

Heng Song

Online Event Calendar Application

Department of Technology and Communication

2013

Keywords Java, Struts, Spring, Hibernate, MySql, Online Event Calendar

Application

VAASA UNIVERSITY OF APPLIED SCIENCES

Information Technology

ABSTRACT

Author Heng Song

Title Web Event Calendar Application

Year 2013

Language English

Pages 75

Name of Supervisor Ghodrat Moghadampour

Event Calendar is a J2EE application developed with SSH (Struts, Spring,

Hibernate) and mySql which basically is divided into two parts in terms of roles:

user and administrator.

For the user, it offers a view of current events by date and search function search

events by event properties (name, type, place, date .etc) as well. For administrator,

on the other hand, all the functions relative to the management of events and users

are available. In specific, administrator is able to add, delete, update, and query

the information of events and users.

The idea was to implement the application with given functions with SSH, a

combination of three frameworks which are widely used for J2EE projects in

industrial production around the last few years and up to now.

So far, all core functions as planed are developed and deployed successfully, the

progress of the project was most rewarding and generated an excellent experience

in programming.

3

ACKNOWLEDGEMENT

My best appreciation belongs to all the people who helped me and supported me

during my research and study progress. First of all, I would like to give my

greatest respect to dear supervisor Dr. Ghodrat Moghadampour, he guided me a

lot since the beginning of my thesis, from issuing topic, developing, and to the

end of deployment for the project. Not only his outstanding professional skills but

also a perseverance attitude to scientific research inspires me to overcome

obstacles from both technique and life.

Secondly, I would thank to Dr. Rapila Ritva who has worked hard on revising this

article and over the years as my language teacher.

At last, I must give my best appreciation to all the teachers and classmates during

the bachelor’s degree student career; they both brought me rich experience in life

and professional specialization.

4

CONTENTS

1 INTRODUCTION .. 7

2 TECHNOLOGY OVERVIEW ... 8

2.1 Struts Framework ... 8

2.2 Spring Framework .. 9

2.2.1 Spring Security ... 9

2.2.2 Spring Integration... 10

2.2.3 Spring Data .. 10

2.3 Hibernate Framework ... 12

3 APPLICATION DESCRIPTION... 13

3.1 Functional Description ... 13

3.1.1 Background .. 13

3.1.1.1 Log In .. 13

3.1.1.2 Change Password .. 14

3.1.1.3 Admin Management .. 14

3.1.1.4 Event Place Management .. 15

3.1.1.5 Event Type Management .. 15

3.1.1.6 Event Info Management .. 15

3.1.2 Foreground Public Pages.. 16

3.1.2.1 Search Event.. 17

3.1.2.2 View Events .. 17

3.2 Class Hierarchy .. 17

3.2.1 Controller Class Diagram ... 18

3.2.2 Model Class Diagram ... 19

5

3.2.3 View Class Diagram .. 21

3.3 Sequence Diagram .. 21

3.3.1 Event Management... 22

3.3.2 Admin Login .. 23

3.3.3 Search Event... 24

4 DATABASE AND GUI DESIGN ... 25

4.1 Database Design ... 25

4.2 GUI Design ... 26

4.2.1 Background .. 27

4.2.2 Foreground ... 30

5 IMPLEMENTATION .. 32

5.1 General Description .. 32

5.2 Implementation for GUI ... 32

5.2.1 Layout .. 32

5.2.2 Responsive Layout ... 33

5.2.3 Use of jQuery UI .. 33

5.3 Implementation of Functions .. 36

5.3.1 Integration of Struts, Spring, Hibernate 36

5.3.2 Event Management... 39

5.3.2.1 Add Event ... 42

5.3.2.2 Update Event ... 46

5.3.2.3 Delete/Group Delete Event ... 48

5.3.2.4 Query Event/Page Division ... 51

6

5.3.3 Administrator Login ... 57

5.3.4 Show Only Today’s Event ... 58

5.3.5 Search Function .. 59

5.3.6 Show Current Date, Weekday .. 61

6 TESTING ... 64

6.1 Test Login ... 64

6.2 Test Admin Management ... 65

6.3 Test Event Management ... 67

6.4 Test Search ... 69

6.5 Possible Improvements ... 71

7 CONCLUSIONS .. 72

7.1 Future Works .. 73

REFERENCES .. 74

7

1 INTRODUCTION

Since the blooming of electronic commerce J2EE applications have always had a

wide market in the field. However, Struts, Spring, Hibernate, these three

frameworks which always appear as a combination and be well-known as SSH,

has become one of the most frequently chosen technologies for J2EE projects. I

determined to seek for a career as a java programmer which somehow motivates

me a lot to develop a project based on the technology mentioned above.

Places like cinema, museum or theater they may need some fast and convenient

ways to show an event list with necessary event information which they are going

to hold. Online application---Event Calendar is exactly the key to meet the

requirements.

A background management platform and a foreground user interface have been

designed for Event Calendar. User-friendly is the priority target during the

development.

Administrator will be able to manage events and users by using management

platform. The user can view the events ordered by date as well as search event by

its properties on public pages.

8

2 TECHNOLOGY OVERVIEW

The core logic part of Event Calendar is developed with struts framework, spring

framework and hibernate framework while graphic design is based on the

application of Dreamweaver, Java Script, jQuery UI and Adobe Photoshop CS4.

MySql is chosen as the database for the project. Followings will be mainly a

general introduction to core frameworks in the web application.

2.1 Struts Framework

“The Apache Struts web framework is a free open-source solution for creating

Java web applications.” /1/

Web applications differ in terms of web page types------conventional websites

deliver only static pages while dynamic pages can interact with databases and

business logic engines to customize a response. /1/

Database code, page design code, and control flow code are sometimes

commingled in web applications based on Java server pages. In practice, it is

difficult to maintain larger applications unless these concerns are separated./1/

Model-View-Controller (MVC) architecture is one of ways to separate concerns

in a software application. The Model represents code of the business or database,

the View represents code of the page design, and the Controller represents the

code of navigation. The Struts framework is designed to help developers create

web applications that utilize a MVC architecture. /1/

“The framework provides three key components:

A “request” handler provided by the application developer that is mapped to a

standard URI./1/

A “response” handler that transfers control to another resource which completes

the response./1/

9

A tag library that helps developers creates interactive form-based applications

with server pages.”/1/

2.2 Spring Framework

The Spring Framework provides a comprehensive programming and configuration

model for J2EE applications regardless of platform. Infrastructural support at the

application level is a key element of Spring: focuses on the “plumbing” of

enterprise applications so that teams can focus on application-level business logic,

without unnecessary ties to specific deployment environments. /2/

Figure 1. Spring overview /2/

Spring is modular in design, individual parts such as the JDBC support or the core

container can be adopted incrementally. /2/

2.2.1 Spring Security

Figure 2. Spring security /3/

10

2.2.2 Spring Integration

The well-known Enterprise Integration Patterns supported by an extension of the

Spring programming model provided by Spring Integration. The primary goal of

Spring Integration is to provide a simple model for J2EE projects while separating

concerns which is essential for generating testable, maintainable code. /4/

2.2.3 Spring Data

Figure 3. Spring data

The following table describes features of Spring data projects, which covers a

large range of frequently used technologies in software industry.

