [9] is based on Henrik

Wann Jensen's and Juan Buhler's paper "A Rapid Hierarchical

Rendering Technique for Translucent Materials" [10] which was

presented at ACM SIGGRAPH.

This method is based on two separate passes. First, the irradiance is

calculated in certain points (points are found by Turk's point repulsion

algorithm [10]). On the second pass the SSS shader is used instead

of the normal light one - brightness of a point is based on its

neighbors brightness.

Because the curtain was a late addition and not originally planned

readymade material was used for the curtain's rope and curtain in

itself uses a basic material created for it. Material for the rope was

taken from Blender Open Material Repository [11] and it is a fairly

simple gold material without textures and reflection with ray tracing.

20

2.5 Rigging and Skinning

In order to animate something with more complexity and fluidity than

simply having object's location, rotation or size differ more advanced

techniques are called for. Making a skeleton to a 3D-character that

allows movement of different limbs and appendixes is called rigging.

Most of Ortho's rig is based on Mullen's [3] book. The only exception

to this is the foot rig which is based on a different tutorial [12]. The

created rig proved to be very handy and easy to work with when

creating the walk cycle and rest of the animations.

The process of actually attaching bones of a rig to specific regions of

model is called skinning. In Blender this can be done in a couple of

ways. The simplest one is to select vertices by hand and create vertex

groups from them and attach them to the desired bone. This

technique was used mainly on the head where all of the head were

require to move using a single bone (for instance to turn the head).

A more advanced technique of weight painting [13] was used for the

rest of the bones. In weight paint mode different bones were selected

and after that by painting with mouse cursor the desired areas of

movement where chosen. The advantage of weight painting is that

there can be vertices of differing weights near joints or other areas

where complex deformations happen. This means that near joints

vertices move a little when the bone connected to them is moved, but

not as much as the vertices which are further away from joints. This is

a crude way to mimic muscle movement in the character but

21

compared to creating vertex groups by hand it is very efficient. No

actual muscle or fat deformations were used in anything in the

animation.

In picture 8 Ortho's leg and related weight map is created by painting.

Blue areas mean that no deformation will happen when current bone

is moved. Green areas deform slightly when the bone in question is

moved and red areas move completely with the bone (unless there

are other constraints and bones controlling those specific vertices).

The weights of the vertices range from 0 to 1.000 and the colored

weight paint map is simply a representation of that.

22

3 Creating Animation

3.1 Basic Script

Due to the relative complexity of the rig and the walk cycle of

bipedals the actions chosen for the animation were fairly simple and

straightforward to implement. The actual script and timeline

developed itself fairly organically once the original of the animation

idea was agreed upon.

Basic script, depicted by screenshots on picture 9, is that the

animation opens with theater curtains with silhouette of audience in

front of them. Curtains are pulled up and the main scene is revealed.

Picture 9: Screenshots from The Final Animation

23

In the scene there is Ortho pushing O from ORE-logo to its place. He

notices that curtains are already up and he is late so he glances at

the audience and then hurries to put the O in its place. After that he

shows the thumbs up and the show can begin. Finally the small text

explaining the meaning of ORE drops down from the sky in a smooth

manner.

Several different techniques for animating were used. The simplest

ones were transformations of location and rotation. More advanced

techniques involved shape keys for the facial expressions and a full

bipedal rig for movement of the main character.

3.2 Curtains

The ability to simulate clothes and cloth-like movement is a hard

problem to solve and several years of hard work was put into

development of cloth simulation in Blender. It seems that Blender is

the first free 3D software suite to add cloth simulation to its tools,

which happened in version 2.46. [14]

One way of simulating cloth is to create it out of of masses (points)

and then connect them to each other via springs. Blender's cloth

algorithm is based on Xavier Provot's [15] method of calculating the

deformations. In this method, additional calculation is performed in

order to ensure that the cloth doesn't become super-elastic, creating

a fabric that behaves like a sheet of rubber. This is done by adding

additional stiffness to the springs, as shown in picture 10.

24

Lengths of all the springs are noted down in the beginning of

simulation and then recalculated in each frame. Values are given how

much springs are allowed to stretch and contract. If the springs

exceed the given stretching values (which would lead to rubber-like

behavior), they are recalculated with their neighbors so that offending

lengths are corrected. In relatively stiff cloths such as cotton, the

stretching is usually lower than 10 per cent of the original length [15].

The curtains in the animation were simulated with Blender's cotton

preset which allows 15 per cent of stretching, rest of the parameters

were as seen in picture 10.

The animation starts with theater curtains being down and pulled up.

Cloth-like movement of the curtains was done with a cloth-modifier.

Some additional movement was added with a wave-modifier. Thea

ctual lifting of the curtains was done with just two simple shape keys,

in the first one the curtains are in a rest position (starting position)

and in the other half a dozen of vertices in the bottom of the curtain

were moved up above the rest of the curtain. Keys were added for the

two shapes to the start and the end of the 100 frame animation. With

the start and end frames being in place the only needed user

interaction for the animation is to just start the calculation process.

