

Improving Quality in Evolving Software

Development Team Practices

Annikki Jussila

Master’s thesis

September 2013

Information Systems

Competence

TIIVISTELMÄ

Tampereen ammattikorkeakoulu

Tietojärjestelmäosaamisen koulutusohjelma, ylempi AMK

JUSSILA ANNIKKI:

Kehittyvän ohjelmistokehitystiimin laadun ja käytäntöjen parantaminen

Opinnäytetyö 63 sivua

Syyskuu 2013

Opinnäytetyön taustalla on pari vuotta sitten perustetun tiimin tavoite parantaa laatua

toimintatapoja kehittämällä. Laadun parantaminen tähtää lopputuotteen ominaisuuksiin

ja virheettömyyteen sekä asiakkaan tarpeiden täyttämiseen. Tähän voidaan välillisesti

vaikuttaa myös niillä prosesseilla ja käytännöillä, joiden avulla tuotetaan haluttu

lopputulos tehokkaasti. Opinnäytetyön tavoitteena olikin löytää ja kehittää laadun

parantamiseen tähtääviä käytäntöjä kyseisessä tiimissä.

Organisaation toiminta perustuu ohjelmiston kehitysprojekteihin. Projektien hallinta

organisaation tasolla toteutuu perinteisen projektinhallinnan keinoin, ja tiimissä

käytetään ketteriä menetelmiä (agile ja scrum). Ohjelmistoa kehitetään aikaisemman

version perusteella, joten projektit toistuvat samankaltaisina. Tästä syystä prosessien

kehittäminen ja hallinta ovat myös viitekehyksenä käytäntöjen kehittämiselle.

Käytäntöjen kehittäminen on koko tiimin yhteistyötä, joten työn toteutus perustui

toimintatutkimukseen ja havainnointiin. Löydetyt menetelmät kuvattiin tavalla, joka

kertoo, miten ne on juuri tässä tapauksessa toteutettu ja koettu hyödyllisiksi.

Tutkimuksen ei ole ollut tarkoitus olla yleispätevä, mutta löydettyjä käytäntöjä voidaan

soveltaa muissakin ympäristöissä. Lisäksi kokonaisuuden avulla saatiin

havainnollistettua muutosten toteuttamista.

Tutkimuksen tuloksena saatiin uusia käytäntöjä eri tarkoituksiin ja projektin eri

vaiheisiin. Laadun parantaminen on kuitenkin jatkuvaa työtä: löydettyjä käytäntöjä pitää

muokata edelleen ja uusia toimintatapoja kehittää sekä tiimin tasolla että yhteistyössä

organisaatiotasolla.

Asiasanat: laadunhallinta, prosessijohtaminen, ohjelmistokehitys, ketterät menetelmät

ABSTRACT

Tampereen ammattikorkeakoulu

Tampere University of Applied Sciences

Master’s Degree in Information System Competence

JUSSILA ANNIKKI:

Improving Quality in Evolving Software Development Team Practices

Master's thesis 63 pages

September 2013

This thesis deals with a software development team’s desire to improve quality by de-

veloping working practices. Quality management is about ensuring the quality of the

end product and fulfilling the customer’s needs. Efficient working practices are an im-

portant component in the process. The objective of this study was to find and develop

such practices for the team in question.

Software projects within the organization are executed with traditional project manage-

ment methods. The team utilizes agile and scrum practices. New projects are typically

built on top of previous ones so they are very similar in nature repeating the same pro-

cess. Therefore process development and management set the context for practice im-

provements as well.

This case study was based on action research methodology, with observations done by

the author. For each developed practice its case specific implementation was described

and usefulness analysed.

As a result of this study, new practices for various purposes and different phases of pro-

ject life cycle were identified. Improving quality is a continuous task; new practices still

need iterations and improvements to better fit their purpose, and new ones should be

developed in both team and organizational levels.

Key words: quality management, process improvement, software development, agile

software development

4

TABLE OF CONTENTS

1 INTRODUCTION ... 5

2 THEORETICAL BACKGROUND .. 7

2.1 Project Management Theory .. 7

2.2 Agile Project Management Theory with Scrum Practices 10

2.3 Process Management Theory ... 14

2.4 Quality Management Theory ... 17

3 COMPANY ENVIRONMENTAL BACKGROUND .. 20

3.1 Development Team in Case Study ... 20

3.2 Present Practices of the Team .. 22

3.3 Detailed Objectives of the Study ... 24

4 METHODS .. 27

4.1 Action Research ... 27

4.2 Research Plan ... 27

5 PERFORMING THE RESEARCH ... 29

5.1 Improving the Project Planning Phase ... 29

5.1.1 Creating a Project Test Plan Checklist .. 29

5.2 Improving the Project Execution Phase ... 32

5.2.1 Regular Project Status Sharing in Development Teams 32

5.2.2 Using Exploratory Testing for Maturity Evaluation 34

5.2.3 Using the Fishbone Method for Finding Root-causes of Problems 36

5.3 Improving the Project Execution Phase ... 41

5.3.1 First Project Retrospective to Collect Improvement Needs from the

Team ... 41

5.3.2 Second Project Retrospective to Evaluate Improvements and

Continue Collecting Improvement Needs .. 44

6 NEW IMPROVED PRACTICES ... 51

7 DISCUSSION ... 54

7.1 Conducting the study ... 54

7.2 Success Factors for Introducing Improvements ... 55

7.3 Limitations and Restrictions of the Study .. 57

7.4 Evaluation of the Thesis Process ... 58

7.5 Conclusion ... 59

8 FUTURE DEVELOPMENT PERSPECTIVES .. 60

REFERENCES .. 62

5

1 INTRODUCTION

In a newly established company the start-up phase focus on getting something done in

any possible way that satisfy the customer. But soon after there is going to be a desire or

need for reducing randomness in work activities, use resources effectively, and making

sure that both employees and customer are satisfied. This thesis is a qualitative case

study in a software development team where practices are still forming. Desire of both

manager and team is to create together new methods and practices in this working envi-

ronment to build quality.

Evolving team consists of professionals, with several years of experience in software

development. Agile approach is used for software projects, and most project work can

be defined as repeated process. Experience, project and process management form the

base for action research, for trying new practices and making observations of how and

why they fit in this environment.

Most methods cannot be copied exactly from neither past experience nor from theories,

and need to be adjusted for the company needs based on employee skills, customer in-

teraction model and work environment among many other things. The primary object of

this study is to find and apply new practices for this team, to improve quality. As this

team needed to “invent” these practices, the observations of this study work as an ex-

ample and also basis for developing them further. The backgrounds, theories and obser-

vations serve for secondary objective, to provide examples and ideas for other teams in

similar situation. Details of used data, software developed, people and company are

excluded for confidentiality reasons, and consider unnecessary to fulfil the objectives.

Quality management is the main driver, with the perspective that work process im-

provement has direct impact on end product quality, and that doing the right things at

the right time is cost efficient. Quality is not only task of a testing team, nor some ac-

tivity that quality managers drive for the company. Quality should be built in in all ac-

tivities, and most cost effective is to impact in the early phases of products lifecycle, so

improvements in development are important.

6

Process and quality improvements require long term commitment, with continuous im-

provements. And it is also a work to do in company level. This study is limited to work

activities that development teams are accountable and can impact directly. This study is

limited to fixed time of 4 months. The scheduling allows different project phases to be

included as some project is being finalized and others planned and implemented. Only

specific practices tried in this time and done in development team level are included in

this study.

7

2 THEORETICAL BACKGROUND

2.1 Project Management Theory

Project management has decades of history in different industries, as well as software

business. According to Pelin (2009, 20-21) the tools and methods are used so long time

and extensively that management model is developed with strong experience, thus only

the essential parts that really work remain in the models. So relying on project manage-

ment theories can be considered as using the best known methods (Pelin 2009, 26).

Project by ISTQB definition is “a unique set of coordinated and controlled activities

with start and finish dates undertaken to achieve an objective conforming to specific

requirements, including the constraints of time, cost and resources” (ISTQB 2012, 34).

When work is a project, it is about planning and steering, and using those effective

methods created for this purpose (Pelin 2009, 26). Lifecycle (of a product) with differ-

ent phases like start, planning, implementation, follow-up, release, in-markets mainte-

nance and ending of support, can be also seen as definition of a project (Leppälä 2011,

174).

Being unique brings in the challenge of trying to predict the future, how the implemen-

tation will happen and what will become the end result. There are also challenges com-

ing from the environment: project targets become tighter due international competition,

complex organisations, global project development with teams scattered in multiple

locations, managing information becoming more complex, and lack of supporting soft-

ware. (Pelin 2009, 21.)

Project planning traditionally rely on defining the entire project at once, but nowadays

especially in software projects also content and completion criteria change during pro-

ject lifetime. Therefore change management and/or the kind of flexibility agile working

model introduces is necessary. Risk analysis need to consider possibility of customer

requirements changing during the project. Especially in software industry competition

and new technologies can change rapidly.

8

Cobo, Ortiz and Mataix (2010) have done research about “project and programme man-

agement” in multicultural development projects in different industries. The list of com-

petences needed to succeed - to handle the challenges - is presented in table 1. It con-

tains various types of skills and aspects, including taking care of quality in large as well

as results oriented approach and enabling continuous improvement.

TABLE 1. Most important competences for programme and project managers. (Cobo et

al., 2010).

Technical Competences Behavioural Competences Contextual Competences

- Parties involved

- Risk and opportunity

- Quality

- Project Organisation

- Teamwork

- Project coordination

- Scope and deliverables

- Time and project stages

- Resources

- Cost and financing

- Supplies and contracts

- Changes

- Control and reports

- Information and docu-

mentation

- Project Completion

- Leadership

- Commitment and motiva-

tion

- Creativity

- Results-oriented

- Efficiency

- Consultation

- Negotiation

- Conflicts and crisis

- Reliability

- Ethics

- Project-oriented

- Programme-oriented

- Continuous improvement

of projects and pro-

grammes

- Coordination with the

parties involved

- Personnel management

- Safety, health and envi-

ronment

Project progress follow-up is important: any changes (usually delays) in schedule must

be noticed and taken care of to ensure the planned completion date can be achieved

without overloading resources in the end. Project planning includes breaking down the

work in smaller tasks, and putting them in the timeline with dependencies. The splitting

helps in scheduling, making the correct resources available in correct phase. This ar-

rangement is called Work Breakdown Structure (ISTQB 2012, 50).

9

Figure 1 describes simplified view of project phases: planning, execution phases and

closing (Project Lifecycle and Project Phases, 2009). Execution phases where develop-

ment and testing occur in software project have great possibilities to add value in con-

tent and quality. Mistakes and quality problems causing delays may cause changes hav-

ing great impact on final cost. Working in overload in a hurry is a very common reason

to introduce errors in development phase. Not being able to notice the errors early

enough impacts the end product quality and or project schedule. One of the purposes of

testing is to provide information of project maturity, against which the schedule can be

reviewed also.