Table 1. Spring data projects /5/

Category Sub-project Description

RelationalDatabases JPA Spring Data JPA – Simplifies the development

of creating a JPA-based data access layer

 JDBC

Extensions

Support for Oracle RAC, Advanced Queuing,

and Advanced datatypes. Support for

usingQueryDSL with JdbcTemplate.

Big Data ApacheHadoop The Apache Hadoop project is an open-source

implementation of frameworks for reliable,

scalable, distributed computing and data

11

storage.

Data-Grid GemFire Vmwarev Fabric Gem Fire is a distributed data

management platform providing dynamic

scalability, high performance, and

database-like persistence. It blends advanced

techniques like replication, partitioning,

data-aware routing, and continuous querying.

HTTP REST Spring Data REST – Perform CRUD

operations of your persistence model using

HTTP and Spring Data Repositories.

Key Value Stores Redis Redis is an open source, advanced key-value

store.

Document Stores MongoDB MongoDB is a scalable, high-performance,

open source, document-oriented database.

GraphDatabases Neo4j Neo4j is a graph database, a fully transactional

database that stores data structured as graphs.

Column Stores Hbase Apache Hbase is an open-source, distributed,

versioned, column-oriented store modeled

after Google’Bigtable. Hbase functionality is

part of the Spring for Apache Hadoop project.

Common

Infrastructure

Commons Provides shared infrastructure for use across

various data access projects. General support

for cross-databasepersistence is locatedhere

12

2.3 Hibernate Framework

“Hibernate is a powerful, high performance object/relational persistence and

query service for Java. It lets you develop persistent objects following common

Java idiom, including composition, association, inheritance, polymorphism, and

the Java collections framework. To allow a rapid build procedure, Hibernate

rejects the use of code generation or by tecode processing. Instead, runtime

reflection is used and SQL generation occurs at system startup time. It supports

Oracle, DB2, MySQL, PostgreSQL, Sybase, Interbase, Microsoft SQL Server,

Mckoi SQL, Progress, SAP DB, and HypersonicSQL.” /6/

Figure 4. Relational persistence for Java and .NET /7/

13

3 APPLICATION DESCRIPTION

Below a detailed description will be given of project, requirements, objectives and

constraints.

3.1 Functional Description

Event Calendar will be divided into two parts in terms of roles, background for

administrator and public pages for user. Functions corresponding to each role will

be introduced precisely in the followings.

3.1.1 Background

Figure 5. Use case diagram for administrator

3.1.1.1 Log In

Properties:

 Username

14

 Password

When connected to the background management platform url, a log in page

should be displayed and request username and password for administrator to view

management pages. Origin username and password is pre-set in database while

there is no registration for administrator.

3.1.1.2 Change Password

Properties:

 Username (Unchangeable)

 Password

Administrator can change the password when click the link “Change Password”

3.1.1.3 Admin Management

Admin properties

 Username

 Password

After click the link of “Admin Management”, user will have a view of admin list

which shows all administrators’ properties, the priority administrator can delete

roles by clicking the link in the end of each row or add administrator to the system

by clicking link “add” left down of the list. Group delete is available by clicking

the button left down of the list as well.

Two types of administrators are defined, system-admin who both has the authority

to manage administrators and events while event-admin can only manage the

events. The type of administrator can be set when located in add administrator

page.

15

3.1.1.4 Event Place Management

Place properties:

 ID

 Place Name

 Context

After click the link of “Event Place Query”, a list of event places will be displayed

that shows the properties of each place. Admin can update, delete places by

clicking the link in the end of each row or add places to the list by clicking link

“add” left down of the list. Group delete is available by clicking the button left

down of the list as well.

3.1.1.5 Event Type Management

Event Type properties:

 ID

 Type Name

 Context

After click the link of “Event Type Query”, a list of event types will be displayed

showing the properties of each event type. Admin can update, delete types by

clicking the link in the end of each row or add types to the list by clicking link

“add” left down of the list. Group delete is available by clicking the button left

down of the list as well.

3.1.1.6 Event Info Management

Event Info properties:

 ID

 EventName

16

 Image

 EventType

 Place

 StartDate

 EndDate

 Context

 Price

After click the link of “Event Info Query”, a list of events will be displayed

showing the properties of each event.

By clicking the name of a certain event will go to a separate page which shows

event detail. Admin can update, delete events by clicking the link in the end of

each row or add events to the list by clicking link “add” left down of the list.

Group delete is available by clicking the button left down of the list as well.

 Supplement description for add/update event

 Event Place is a property selectable from the places on event place list

 Event Type is a property selectable from the types on event type list

 StartDate and EndDate will be supported by a datepicker interface.

3.1.2 Foreground Public Pages

Figure 6. Use case diagram for user

17

3.1.2.1 Search Event

Event can be searched or group searched by following categories:

 Event Name

 Event Type

 Place

 Date

 Price range

 Event Place is a property selectable from the places on event place list

 Event Type is a property selectable from the types on event type list

 StartDate and EndDate will be supported by a datepicker interface.

After fill in the search information, click search button will forward to search

result page which shows event search result with event name and date range.

Click event name will go to event detail page shows full properties for the event.

3.1.2.2 View Events

Events is viewed by dates, there are mainly two table lists which Today’s Events

shows events runs on current day while the other table Later Events shows events

coming after current day. Click event name will forward to event detail page

however click event type or event place at event detail page will forward to type

detail and place detail pages as well.

3.2 Class Hierarchy

Event Calendar is a SSH project which makes full use of classical concept known

as MVC, short for model, view and controller. The inside structure will be

analyzed precisely in the followings.

18

3.2.1 Controller Class Diagram

Figure 7. Controller structure

Since five operation objects are defined, correspondingly five struts actions are

distributed to control the operation. Here we analyze the “eventAction” as

follows.

 initIndex():

Initialize object and parameter values for search form and event lists as well

as makes page division.

 initSave():

Initializeelement values needed in save() function.

 save():

Get form parameter values and construct object, then save it in database.

 findAll():

Query all object values in database

19

 findById():

Initialize selected object values, get ready for update object.

 update():

Get form parameter values except image and construct object, then save it in

database.

 initImg():

Initialize selected object’s image value, get ready for update object’s image

property.

 updateImg():

Get only form parameter values for image and construct object, then save it

in database.

 showDetail():

Show all properties of selected object and can update meanwhile.

 foreShowDetail():

Only show all properties of selected object.

 delete():

Delete selected object(s) from database.