Picture 10: Cloth parameters

25

There are many different tools in Blender which require computation

before the actual result of these is visible. Usually these tools have

something to do with physical simulation or particle systems. This

process of calculating some animation with a given algorithm (be it

simulation for cloth or water movement, or how particles behave in a

particle system) is called baking in Blender [16].

Baking process means that Blender will calculate the different steps

for the cloth to get from the starting position to the end position,

taking all the modifiers into account. Baking creates number of small

files on the computer it is run on that contain shapes of vertices or

similar information that changes in the animation of the simulation.

Using modifiers and shape keys in this manner really simplifies the

animation process and takes the workload from human animator to

the computer. From the user side the "animating" only consisted of

setting the parameters for the start of the animation as seen on

picture 11.

The curtains were done in a separate .blend-file to keep the scenes as

simple as possible. Everything in that is completely separate from the

main scene, most notably including the lighting which was specifically

to the curtains. The lighting of the Ortho and logo was done in the

main file. Once the curtains were rendered to stack of images they

were put on top of the animation with the sequence editor in blender.

26

The bobbing and tilting monkey head (seen in picture 11) animations

at the start were done with simple location and rotation changes. The

tails were animated by very simple armatures which consisted of

chain of similar bones all linked to previous one and one inverse

kinematic (IK) constraint at the tip of the tail [3, 130]. The IK

constraint was used to achieve natural looking curving of the tail in a

way that was not time consuming.

3.3 Actions of Ortho

Movements of Ortho were divided into five separate actions: walk,

faster walk, turning at the end, pushing and glance in the middle of

the animation. These actions were edited in Blender's Action Editor

and put together with Non-Linear-Animation tool (NLA), which was

Picture 11: Start parameters for the curtains

27

added in Blender version 2.40 [17]. Interface and the different actions

used are seen in picture 12. NLA editor allows easy editing for

different actions and their timings. It also makes it possible to blend

together two actions that are happening at the same time.

The most visible and important action is the walking (depicted by first

three pink bars in picture 12), which was made using a technique of

creating the movements of the legs and feet while the character is

actually standing still and only afterwards adding actual movement of

the character. This method is generally used with walk animations,

regardless of the used software suite. The motion forward in Blender

is controlled by a separate bone called the stride bone [18], which in

Ortho's case is his root bone. Stride bone defines how much the

character moves forward in one step of one foot.

Animating a walk cycle is usually done by finding four key poses for

the walk, as seen in picture 13, and then adjusting the motion paths

between them. This leads to animation where the character is walking

in one place, like on a conveyor belt. After these poses are done the

actual movement in the 3D world is added to the character. The

Picture 12: Non-Linear Aniation tool

28

position can be controlled by a curve that the character follows, or as

was done in this case a stride bone. Blender's stride bone feature

calculates the distance traveled by measuring how much a certain

bone is moving. In other words, how long is one stride or step of the

character. [19]

Picture 13: Four key poses of walking [19]

The four basic poses are called contact, recoil, passing, and high-point

as seen in picture 13. Ortho was first positioned to the contact pose

and the rotations and locations of the bones were saved. After this,

the bones were positioned in the recoil pose and the rotations and

locations were once again saved. This resulted in a very crude

walking animation which was further refined by adding more detail to

the movement between passing pose (number 3 in picture 13) and

high-point pose (number 4 in picture 13). Ortho can be seen in the

poses in picture 14.

29

Picture 14: Ortho in walking poses

At this point Ortho was walking on a conveyor belt, not moving

forward at all. The poses in picture 14 differ from the poses in picture

13 because the hands do not follow the traditional walk poses

because they are already positioned in the pushing movement

required in the animation

To get Ortho actually moving forward in the 3D space, a stride bone

was added which moves between contact and recoil pose the

distance that Ortho travels. When a bone has been designed as a

stride bone (or stride root) it actually moves the character at the

same time. Walk cycle was then further refined by varying the speed

of the stride bone, since the speed of a bipedal doesn't stay the same

during one step. Motion is faster near and during the contact pose

and then slower on recoil. This gives the walking animation a more

lifelike feel as opposed to robotic walk in which the character moves

in a constant speed and creates the impression of flowing forward.

30

In total, five different actions were used to achieve all that was

desired. Two of these were walks, the first walk is used in the

beginning when Ortho pushes the O slowly forward. Latter walk is

used after glance-action, this walk is modified from the original one. It

was made faster by shortening its duration and adjusting the spine so

that it would be leaning more forwards, creating the impression of

speed and urgency.

Glance in between these two walks is simply a turn of the head to

look towards the audience shown in the close up part of the

animation. It does not involve forward moving, so only the neck and

head bones needed animating. In addition to those, shape keys (see

chapter 3.5) were used at this point to create different facial

expressions.

Last action in the animation is the turning when Ortho and the O

reach their destination. One more action was used during the two

different walks. It was an action for pushing and in that only the

hands were positioned forward and a slight looping pushing motion

was added.