FIGURE 1: Typical project lifecycle (Project Lifecycle and Project Phases, 2009)

There are several studies and books written also about project failures, as quite often the

end result is not what is expected, and/or time and cost targets are exceeded. Pelin

(2009, 39) lists some causes for failing a project: just naming everything as a project

without knowing what it is, no knowledge how to use project steering methods, plan-

ning and follow-up not organized, no systematic guideline and everyone working as

they like the best, unclear target and expanding of content, forgetting of risk analysis.

10

2.2 Agile Project Management Theory with Scrum Practices

Agile is a working model that emphasize adapting to changes quickly, getting feedback

early to do the changes, and people being in key role to interact closely with each other.

Agile manifesto has twelve principles:

● “Customer satisfaction by rapid delivery of useful software

● Welcome changing requirements, even late in development

● Working software is delivered frequently (weeks rather than months)

● Working software is the principal measure of progress

● Sustainable development, able to maintain a constant pace

● Close, daily cooperation between business people and developers

● Face-to-face conversation is the best form of communication (co-location)

● Projects are built around motivated individuals, who should be trusted

● Continuous attention to technical excellence and good design

● Simplicity—the art of maximizing the amount of work not done—is essential

● Self-organizing teams

● Regular adaptation to changing circumstances”

Scrum is a working model that relies on agile principles and provides roles and practic-

es. Scrum team must be small enough to interact with each other effectively. Scrum

team has one scrum master that is not the leader in anyway, but facilitate meetings and

supports the team. Top-down hierarchical management should be forgotten in things

where team can take the responsibility, especially in scrum master role.

There is short meeting every day for everyone to brief what they are working on and if

there is any trouble or impediment others can help with, and relevant people can discuss

further and more deep outside the scrum team daily. Iterations are called sprints. Regu-

lar meetings for the scrum team include sprint review to see what was achieved, sprint

retrospective to evaluate and improve, and sprint planning to decide what tasks to

commit to. Daily and sprint meetings should also include estimating and following the

time needed for getting the tasks done. For these regular practices some people tend to

follow exactly the guidelines and durations, other perspective is to also adjust the prac-

tices also to be agile and flexible.

11

The tasks are small entities that are short enough for one sprint. Tasks are split from

generalized items, user stories and epics. Project manager or product owner is responsi-

ble of keeping the bigger items in priority order, and relevant people get together to

form the tasks before sprint planning. The planned work is called a backlog: scrum team

handles with sprint backlog, and top level is a product backlog.

In traditional projects the approach is to agree the price, schedule, and content all at

once, and many projects fail partially in one or more areas. In agile projects only sched-

ule and price is agreed, but the content is modified during the project so that the result

will still satisfy customers’ needs better than in traditional projects. This is achieved by

iterative approach, including changes in requirements management of product backlog

and working close together with customer.

Traditional software projects can be planned to have several months of code develop-

ment followed by testing, which often leads to surprises of not meeting the quality in

time. But in agile projects also the testing is part of the smallest task: user story is not

done before it is tested and working. In agile projects the most important content is done

and completed, whereas traditional projects can meet the final deadlines before anything

is fully working.

12

Traditional project management guides that all content must be decided in the beginning

of the project with very detail task estimates in place, with addition of separate change

management handling. Agile is guiding almost the opposite, not to go into too much

details until very close, when it is known that this specific piece of work is needed. Ag-

ile projects have more flexibility and the change management is included in the regular

practice. Backlog also contains items that are not necessary for the end result, new ideas

and improvements are added during the project, and if priority is seen high enough,

those ideas are worked with to have the details. Requirements priority is actively updat-

ed, like seen in figure 2.

FIGURE 2: Requirements management process in Agile project (Ambler 2009)

The prioritisation work should include customer perspective in the first place. Present-

ing the developed software functionality and giving all-hands demos to stakehold-

ers/customers frequently serves two purposes: to collect frequent and direct feedback

easily, and customer can gain confidence in project going to correct direction.

13

Ambler's study of agile success factors presents that with agile teams are able to deliver

better quality, more of the required functionality and improved economics. (Ambler

2009) Comparison is shown in figure 3. Part of the improvement is about short feedback

cycle and better interaction with customer, but also it is about agile teams are working

smarter, but not harder.

FIGURE 3: Ambler’s comparison of agile development strengths (Ambler 2009)

Monitoring changes in conditions, and adopting working methods accordingly is con-

sidered as a principle to effectively improve both projects and processes (Leppälä 2011,

175). Mechanism of adopting, small updates time-to-time, over generations, is known as

evolution (Leppälä 2011, 175).

In human activity evolution is born from the practice, from the needs of improving or-

ganisations and technology by minor yet continuous improvements. As conscious

mechanism it is fairly new ideology (Leppälä 2011, 176), but the mechanism matches

with continuous improvement and short cycle iterations of agile theory.

Time management of daily practices, too, is important part of scrum practices. Meetings

have fixed duration, for example daily meetings should not last longer than 15 minutes

14

and other meetings are time-boxed for 2-4 hours. Iterative mode of projects is also con-

sidered important for practices as the retrospectives purpose is to enable continuous

improvement, collecting feedback in the scrum team and agree on changes.

2.3 Process Management Theory

Process and project are not to be mixed with each other. Process can be used to define

the models and improving functions of organisation (Pelin 2009, 22). A project only

occurs once, but when similar type of customer projects, consisting of same or similar

phases and roles, it is possible to define processes to cover project development. Process

management emphasize working effectively, produce consistent quality and the im-

portance of continuous improvement.

Processes are way to standardize the repeated work practices, to save effort when work

phases and roles are agreed beforehand, avoiding confusions and spending time trying

to figure out what should happen next. The main functions and key processes providing

services or products to customers should be known or descriptions should be available

for everyone taking part of the workflow, allowing seamless collaboration between

teams and working towards the same target. According to Laamanen (2009, 21) process

planning should start from and end from customer action, to help understand what is

really critical to achieve good results.

Process work model should provide support for people already capable of doing their

job on how to do correct things in practice. Support can be given as documented model,

checklist or form. And it needs to be kept simple to be practical and frequently used.

(Laamanen 2009, 37.)

Process can be described in written format, but there are several types of visual models

that can make it easier to understand. The pictures are not the purpose, but a communi-

cation method and means to model the functions of organisation in order to understand,

analyse and improve (Laamanen 2009, 75).

15

Because process is repeated, its performance can be monitored and measured, which

provides the possibility notice deviations and to improve (Laamanen 2009, 20, 152).

Deviations can be acceptable exceptions, reason to re-define the process, or cause for

quality problem. Laamanen (2009, 150) states that numeric data should be measured

and the measurements can be used to give a glimpse of reality. (And same thought is

formed decades earlier by Peter Drucker: “If you can’t measure it, you can’t improve

it”.)

With deep understanding of the process and careful analysis also the numeric measure-

ments can be interpreted as actions to change and improve. Numeric data can be used as

indicators to communicate and follow-up progress. But without the understanding peo-

ple usually tend to make decisions that work against the real goals, against the company

strategy and the customer need (Laamanen 2009, 150-151, 205). Numeric data does not

form information or provide actions to change without effort of learning and analysing.

Figure 4 represents a control chart form of process measurement, representing the three

phases of Juran trilogy (ASQ 2013): quality planning, quality control and quality im-

provement.

FIGURE 4: Quality improvement can be introduced over time by measuring and moni-

toring process operations, evaluating and redesigning the process. (MSI 2011)

16

Since improving performance and quality of process is important, the theory includes

methods and guidelines to do it. Sources for improvement needs can rise from customer

reclamations, errors in products, deviations in process, audits, employee complaints or

employee improvement ideas. (Laamanen 2009, 191.)

General approach is to not set the entire process under evaluation, but trying to remove

a small identified problem at a time. Change is to be done and analysed iteratively. The

improvement cycle with iterations going through four (Plan, Do, Check, Act) or five

steps (Define, Plan, Execute, Check, Learn and generalize). Figure 5 shows how Ishi-

kawa splits the cycle of four into six steps. The cycles are introduced and used by many

of the leading authors of process and quality management theories, as well as those who

promote learning by doing and reflecting. Laamanen mentions David Kolb and Reg W.

Revans. Other authors include Kaoru Ishikawa and W. Edwards Deming. (Laamanen

2009, 191, 211; SkyMark Corporation, 2013.)

FIGURE 5: Improvement (or learning) cycle defined by Ishikawa (SkyMark Corpora-

tion, 2013).

Choosing problem solving methods is subjective to the problem type, like simple tem-

porary issues and complex recurrent issues, and whether there is quantitative or qualita-

tive material available. Laamanen (2009, 214-216) lists graphical quality tools like flow

chart, control chart, cause-effect diagram (also known as Ishikawa and fishbone dia-

gram) for quantitative material. There are also quality tools for grouping and prioritizing

more complex data, evaluating risk and impacts. He also mentions comparison methods,

like group work and benchmarking.

17

Process management can be seen as a method to prevent creativity and cause dissatis-

faction for employees (Leppälä 2011, 174). Laamanen (2009, 44) states the process

management also targets to include innovation. Process needs to evolve from chaos to

repeated functions that can be modelled and measured, to mature from reactive to proac-

tive by including analysing, and finally include innovation and creative methods to

achieve world class.

Process management does not work usually because of poor descriptions lacking roles,

responsibilities, management or customer, or on the other hand because descriptions are

too detailed and complicated to digest and take into use. If descriptions exist, they are

not made available to people who should be using them, the usage is not being moni-

tored in any way, or simply there isn’t good enough tools or knowledge to implement

the process. It is also common to use the word process for just about any trivial habit

without understanding the full purpose of process management, which often leads to

undermining and resistance of process improvement proposals. (Laamanen 2009, 297.)

2.4 Quality Management Theory

Quality is defined as “the degree to which a component, system or process meets speci-

fied requirements and/or user/customer needs and expectations“ (ISTQB 2012, 33).

Quality management coordinates and directs the activities to achieve quality. It usually

includes the establishment of the quality policy and quality objectives, containing quali-

ty planning, quality control, quality assurance and quality improvement. (ISTQB 2012,

33)

In software projects there can be three different quality targets: end product quality,

process quality (working methods, schedules, costs), or service quality as in the experi-

ence of participating the project (Lehtimäki 2006, 67-68). The contents of these targets

should be defined though, as there is no reason to build the kind of excellence that cus-

tomer is not ready to pay for. For example purchasing a custom program to be used by

two users should work correctly for the purpose, but if ensuring it will work for thou-

sand users or spending time in fixing non-functional cosmetic errors increase the cost, it

is probably not necessary and not in interest of the paying customer.

18

Phillips (2005) mentions that not only the product quality but also the quality of process

making the product/service are the essential to project manager, because the process

quality has direct impact on product quality. The better management on work process,

the higher the product quality (Phillips 2005, 320, 326.)