As the figure shows, interfaces IEventInfoDAO, IEventTypeDAO, and

IEventPlaceDAO are used to implement functions in this action. In the following

model part, specific classes which implement these interfaces will be showed.

3.2.2 Model Class Diagram

In hibernate, POJO class and DAO (Data Access Objects) consist of model part.

20

Figure 8. Model structure

There are four POJO classes in this diagram: EventInfo, EventType, EventPlace

and SysAdmin, they define 4 entities in this project meanwhile build a mapping

with relative tables in database. As a consequence, each row of POJO attribute is

relative to corresponding attribute in tables (Object/Relational Mapping). In

addition, the entity constructors set and get functions relative to each certain

entity’s attributes are defined in POJO.

Four DAO in this diagram, they define functions implement the operations

oriented to the entities. DAO’s attribute refers to the attribute of their

corresponding POJO class. Interfaces used in controller part are implemented by

DAOs here as well.

21

3.2.3 View Class Diagram

Figure 9. Form class diagram

Forms in struts framework transfer jsp pages’ parameter values to the action

define in form’s attribute named “action” while set and get functions for each

parameter are defined in form class to implement the issue.

This diagram shows parameters of each form and the mapping between forms and

actions. Here the five actions are exactly the same actions defined in controller

part.

3.3 Sequence Diagram

Since eventInfo, eventPlace, eventType management has the same sequence logic,

here shows the sequence diagram of eventInfo management only, administrator’s

login and search sequence will be analyzed in this chapter as well.

22

3.3.1 Event Management

Figure 10. EventInfo management sequence diagram

Form transfers parameters’ values to corresponding functions in action through

form’s <action>tag, after action gets parameters’ values and construct object,

DAO will be called to complete database operation, at last action will forward to a

result feedback page.

23

3.3.2 Admin Login

Figure 11. Admin login sequence diagram

Form transfers administrator’s name and password to action, after action gets the

parameters’ values and construct object, a judge of whether username exist in

database will be done by DAO, if username exists, the password corresponding to

the username will have a comparison with input password, action will forward to

different return path based on the judge results.

24

3.3.3 Search Event

Figure 12. Search event sequence diagram

After action get parameters’ values from form and construct object, DAO will be

called to search event and return a list of events, then action will send this list to

result display page.

25

4 DATABASE AND GUI DESIGN

4.1 Database Design

MySql is chosen as the database, tables’ structures and attributes are as the same

as POJO classes in Figure 5. Model Structure shows.

Create table eventType(

eventTypeIDint AUTO_INCREMENT primary key,

eventTypeNamevarchar(50) not null,

contextvarchar(200)

);

alter table eventType

add CONSTRAINT eventTypeName_unique unique(eventTypeName);

create table place(

placeIDint AUTO_INCREMENT primary key,

placeNamevarchar(50) unique not null,

contextvarchar(200)

);

create table eventInfo(

25ventideint AUTO_INCREMENT primary key,

eventNamevarchar(50) not null,

imgvarchar(50) ,

img2varchar(50) ,

eventTypeIdint not null,

placeIdint not null,

startDate date not null,

endDate date not null,

contextvarchar(200) ,

pricevarchar(50)

26

);

ALTER TABLE `eventInfo`

DROP INDEX `eventName_unique`;

alter table eventInfo

alter price set default “0” ;

alter table eventInfo

add constraint FK_eventTypeId

FOREIGN KEY(eventTypeId) REFERENCES eventType(eventTypeID);

alter table eventInfo

add constraint FK_placeId

FOREIGN KEY(placeId) REFERENCES place(placeID);

create table sysadmin

(

idint AUTO_INCREMENT primary key ,

adminNamevarchar(20) not null ,

pwdvarchar(20) ,

adminTypeint not null

);

Snippet 1. Database design

The snippet above shows table constraints and primary/foreign key relationships.

In specific, for table eventInfo, it has two foreign keys, placeId and eventTypeId

for inner join query with table place and eventType.

4.2 GUI Design

Event Calendar’s graphic user interface design mainly depends on css style sheet

and java script (jQuery UI).

27

jQuery UI is a curated set of user interface interactions, effects, widgets, and

themes built on top of the jQuery JavaScript Library. Whether you're building

highly interactive web applications or you just need to add a date picker to a form

control, jQuery UI is the perfect choice. /8/

4.2.1 Background

 Admin Log In page

Figure 13. Login page

An application of jQuery UI “#dailog:ui-dialog”

28

 Home Page

Figure 14. Home page

Use of frame tag for JSP page, constructed by 3 frames: leftFrame, mainframe,

topFrame.

 Event Management Page

Figure 15. Event management page 1

29

Figure 16. Event management page2

Figure 17. Event management page3

Edited by css style sheet

30

 Date Picker

Figure 18. Date picker

Application of jQuery UI #datepicker.

Above is the general view of application’s UI style, pages relative to other objects

are similar as the above shows.

4.2.2 Foreground

Figure 19. Public page

31

Figure 20. Event detail

Figure 21. Search result

Make use of both jQuery UI and css file.

32

5 IMPLEMENTATION

5.1 General Description

Generally, implementation can be divided into UI implementation and functions

implementation. As mentioned above, UI mainly implemented by css and jQuery

UI based on JSP page, functions are implemented by the ways showed in class

diagrams and sequence diagrams. In the following, precise description will be

showed with analysis of code.

5.2 Implementation for GUI

5.2.1 Layout

<frameset rows="93,*" cols="*" frameborder="NO" border="0"

framespacing="0">

<frame name="topFrame" scrolling="NO"

 noresizesrc="${pageContext.request.contextPath}/background/top

.jsp" >

<frameset cols="180,*" frameborder="NO" border="0" framespacing="0"

rows="*">

<frame name="leftFrame"

 noresizescrolling="AUTO"src="${pageContext.request.contextPath

}/background/left.jsp">

<framename="mainFrame"src="${pageContext.request.contextPath}/back

ground/main.jsp">

</frameset>

</frameset>

Snippet 2. Layout structure

33

<frameset> tag defines display page into 3 frames, and set top.jsp shows at top

Frame, left.jsp shows at leftFrame, main.jsp shows at mainFrame.