3.4 IPO-Based Animations

Word IPO comes from interpolation which means interpolating the

movement in the animation between two or more key frames. Key

frames are frames where the objects and parameters of everything

are set by the animators. They can occur every frame or every

31

hundred or thousand frame. The movement of the objects and the

changes in parameters in other frames than key frames are

interpolated from the key frames. So the animated parameters will

gradually change from previous key frame to the next one to fulfill the

start and end parameters. This is illustrated in picture 15 below. [3,

242-243]

Picture 15: Interpolation curve

Simple IPO-curve can be seen in picture 15 where the yellow line is

the actual IPO-curve. Y-axis describes the amount of movement,

which is about 1.5 blender units. X-axis describes the time of the

animation in frames and the green line in the center is the play head

currently in frame 220. Only the LocZ IPO was used in this, which

describes the location of the object in z-dimension. The value of the

location is shrinking as the time progresses forward, which means

that the object is falling. The following picture (picture 16) illustrates

the way the change happens in time.

32

There are three different interpolation methods for curves in Blender:

constant, linear, and bezier seen in picture 16 [3, 252-253]. Bezier

interpolation was used in most of the IPO-animations, which means

that the objects accelerate and decelerate faster in the start and end

of the sequence. This gives them smooth movement, as opposed to

linear interpolation which would mean that the speed of the object

remains the same during the whole duration. This technique gives an

especially clunky result when the letter is at the end of the animation.

Rolling of the big O in the logo was keyed by hand after Ortho's

actions were done. The earlier method of trying to copy the IPO curve

of the root bone in Ortho's walk action didn not work well and the

movement looked choppy and was hard to sync. Keying all the

movements by hand means that there are a lot of key frames and the

further adjustments in the animation were cumbersome to do. In

retrospective, some sort of parenting of O to Ortho's hand bones

would have been more ideal.

Picture 16: Interpolation modes

33

3.5 Shape Keys

At the final stages when an additional camera was added close to

Ortho's face it created a need for facial expressions. These were

carried out by using shape keys [3, 188]. Different expressions for the

face were created and changes in these were then animated by

keying different expressions (shapes) to certain times. Three different

expressions were used, one which is the basis for the other two, in

other words, the normal expression. Actual facial expressions were

the surprised look when he glances at the audience and the smile

Ortho gives once he gets the O in place.

Shape keys are based on vertex transformation. In the basis key

vertices are in the same position as they were modeled in. Creating a

new shape key means moving the vertices into a new position and

saving that as the new expression. One limitation of using vertex keys

is that once they are added, you can't add or remove vertices or

some unexpected results may happen. Since the need for vertex

keys developed so late in the production process, the pitfall of doing

them too early and having to do them again after some remodeling

was avoided. [3, 188-198]

Ready expressions are animated by adding values on certain frames.

This produces regular blender IPO-curves which can then be refined to

suit the animation. One particular advantage of shape keys is that

they can be mixed freely. So a character can have one expression, for

instance, raising eyebrows with value of 0.5 which means half way

between not having that expression at all and having the full

expression. And at the same time there can be another expression

34

either controlling the eyelids or some other part of the face

altogether. [3, 192]

An alternative method of animating the facial features would have

been to use actual bones to control the expressions directly or to

have the bones control the shapes. [3, 195-197] While this would

allow more detailed expressions and easier handling during lengthy

animations it was not used because the longer setup time and the

questionable advantages in short animations.

3.6 Compositing in Blender

Contrary to most 3D modeling softwares, Blender contains a

sequence editor which has all the necessary tools for basic video

editing. It also has more advanced features with which more complex

effects can be achieved. Due to the sequence editors similar fast and

simple workflow, the final editing of the animation also happened in

Blender. Picture 17 presents the sequence view in Blender.

Picture 17: Different animation strips

35

Different stacks of images which were different parts of the

animation, were put together in different video channels and mixed

using alpha under meta strip, which stacks images on top of each

other using the alpha channel [20]. This allows combining, for

instance, of the curtains and the main scene, which were rendered

separately.

The final animation uses three stacks of images (image sequences,

purple in picture 17) and 2 meta strips (red and yellow in picture 17).

Another meta strip that was used was cross, which simply crosses the

the ending frame of the animation to white, giving the fade to white

effect.

36

4 ORE, BOINC, and BURP — The Technical Side

4.1 Idea of Distributed Computing

Distributed computing means splitting tasks which require a lot of

time to compute on one computer (even if that computer happens to

be a super computer) to smaller tasks which are then carried out by a

large number of "normal" computers. This is a variation of an older

computation method called parallel computing. Because Internet was

readily available by the time first distributed computing project

started, it was a natural way to transfer the work units. It is worth

noting that distributed computing is only suitable when high latency is

allowed, in other words, when a task can easily be split up in such a

way that the computations are not dependent on each other. [21]

A concept related to distributed computing is cloud computing (the

cloud in picture 18), but they do not mean exactly the same thing. As

a term cloud computing, where the cloud refers to the general

metaphor for the Internet as a cloud, still lacks a clear and concise

definition, but many define it loosely as some kind of utility or service

computing that happens outside of your firewall. In contrast with

distributed computing where the computing happens in your own

computer. But since there is no clear definition, sometimes

distributed computing is included in the cloud computing. [22]

37

Distributed computing was first popularized by SETI@home project,

which analyzes radio signals from space in hopes of finding

extraterrestrial life or something else of interest. Their public website

was launched in 1999, and they showcased that distributed

computing works and caught the imagination of the general public.