Based on his working experience in multiple software projects Lehtimäki (2006, 67)

describes three levels of quality maturity in organisations:

0. Organisation has no idea about quality, functions vary in many ways.

1. A separate quality organisation, quality managers, quality handbook (ISO 900)

2. Quality is integrated in all activities.

According to Lehtimäki (2006, 67) the level one is not sufficient, since separate organi-

sation can give the false assumption that not everyone is accountable of the work quali-

ty.

Quality management activities need to target in full lifecycle of a software project: from

receiving of purchase request all the way to delivering the product and getting it into

markets. In quality management, it is highlighted quality is not only about testing, but

something to be built-in in everything.

In development phase of project an example of quality violation could be for example

an internal testing tool becoming unreliable, and nobody escalating the issue to be fixed

to save resources and enable software test results reliable; unreliability causing the fact

that most developers stop using such tool and try re-inventing other methods to validate

their changes and testers re-executing the program several times to increase the proba-

bility of results being correct. Failure in detecting the quality issues does not always

become visible to customer, however it still can introduce a problem with resourcing

and increasing the risk of some activity for the software and customer request is not

getting fulfilled.

Analysis of identifying and prioritizing risk would be also needed in planning phase of

big projects with new technologies or complex changes; the greater the risk, the bigger

the impacts of quality failure causing trouble with both schedule and cost issues.

19

Validation is about confirming the requirements are met. During lifecycle of software

project the cost of error fix is multiplying in every step of the way. Black (2007, 111)

declares in figure 6 it is 1000 times more expensive to fix a bug (=error) in released

system than if it was handled already in requirements phase.

FIGURE 6: Black’s (2007, 111) calculation of bug removal cost in different phase of

software project.

Laamanen also say it is cheapest to do everything correctly on first time, it has been

noticed in process management as well (2009, 163). Myllymäki (2010, 161) adds that it

is not only about the cost: the more time is spent on definitions and review in require-

ments/planning phase, the better commitment is achieved for the whole project. Total

cost of quality needs more details though, as activities can be split into prevention, ap-

praisal, internal failure and external failure costs (ISTQB 2012, 15). Smart use of re-

sources and activities needs to be monitored in all phases of project, to build a business.

20

3 COMPANY ENVIRONMENTAL BACKGROUND

3.1 Development Team in Case Study

Company has been established for decades, and even with current challenging economic

times it has been profitable and growing. New branch is established for software busi-

ness that is expected to grow in future. This branch is referred here as organisation. The

office where this thesis work takes place has been established about two years ago. First

projects have been successful, and there is growth in all areas: more customers, more

projects and more employees. So the team and the organisation are still in evolving

phase. There is expectation and demand of this organisation to become efficient and

produce high quality software releases to actually reach the promise of growth in future.

Investments done for the start-up need to be changed as results.

Organisation consists of several teams. This team in focus of the thesis is a software

development team, consisting of two managers, three scrum teams of developers writing

the code and one quality assurance team, with total headcount of 30. Writer of this the-

sis is part of the quality assurance (QA) team that handles requirement management,

releasing activities and various tasks supporting the development team.

In the organisation there is a sibling development team in another location, doing simi-

lar work but with different projects. It also contains the testing team that is shared with

these two. There are also few other software development teams in close collaboration,

responsible of related software components. All these collaborative teams are referred

as domain in this thesis. Figure 7 illustrates the development team and relations of the

company doing software releases.

21

FIGURE 7: Development team consists of 4 small teams: 3 scrum teams and QA team.

Testing team is shared with another development team. Other teams in same domain

and in same organisation contribute to produce software releases for customers.

It is worth noticing that in the beginning of this study there are newly employed people

in the development team. The split to scrum teams and QA team is relatively fresh

change, as before whole team used to be just one scrum team. It is expected advantage

that newly employed people give fresh perspective, as they do not know or care the

challenges in the very beginning, and therefore can raise the expectation to level of

more stabilised company. It is also a challenge in two ways: The current status needs to

be understood, before it is possible to study how to change it. Some people do not have

insight of what the current practices and processes are, or what are the problems with

them. In start of this study there is a lot of relying on second hand information, which

can also vary depending if the information is shared by person who joined six months or

two years ago.

22

The employees in the team are all experts in their areas of knowledge, with around 10 to

20 years of working experience in the business area in various companies. So as the

office and resources in place, it has been possible to drive through the first projects with

hard work on top of the experience. In this type of software industry the ways of work-

ing in any size of a company are similar in many ways, and most people are familiar

with projects and process managements, as well as modern software development tech-

nologies like agile and scrum. With growth, however, there is increasing need to set

focus on quality management together with resourcing. Working harder or increasing

team size forever is not an option, but working smarter is: focusing of doing the right

things at right time. Also purpose is not forcing some old habits without studying if and

how they add value, and are applicable in current environment.

Customer here means an external and paying company for which the organisation cre-

ates and offers software releases. End user satisfaction is an important quality factor to

consider, but in business perspective it is further away, being a customer of a customer.

From the team perspective also the organisation or other domains are internal custom-

ers. For clarity reasons the internal environment is referred generally as stakeholders.

Quality criteria need to satisfy both customers and stakeholders.

3.2 Present Practices of the Team

In this thesis a software release done for a specific customer or created as offering is

considered a project. Software releases contain some similarities with previous releases,

existing functionality to be delivered with different configuration. Often some new and

improved features and functionality are included in addition. A new feature develop-

ment can be also considered as a smaller scale project, or subproject inside a software

release.

Projects are somewhat combination of traditional and agile projects. In organisational

level there are no guidelines or practices to use agile. Both the schedule and content

must be fixed and agreed beforehand with all stakeholders, so that entire organisation -

other dependent development teams, system integration and system testing can also

23

prepare their tasks and duties. Yet sometimes changes are needed fast, and the team

must be flexible.

Team uses scrum practices in some ways that are found applicable, and has done that

from the beginning. Daily meetings are kept in scrum teams and considered important.

Planning is organized to run in sprints and iterations. But for example backlog is run in

various tools and there is no combined way to see the prioritization and progress. Sprint

retrospectives are allowed in scrum teams, but rarely produce actions to the entire de-

velopment team. There is no regular practice of project (or iteration) retrospective. Prac-

tices to tie together the three scrum teams and QA team activities are also forming, as

the split is recent.

Software release projects are the key business, and there are several projects on-going in

different phases. The phases of the projects are defined and milestone quality criteria for

each phase are determined. Each team contributing to a project basically knows the ex-

pectations. There are many practices in company and team level that are referred as

“this is the process”. But the milestone criteria or project process descriptions are not

easily available or recognized by all employees. Also project follow-up is not shared

effectively to teams, but amongst management. The information flow is hierarchical.

Project priorities and progress are being shared by the manager of this domain to devel-

opment teams in meetings. Employees are frequently asking about both, to gain confi-

dence the sprint planning is done correctly. In some way this information practice seems

to be reactive rather than proactive.

There is little or no requests from development team to have more detailed process de-

scriptions. Perhaps there are previous experiences of such documentation not being

helpful or applicable, not making the work easier thus not adding value. Agile approach

that employees are accustomed with also emphasize documentation and bureaucracy

should be avoided, so even with justified reason there can be sometimes hesitation or

even resistance against more documents. Still the attitude is about wanting to do the

work right in the first place.

Customers or business people are usually too far away from development teams to real-

ly get involved frequently. And many counterparts and stakeholders cannot be met fre-

24

quently face-to face. There are no practices, like demo sessions or hands-on presenta-

tions of the features and software quality, that would serve the purpose of possible cus-

tomer feedback.

Testing team is not directly part of the scrum activities, as it is independent group, and

not co-located. Information between teams is shared via emails, and call conferences

between few persons with key roles in both teams. With QA team formed, it is expected

the collaboration and practices between development team and testing team will im-

prove. QA team responsibilities are not limited to the testing aspect, but also include for

example requirements handling and releasing activities. As scrum teams task list con-

tains concrete items of developing software, QA team task list contains more abstract

items like improve releasing process. There are known problems given by manager to

start with. Team is expected to proactively find sources and root-causes to problems, to

drive activities improving process performance and quality.

Currently team and organisation do not fit directly anywhere in Lehtimäki’s view on

quality maturation levels: Zero level maybe applies to some things, as the quality prac-

tices are not being focused. For level one there is QA team nominated to handle the is-

sues, but there is no organisation wide network of people doing the same. There is some

quality criteria specified considering software delivery and testing. The most mature

quality level is the team’s long term target. And some built-in quality practices already

exist, such as developer testing and peer review being required before submitting

changes.

3.3 Detailed Objectives of the Study

Every professional test engineer knows to file an error report when they find something

wrong in the software under testing. It is their responsibility. Developers writing and

reviewing code know to follow code conventions and architecture design, and fix or

address any critical violations. Both of those activities impact directly on product quali-

ty, and activities and monitoring are needed to confirm the practises are really used and

working. But when there is something affecting the work quality, it isn’t always so ob-

vious that the issues get addressed and fixed. Quality management tools, methods and

25

practices are needed to handle working practices that will ensure quality of the end

product. Service quality is excluded from the scope of this thesis, as customer is not

directly involved.

Team is motivated to do the job and to improve practices. Desire is to work more effi-

ciently, improve planning and execution, and build in quality in every phase of projects.

Quality management defines the direction of this study: to get quality built-in with least

effort. Evolving environment provides the positive attitude. Learning of team work and

existence as one team is on-going, and therefore it would be good to have methods and

practices to also involve entire team to work together. There are probably also many

connections to other teams that are not yet strongly established. Main commitment for

everyone is naturally in doing the job, so any practice changes cannot take too much of

working time, and changes need to be justified and make sense.

The type of improvements should support skilled people and the team in whole to suc-

ceed. The desire is to continue working with respect to the agile principles. It is also

expected that ideas and practices coming from inside the team are valued, because then

team is motivated to keep them and develop further.

None of the theories are applicable alone, but target is to find good combinations that

are suitable for this team, in this company, this environment and working conditions.

“Be agile about agile” is a suitable quote, of which origin is unknown, but it does sum-

marize pretty well the relation of known models and how they should be used in differ-

ent work environments: To know and understand the theories behind, and to try and

select the best ways that work well, benefitting the employees, employer and the cus-

tomers.

The study includes activities that the development team can impact directly. Great deal

of the project start-up phase is excluded, as it involves managers and architects contri-

bution, but very little impact of development team. When the set of features, customer

needs and configurations are decided, then development team is starting the planning,

implementation and testing activities. Also most of the project work is done to achieve

certain milestone that can be described as “ready for customer delivery”, thus the

26

maintenance, in-markets and final closing of the project is excluded from this thesis

scope.

The study is limited to duration of four months, with agile approach of using a fixed

time. Duration also provides an example of how much or little changes and improve-

ments can be done, in addition to performing the regular work. The expectation is that

good practices in correct place can be adopted quickly, and modified over time to fit

well. Limiting the duration also includes the fact, that it is not possible to try out all

methods and practices that are seen important, and therefore this study is not presenting

a view of all the things this or any other team should have to solve a quality problem.