5.2.2 Responsive Layout

<tr>

<td width="40"> </td>

<td class="wr4"

 width="120"><ahref="<%=request.getContextPath()%>/event

.do?method=findAll"target="mainFrame">EventInfo

Query</td>

</tr>

Snippet 3. Responsive layout

Above is only a fragment from codes for responsive layout however it’s a good

instance for showing how responsive pages display on target frame.

This code implements that responsive page of findAll function ineventAction

display on mainFrame.

Other responsive layout implemented as the same way as the above code shows.

5.2.3 Use of jQuery UI

There are several jQuery UI applications in GUI implementation, here gives one

of the applications: datepicker as an instance.

 Step 1: Import library and style sheet

<script

src="${pageContext.request.contextPath}/js/jquery/jquery-1.7.2.js"

></script>

<script

src="${pageContext.request.contextPath}/js/jquery/jquery.ui.core.j

s"></script>

34

<script

src="${pageContext.request.contextPath}/js/jquery/jquery.ui.widget

.js"></script>

<script

src="${pageContext.request.contextPath}/js/jquery/jquery.ui.datepi

cker.js"></script>

<link

 rel="stylesheet"href="${pageContext.request.contextPath}/js/jq

uery/jquery.ui.all.css">

<link rel="stylesheet"

href="${pageContext.request.contextPath}/js/jquery/demos.css">

Snippet 4. Import jQuery and css libry

 Step 2: Programfunctions

<script>

$(function() {

var dates = $("#from, #to").datepicker({ //set a mark for invoking

UI

defaultDate: "+1w",

changeMonth: true,

changeYear: true, //set whether year and month can be changed

numberOfMonths: 2, //control the number of date picker appeared

onSelect: function(selectedDate) {

var option = this.id == "from" ? "minDate" : "maxDate",

instance = $(this).data("datepicker"),

date = $.datepicker.parseDate(

instance.settings.dateFormat ||

$.datepicker._defaults.dateFormat,

selectedDate, instance.settings);

dates.not(this).datepicker("option", option, date);

}

});

35

});

</script>

Snippet 5. Datepicker function

Tips: output date format after the pick from datepicker can be edited in

jquery.ui.datepicker.js.

 Step 3: Call functions

<tr>

<td width="96" height="40" align="right">Date*</td>

<td height="40" colspan="3">From

<input type="text"

name="start" id="from">to //call the mark set in snippet5 #from

<input type="text"

//call the mark set in snippet5#to

name="end" id="to"> format: yyyy/mm/dd

</td>

</tr>

Snippet 6. Call jQuery UI example

After completing all the three steps above, when users click input ”from” or ”to”,

they will view datepicker and make agile operations for input date.

There is another several jQuery UIs despite datepicker, implemented in a similar

way.

36

5.3 Implementation of Functions

5.3.1 Integration of Struts, Spring, Hibernate

 Step 1: ImportSSHlibaries

Figure 22. Import libraries for SSH

MyEclipse offers graphic integration for SSH, right click on project name, after

select MyEclipse, a list of library will be showed, and then “Add Hibernate

Capabilities”, “Add Spring Capabilities”, “Add Struts Capabilities”. All necessary

libraries will be added to the project as the following shows.

37

Figure 23. View of libraries’ version

 Step 2: Build database connection

Figure 24. Hibernate configuration

MyEclipse offers GUI for hibernate’s configuration as well, select configuration

for MySql and necessary jars for support connection. Alternatively, this step can

be done when import hibernate’s jars.

 Step 3: Integrate Hibernate and Spring

Quite simple, in applicationContext.xml which generated automatically when

import spring library, create new DataSauce as following shows

//connect to database

38

<bean id="dataSource"

class="org.apache.commons.dbcp.BasicDataSource">

<property name="driverClassName"

value="com.mysql.jdbc.Driver">

</property>

<property name="url"

value="jdbc:mysql://mysql.cc.puv.fi:3306">

</property>

<property name="username" value="e0901028"></property>

<property name="password" value="mNETTJqqBSKX"></property>

</bean>

//mapping with hibernate pojo, control injection

<bean id="sessionFactory"

class="org.springframework.orm.hibernate3.LocalSessionFactoryBean"

>

<property name="configLocation"

value="classpath:hibernate.cfg.xml">

</property>

</bean>

Snippet 7. Integration of Spring and Hibernate

 Step 4: Integrate Spring and Struts

In struts-config.xml which generated automatically when import struts libraries,

input following code:

<controllerprocessorClass="org.springframework.web.struts.Delegati

ngRequestProcessor"></controller>

<message-resources parameter="com.henry.view.ApplicationResources"

/>

39

<plug-in

className="org.springframework.web.struts.ContextLoaderPlugIn">

<set-property

 property="contextConfigLocation"value="classpath:applicationCo

ntext.xml" />

</plug-in>

Snippet 8. Integration of Spring and Struts

Now SSH have been integrated successfully.

5.3.2 Event Management

Since event type, event place, and event management has the same hierarchy of

implementation, here only event management is analyzed as instance.

A dispatch action named “EventAction” is defined as controller for event

management, for navigating different functions in dispatch action, a “pointer”

need to be set in struts-config.xml, in addition, mapping between forms and

actions will be set at the same time.

 Step 1: Configure struts

<action

attribute="eventForm" //build mapping between view and controller

name="eventForm"

parameter="method"// set the “pointer”

path="/event"

scope="request"

type="com.henry.view.action.EventAction"

validate="false">

<set-property property="cancellable" value="false" />

40

//set responsive pages for functions in dispatch action

<forward name="index" path="/foreground/EventList.jsp" />

<forward name="save" path="/background/message.jsp" />

<forward name="findAllOK"

path="/background/eventInfo/eventList.jsp" />

<forward name="initImgOK"

path="/background/eventInfo/imgUpdate.jsp" />

<forward name="findById"

path="/background/eventInfo/eventUpdate.jsp" />

<forward name="initOK" path="/background/eventInfo/eventSave.jsp"

/>

<forward name="delete" path="/background/message.jsp" />

<forward name="foreShowDetail" path="/foreground/showDetail.jsp" />

<forward name="showDetail"

path="/background/eventInfo/showDetail.jsp" />

<forward name="updateOK" path="/background/eventInfo/updateOK.jsp"

/>

</action>

Snippet 9. Configure struts-config.xml

 Step 2: Generate POJO and Spring DAO

41

Figure 25. Generate POJO and Spring DAO

Hibernate Reverse Engineering will help to complete this procedure, necessary

modification need to be made in some functions of Spring DAO generated

automatically, detail code of DAO will be showed in the subsequent description.