Sharing the computational work load in this manner opens up new

possibilities for all kinds of tasks and problems which require such

power to compute. [24]

Traditionally distributed computing has only been about science and

ORE seeks to remedy to this. Rendering images for science and

entertainment has long been bound by the computing power

available and time constraints. ORE-project aims to solve this by

offering the world of distributed computing to the field of culture (see

chapter 5).

Picture 18: Cloud computing [23]

38

4.2 History of BURP and Blender

Blender is a free 3D modeling software that is licensed under GPL. It

is used by artists to create 3D images and animations for all intents

and purposes ranging from simple hobbyists doing projects for their

own entertainment to professionals in different fields, such as movies

or architecture. Blender started its life as a closed source modeling

tool for a Dutch animation studio NeoGeo, in 1998 Blender's main

creator Ton Roosendaal found a company called NaN to develop

Blender further. However, the company failed and after it went

bankrupt "Open Source Community" collectively gathered money

bought the rights for the source code with 100 000 Euros and

released the source under GPL [25].

BURP started when Danish Janus Kristensen got the idea of using

distributed computing to calculate animations which were slow to

render. It was originally suggested to him that this was impossible to

do but the first adaptations to BOINC to render images were done in

less than a day. From here the development really started and soon

burp.boinc.dk domain was reserved for the project [26]. The

development effort from burp.boinc.dk has been transferred to

www.renderfarm.fi but BURP still lives a separate life in

http://burp.rederfarming.net [27].

Other software suites also support some kind of shared rendering,

though these are usually renderfarms that one has to create for this

particular purpose, usually called network rendering. One example of

network rendering would be Autodesk's Maya software which

39

supports network rendering in three different ways, either through

rendering with Maya or rendering with mental ray (a separate

rendering software). [28]

4.3 Evolution to BOINC and How It Works

BOINC is divided into two separate programs – server and client.

Client-side of BOINC is fairly simple. Installing constitutes from

downloading a program (BOINC client), installing it, and choosing to

which projects to contribute your spare CPU cycles. When the client is

installed and connected to a project, it downloads work units

(commonly referred to as WUs) and starts computing results from

them when the computer is idle. When work units are complete, the

client sends them back to the server to be verified and requests for

more work. [29]

Running a BOINC project means running a BOINC server which

requires a little more technical knowledge. Theoretically, any

application that requires computing power can be adapted to use

BOINC. If the source code of the application is available it eases the

integration with BOINC, as was the case with Blender. If the source

code is not accessible, there is a BOINC-wrapper which can be used,

and which then handles the splitting the jobs to work units. [29]

In the case of BURP, Blender is used to render the animations on the

client machines. The blender in question has been modified a little to

accommodate some special needs of BURP. The modified Blender is

40

sent automatically via the BOINC client and users do not need to

concern themselves of keeping it updated. Modifications to Blender

are fairly simple, most importantly there are added hooks in Blender

so BURP can ask how the rendering is progressing. In addition, some

of the Blender's error reporting features have been modified. In case

of Blender crashing it does not show anything to user, but logs it in

the BURP files and the logs are sent to the BURP server where an

administrator can take a look what is happening. The process is

illustrated in the following picture. [30]

Picture 19: Overview of BOINC architecture[31]

41

Server side of BOINC is divided into four different parts: the feeder,

the scheduler, the validator, and the assimilator. These parts are

inside the green box in picture 19. Feeder takes work from the

database and distributes it in memory. Scheduler takes work units

provided by the feeder and sends them to clients that are requesting

more work. It also tries to match the work units to clients that best

suit them (more powerful clients get work units that take longer to

calculate). Feeder and scheduler are part of the scheduling servers on

picture 19. [31]

The validator, BOINC Back-end Interface in picture 19, takes results

for a single work unit which are validated. Each work unit is calculated

multiple times and then they are validated against each other to see

if they match. On a normal BOINC project they are easily checked for

binary compatibility. On BURP, however, results of the work units can

differ a bit and this is allowed. Validator checks color of each pixel in

the image and small differences are allowed. These differences, in

theory at least, are too small for human eye to notice, they are

caused by differences in the machines and operating systems that

are participating in the project.

Last part of the BOINC-chain is the assimilator which takes results

that have been validated by the validator and moves them out of

BOINC and into the BURP storage (Moving from BOINC Back-end

Interface to Project Back-end and to Project Science Database in

picture 19). After they have been moved there, additional video

encoding may happen and then they are moved to their final

destination, which in the case of ORE is the web server.

42

Downloaded work units are further divided in to parts by Blender and

rendered in the minimum part size (100x100 parts), because only

time Blender can update the progress is just after it finishes a part.