Measuring the process efficiency and software product quality is important, but exclud-

ed from the scope of this thesis. Mainly because the scope is defined as direct impact of

the development team, and projects related metrics is an organisational issue. It would

be also quite a big work to do and does not fit in the schedule of this study, since the

measurement system does not exist in a form that would show results in this context.

This study describes some of the changes to working practices, that involve the quality

assurance team, and all or part of the development team. The ideas and inputs are also

collected from inside the team, by one person or after discussions with many. The key

information is the observations followed by a summary. Results should provide insight

how to continue using the practices improvements, and if same or similar changes or

approach could be applicable in different environment for readers. Some ideas that are

suggested but not tried are therefore excluded from the study. There are no changes pre-

sented, that are given fully from outside the team, like actions organisation is expecting

all teams to do. Also, there are no changes described that involve only team specific

details, like actual tools or specific roles.

27

4 METHODS

4.1 Action Research

Action research is a form of qualitative research in which an intervention is brought to

community, situation is observed and evaluated. Introduced change forms a study when

community and researcher try to find solution and working together to achieve a com-

mon target. Researcher role can vary from pure observing, to being a full member of the

community. (Eskola & Suoranta, 128-131.)

Role of facilitator in qualitative research method is essential. There is more freedom

compared to quantitative methods in planning and implementation of the study. Empiri-

cal and experimental approach also requires trying of new things, and searching materi-

als to form new ideas, viewpoints and hypothesis, rather than verify and proof existing

ones. Conducting a quantitative study can be argued as non-scientific, as it cannot be

reproduced, and rely strongly on common sense and previous experiences of facilitator

used in a unique case. (Eskola & Suoranta, 20-21.)

Challenges are to identify hidden personal pre-assumptions resulting choices, and

avoiding driving a personal goal rather than the common goal. Other ethical questions

also need to be reviewed, like what is the impact of the facilitator’s actions when being

part of the team to study. (Eskola & Suoranta, 20-21, 52-53.)

Narrative descriptions can be also part of the study, building logical structure that is

natural to understand, and can be analysed further (Eskola & Suoranta, 22-24.)

4.2 Research Plan

This study is fully empirical and qualitative research, conducted in environment where

several management theories are applicable. The employer recommendation to devel-

opment team is to come up with good practices how to work smarter, and share those

“best known methods” inside the organisation. But it is not intended in this short time

28

the practices to become permanent and finalized in way that can be said they are “best

known methods”, and it is also not included that the practices are shared yet. Perform-

ing the research chapter includes that the trial and error phase is described in a narrative

way that presents the planning (setup), execution and observations. This part provides a

variety of written information based on which reader can evaluate if and how they can

use it as an example, without actually taking part or seeing how the practice is used.

New improved practices are summarized to provide an overview of the results that ap-

ply in this case.

Doing this kind of improvement together as a team is a form of action research. Writer

is full member of the team, and is facilitator and observer of the practices included in

this study. Using the new practice does not require full team to participate. Team work-

ing together also means that the ideas are shared both formally and informally in vari-

ous situations of daily work. Most of the development team is not informed the work is

used in a study, and some members know about the study without knowing the exact

scope. This is decided to exclude the possibility some actions are done for any other

reason but helping the team to develop the practices.

It is not decided in advance what changes are introduced and how. Writer’s role in the

team allows decisions and actions taken directly, but the working model - like regular

meetings with quality assurance team - includes the plans are shared and discussed,

minimizing the impact of personal pre-assumptions and introducing big changes with-

out planning together in advance.

It is not necessary to include exact details like employee names or forms of interview,

since it is not intended that the study can be reproduced. Instead descriptions and obser-

vations are relevant part of this study, followed by summary and analysis. Common

sense and previous experiences are the backbone of the study, but in addition the theo-

retical background and existing information about common problems are taken in ad-

vantage of.

29

5 PERFORMING THE RESEARCH

5.1 Improving the Project Planning Phase

5.1.1 Creating a Project Test Plan Checklist

To start with the improvements, some top level items were given as assignments to QA

team to handle. One of the tasks was to come up with a test plan for the next new pro-

ject that was soon approaching the implementation phase.

Few initial assumptions were made. First, there is no existing practice for project test

planning. There have been projects before, and testing has been done as the projects are

finalized, but something must be missing in either planning or execution, since a test

plan is being requested. Second, there are other projects to follow, so the plan should be

reusable. So this task could contain both a template to be used for any project, and some

detailed form of test plan specific to the starting project.

Like process management guides, the current practice needs to be understood for the

improvement. As some team members were newly hired to the company and team, it

was in all ways natural to start investigating what are the current practices, and what is

the missing part in testing that this plan needs to solve.

The task started with informal interviews and discussions. The members of QA team

asked questions, held meetings and interviewed colleagues to understand what the

quality issues that should be solved are. Weekly meetings were held to follow the pro-

gress of this and all other tasks, in similar manner with scrum team practice but combin-

ing the daily and sprint meetings purpose in one. Online meetings were also held with

testing team, to clarify current practices and quality criteria used. The results of discus-

sions and meeting minutes were written down in a document, to track the progress.

With the given information there were two discoveries. The testing team already is

working according to a plan they know, and that quality criteria exists and is used. It

was not then the purpose to evaluate that further, since obviously it was not anything

30

new to be created, though it could be something not written down and shared to the de-

velopment team. The second discovery was brought up from discussions about termi-

nology: if testing team has established and working practice, then what it is in the vali-

dation that does not work. Validation is about confirming the requirements are met, so

more questions were raised: what are the practices, where and how the project require-

ments are created and shared. At this point it was also noticed that nobody really de-

fined the task target in detail to start with, so it would be rather hard to hit the goal. But

since the new questions were important, and parts of the requirement handling would be

also regular task for QA team, the investigation continued.

There was a lot of material already available from all the knowledge QA team members

had and collected. What are the common things forgotten in planning, like legal issues

or specific testing phases, or keeping the requirements list valid in all details and sched-

ules. It was decided to then create a template: a checklist that covers all things to re-

member in project planning phase the problem was, there was already too much data

considering it should be formed to a simple checklist to use easily.

The work seemed to stop, and there was no pressure from team manager to come up

with solution. But it was kept as an open task, to follow the progress in weekly meet-

ings. One day before a weekly meeting, one member took the data and started reading it

through. All of it seemed relevant and important, but not all the things were actually

required in project planning since part of the things would handle more detailed the fea-

tures inside the project or just common practices that issues that were not right at the

moment. The data could be split in three categories:

● Project level - needed rarely, mainly tasks to management.

● Feature level - needed frequently, mainly tasks to implementation and testing

● Daily work level - things that seem acute and needed to solve once.

The data was formed into two checklists: one for project planning and another for fea-

ture planning. The daily work level was left out from these two documents, but kept as

open new things QA team would be responsible to continue working with.

The next question was, if we get the team to agree with us, about the contents of the

templates, and the practicalities how to make it work. The checklist did not provide a

process view of who does what, how and when, but more like items someone has to

31

remember. Expectation was that template would have usable and valid information, but

there was not enough confidence to start pushing it through. These documents were not

published to ask review from neither of the development teams nor testing team. The

task was also to create specific plan for a named project, which still did not exist.

By the project start, the decision was made for QA team to try out the project checklist,

and see if it needed adjustments. It helped the QA team members in some duties. But

the start phase was surprisingly quick, and there was no specific project plan created

that would have had need to follow during or after the project. The implementation and

testing started mostly in same way it had been done before. With project on-going the

planning task was waived, as then it was time to learn in practice how to deal with all

the phases.

Open question still was the purpose of test plan: should it focus on the functionality and

differences of this project compared to previous, should it define strategy of what and

how to test in each level from development to end user testing, or something else.

Observations are that this task kind of failed, as the original goal was not set and the

preconditions were not identified to begin with. And perhaps some assumptions were

made, without making them visible and asking if they are valid or not. The classical

reasons why improvement projects would fail were met: target cannot be reached when

it is not defined in the first place; and planning a change requires understanding the

starting conditions first.

There was progress, and mainly the difficult task got pushed forward with the help of

weekly follow-up, even though it was done by the team itself. Work was done with

small number of people inside two teams, with discussions and documenting. Bench-

marking to other teams practices, or involving entire development team or properly in-

forming them was not done. But there were results found out around the topic, some

basic understanding of required steps in checklist, and good background information to

continue with several more improvements.

There was a large amount of improvement ideas and needs identified, by making con-

versations, writing down questions, answers and meeting minutes. To help processing

32

the qualitative material, a classification method was used and ideas were handled in

three levels (project, feature development, daily work). Even though some of the mate-

rial collected was not helping to resolve the testing plan problem, it could be re-used in

continuing improvements.

5.2 Improving the Project Execution Phase

5.2.1 Regular Project Status Sharing in Development Teams

There was already a project progress reporting practice existing. However, the metrics

and insights document was created for management meeting, and its purpose was for all

teams to report progress to project management. Teams in the domain were informed,

but not in regular systematic manner. It was noticed quite often questions like “are we

busy, or busy-busy” were made, trying to understand if the project is progressing as

expected, or if there are any delays or extra effort needed. Everyone working in many

projects, it was anticipated that towards the end there could be huge workload ahead, if

not keeping the focus on right things.

While the task of collecting the weekly material was given as regular task for QA team

to handle, it was also decided to start sharing the progress report by email directly to the

entire domain. Since the domain contains several teams, and not all teams work with the

same project the worry was that many people not involved would feel regular weekly

email excessive. To address that worry, the email subject was designed to include key-

words and project name, so anyone can easily create a filter in their mailbox.

The email would contain metrics, like error count and test execution results. With mile-

stones approaching, the targets were also included in advance to focus. Some written

analysis was included when there was a change unexpected, or something special to

focus or highlight. While the purpose is to show that the project is not yet ready, and

often the highlight is pointed at issues that are behind from the targets, also smaller im-

provements were highlighted even though it would be only applicable for that week. If

all the report is just negative, it might not get the desired attention.

33

Surprisingly, there were no complaints of too much emails coming. But it was easy to

reply to the email, and suggest small changes and improvements. Some comments were

given this was good information, but with question if the progress is on par with other

teams, so to fulfil this request a bigger set of data was included every now and then, still

keeping the regular email smaller. On the other hand, when the project final milestone

was coming closer, the frequency changed to daily email with only the issues prevent-

ing the target, but still keeping the bigger summary email once a week. Some feedback

was given that this emailing of the status would be a practice to keep. It was like the

lack of information was really noticed only after it was made available.

Observations: The decision to share the report was based on the theories, like project

communications and agile principles of involving the team. Also some of the infor-

mation would have been easily available for anyone, but when the way of collecting the

data was made standard way, it would really provide a reliable measure to follow the

progress. And the information collected and made available meant that scrum masters

did not need to repeat the steps to prepare for their sprint planning, so some effort was

saved.