 Step 3: Generate set functions of DAO used in dispatch action (controller)

public void setEventInfoDAO(IEventInfoDAO eventInfoDAO) {

this.eventInfoDAO = eventInfoDAO;

}

public void setEventTypeDAO(IEventTypeDAO eventTypeDAO) {

42

this.eventTypeDAO = eventTypeDAO;

}

public void setEventPlaceDAO(IEventPlaceDAO eventPlaceDAO) {

this.eventPlaceDAO = eventPlaceDAO;

}

Snippet 10. Generate set functions for DAO

In order to build mapping between controller and model layer which implements

Dependency Injection, set functions of DAO enable a reference in Spring

configure file appicationContext.xml

 Step 4: Set bean in Spring configure file.

<bean name="/event" class="com.henry.view.action.EventAction">

<property name="eventInfoDAO" ref="EventInfoDAO"></property>

<property name="eventTypeDAO" ref="EventTypeDAO"></property>

<property name="eventPlaceDAO" ref="PlaceDAO"></property>

</bean>

Snippet 11. Complete mapping between controller and model

Until now, preparation for implement functions is done.

5.3.2.1 Add Event

 Step 1: Initialize properties of event

Since event type and place will be selectable, their values needed to be gained

before forwarding to add event page.

43

<td class="wr4" width="120"><a

href="<%=request.getContextPath()%>/event.do?method=initSave"

target="mainFrame">Add EventInfo</td>

Here “method” is the “pointer” set in Snippet 9, this means invoke the function

“initSave” in dispatch action “eventAction”.

 Step 2: Function initSave

Public ActionForward initSave(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response){

List<EventType>eventTypes = eventTypeDAO.findAll();//query all

evenTypes

List<Place> places = eventPlaceDAO.findAll();//query all eventPlaces

request.setAttribute("eventTypes", eventTypes);

request.setAttribute("places", places);

returnmapping.findForward("initOK"); //forward to evnetSave.jsp set

in snippet9

}

Snippet 12. InitSave function

Get the values of places and event types in advance then forward to save page.

 Step 3:eventSave.jsp

<formmethod="post"id="register"action="<%=request.getContextPath()

%>/event.do?method=save" enctype="multipart/form-data"> //invoke

save function in eventAction, set form as uploading file form

<tr>

<td width="96" height="40" align="right">Event Type*</td>

<td height="40" colspan="3" >

<select name="eventTypeID" id="selectTypeId">

44

//get values transferred by action

<c:forEach items="${requestScope.eventTypes}" var="event">

<option

value="${event.eventTypeId}">${event.eventTypeName}</option>

</c:forEach>

</select>

</td>

</tr>

<tr>

<td width="96" height="40" align="right">Place*</td>

<td height="40" colspan="3" >

<select name="placeId" id="selectTypeId">

<c:forEach items="${requestScope.places}" var="place">

<option value="${place.placeId}">${place.placeName}</option>

</c:forEach>

</select>

</td>

</tr>

Snippet 13. Event save page

 Step 4: save() function

publicActionForward save(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response) throws

ParseException {

//file upload

EventFormeventForm = (EventForm) form;

FormFileformFile = eventForm.getFile();

String filename = formFile.getFileName();

//set a unique new name for every upload file

45

String nfilename = MyTools.getNewFileName(filename);

if (formFile != null) {

// define path

String dir

 =this.getServlet().getServletContext().getRealPath("/upload");

OutputStreamfos = null;

try {

fos = new FileOutputStream(dir + "/" + nfilename);

fos.write(formFile.getFileData(), 0, formFile.getFileSize());

fos.flush();

} catch (Exception e) {

e.printStackTrace();

} finally {

try {

fos.close();

} catch (Exception e) {

e.printStackTrace();

}

}

}

//transform String to Date

SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd");

Date start = dateFormat.parse(eventForm.getStart());

Date end = dateFormat.parse(eventForm.getEnd());

//construct object by values get from form

EventInfo eventInfo = new EventInfo(eventForm.getEventName(),

filename,nfilename,eventForm.getEventTypeID(),eventForm.getPlaceId

(),start,end,eventForm.getContext(),eventForm.getPrice());

String msg = "error";

String returnPath = "/background/eventInfo/eventSave.jsp";

46

try {

eventInfoDAO.save(eventInfo); // save to database

msg = "succeed!";

returnPath = "/event.do?method=findAll";

} catch (Exception e) {

e.printStackTrace();

}

request.setAttribute("msg","Save "+ msg);

request.setAttribute("returnPath",returnPath);

returnmapping.findForward("save");

};

 Snippet 14. Save function in action

5.3.2.2 Update Event

Pages forwarding and logic operations is implemented in the same way as the four

steps above showed, however when users update an event, sometimes they do not

update the image for the event, to solve this, update function is divided into two

parts update and update image.

 Update EventInfo

Int eventId = eventForm.getEventID();

EventInfo event = eventInfoDAO.findById(eventId);

//image is static here, only properties except it can be updated

String filename = event.getImg();

String nfilename = event.getImg2();

EventInfo eventInfo = new EventInfo(eventForm.getEventName(),

filename,nfilename,eventForm.getEventTypeID(),eventForm.getPlaceId

(),start,end,eventForm.getContext(),eventForm.getPrice());

eventInfo.setEventId(eventId);

47

try {

eventInfoDAO.merge(eventInfo); //update the event to database }

catch (Exception e) {

e.printStackTrace();

}

Snippet 15. Update

 Update Event Image

EventFormeventForm = (EventForm) form;

FormFile formFile = eventForm.getFile();

String filename = formFile.getFileName(); //image is dynamic now

String nfilename = MyTools.getNewFileName(filename);

Int eventId = eventForm.getEventID();

EventInfo event = eventInfoDAO.findById(eventId);

//other properties become static

EventInfo eventInfo = new EventInfo(event.getEventName(),

filename,nfilename,event.getEventTypeId(),event.getPlaceId(),event

.getStartDate(),event.getEndDate(),event.getContext(),event.getPri

ce());

eventInfo.setEventId(eventId);

try {

eventInfoDAO.merge(eventInfo); //update to database

} catch (Exception e) {

e.printStackTrace();

}

Snippet 16. Update image

48

5.3.2.3 Delete/Group Delete Event

Event can be delete individually or as a group, individual delete has the same

logic as add event, here gives a description to group delete, mainly on Java Script.