[30]

4.4 The Problem of Parallelization

Animation itself was rendered with the ORE service. The process was

the same as with any other project that would be rendered with ORE.

Firstly you need to register your account at www.renderfarm.fi after

that it is just a matter of submitting the file to the site. Once the site

administrator has accepted your work (for instance, that it conforms

to the laws and doesn't contain copyrighted material), it moves to the

rendering queue. Once every single work before that has been

completed, it will be rendered.

Due to restrictions of the ORE the opening scene with curtains could

not be rendered using it. This is because of the cloth simulation in the

curtains. ORE does not work with any of the physic simulations found

in Blender. The reason for this is that Blender calculates cache files

that are not contained in the .blend file in it self. If these simulations

were supported, every client machine participating in the rendering

would need to calculate the physic simulations again. Calculating

these simulations can be time consuming and it is unnecessary to

calculate them again with every client, especially since they are

always calculated in a single thread so multi-core processors are of no

help.

43

In normal animation the order in which the frames are rendered does

not depend from each other. In other words, it does not matter in

which order they are rendered so they can be rendered

simultaneously by different machines, which is the basic idea of ORE.

However, parallelization of physics simulations is a particularly

difficult problem because the result of the next frame is dependent of

the current one and can not be predicted. So in order to know the

shape of the mesh in cloth simulation in frame 50 you first need to

know the shape of the mesh in frame 49, and before that you need to

know it in frame 48 and so on.

Methods for parallel simulation of cloth have been presented, such as

Bender & Bayer (2008) on their paper about Parallel Simulation of

Inextensible Cloth [32]. They use a method of impulses instead of

mass spring systems. In this the mesh is split into strips that behave

independently and, thus, can be calculated in parallel [32]. This

method is suited for realtime cloth calculation, and it remains unclear

whether it can be calculated in high latency environment such as

distributed computing.

If complicated and time consuming cloth simulations need to be

rendered by using ORE, there are workarounds. These involve

calculating the simulation on one machine (and still only on one core)

and then baking the mesh. After this the animation of the cloth is

stored in the mesh and is the same as normal vertex key animation

and can then be rendered using distributed computing. This, however,

means that the simulation aspect is lost and the animation is "locked"

44

to the baked mesh and can not be further refined in the future,

except by going back to the original simulation and repeating the

process.

4.5 Rendering the Animation

The resolution of the final animation is 1920x1080 pixels. Discounting

all of the test renders and experiments, the total number of frames

that were rendered for the animation was 513. Out of these 513

frames 375 were used in the animation with the frame rate of 25

frames per seconds (FPS) giving 15 seconds of animation. The

difference between number of frames rendered and used can be

explained by two things. Firstly, more frames were rendered to give

more creative freedom in the final cutting and compositing state.

Secondly, some of the separate animation strips blend into each other

which means that it takes double the amount of rendered frames in

those parts.

Due the problem described in the previous chapter, not all of the

animation was rendered using the www.renderfarm.fi-service. Since

the first scene uses cloth-modifier to achieve the animation of the

curtains, it had to be rendered locally on a single computer. This part

of the animation contains 150 frames and it took approximately 5

minutes per frame to render. So, this sequence took a little over 12

hours to render.

45

Unfortunately, www.renderfarm.fi in its current state does not list how

long it took to render a single animation or how long it would have

taken to render on a single machine. Of course a single machine can

be considered as anything, but the example times provided here were

taken from test renders with a few years old desktop computer. The

two parts that were rendered with this service were the logo part and

the close up part. However, some idea of the timescales can be

achieved by examining the close up part of the animation.

A close up contains 85 frames in the final animation and 91 frames

were rendered for it. It took a little over a day to render these using

the service and on a single machine it takes over two hours average

to render a frame which means it would have taken over a week to

render this part. The single factor that raises rendering time is the

subsurface scattering used, which means that a separate pass has to

be done for each frame to calculate the scattering.

46

5 The Social Side — www.renderfarm.fi

5.1 Earlier Applications & Cultural Significance

David Anderson [33, p. 69] aptly wrote about the social side of

distributed computing: "For scientific computing, it could contribute

to a democratization of science: a research project that needs

massive supercomputing will have to explain its research to the

public and argue the merit of the research. This, I believe, is a

worthwhile goal and will be a significant accomplishment for

SETI@home even if no extraterrestrial signal is found."

Most of the distributed computing efforts focus in the field of science

and research. Ranging from researching cures for diseases, protein

folding, finding prime numbers, or analyzing noise from space for

signs of extraterrestrial intelligence [34]. ORE differs from all of these

projects because its main goal is to produce something of cultural -

not scientific - value, something which has no direct application in

the realm science. Of course, scientific image rendering can also be

done with ORE but it is mainly targeted for digital artists and

enthusiasts to enable them to create something which would not

otherwise be possible or feasible for them.

Some mentions of previous efforts to create distributed rendering

farm can be found but none of them seems to be active.