From quality perspective it was not always a good thing to report exact numbers and the

negative message “we are not there yet”, but luckily there were no identified issues

where anyone would do the wrong thing or dirty hack just to get the numbers look bet-

ter. Still, in many conversations in the hallways, some people tend to repeat the numbers

in a manner that would require ensuring “it is not the end of the world, keep calm and

carry on, do the best you can”. On the other hand, when scrum team specific error count

was made visible, some scrum teams made it a bit of a competition and fun, even

though reaching the target was serious business.

Emailing was used as the means to deliver information, as it would reach all employees

better than hierarchical system of key persons discussing in meetings and delivering the

information forward. The data collection was done from different tools, and it required

some effort to format as message each time. Tools could provide the visibility better in

company level, so that all projects and teams could have consistent views automatically

as dashboards that would enable more pro-activity in development teams. Time saved

from collecting the data could be used to make it into information.

34

5.2.2 Using Exploratory Testing for Maturity Evaluation

Quite often software project maturity measurement rely only on metrics provided by

testing: pass rates of test execution, and amount of open errors. Especially close to pro-

ject finalization the amount severe errors is a measure to follow daily. But the numbers

do not always indicate the sense of maturity that one would get when using the soft-

ware. Development team doing fixes one after another can get frustrated when the num-

bers don’t progress well enough. Another source of frustration can be the sense of not

having control of their own asset, as the evaluation is done testing teams with no direct

contact and therefore outside of the community.

Project success challenges are also psychological. It is the people who are doing it, in

every step. People need to understand the quality, feel the success or loss, and learn

what is important and how to do it in the next project, working again with people.

(Leppälä 2011, 174.)

The development team did not have any practice of doing regular testing on real envi-

ronment - besides validating self-made individual fixes and changes of course - explora-

tory testing sessions were started. It is informal testing technique (ISTQB 2012, 21) that

does not contain directions what to test, but participants trying out freely. When dealing

with software that will be available for any type of people, anyone in the company is

qualified as tester in this session, and also presenting the customer providing feedback.

From experience it was known fact that all people (developers, testers, managers) are

individuals, and find different type of issues when executing manual testing. When one

person finds an issue and explains it out loud, another person trying the same or similar

use case can find a different problem. Multiple persons doing about the same also pro-

vides information about reproducibility quickly. It is essential to keep the exploratory

testing session informal and discuss freely. Another element of informality is the sched-

uling: session duration can be defined to one hour during which participants can come

and go freely, spending anything between 15 to 60 minutes. If meeting room facilities

allow everyone is also allowed to bring a coffee cup and have a break during the ses-

sion.

35

The purpose of Exploratory testing session is not to do just anything freely. The scope

must be defined first, and the targets of what kind of results are expected. The target can

vary a lot, depending of the project phase and software maturity. Target and maybe

some hints on where and how to start can be needed, but with the discussion and find-

ings it is often continued itself from there. Collecting of the results must be organized in

some way: whether is a paper to fill for everyone, paper to circulate from one per son to

another, or one person working as secretary to write down findings from all.

First session was organized because of the complaints that the big error count would not

tell the correct level of maturity. So a small number of features that have been prepared

long time ago and small number of feature recently changed were selected as topic: For

each feature on paper was provided with scale sad-happy for everyone to mark their

opinion of maturity, like shown in figure 8. The evaluation request was expressed with

question: “If you purchased this software, would you be happy?” In addition, papers

were available to write down new errors.

The development team was invited, as well as people from other teams with less experi-

ence of the used software. The number of participants was small compared to the invita-

tions, about 10 people. But even after short period of time, there was a list of new errors

filling up, and people leaving the session with marking their opinion of the maturity:

For many it was a surprise that actually the maturity was far from perfect, rough esti-

mate of average grade from the pictures was around 7, if scale was 1-10. And not many

people would care to stay for the full hour.

FIGURE 8: Maturity evaluation form with open scale from sad to happy.

36

This subjective grading, the happy/sad papers, were also put visible in team premises,

so that those not joining would see it, too. The error list was also put visible. All found

errors were included and reported, the reporting is not limited to the features being

named as focus of the session.

With next sessions the maturity grading was left out, and the focus was on finding the

critical errors, in any of features changed or impacted recently. Not all the time the er-

rors were new, but the severity became clear as issues often occurred in short time. And

none of the team members would be proud if customers would see it. Also as the error

were written down during the session in detail enough to be searched for existing error

reports and submitting as new ones during the same day.

Observations are that this type of sessions are working well for the team. It was antici-

pated that some errors will be found, but still there were occasions where severity or

amount of new errors came as surprise, knowing that test automation and several phases

of testing had to exist before - including the developer testing - that missed the issue.

Big part of the regular code writing work is done alone in own desks, and the joined

meetings are seen as time away from the actual work. These sessions represent some-

thing in between: working together. Even if customer is far away, this method does give

a hint of what would it be like to give a demonstration frequently. The most important

part seem to be the ownership of the quality, and the rather easy way of prioritizing own

work. Some occasion a developer quit the session with comment “I have to leave now,

because I’m going to fix this by tomorrow”.

5.2.3 Using the Fishbone Method for Finding Root-causes of Problems

Process management teaches to notice the exceptions when something unexpected hap-

pens. For the sake of process, it should be investigated in order to see if process is cor-

rect but people need support, or if process itself does need change and improvement.

Agile reinforces flexibility to change, and trusting the professionals doing what is the

best, so process type approach can be seen contradictory. But even so the quality issues

that are caused by doing things “differently” should probably be investigated and ana-

37

lysed to find a way to prevent same thing happening again. The taken action can be lead

from the quality issue, rather than the people.

A method known from process improvement is to ask “Why?” so many times, that the

final answer reveals the root-cause, and makes it possible to find a working solution.

The questions should not focus on one possible solution, but to include all the variety,

like tools and equipment, people and practices for different roles. This root-cause analy-

sis can be presented in visual format known as Ishikawa or Fishbone diagram (Silvers,

2004.) shown in Figure 9.

FIGURE 9: Fishbone diagram (Silvers, J. 2004.)

When the session to collect the actual root-causes is organized soon after the quality

issue is solved, it can provide more accurate reasons and more concrete requests of what

to do, than other types of session collecting feedback.

Imaginary example for testing questions:

- Did you test it? - No.

- Why? - I didn’t know feature was there.

- Why? - Ummm… difficult question. I don’t know.

- Did you not see it in planning meeting agenda? Did you not see it in sprint backlog?

38

- Okay, I did not join the meeting, testers are not invited. I read the backlog, but it is not

planned for this week but next one.

Dialog would then continue asking why, to also see why the backlog is not up-to-date

and why testers are not included. Outcome to record and share from this could be

changing the meeting practice to include at least one test team representative, and im-

prove other types of collaboration between developer and tester.

Imaginary example for development questions:

- This error, is it possible to find it with static analysis tool? - Yes.

- Did you run the tool? - No.

- Why? - It is too slow. I fixed too more errors the same day, and it would not have been

possible to do that if using the slow tool.

- Why the tool is slow? Anything that can be done to make it faster? - No. Maybe not.

We don’t know …

- Okay, I’ll take it on my task list to ask further from others. Then was there any other

way to find the error?

- Yes, anyone can find it when using in real environment. Reviewer also found it, but did

not report it.

- Why???

Dialog would then continue asking why the reviewer and tester failed to notice or re-

port to developer in time to prevent it. Outcome from this is the open question of tool

being too slow, that possibly can be changed in future.

With a new feature development two separate teams in different locations were in-

volved. The usual happened, when software was released from both teams, it did not

work at all. On the surface both of the teams did right things, both had skilled develop-

ers and testers to do their part, there was a regular meeting to do the planning and co-

operation. But still this new feature in software failed, error was leaked. It was seen as a

good opportunity to make an example how the root-cause analysis would work. It

would also be a perfect example, because the teams are not only located in different

place, but in opposite time-zones, that is reducing the live communications and focus on

emailing, so if there would be any improvements found, it could be applicable for other

team co-operation as well.

39

From past experience the technique of asking “why” was known to work in face-to-face

situation. Quality manager would call in meeting with all the key stakeholders who

were involved in the process. And to avoid the sense of blaming a person, and the sense

of torture when held responsible trying to answer why I and my team failed, the meeting

was arranged usually in cosy lobby or coffee room. The stakeholders would be a lead

developer, developer whose change introduced the leaked error, developer who re-

viewed and tested the change, and test team leader. The group was intentionally focus-

ing in the development activities to find out the real causes and real changes that could

help building-in the quality. The dialog would go through each person and ask questions

deep enough to have a satisfactory answer: there is nothing we could have done differ-

ently, or identify one or several things the team can change in the practice or the quality

manager can take and escalate in the organisation. This root-cause analysis meeting

would be arranged right after the leaked error was fixed, so that all participants and es-

pecially the lead developer has deep understanding of the issue happened.

In this new environment, it was not possible to have the stakeholders in same room, just

for the sake of one error leaked, one new feature that did not work. So there were two

options: To wait until the next regular online meeting and start the discussion there, but

the worry was it is too late considering people still have the issue in fresh memory, and

the meeting would have more important things on agenda. Second option would be us-

ing email, but the worry is that it would not have a true dialog between persons, and

with many people in two teams, the emails would be long and nobody having time and

energy to dig in the deep details.

It was decided to start by email, so that the question has been presented to save some

time, and possibility to continue as discussion in the regular meeting next time if seen

important. But writing the email was difficult, for many reasons. The technique had not

been used before with these people and this way, so the purpose had to be explained but

very shortly. Emphasizing it is about the things gone wrong and the question how to

improve. Since the dialog would be slow, waiting reply always to next day, the ques-

tions about communication, development and release testing were all included. Also in

live dialog it would be possible to start with easy question, and gradually go deeper, but

to fasten the chain and to push it some to right direction, also some leading questions

were included.

40

Some people replied the email, but not answering the questions. Some replied to the

leading questions, saying good or bad idea. And some agreed those good ideas should

be taken in use. But likely the purpose was not understood. Also as anticipated, the next

regular meeting did not have this issue on agenda, and the matter was pretty much for-

gotten.

One of the replies or comments was that between the two teams there is quite often

something forgotten in the chain of communication and development. And that it would

be good to have a checklist for feature development to review next time, early enough.

The QA team had worked on a template/checklist for project and feature development

(when investigating test plan improvement needs), but as it was not published, it was

not available in situation needed. However, it was a quick task to find the original doc-

ument, review and slightly modify it against the found issue, and provide it with confi-

dence it can help next time.

Observations of the one occurrence provides some hints how to develop this practice

further. While the original face-to-face meeting recorded only the outcome, the email

approach tends to record the middle of the conversation, which would be nice to forget,

as it is difficult to admit there was a fail and maybe some excuses that would not be nice

to expose and share with wide distribution amongst colleagues. It is somewhat easy in

live conversation to say “I don’t know”, so the other person can re-phrase or form an-

other question to continue the dialogue. And recording the details of the technique is

really not needed, just forming the path from the incident to the root-cause. A better

approach would have been to start the discussion as live meeting over the phone/video

connection separately, despite the time challenges, to really explain what is expected.