$(function(){

Var deleteUId;

$("#dialog-confirm").dialog({

autoOpen: false,

resizable: false,

height:140,

modal: true,

buttons: {

Confirm: function() {

//transfer deleteUId offered by #deleteQu or #delete-user to action

and execute delete

window.location="event.do?method=delete&eventId="+deleteUId;

},

"Cancel": function() {

$(this).dialog("close");

}

}

});

//Individual delete

$('#deleteQu').live('click', function() {

$("#dialog-confirm").attr("title", "Confirm Delete");

varmsg = "Confirm Delete["+ $(this).attr("title") + "]?";

$("#dialog-confirm p span").last().html(msg);

//assign title‟s value to deleteUId

deleteUId = $(this).attr("title");

//invoke dialog-comfirm action execute delete

49

$("#dialog-confirm").dialog("open");

return false;

});

//select all

$('#selectAll').bind('click', function() {

$("#users tbodytr td input").attr("checked",

$(this).attr("checked"));

});

//Group Delete

$("#delete-user").button().click(function() {

//record checked input parameter values in the table which has an Id

as”users”

varuserIds = $("#users tbodytr td input:checked");

deleteUId="";

if(userIds.length == 0) {

$("#dialog").dialog("open");

return false;

}

varmsg = "";

//Assign recorded userIds to deleteUId

userIds.each(function(){

deleteUId += (this.value + "&eventId=");

msg += this.value + " ";

});

$("#dialog-confirm").attr("title", "Confirm Delete");

varmsg= "Confirm delete selected?"; ["+ msg + "]

$("#dialog-confirm p span").last().html(msg);

//invoke dialog-confirm functionexecute delete by using parameter

deleteUId

$("#dialog-confirm").dialog("open");

50

});

$.fx.speeds._default = 1000;

$("#dialog").dialog({

autoOpen: false,

show: "blind",

hide: "explode"

});

});

</script>

Snippet 17. Java script enable group delete

Code calls js functions in jsp table:

 Table with id “users”

<table id="users" class="ui-widget ui-widget-content">

 Call js function selectAll

<th><input type="checkBox" id="selectAll"/></th>

 Individual Delete

<td><a id="deleteQu"

href="${pageContext.request.contextPath}/event.do?method=delete&ev

entId=${event.eventId}"

< -- #deleteQu get deleteUId from here -- >

title="${event.eventId}">Delete</td>

51

 Group Delete

<td colspan="1">

<button id="delete-user">Delete Selected</button>

</td>

 Modification in EventInfoDAO

public void delete(String[] ids){

int length = ids.length;

if (length != 1) length--;

for (inti = 0; i< length; i++) {

try {

this.delete(Integer.parseInt(ids[i]));

} catch (Exception e)

}

}

}

The code above is added to EventInfoDAO to enable group delete since the

original function can only delete id one by one.

5.3.2.4 Query Event/Page Division

This function is mainly implemented by Hibernate query language, HQL. In HQL,

attribute in query sentence must be as the same as POJO’s attribute. Following is

the modification to EventInfoDAO.

 Set the number of events displayed every page

52

public List getNowPageData(intnowPage, intpageSize) {

Configuration config = new Configuration().configure();

SessionFactorysf = config.buildSessionFactory();

org.hibernate.classic.Session session = sf.openSession();

String hql = "from EventInfo order by startDatedesc";

Query query = session.createQuery(hql);

//Implement the number of events displayed every page

query.setFirstResult((nowPage-1)*pageSize);

query.setMaxResults(pageSize);

List eventInfos = query.list();

session.close();

returneventInfos;

}

Snippet 18. Control the number of events display every page

 Count the pages in total according to database record:

publicintgetPageCount(intpageSize) {

Configuration config = new Configuration().configure();

SessionFactory sf = config.buildSessionFactory();

org.hibernate.classic.Session session = sf.openSession();

intpageCount = 0;

String hql = "select count(*) from EventInfo";

Query query = session.createQuery(hql);

List list=query.list();

Number num=(Number)list.get(0);

introwCount = num.intValue();

pageCount = rowCount / pageSize;

53

if (rowCount % pageSize != 0) {

pageCount ++;

}

returnpageCount;

}

Snippet 19. Get pages in total

 Get the number of records

publicintrowCount(){

Configuration config = new Configuration().configure();

SessionFactory sf = config.buildSessionFactory();

org.hibernate.classic.Session session = sf.openSession();

String hql = "select count(*) from EventInfo";

Query query = session.createQuery(hql);

List list=query.list();

Number num=(Number)list.get(0);

introwCount = num.intValue();

return rowCount;

}

Snippet 20. Get number of records

 Set and get parameter values in controller

Public ActionForward findAll(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response){

54

// set default value for pageSize, nowPage and pageCount used in DAO

intpageSize = 10;

intnowPage = 1;

intpageCount = 0;

introwCount = 0;

String strNowPage = request.getParameter("nowPage");

if (strNowPage == null) {

strNowPage = "1";

}

String strPageSize = request.getParameter("pageSize");

if (strPageSize == null) {

strPageSize = "10";

}

pageSize =Integer.parseInt(strPageSize);

nowPage = Integer.parseInt(strNowPage);

pageCount= eventInfoDAO.getPageCount(pageSize);//showed in snippet

19

rowCount = eventInfoDAO.rowCount();//showed insnippet 20

List<EventInfo>eventInfos = eventInfoDAO.getNowPageData(nowPage,

pageSize);//showed in snippet 17

List<EventType>eventTypes = eventTypeDAO.findAll();

List<Place> places = eventPlaceDAO.findAll();

//shows date and weekday on query page

Date now = new Date();

String today = MyTools.getDate(now);

String weekday = MyTools.getWeekday(now);

//set attributes‟ values

request.setAttribute("eventTypes", eventTypes);

request.setAttribute("eventInfos", eventInfos);

request.setAttribute("places", places);

55

request.setAttribute("nowPage", nowPage);

request.setAttribute("pageSize", pageSize);

request.setAttribute("pageCount", pageCount);

request.setAttribute("rowCount", rowCount);

request.setAttribute("today", today);

request.setAttribute("weekday", weekday);

Snippet 21. FindAll function

 Display attributes on jsp

Show current page:

Page<fontcolor="green">${requestScope.nowPage} Now&nbs

p;

Show number of pages in total

Total ${pageCount} Page(s)

Show number of events in total

${requestScope.rowCount} event(s)

 Some implementations of javascript

//go to previous page

<a id="upPage" href="#"

onclick="goNowPage('${nowPage-1}')">Previous

// go to a selected page

<select id="selectNowPage" onchange="goNowPage(this.value)">

<c:forEach begin="1" end="${pageCount}" varStatus="sta" >

<option value="${sta.count}" >

 Page ${sta.count}

56

</option>

</c:forEach>

</select>

//set number of event displayed(pagesize) every page

<select id="nowPageSize" onchange="findAll(this.value)">

<c:forEach begin="1" end="15" varStatus="sta">

<option value="${sta.count}">

${sta.count } event(s) per page

</option>

</c:forEach>

</select>

Snippet 22. Call java script functions

Java script code called above (findAll, goNowPage)

varpageSize = '${pageSize}';

functionfindAll(pageSize) {

//transfer selected pageSize values to action

Varurl="${pageContext.request.contextPath}/event.do?method=findAll

&pageSize=" + pageSize ;

window.location = url;

}

functiongoNowPage(nowPage) {

//transfer selected nowPage, pageSize values to action

Var url =

"${pageContext.request.contextPath}/event.do?method=findAll&nowPag

e=" + nowPage +"&pageSize=" + pageSize;

window.location = url;}

Snippet 23. Java script functions

57

The idea in Snippet 22 and 23 implement goes to next, previous, home, end page,

goes to any selected page, and sets the number of events displayed every page

together.