Distributedcomputing.info mentions two similar projects [34]. The first

47

one is RenderFarm@Home but it seems to be completely abandoned

in 2007. Any information related to project is hard to find and most

likely outdated. The official website of the project just informs that

“Renderfarm@Home indefinitely suspended”. [35]. The other one is

Internet Movie Project that seemed active at some point, but its home

page currently only show the text: “hello again POVers.” [36].

More than being just a technological achievement, ORE also tries to

build a community for artists, people interested in 3D animation, and

distributed computing. An important part of this is the website –

www.renderfarm.fi – which is the main outcome of ORE project, the

website is explored more in chapter 5.2 and communal side of the

project is examined in chapter 5.3 alongside with some results from a

small questionnaire regarding electronic communities, distributed

computing, and content creation.

5.2 Home of ORE

A very important aspect of ORE is its website www.renderfarm.fi. Of

course one of the most important functions of the website is

submitting work to be rendered with ORE but it also serves many

other functions. And the significance of the website for submitting

works will diminish, when Blender script is released and one can

submit works straight from Blender [37]. Already completed and

rendered animations can be seen in the gallery and it is possible to

rate them and discuss the works. Users can also participate in

discussion in the more general message forums. It is the general

meeting ground for both Blender and BOINC enthusiasts where

48

discussion about ORE, www.renderfarm.fi, 3D-graphics, distributed

computing, culture, and life in general happen. Picture 20 shows the

main gallery of the website.

The website is running with Drupal 6 content management system

and customized theme seen in the picture 20. Drupal can be

downloaded for free from http://www.drupal.org. BOINC itself has a

simple content management system in itself, but it lacks features by

modern standards. For instance, changes to user pages (or new users

etc.) do not happen instantaneously. Instead they are updated when a

specific task is run by the scheduler. As part of the ORE team, the

author's task was to check and accept animations to be rendered that

complied with the rules of the service.

Picture 20: www.renderfarm.fi [38]

49

Other important aspect was also being active in the forums and in the

community in general with writing blog posts and helping users install

ORE-clients via Internet Relay Chat (IRC). Two guides about how to

get ORE-client running on one's computer were written: one for

individuals and the other one for instance for schools with the

instructions to mass installations.

Integrating BOINC and Drupal has meant easier development of the

social side of the site which, one could argue, is as important as the

technical side. The social side of the website and integration with

Drupal is examined in more detail in Lauri Viitala's (2009) thesis [39].

In what appears to be a pure coincidence, the main BOINC project

also seeks to integrate with Drupal and leave the old content

management system behind. As of September 2009, there is a

conversion project going on in BOINC to integrate Drupal with BOINC.

This project is till on planning stage and no clear schedule is given.

[40]

5.3 Interest in Distributed Computing

A small questionnaire was given out at the end of one week Blender

course held at the Metropolia University of Applied Science. Among

the regular feedback and teacher evaluation, there were a couple of

questions about electronic communities, Creative commons and

distributed rendering. More specifically students were asked:

50

Each question had three answer options: Yes, No, or Maybe. In

addition to those questions, interested parties were asked to give

their email address to get an invite to www.renderfarm.fi. Relevant

questions and results are summarized in table 1.

Yes Maybe No

Do you plan to join an electronic

Blender community such as

Blender.org, Blenderartists.org or

Renderfarm.fi?

5 10 3

Would you be willing to license your

creative works under a Creative

Commons license?

8 10 0

Would you be willing to donate you

computer's processing power to do

publicly distributed rendering?

4 13 1

Table 1. Questionnaire results

18 students filled the questionnaire and the results were quite

interesting. Five answered yes to the first question about joining

electronic community and ten were maybe interested. However, ten

people left their email address to get their invite to

www.renderfarm.fi. Only three persons were not interested in

electronic communities at all. Similarly eight students were willing to

license their works under Creative Commons license and the rest

were maybe willing to do so.

51

On the subject of donating one's own computing power to distributed

rendering, only four answered yes and the majority of thirteen

answered maybe, leaving only one person not interested in sharing

his or her computing power. There seemed to be uncertainty o issues

such as how easy this sharing would be to the participant, which

could be a major factor in willingness to share resources and help in

distributed rendering. Even the simplest of setup or program

installation can be too much effort, if one is not particularly interested

in the topic.

Even though the sample was quite small and participants were

interested in 3D-modeling, it still shows promising amount of interest

in services like www.renderfarm.fi. Whether this will actually increase

the amount of amateur and small production 3D-animations in both

quality and quantity will remain to be seen.

5.4 Other Uses for Ortho

Since the model of the character Ortho was to be released under

Creative Commons license (even though it wasn't yet publicly

available), it was used for couple of other projects which were related

to ORE. The fist one of these happened before even the rig of the

character was ready and the pose of the character was quickly made

by just moving vertices to suitable places by hand.

Firstly the character was featured in the promotional material for the

”Digital / communal creativity” -seminar held in Laurea Leppävaara in

52

the Autumn of 2008. It was featured with the original ORE-logo in

posters and a bigger print of the face was also handed out to seminar

guests as well. Picture 21 shows another poster featuring Ortho.