After the technique is understood and shared, both teams could do it independently and

get together with the results and rationale behind it.

There was also one, perhaps critical fail in the email itself. As usually cross team com-

munications need to have some amount of politeness and diplomacy, and spirit of con-

structive comments also when need to ask or give negative feedback, to collaborate ef-

fectively. This time the email contained a typing error that may have turned the message

to finger pointing of people instead of trying to develop practices. “I’m not blaming

anyone” appeared the opposite, when word “not” was accidentally left out.

41

5.3 Improving the Project Execution Phase

5.3.1 First Project Retrospective to Collect Improvement Needs from the Team

The first change introduced in this thesis was the project test plan. The outcome of the

investigation was a list of quality issues and changes that small part of the development

team had collected. But there was no certainty, if the entire sees the situation in same

way. In this situation feedback from the team was needed for actions of the starting pro-

ject, but there was no practice how to get it. Shortly after that test plan activity, an old

project came to its final end; decision to close all maintenance activities was announced

in the organisation. Project management theories suggest collecting feedback and les-

sons learned in the end. There were multiple reasons to get the team together to discuss,

and the agile approach of arranging project retrospective was selected for the purpose.

Everyone in the development team was invited, three scrum teams, QA team and both

managers. There were several people who were recently employed, and really did not

have experience of the oldest project closing, but some experience of the on-going pro-

jects. Also ideas for the starting project were needed, so getting all types of feedback

was target, everyone’s opinion should count. It wasn’t only the feedback what was

needed, but also suggestions what should be done. So the retrospective session should

enable a trusted environment with freedom of opinion, and room for brainstorming and

ideas. A scrum master guidebook suggest first to have a summary or sighting to the past

project highlights, then time for individuals to think and collect their feedback, and fi-

nally discuss in groups.

A big meeting room was booked, to fit everyone. The schedule was prepared for 1,5 to

2 hours. Organizer had prepared a schedule, but the phases were not switched by the

clock but by seeing the activities on-going and getting done.

A very short summary of past projects was given by a person joining the team long

time; it was not agreed beforehand and only works as opening of the session and time to

realize team had really achieved something, to complete the project.

42

A scrum master guidebook tells the feedback should be collected in simple way, the

positive and the negative. But it was a long time in the team since any feedback had

been collected and big changes happening with more projects and more employees. The

expectation was it is difficult to get started, if there are no real questions to provide

comments about. As QA team had previously discovered, the needed changes can be

roughly categorized in three levels: project, feature development, and daily work. These

three categories were given as a guideline to start with, as described in table 2. The posi-

tive and negative were also phrased in several ways to allow all types of comments:

Good / positive / things to keep; Bad / negative / things to change.

Each individual was given pen and paper to write down feedback with the help of the

categories. The task was to be done alone, without discussing. To avoid distractions of

email, chat and thinking of the work tasks in hands, nobody was allowed to take their

laptop in the session. Meeting has a clear focus on reflecting the past and thinking

freely, so it is important to minimize the distractions.

Often the feedback sessions get a lot of comments about things that are not running

well, but what the team itself cannot fix. Like limitations in tools, some other team’s

practices, that can be maybe requested by escalating the issue within organisation, but

no direct way to change it quickly. This type of information is valuable feedback. The

first, individual part was meant to collect any kind of feedback to know what are the

items bugging people (and might need to be escalated).

Second part was to form small groups to share and discuss their written comments, and

as a group to make 1 to 3 suggestions what to improve and how in practice. The group

should also prioritize the suggestions in the categories, like presented in table 3. This

part had a purpose of really looking forward in what team itself can do to improve, to

take initiative and commit to change plan: “we can do better and we want to”.

These groups were given a time, during which they were allowed to do the discussion

anywhere they wanted: some group would stay in the meeting room, some go in coffee

room, and one group even found their way in the empty hobby room nearby. Organiser

of the session visited the groups, to listen to the progress, and finally notify the time is

running out, for everyone to come back.

43

TABLE 2: Form of collecting the individual feedback in three categories

Project Feature Work

good good good

bad bad bad

TABLE 3: Form of collecting the group actions, three prioritized changes to do in the

three categories

Project Feature Work

1. to-do 1. to-do 1. to-do

2. to-do 2. to-do 2. to-do

3. to-do 3. to-do 3. to-do

Entire team back in the same premises, each team was allowed to tell the most im-

portant thing on their list to change. The intention was to have more items listed, dis-

cussed and prioritized, but the plan was changed due to time running short. It was al-

ready notice when first group said their first item, starting a lively discussion and many

ideas. So each team was only given chance to present one thing. Items were listed with

a responsible person to drive it forward and a target date for check-up.

From QA team perspective, the items were supporting the assumptions that existed in

their meeting minutes and plans from earlier, and also completed some gaps. There was

new material and task list to work with. All written papers were collected, so that both

individual feedback and group work is saved. Agenda of the retrospective, action list,

and summary of the feedback was shared as one document in shared drive, so any team

member can go and re-collect the ideas. And the format can be reused.

From manager’s request there was also one element not foreseen: request to present the

positive feedback in monthly team meeting. As important as it is getting a task list for

doing improvements, everyone should be reminded the things to keep and things to

make the workplace a good place to be.

44

Observations show that this known but forgotten agile practice is needed in the team.

Discussion always needs to have enough time, for each person to say their opinion, and

for the topics to evolve and form into real actions. This method was used by the big

team first time, and the format was constructed by organiser alone slightly different

from guidebooks or any discussion, in order to keep it a secret - an element of surprise

to enable the brainstorming spirit. Even though anticipated in the agenda, the time run

out, but it did also reveal that the team has a lot to say, and to discuss together. In cur-

rent working model there is no other situation where entire team could address these

things. Team seemed to have a trusted environment already, so the plan worked well.

And the addition of reviewing summary of positive feedback was also welcome, inter-

esting to team and managers.

5.3.2 Second Project Retrospective to Evaluate Improvements and Continue Col-

lecting Improvement Needs

Three months after the first retrospective, the time planned for this thesis research had

passed. More importantly, projects had been progressing, and it was seen a good time to

have retrospective again. All members of the team had experience of the implementa-

tion start phase of a project. Also many changes were done in that time, so the feedback

and review was seen important, in order to set the course again. Many changes involved

those activities mentioned in this thesis work, but also all scrum teams and the co-

operative teams’ activities well.

The idea again is to see if the exact same issues rise again with same volume, so they

should have more priority in future. It is expected there are new comments as well, on

things done differently or anything that just was not remembered or mentioned. The

scope is also different, since now the time period to evaluate is same three months for

everyone, the first retrospective not having limitations and difference of newly em-

ployed months to those having few years in the company. Results are not meant to be

directly comparable, but doing the comparison can indicate if there were changes and if

they were successful or not.

45

Again, all team was invited to same meeting room. The element of informality and a

little surprise was in the beginning of the session: small celebration with the opening

words highlighting the success of latest project milestone achievements. Opening words

was the starter, just like previous time.

Looking back also now included review of the previous retrospective results, so the

summary list was shown with actions agreed and nominated responsible name. Task list

is shown in table 4, but the topics are generalized for confidentiality reasons. Some of

the actions were clearly about addressing an issue that was only urgent at that time, and

is not going to be continuous issue. Few issues got also actions done. But most issues

got no actions done at all, or partially started but still continue to be an issue. So already

before starting the part of collecting new feedback, it was realized that most people for-

got the plan as it was not followed during the months. Also it was not enough that one

person is nominated as responsible to facilitate the issue, but the team needs to commit

together to make the change happen or reschedule/de-prioritize the change together.

Item was added to task list of this session, to have the retrospective actions list on agen-

da of team’s regular meeting.

46

TABLE 4: Task list of first retrospective with remark if the action was handled by the
time of review in second retrospective. (Not exact items, but generalized to be public.)

R1-A1 Regular issue of team meeting practices,

certain information is not shared frequently

enough. Agreed action solved once as

agreed, but nobody followed the practice to

become regular.

Solved

R1-A2 New feature development issue. Not solved. No new features

done anyway so this item

did not become important

during this time period.

R1-A3 Definition of done in task level unclear. No meeting to discuss ar-

ranged. Development teams

did not raise the issue during

this time period, suggesting

the daily work does not suf-

fer from missing it or found

a practical agreement.

R1-A4 Feature level definition of done to contain

better information sharing to customer.

No meeting to discuss ar-

ranged and this item does

not have clear owner, as the

team is not directly involved

with customer.

R1-A5 Tool issue for few people. Solved, required only sim-

ple actions for those indi-

viduals.

R1-A6 Issue with a tool, task to collect data for

escalating the issue.

No data much collected, but

issue was occurring at the

time and not happened

again.

Since the time-period to review was shorter and experiences of previous session the

agenda was changed a bit to be more simple and quick. Instead of asking different types

of feedback in different categories guideline was only positive, negative and neutral or

something between. The expression was again also formed in different ways, the feel-

ings were added from a scrum master guide book: positive = I’m glad, between = I’m a

little sad; negative = I’m mad. The neutral value was added, since many of comments in

first session were formed as “this is good, but…”.

The individual part was conducted same way as before, everyone to write their notes

with pens on paper in silence. The group conversation then continued differently, all in

47

the same room: first by reading each other's papers and adding comments, and after that

to start discussion. The group was again asked to collect a list of concrete actions that

team should change in near future. This time all groups were asked to present their pro-

posals quickly, after which all team discussed, and the task list was collected. This time

there were more items on the list, a bit more concrete. Some items were new compared

to the task list from previous retrospective as described in table 5, although those could

have been in the feedbacks before. The session was closed in about the 2 hours as

planned.

48

TABLE 5: Task list of second retrospective, with remark if item was new or similar

with first retrospective. (Not exact items, but generalized to be public.)

R2-A1 HW in investment request to escalate. Action to

manager to continue.

NEW

R2-A2 Common request to have some training and best

known methods available and shared in wiki. No

responsible person for any detail topic.

NEW

R2-A3 Improvement wish for test automation, but no

detail requirement nor specified owner.

NEW

R2-A4 Daily scrum meeting notice to one team, to make

clear separation of the quick meeting and discus-

sion to continue in other time.

NEW

R2-A5 One key person found as bottleneck, since the

actions done in that role is not clear to substitutes.

Real proposal for substitutes to have more hands-

on experience regularly at all times.

NEW

R2-A6 Key person responsibility to be more clear for

teams to handle their part in more organized way,

one counterpart of the person to start building

more efficient collaboration. Action started in few

days of the retrospective.

Second proposal for

issue mentioned in

R2-A5.

R2-A7 CR process definition still needs actions. Owner

and few key roles nominated to handle since they

should have been the owners already (but in prac-

tice weren’t). One practical action mentioned and

done by collecting the materials from before on

the same day retrospective was held.