5.3.3 Administrator Login

Add, update or delete/group delete administrator they all have the same logic as

event management. Hereby is given an emphasis on administrator’s login.

Public ActionForward login(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response) {

AdminFormadminForm = (AdminForm) form;

//check if username exists

List<Sysadmin> adminInfos =

sysadminDAO.findByAdminName(adminForm.getUserName());

String msg = "";

String returnPath = "/background/admin/adminLogin.jsp";

if((null !=adminInfos)&&(adminInfos.size()>0)){

Sysadmin admin=(Sysadmin)adminInfos.get(0);

// match the username and password

if(admin.getPwd().equals(adminForm.getPwd())){

HttpSession session = request.getSession();

session.setAttribute("adminInfo", admin);

Date now = new Date();

String today = MyTools.getDate(now);

String weekday = MyTools.getWeekday(now);

request.setAttribute("today", today);

request.setAttribute("weekday", weekday);

//login ok forward to index.jsp

returnmapping.findForward("LoginOK");

58

}

//error message if username and password doesn‟t match

else{

msg="error,incorrect username or password ";

returnPath = "/background/admin/adminLogin.jsp";

request.setAttribute("msg","Login "+ msg);

request.setAttribute("returnPath",returnPath);

returnmapping.findForward("LoginError");

}

}

//error message if username doesn‟t exist

else{

msg="error,username is not found";

returnPath = "/background/admin/adminLogin.jsp";

request.setAttribute("msg","Login "+ msg);

request.setAttribute("returnPath",returnPath);

returnmapping.findForward("LoginError");

}

}

Snippet 24. Login action

5.3.4 Show Only Today’s Event

Core logic is the function in EventInfoDAO:

publicListgetTodayData(intnowPage, intpageSize,String today) {

Configuration config = new Configuration().configure();

SessionFactorysf = config.buildSessionFactory();

org.hibernate.classic.Session session = sf.openSession();

//make comparison with today which transferred in by action

59

String hql = "from EventInfo where startDate<= "+today+"and

endDate>="+today;

Query query = session.createQuery(hql);

//page division mentioned above

query.setFirstResult((nowPage-1)*pageSize);

query.setMaxResults(pageSize);

List eventInfos = query.list();

session.close();

return eventInfos;

}

Snippet 25. Show only today’s event

5.3.5 Search Function

User can search event by one category or group categories, core logic of this

implementation also count on hql in eventInfoDAO

publicList search(String eventName,

String eventTypeId, String placeId, String startDate, String endDate,

String price,String price2,int nowPage, intpageSize) throws

ParseException{

Configuration config = new Configuration().configure();

SessionFactorysf = config.buildSessionFactory();

org.hibernate.classic.Session session = sf.openSession();

String hql = "from EventInfo where 1=1 "; ;

//search by name

if (eventName!=null&&!"".equals(eventName)) {

hql = hql + " and eventName like '%"+ eventName+"%' " ;

}

//search by event type

60

if (eventTypeId!=null&&!"".equals(eventTypeId)) {

//when select event type as „All‟

if (eventTypeId.equals("0")) {

hql = hql + " and eventTypeId<> 0 ";

}

// when select a certain type

else{

hql = hql + " and eventTypeId = "+ eventTypeId;

}

}

//search by event place

if (placeId!=null&&!"".equals(placeId)) {

//when select place as all

if (placeId.equals("0")) {

hql = hql + " and placeId<> 0 ";

}

// when select a certain place

else{

hql = hql + " and placeId = "+placeId;

}

}

//search by date range

if(startDate!=null&&!"".equals(startDate)&&endDate!=null&&!"".equa

ls(endDate)) {

Date start = MyTools.tDate(startDate);

Date end = MyTools.tDate(endDate);

//transfer format of date in order to make comparison

String strStart = MyTools.getCompare(start);

String strEnd = MyTools.getCompare(end);

61

hql = hql + " and startDate<= "+ strEnd +" and endDate>= "+ strStart;

}

//search by price range

if

(price!=null&&!"".equals(price)&&price2!=null&&!"".equals(price2))

{

hql = hql + " and price >= "+ price +" and price <= "+price2;

}

Query query = session.createQuery(hql);

//page divison mentioned above

query.setFirstResult((nowPage-1)*pageSize);

query.setMaxResults(pageSize);

List<EventInfo>eventInfos=query.list();

session.close();

return eventInfos;

}

Snippet 26. Search function

5.3.6 Show Current Date, Weekday

 Code in action:

Datenow = newDate();

String today = MyTools.getDate(now);

String weekday = MyTools.getWeekday(now);

request.setAttribute("today", today);

request.setAttribute("weekday", weekday);

 Code in Mytools.java

//get current date

62

Public static String getDate(Date today){

SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd");

String date = dateFormat.format(today);

return date;

}

//get current weekday

Public static String getWeekday(Date today){

String day = "";

switch (today.getDay()) {

case 0:

day = "Sunday";

break;

case 1:

day = "Monday";

break;

case 2:

day = "Tuesday";

break;

case 3:

day = "Wednesday";

break;

case 4:

day = "Thursday";

break;

case 5:

day = "Friday";

break;

case 6:

day = "Saturday";

63

break;

}

return day;

}

Snippet 27. Get current date and weekday

 Display on jsp

Today is

${requestScope.today} ${requestScope.weekday}

Above is a complete loop of show current date and weekday.

64

6 TESTING

Test cases here are mainly designed as test the functions with illegal values or

updating without new information.

6.1 Test Login

 Input username does not exist

Result:

Figure 26. Test login result 1

 Input wrong password

Result:

65

Figure 27. Test login result 2

 Input null to loginform

Result:

Figure 28. Test login result 3

Can not submit to next step.