Later on it was featured in a mini game Ortho Wars poster in picture

21. It was also created to promote ORE-service and

Picture 21: Poster for Ortho wars

53

www.renderfarm.fi. The poster also featured spaceships and moonlike

landscape which were taken from writer's previous projects and are

also licensed under Creative Commons.

54

6 Conclusions

The animation is the actual outcome of this thesis and a part of

writer's contribution to the ORE project. However, it may be that the

actual process of creating the animation and seeing and using ORE

for some real project might be more valuable than the actual end

result in itself. An important part of this project was this written

documentation, which gives detailed account of the process of

creating animation, and more specifically, an animation that contains

humanoids. In addition how to use ORE to enable higher resolution

rendering with higher amount of detail has been reported in detail in

this study.

The content of the animation was not completely set in stone from

the beginning, so naturally it evolved during the process. Even at the

very late stages, one camera was added and the actions refined. Also

the audience changed from drawn 2D idea to 3D animation. However,

the end result is close to what was originally planned.

As a field, distributed computing is not a new idea but its application

to the realm of art instead of science is fairly new. Even though

people are not that familiar with the concept, there seems to be

interest in it. This can be seen in the results of the questionnaire

presented in chapter 5.

Final animation contains 375 frames which give 15 seconds of

animation with 25 frames per second. The total number of rendered

55

frames (excluding all of the test renders), was 513. Rendering more

frames than necessary allowed more fluidity in cutting and

compositing phase and was necessary due to some parts fading into

each other.

With the spirit of the free and open tools and services used to create

this animation, the production files and the final animation is

released to be distributed freely according to Creative Commons

License. It can be used to create more promotional material for

www.renderfarm.fi or, alternatively in some completely unrelated

project. The animation and the related production files can be found

at: http://users.metropolia.fi/~lassiha/ore/

56

References

1 Varila A. Sketch for Ortho [digital drawing]. Leppävaara:
Laurea University of Applied Sciences; August 2008.

2 Varila A. Second sketch for Ortho [digital drawing].
Leppävaara: Laurea University of Applied Sciences;
August 2008.

3 Mullen T. Introducing character animation with Blender.
Indianapolis, In: Wiley Publishing, inc; 2007.

4 Blender Foundation. Modifier System. Release Logs /
Blender 2.40 [online]. Amsterdam, The Netherlands:
Blender Foundation
URL: http://www.blender.org/development/release-
logs/blender-240/modifier-system/. Accessed 10
November 2008.

5 Mckay J. Building a Better Eyeball [online].
URL:http://members.optusnet.com.au/
%7Ejmckay001/blender/Eyeball_Tutorial.pdf. Accessed 8
November 2008.

6 Wikipedia Foundation. Catmull-Clark subdivision surface
[digital image]. San Fransisco, CA: Wikipedia Foundation;
December 2006.
URL: http://en.wikipedia.org/wiki/File:Catmull-
Clark_subdivision_of_a_cube.svg. Accessed 20 January
2009.

7 Catmull E & Clark J. Recursively generated B-spline
surfaces on arbitrary topological meshes. Computer-Aided
Design 1978;10(6):350-355.

8 Hess R, editor. The Essential Blender- Guide to 3D
Creation with the Open Source Suite Blender. Amsterdam,
The Netherlands: Ton Roosendaal / Blender Foundation
Netherlands; 2007.

9 Blender Foundation. Subsurface Scattering. Release Logs /
Blender 244 [online]. Amsterdam, The Netherlands:
Blender Foundation
URL:http://www.blender.org/development/release-
logs/blender-244/subsurface-scattering/. Accessed 26
February 2009.

57

10 Jensen H W & Buhler J. A Rapid Hierarchical Rendering
Technique for Translucent Materials [online]. Proceedings
of SIGGRAPH 2002
URL: http://graphics.ucsd.edu/~henrik/papers/fast_bssrdf/
fast_bssrdf.pdf. Accessed 26 February 2009.

11 Gold material [Blender material file].
URL: http://www.blender-materials.org/index.php?
action=view&material=44-gold. Accessed 20 November
2008.

12 Tutorial: Foot Rig (without action constraint) [online].
URL: http://calvin.sdlfk.org/calvin/FootRig2/index.html.
Accessed 7 October 2008.

13 Blender Foundation. Weight Paint (Blender Manual).
Amsterdam, The Netherlands: Blender Foundation
URL: http://wiki.blender.org/index.php/
Doc:Manual/Modelling/Meshes/Weight_Paint. Accessed 13
October 2009.

14 Blender Foundation. Cloth Simulation (Blender Manual).
[online]. Amsterdam, The Netherlands: Blender
Foundation
URL: http://wiki.blender.org/index.php/
Doc:Manual/Physics/Clothes. Accessed 13 October 2009.

15 Provot X. Deformation Constraints in a Mass-Spring Model
to Describe Rigid Cloth Behavior [online]. Institut National
de Recherche en Informatique et Automatique (INRIA)
URL: http://www.-rocq.inria.fr/syntim/research/provot.
Accessed 20 January 2009.