Partially same as R1-

A2.

R2-A8 Practical request to change regular meeting to be

more frequent.

Same as R1-A1 but in

other words.

R2-A9 Issues with error handling. Real examples causing

trouble to developers. Error manager nominated

as owner of the item. Part of the request is a more

detailed wiki, which was released in few days

after retrospective.

NEW

R2-A10 Retrospective items to be followed in regular team

meetings.

New item, found dur-

ing review of the first

retrospective results.

49

Observations show that even if the practice was found useful the first time, and there

was a form to run the session, the continuous improvement does not happen by itself,

and the practice needs to be evaluated together with other practices.

Session is not long enough for really digging into details, what changes and how to do

it. Some discussions afterwards reveal there should be more time to discuss thoroughly,

and analyse. On the other hand, this kind of discussion needs could be added in the task

list as open assignment. The scrum master guidebook instructs for all team to vote for

the priorities in the task list. Both sessions did not have time to do it, but this does not

seem like a problem since the topics are in very wide scope and does not involve all

team to do changes in their practices. Many actions are also left in general level, so that

it is hard to nominate a responsible person, but if the list is reviewed more frequently in

team meetings, it should be enough to keep planning the changes needed. The amount

of feedback was big in both times, so the list is still “a tip of an iceberg”. The wideness

of topic and amount of comments tells that maybe there is no other forum for team to

give this input in a way that seems to have an impact; also there is an interest for all to

develop the practices, and that having this kind of retrospective meetings should be a

regular practice. Three months was a good period because already then many things had

changed, and the old results were forgotten.

There are also other places and ways for team members to provide feedback. Like the

scrum teams can have their own retrospective every sprint, practically every two weeks.

But this session of entire teams enable different perspective not only because of the time

and focus difference, but about working together. For continuous improvement the

sprint retrospectives still have a place aside the project retrospective, and there could be

place to evaluate how the improvement ideas and progress are to be handled between

these.

The results showed that the most important issues affect all scrum teams almost equally,

so the change should benefit all. Some comments describe this situation, like “I didn’t

know your scrum team had this issue, we also have it so we should really prioritize it.”

Also as scrum team can have different practices the discussion can be really effective

collaboration method, starting with comments like “I didn’t know your scrum team had

this issue, this is how we solved it and I think I can help you with that.”

50

Observations after the retrospective also revealed some challenges. The team has a good

trust level and open communications, but there can be situations of almost crossing the

line. The purpose is to find out how team can do better, but when something has failed

that seem to rely on one person’s role only, there is a risk of discussion going on too

personal level in the comments. Brainstorming and open place for feedback cannot

mean sensitivity and respect for the individual is forgotten. Follow-up of the session is

not only important for the tasks, but for other possible impacts as well.

The entire team retrospective seems to be useful practice to collect feedback and em-

power the team to come up with solutions for continuous improvement. The finishing

work also takes time, collecting the hand written notes and typing them in a document

to save. While doing this, it requires reading every note, and enables the possibility to

form some overview and maybe analysis, too.

51

6 NEW IMPROVED PRACTICES

The objective of this study was to find ways to improve quality by improving working

practices in software development team. Some practices impact directly to the product

quality. Other activities help software projects to succeed better, building in the quality

already inside the workflow.

Project retrospective was found useful practice to keep. It provides positive and nega-

tive feedback, and list of changes and actions needed. When carried out frequently, it

enables continuous improvement with new ideas and evaluation if previous changes

have been successful or not. Making the positive feedback summary visible was found

important, in order to know what things are done right, as the improvements are focus-

ing only on the negative comments. Since the entire development team participates this

session together, working together towards shared goal also builds collaboration and

team spirit. As the team, including the manager, is making the decisions, unwanted

changes that are not seen important are avoided, building commitment and motivation

to also improve practices.

Customer perspective was introduced in a form of exploratory testing. Highlighting

this purpose on the first occurrence made it easy for everyone to quickly understand the

benefit of this method: finding severe errors quickly and having an overview of the un-

expectedly poor maturity would have been a shameful moment if customer would have

been in the premises. Exploratory testing impacts to the end result quality directly and

to prioritization of remaining tasks in the project. It is also a way to give suggestions

and ideas about the features, and perhaps improving current of future software. This

practice is found useful and will be used, perhaps not regularly but when targets are

seen important in any project implementation phase and developer testing coverage

needs to be complemented.

Checklists for project and feature planning were collected, to remember all relevant

activities needed to cover or review. New practice would have been to start using them,

and perhaps review the project progress status also against the items. But in the

timeframe of this study there was no real usage that could have been showing any re-

52

sults. There were difficulties in collecting the information. But all the preparations and

progress could be seen as first iteration for the practice, and there is a strong wish from

development team to have this kind of lightweight document support for the planning

and development process.

Project status sharing regularly to development team was well received. There were

no complaints of excessive use of email for this purpose. Some feedback was given to

share even more details, which was done occasionally to complement the message. It

was not really monitored how the information was used, but the feedback especially in

the implementation finalization phase having the key figures and dates easily available

helped in sprint planning and daily task prioritization.

Continuous improvement can be included in development team activities by sprint and

project retrospectives. However, the results focus on opinions what is important for em-

ployees and practices used, and what could be important for improving quality. To in-

vestigate the actual problems more deeply fishbone method was introduced to find de-

tailed root-causes and possible solutions. The method was used only once, not inside the

team but in situation of two teams contributing to create a new feature together. Some

solution proposals were found, but due to the setup it was not concluded properly. Us-

ing the fishbone method for root-cause analysis could work better and will be intro-

duced again with better preparations and structure.

The amount of preparations when introducing a practice first time also played important

role in matter of success. Exploratory testing was well prepared and organizing was

done based on strong experience that paid off as success of introducing the practice.

Also the retrospective relied on knowing how the session setup could be done, but part

of the preparations was in fact done when first conducting interviews about project

planning and making conclusions from the collected information. Project status sharing

was simple task as the status report had been created before for management purposes,

so only slight modifications were needed. Using the fishbone method was found diffi-

cult, because the setup was not well planned: the method could have been more useful if

it was used in face-to-face situation, but there were no extra preparations done for the

challenge in handling it offline by email.

53

Finding the sources of improvements was found essential factor working with the im-

provement goal. When the information of problem is given from outside, in this case a

manager request for a test plan in the very beginning, the improvement investigation

needs to start from verifying if the problem exists. It will take time to proceed further, to

methods and practices how to improve. Monitoring (the process) was used as source for

using the Fishbone method, as a quality violation occurred in the software release flow,

causing severe error in the feature. Retrospectives are source for improvements that do

not need explanations or reasoning to the team, since the feedback and improvement

requirements are created from inside. Background theories also form a source, like the

project status sharing, that was not originally requested in any way, but turned out to be

needed.

Improvement approach was iterative, plan first then try it in action, and continue cycle

after evaluation and small changes. Practices were not introduced all at once, but one-

by-one when appropriate target was detected. Exploratory testing was planned to be

introduced, as from experience it can be used for many different purposes. The plan was

on hold until the situation where it provided answers for the problem where develop-

ment team did have different perspective to software maturity than the status report

based on testing activities showed.

54

7 DISCUSSION

7.1 Conducting the study

The study was conducted with a mission of finding methods and practices that can help

the team to build in quality. The focus was in the questions of what practice, and how to

organize it, how it is applicable in the environment. Theoretical background that is part

of the thesis was not included in study phase in a way that the whole team should in-

crease the knowledge. After all, all members of the team already have understanding

and working experience in the industry. Instead the practices were introduced with

“learning by doing” approach, with expectation that once the new practice is tried once,

it will produce results that speak for themselves and there is no need to justify the action

from any theory. But that approach also included finding answer to another question,

when. Even as some practices were known to be useful, they were introduced only when

finding a proper time that fits in schedules, and enables providing results.

Making permanent improvements takes a lot of time and effort. Introducing a change

can be successful and appreciated, but doing it once or even twice does not tell if the

change is to be kept and what are the impacts. Both success and fail are valuable results,

as long as both are used as learning experience: to analyse and identify reasons in this

environment, to be able to develop further.

None of the introduced practices failed completely, considering using it had an impact

and found useful to address some quality issue. Using the project retrospective can be

also a practice that includes the evaluation and planning part for any changes, without

adding extensive bureaucracy for process improvement. It is also planned to be a per-

manent and continuous practice in the team. Therefore it can be seen as most important

finding for continuous quality improvement. The reflecting, analysing and learning is

the important part described in process and quality improvement theories, and this is the

one practice that now really uses that approach.

Pain points are still the contents and using of checklists for project planning, and using

of the fishbone method. Both require more work and more iterations, and possibly even

55

different approach before it can be said they actually produce quality improvements.

Despite other challenges, the fishbone method could have been better digested if the

method theory was shared in advance.

None of the changes were relying only theoretic without real experience. Some refer-

ences were collected from other software companies, and for example agile practices

were studied together by some members of the team. Study did not include really

benchmarking, and not even comparison to other teams in the company. Since project

planning is something every team does in the company, interviewing any other team

could have impacted the outcome positively.

Involving the entire team also had a good impact on result. Including all team does not

necessarily mean that everyone needs to sit down in same room to discuss and decide.

Heiramo (2013) describes non-hierarchical working practice to work well in agile envi-

ronment: one or more persons need to lead the activity, but instead of asking permission

(from manager or superior or colleague) one should take responsibility of representing

their ideas, putting them under review for others, collect the feedback and decide what

feedback is essential and need to be taken into account.

The members of the development team did not know the observations were made for

study and thesis. The target of the work - to create better practices - already existed an-

yway. From this perspective it seems plenty of changes and improvements can be done

when working together towards common goal, as people are motivated and empowered.

7.2 Success Factors for Introducing Improvements

As product (software release) life cycle is handled as project, and making of new soft-

ware is a continuous process, the theories of project and process management do pro-

vide relevant material to base the planning. Viewing the literature of the common mis-

takes can easily provide quite direct answers. Like not having a clearly defined target is

a common failure that was also noticed as a challenge for creating project test plan. But

the theories and basic descriptions were not enough to apply the practices. The success

of used methods and techniques involved experience, a living example how to use them.

56

Therefore it is expected this thesis work does not tell anyone else how to do the same

changes, but the descriptions can provide a slightly better insight, to work as an exam-

ple.

Experience of used methods had a clear impact of success rate. The writer of the thesis

had been organizing exploratory testing sessions for several years in other type of envi-

ronment: It was a regular test method for testing team to fill known gaps in test cover-

age. The method itself is flexible and can server for multiple purposes, so it was rela-

tively easy to apply in the new environment once the goal - making the development

team aware of end user quality - was identified. Also the project retrospective format

was known from participant perspective, in multi team environment where the practice

was running for several years.