6.2 Test Admin Management

 Add username already exist

66

Result:

Figure 29. Test add user 1

 Add admin with illegal length username or password

Result:

Figure 30. Test add user 2

This is an error, should set a correct error feedback for this case.

67

6.3 Test Event Management

 Save event without uploading image

Result:

Figure 31. Test add event 1

Not user friendly error feedback, should add an exception tips when nothing is

being uploaded.

 Save event with illegal length parameters

Result:

Figure 32. Test add event 2

68

 Save event with a null date

Result:

Figure 33. Test add event 3

Should add an error message in case input null date .

 Save event with a null event name

Result

Figure 34. Test add event 4

69

This is a bug, event name cannot be null, and a validation should be added to

action or form directly.

 Update event without new information

Result:

Figure 35. Test update event

Another error, shouldn’t execute update without new information.

6.4 Test Search

 Search by single category

Figure 36. Test search case 1

Result:

70

Figure 37. Test search result 1

 Search by multi categories

Figure 38. Test search case 2

Result

Figure 39. Test search result 2

Search function is implemented properly.

71

6.5 Possible Improvements

According to the test, handle of null value exception and some error feedback

need to be expanded in action.

Alternatively, struts validate method or ajax can be added to form to avoid input

illegal values.

72

7 CONCLUSIONS

The objective of this project was to implement the Event Calendar application

with Spring, Struts and Hibernate (SSH) frameworks.

So far, logic of solutions to core functions is found and implemented except for

several error message pages and the handle of null value exception remained;

additionally the application has been deployed to VAMK’s server already.

The administrator can add, update, delete and query information of events and

users through the event calendar management platform now. For public page,

users will have a view of events running on today, they can also search event by

different categories, such as event’s date, price, place, name, etc.

Developing the application made it possible to learn and practice the whole

processes of agile development with SSH as well as the concepts in Software

Engineering, such as UML, requirement analysis and standard of documental

work.

In addition, skills of operating mySql and Java programming particularly for

debugging and figuring out problems have been enhanced during the process.

What is more, front-end design for the project enables the approach to the

technology in Photoshop, Java Script (jQuery UI) and CSS style sheet.

Main Challenges in Developing:

 Get knowledge preparation for the project

Lots of videos have been watched to practice SSH project and get familiar

with it.

 Figuring out logic to implement functions

73

Database design, idea of MVC, different data types transfer between java and

database, front-end display, etc. are major issues in this part. Java

programming books, the Internet and hard -working may help to solve them.

In particular, Date type process is one of the most confused problems. First of

all, functions of formatting variables in Date type are obstacles unless format()

and parse()figured out. Then date format for the comparison in database is

another issue. Numbers of samples on the Internet have been viewed and

plenty of tries have been done to solve the problem.

 Debug program

It is frequent that Http 404 or 500 errors appear after a function complete and

being test. Never get down and be patient to the errors, learn to use debug

mode in programming editor, search errors on the Internet can be the keys to

solve the errors.

 Loneliness and fatigue in research and development

Set a target for every day, try to be self-controlled and disciplined is the key to

solve the problem.

7.1 Future Works

As mentioned in test, a validation for value length and null value needs to be

developed; Events date can be accurate to date, hour and minute; the purchase

system and comment board can be developed for event; at last, some decoration

for front-end display is available.

74

REFERENCES

/1/Struts Framework Overview-Struts Framework Overview (2013). [WWW].

[referred 5.5.2013] Available on the Internet:

<URL: http://struts.apache.org/>

/2/ Spring Framework Overview-Spring Framework Overview (2013). [WWW].

[referred 5.5.2013] Available on the Internet:

<URL: http://www.springsource.org/spring-framework>

/3/ Spring Framework Security-Spring Framework Overview (2013). [WWW].

[referred 5.5.2013] Available on the Internet:

<URL: http://www.springsource.org/spring-security>

/4/ Spring Framework Integration-Spring Framework Overview (2013). [WWW].

[referred 5.5.2013] Available on the Internet:

<URL: http://www.springsource.org/spring-integration>

/5/ Spring Framework Data-Spring Framework Overview (2013). [WWW].

[referred 5.5.2013] Available on the Internet:

<URL: http://www.springsource.org/spring-data>

/6/ Hibernate Framework Overview-Hibernate Framework Overview (2013).

[WWW]. [referred 5.5.2013] Available on the Internet:

<URL: http://www.ohloh.net/p/hibernate>

75

/7/ Hibernate Framework Overview- Relational Persistence for Java and .NET

(2013). [WWW]. [referred 5.5.2013] Available on the Internet:

<URL: http://www.hibernate.org/>

/8/ jQueryUI Overview-jQueryUI Overview (2013). [WWW]. [referred 5.5.2013]

Availableon the Internet:

<URL: http://jqueryui.com/>

	1 INTRODUCTION
	2 Technology Overview
	2.1 Struts Framework
	2.2 Spring Framework
	2.2.1 Spring Security
	2.2.2 Spring Integration
	2.2.3 Spring Data

	2.3 Hibernate Framework

	3 APPLICATION DESCRIPTION
	3.1 Functional Description
	3.1.1 Background
	3.1.1.1 Log In
	3.1.1.2 Change Password
	3.1.1.3 Admin Management
	3.1.1.4 Event Place Management
	3.1.1.5 Event Type Management
	3.1.1.6 Event Info Management

	3.1.2 Foreground Public Pages
	3.1.2.1 Search Event
	3.1.2.2 View Events

	3.2 Class Hierarchy
	3.2.1 Controller Class Diagram
	3.2.2 Model Class Diagram
	3.2.3 View Class Diagram

	3.3 Sequence Diagram
	3.3.1 Event Management
	3.3.2 Admin Login
	3.3.3 Search Event

	4 DATAbASE and gui design
	4.1 Database Design
	4.2 GUI Design
	4.2.1 Background
	4.2.2 Foreground

	5 Implementation
	5.1 General Description
	5.2 Implementation for GUI
	5.2.1 Layout
	5.2.2 Responsive Layout
	5.2.3 Use of jQuery UI

	5.3 Implementation of Functions
	5.3.1 Integration of Struts, Spring, Hibernate
	5.3.2 Event Management
	5.3.2.1 Add Event
	5.3.2.2 Update Event
	5.3.2.3 Delete/Group Delete Event
	5.3.2.4 Query Event/Page Division

	5.3.3 Administrator Login
	5.3.4 Show Only Today’s Event
	5.3.5 Search Function
	5.3.6 Show Current Date, Weekday

	6 Testing
	6.1 Test Login
	6.2 Test Admin Management
	6.3 Test Event Management
	6.4 Test Search
	6.5 Possible Improvements

	7 Conclusions
	7.1 Future Works

	References