16 Blender Foundation. Physics Caching and Baking. Release
Logs / Blender 2.46 [online]. Amsterdam, The
Netherlands: Blender Foundation.
URL: http://www.blender.rog/development/release-
logs/blender-246/physics-caching-and-baking/. Accessed
23 October 2009.

17 Blender Foundation. Action and NLA editor. Release Logs /
Blender 2.40 [online]. Amsterdam, The Netherlands:
Blender Foundation.
URL:<http://www.blender.org/development/release-
logs/blender-240/action-and-nla-editor/. Accessed 13
October 2009.

58

18 Blender Foundation. Advanced Stride support. Release
Logs / Blender 2.40 [online]. Amsterdam, The
Netherlands: Blender Foundation.
URL: http://www.blender.org/development/release-
logs/blender-240/advanced-stride-support/. Accessed 14
October 2009.

19 Blender Foundation. How to setup a walkcycle using NLA.
Blender Documentation Volume I – User Guide [online].
Amsterdam, The Netherlands: Blender Foundation.
URL: http://www.blender.org/documentation/htmlI/
x8053.html. Accessed 13 October 2008.

20 Crewind Technologies. How Does Alpha Channel Work?
[online]. Chennai, India: Crewind Technologies; 2009.
URL: http://www.icongalore.com/xp-icon-articles/alpha-
channel-explained.htm. Accessed 23 October 2009.

21 Godfrey B. A primer on distributed computing [online].
URL: http://www.bacchae.co.uk/docs/dist.html. Accessed
14 October 2009.

22 Knor E & Gruman G. What Cloud Computing Really Means
[online]. San Fransisco, CA: Infoworld; 7 April 2008.
URL: http://www.infoworld.com/d/cloud-computing/what-
cloud-computing-really-means-031. Accessed 12 October
2009.

23 Johnston S. Cloud Computing [digital image]. San
Fransisco, CA: Wikipedia Foundation; October 2009.
URL: http://en.wikipedia.org/wiki/
File:Cloud_computing.svg. Accessed 13 October 2009.

24 SETI@home Classic: In Memoriam [online]. California, CA:
University of California.
URL: http://setiathome.berkeley.edu/classic.php. Accessed
13 October 2009.

25 Blender Foundation. History [online]. Amsterdam, The
Netherlands: Blender Foundation.
URL: http://www.blender.org/blenderorg/blender-
foundation/history/. Accessed 14 December 2008.

26 Kristensen J. Internet distributed 3D rendering with
Blender [online]. 17 June 2004.
URL: http://blenderartists.org/forum/showthread.php?
t=25702. Accessed 10 January 2009.

59

27 BURP | RenderFarming.net. Homepage [online].
URL: http://burp.renderfarming.net. Accessed 14 October
2009.

28 Autodesk. Overview of retwork rendering [online].
Document). San Rafael, CA: Autodesk, Inc.
URL: http://download.autodesk.com/us/maya/2009help/
index.html?url=Network_rendering_Overview_of_
network_rendering_.htm,topicNumber=d0e583742.
Acessed 18 October 2009.

29 BOINC. How BOINC Works [online]. University of
California; October 2009.
URL: http://boinc.berkeley.edu/wiki/How_BOINC_works.
Accessed 15 Octobe 2009.

30 Kirstensen J [interview]. 19 February 2009.

31 Unofficial BOINC wiki. System Architecture [online].
October 2009.
URL: http://www.boinc-wiki.info/
BOINC_System_Architecture. Accessed 15 Octobe 2009.

32 Bender J & Bayer D. Parallel simulation of inextensible
cloth [online]. Karlsruhe, Germany: Institut für Betriebs-
und Dialogsysteme, Universität Karlsruhe; 2008. URL:
http://i31www.ira.uka.de/docs/VRIPhys08.pdf. Accessed
27 January 2008.

33 Anderson D. SETI@home. In: Oram A, editor. Peer-to-Peer:
Harnessing the Power of Disruptive Technologies.
Sebastopol, CA: O'Reilly; 2001.

34 Pearson Kirk. Active Projects [online]. Distributed
Computing.
URL: http://distributedcomputing.info/projects.html.
Accessed 14 October 2009.

35 RenderFarm@Home. Homepage [online].
URL: http://www.renderfarmathome.com.au. Accessed 14
October 2009.

36 Internet Movie Project. Home pag [online].
URL: http://www.imp.org. Accessed 14 October 2009.

60

37 Letwory N. ORE Uploader – r 67 [program]. Leppävaara:
Lauea University of Applied Science; 2009
URL: http://www.renderfarm.fi/page/uploader-beta.
Accessed 14 October 2009.

38 www.renderfarm.fi. Interface [digital image]. Leppävaara:
Laurea University of Applied Sciences; 2009. Captured on
11 October 2009.

39 Viitala, L. A more intriguing volunteer computing
experience through Drupal and social technology.
Leppävaara: Laurea Univesity of Applied Sciences; 2009.

40 BOINC. DrupalConversion [online]. University of California;
October 2009.
URL:
http://boinc.berkeley.edu/trac/wiki/DrupalConversion.
Accessed 15 October 2009.