Already beforehand both of exploratory testing and project retrospective were studied

and analysed in small scale, to have an understanding of the key elements that made

them successful practice. Those methods, however, were not taken in use directly, but

with careful planning to fit the new environment. For example retrospective according

to guidebooks and experience should take 3-4 hours, but in this case when people

seemed to complain of any additional meeting is time away from real work, it was done

in less than 2 hours still including the discussion and brainstorming element. The root-

cause analysis dialog was not successful on the first trial; there was some experience in

participating that type of session, but the environment and arrangement were so much

different, that it will require many changes to be better applicable.

Agile approach of doing together seems to be helpful, as the ideas evolve to direction

that may have been not foreseen. People have different experiences and different

knowledge that always impacts the perception. Doing together also impacts positively

the team spirit, attitude and desire to do together and improve. While emphasizing the

team itself is doing good work, there is a risk of starting to feel superior compared to

other teams. Therefore sharing and collaboration also needs to be built, in order to

achieve the final goals of making the business successful.

Finding practices that require very little effort, and therefore save costs in working

hours are also well adopted by team. Like there was prejudgment and minor resistance

57

against project retrospective on the first time, since it is taking few hours from every-

body. But not anymore the second time, as it was proven not to be wasted effort.

Another example of improving practises with no impact on scheduling would be one

scrum team organizing their regular weekly discussion with equivalent team in other

location as video conference, instead of previously used audio call only. This example

did not require extra effort of organising it, since all other things in the meeting ar-

rangement were kept. But this practice is not included in above chapter to explain

changes, since writer was not there to do any observations. The impact and improve-

ment was highlighted in retrospective comments, making it visible for others not taking

part, and as a good example for others to follow.

7.3 Limitations and Restrictions of the Study

The organisation and team being new, there are some limitations for doing improve-

ments. Processes exist, but those are not defined or shared in level that supports under-

standing the current practices. Process descriptions could be also used to see/analyse if

there are any obvious gaps in it, or differences between definition and the actual behav-

iour. Process and change management guides to understand the current situation, de-

scribe the target, and define actions from the difference. Both current and target situa-

tion were not used in this study, although this principle was acknowledged. Practically

the chronologically first improvement included variety of discussions just to understand

the current situation and known problems in it.

The lack of process descriptions is not raised as quality problem in the scope of this

thesis. There are no references to actions planned or on-going in that area either, as not

being relevant in this scope. It was decided to focus on actions inside the team, and also

have results in defined time period, so involving other teams that process definition

work requires, is not part of the study.

Decided time period can also include a variety of other practice and quality improve-

ments, inside the team. Only practices and methods that are found significant, have a

purpose and are actually monitored closely by writer are included. This thesis content

does not therefore provide any insight about how much changes and new practices can

58

be introduced for a number of people. For example developing daily sprint retrospective

practices are excluded. Also actions containing specific details of the particular software

are excluded for confidentiality reasons, and for not producing general information.

Any innovation guide tells also some reality, there can be hundreds ideas out of which

perhaps just one will success. Recording all those ideas is important for evaluation. All

the ideas and changes are not included in this study, as that information would be prob-

ably beneficial for the team only. Also this kind of list is not produced, but the pro-

posals are remembered in team members’ minds. It is not possible to do many changes

all at once, so having this type of list could be needed in future for bringing the ideas

visible.

Monitoring and analysis in this thesis are not done as team work together, so it is possi-

ble that writer’s opinion has impact on results. This thesis work content is reviewed by

two members of the team, to avoid any obvious conflicts.

7.4 Evaluation of the Thesis Process

To begin with it was not obvious what is the working title, the focus and limitations of

this this study, which can have impact on the consistency of this work. Quality and test-

ing improvements were the first objective. During the interviews and discussions when

trying to establish a picture of current conditions, it was noticed that testing is not the

one big quality issue that needs the kind of changes that makes a big impact. Instead

there seemed to be many smaller things that required small improvements in every-

where in the project lifecycle, and already many ideas of practices that could be intro-

duced.

Part of the challenge was that it was not only the author of this thesis, but other team

members as well that were recently employed, and it is time consuming to learn all the

practices and contacts of the new environment - and perform the regular tasks as well.

Doing the interviews and discussions were not always targeted to solve particular issues

for quality, or doing other tasks, but all they worked for the benefit of being part of the

team and finding a place in the current environment.

59

Some limitations were needed to have material for just one thesis work, and to produce

it in desired time. Working directly inside the development team allowed direct com-

munications with team members and doing the observations easily, so that was an easy

decision. Choosing only agile methods could have been one option, or expanding it to

any participatory methods that also build team spirit and cooperation channels between

individuals. Since the original topic was about quality and testing, but quality manage-

ment and other theories emphasize the importance of quality in all phases and the earlier

phases improvements can have good impact on costs, it was decided to turn the idea

“upside down”: make it visible what kind of changes can be done in development team

itself.

The title contains “software development” and “evolving” as they are expected to be

somehow limiting factors or essential background information about this study. Evolv-

ing or forming status of the team is a fact, but not necessarily valid information consid-

ering the found practices could be just as well used in more stabilized environment with

improvement needs. The practices could be also applicable in other types of companies.

This title is still kept, since it probably still explains the existing working model well.

7.5 Conclusion

In conclusion there were several improvements introduced to the working practices of

the team. Most of them are considered to be permanent and usable in future, and all of

them can be still developed further. This thesis describes the practices, with background

theories and information of the case, providing an example for readers to see if the prac-

tices could be applicable for other teams. In addition, evaluation of how the changes

were introduced can be seen as valuable example to anyone starting to do similar devel-

opment. Practices and the evaluation was not only one time effort, but enables continu-

ing quality improvements in the team. Objectives of this thesis are met.

60

8 FUTURE DEVELOPMENT PERSPECTIVES

This study - the work done in the company and reviewing the theories - has given a lot

of material to continue further. Plan is to use the information to discuss and decide

overall quality targets, focusing on the product quality and customer perspective more.

Collecting a backlog for the improvements ideas already available is also a next target

in the work environment, but the known team specific topics are not essential to be in-

cluded in this study and not listed here.

It is not decided yet if there should be some tracking the achieved improvements in

some consistent way. Of course from retrospectives and other forms of feedback it can

be detected there is progress. One indicator about success is project success, if projects

and their quality are comparable. As one of the findings was that positive feedback and

what we are already doing right is equally valuable information as improvement ideas,

there could be some benefits in monitoring and collecting successes in practice level

also.

There is still work to do with the currently found practices, to develop further. In addi-

tion there are many process improvement methods and tools that can be someday found

useful. Studying also other agile ways that exist already or are forming is probably the

way forward, since the principles and participatory methods seem to have positive reac-

tions.

Looking at some process and quality improvement materials, the topics escalate to

guides about overall organisational development. Building the team spirit and collabora-

tion are few examples. In newly established company things like learning and getting

the tacit knowledge into use are perhaps not the most important things to take care of.

But already now with practice improvement phase these topics have raised as possible

key factors ensuring the quality in future.

This study focused on one team perspective, but already there are some references to

organisation level topics. Collaboration in the company is essential, and some process

61

and practices improvements are already on-going. One objective for this thesis was also

to present the findings in way that other teams inside the company can see as an exam-

ple. The publishing of “best known methods” needs to be planned. Working models like

workshops and meeting face to face with representatives from different teams are good

ways to co-operate. It could be also enough to have one visitor from another team to

take part of some practice, or one of this team to facilitate a used practice in another

team. All development team improvements need to work in the environment it exists,

sharing information is a must, and with synergy also effort can be saved. Company di-

rection in tools, practices and quality improvement will guide the way.

62

REFERENCES

Ambler, S. 2009. Agile Testing and Quality Strategies: Discipline Over Rhetoric. Luettu

15.9.2013.

http://www.ambysoft.com/essays/agileTesting.html

ASQ 2013. Quality glossary. Luettu 18.9.2013.

http://asq.org/glossary/

Black, R. 2007. Pragmatic Software Testing. Becoming an Effective and Efficient Test

Professional. Wiley Publishing.

Cobo, J. Ortiz, I & Mataix, C. 2010. Design of a competence-based model for managing

programmes and projects. Project perspectives 2010, 15-19.

Eskola, J., Suoranta, J. 1998. Johdatus laadulliseen tutkimukseen. Tampere: Osuuskunta

Vastapaino.

Heiramo, P. 2013. Futurice blog: Seeking permission, or feedback? Luettu 15.9.2013.

http://blog.futurice.com/seeking-permission-or-feedback

ISTQB. 2013. Glossary of Testing Terms Version:2.2. Luettu 17.7.2013.

http://www.istqb.org/downloads/viewcategory/20.html

Laamanen, K. 2009. Johda liiketoimintaa prosessien verkkona: ideasta käytäntöön.

Helsinki: Laatukeskus.

Lehtimäki, T. 2006. Ohjelmistoprojektit käytännössä. Helsinki: Readme.fi.

Leppälä, K. 2011. Projektitoiminnan musta kirja; miten aikamme menestynein käytäntö

saadaan takaisin raiteilleen. Helsinki: Readme.fi.

Myllymäki, R., Hinkka, T., Dahlberg, T. & Uimonen, B. 2010. Miksi

tietojärjestelmäprojekti epäonnistuu? Tositarinoita tuhon teiltä ja onnistumisen

siemeniä. Helsinki: Laserpaja Oy.

MSI 2011. Juran’s trilogy. Luettu 18.9.2013.

http://msi6.com/MSI6/QualityZone/QzoneJuranTrilogy.aspx

Pelin, R. 2009. Projektihallinnan käsikirja. Helsinki: Projektijohtaminen Oy Risto Pelin.

Phillips, J. 2005. IT-Projektinhallinta -sertifikaatti. Helsinki: Edita Prima Oy.

Silvers, J. 2004. Cause/Effect Analysis. Luettu 15.9.2013.

http://www.juliasilvers.com/embok/Risk/RiskAssessmentMgmt/causeeffect_analysis.ht

m

SkyMark Corporation. 2013. Luettu 26.9.2013.

http://www.skymark.com/resources/leaders/ishikawa.asp

http://www.ambysoft.com/essays/agileTesting.html
http://asq.org/glossary/j.html
http://blog.futurice.com/seeking-permission-or-feedback
http://www.istqb.org/downloads/viewcategory/20.html
http://msi6.com/MSI6/QualityZone/QzoneJuranTrilogy.aspx
http://www.juliasilvers.com/embok/Risk/RiskAssessmentMgmt/causeeffect_analysis.htm
http://www.juliasilvers.com/embok/Risk/RiskAssessmentMgmt/causeeffect_analysis.htm
http://www.skymark.com/resources/leaders/ishikawa.asp

63

University of South Australia. 2009. Project Management Methodology - Project

Lifecycle and Phases. Luettu 15.9.2013.

http://w3.unisa.edu.au/ists/governanceinit/projectmanagement/methodology/projectlifec

ycle.asp

http://w3.unisa.edu.au/ists/governanceinit/projectmanagement/methodology/projectlifecycle.asp
http://w3.unisa.edu.au/ists/governanceinit/projectmanagement/methodology/projectlifecycle.asp

