
Saimaa University of Applied Sciences 
Technology Lappeenranta 
Degree programme in Information Technology 
ICT-entrepreneurship 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sampo Kivistö 
 

Defect management in SAAS application 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thesis 2013    



2 

Tiivistelmä  

Sampo Kivistö 
Defect Management in SAAS application, 27 sivua  
Saimaan ammattikorkeakoulu  
Tekniikka Lappeenranta 
Tietotekniikka  
ICT-yrittäjyys 
Opinnäytetyö 2013 
Ohjaajat: yliopettaja Päivi Ovaska, Saimaan ammattikorkeakoulu, Department 
Manager Kari Ryynänen, Visma Solutions Oy 
 

Opinnäytetyössä tutkittiin, kuinka virheiden hallintaa voitaisiin parantaa SAAS- 
ohjelmistossa, mitkä prosessimallit tukevat virheiden hallintaa ja mitä työkaluja 
virheiden hallintaan ohjelmistokehittäjien avuksi on olemassa.  

Työ aloitettiin selvittämällä, kuinka Microsoft Operations Framework-prosessi-
malli auttaa virheidenhallinnassa. Tämän jälkeen käytiin läpi saatavilla olevia työ-
kaluja virheiden hallintaan .NET-ympäristölle. Lopuksi työssä tutkittiin kuinka oh-
jelmistotasolla virheiden määrään ja laatuun voidaan vaikuttaa. 

Työn tuloksena löydettiin malli ohjelmisto virheiden hallintaan sekä testikäyttöön 
otettava virheidenraportointityökalu. 

Asiasanat: virheidenhallinta, virheidenraportointityökalut, virheidenhallintapro-

sessi 



3 

Abstract  

Sampo Kivistö 
Defect Management in SAAS application, 27 pages 
Saimaa University of Applied Sciences 
Technology Lappeenranta 
Degree Programme in Information Technology 
ICT-entrepreneurship 
Bachelor´s Thesis 2013 
Instructors: Ms Päivi Ovaska, Senior Lecturer, Saimaa University of Applied Sci-
ences, Mr Kari Ryynänen, Department Manager, Visma Solutions ltd. 
 

The purpose of this thesis was to find information how to improve defect man-
agement in SAAS application, which process models support defect manage-
ment and what error reporting tools are available. 

The thesis was started by finding out what Microsoft Operations Framework pro-
vides to support defect management. After that the research continued by finding 
useful tools that can help with managing defects. Last, it was researched how to 
improve error report quality at software level. 

As a result the process model to manage defects was found and the error report-
ing tool was taken into test in the organization. 

Keywords: defect management, error reporting tools, defect management pro-
cess 

  



4 

Contents 

1  Introduction ..................................................................................................... 6 
1.1  Motivation .............................................................................................. 6 

2  Microsoft operations framework ...................................................................... 7 
2.1  Introduction to MOF ............................................................................... 7 
2.2  Problem management SMF ................................................................... 7 
2.3  Researching the problem ....................................................................... 8 

2.3.1  Reproducing the problem ................................................................ 9 
2.3.2  Observing the symptoms ............................................................... 10 
2.3.3  Performing root cause analysis ..................................................... 10 
2.3.4  Developing hypothesis .................................................................. 10 
2.3.5  Testing hypothesis ........................................................................ 11 

3  Root cause analysis techniques ................................................................... 11 
3.1  Five whys ............................................................................................. 11 
3.2  Fishbone Diagram ............................................................................... 12 
3.3  Fault Tree analysis .............................................................................. 13 

4  Difficulties in managing software defects ...................................................... 13 
4.1  Managing large number of defects ...................................................... 13 

4.1.1  Detecting important defects ........................................................... 14 
4.1.2  When to throw exception ............................................................... 16 

4.2  Available tools for defect management ................................................ 17 
4.2.1  Raygun .......................................................................................... 18 
4.2.2  New Relic ...................................................................................... 20 

4.3  Best practices in error handling ........................................................... 21 
4.3.1  Defects do not contain required information .................................. 22 
4.3.2  Exceptions to avoid in .NET .......................................................... 23 
4.3.3  Naming of exceptions .................................................................... 23 

5  Reflection ...................................................................................................... 24 
6  Summary ...................................................................................................... 25 
References ....................................................................................................... 26 
 



5 

Acronyms abbreviations and notations  

.NET  Software framework developed by Microsoft 

Apdex Score Numerical measure of user satisfaction 

CLR  Common Language Runtime 

COBIT  Framework created by ISACA for IT management 

CSI  Continual Service Improvement 

Defect  Deficiency in a software product 

Incident  Interruption or failure in IT Service (ITIL) 

ITIL  Information Technology Infrastructure Library 

MOF  Microsoft Operations Framework 

SAAS  Software as a service 

SMF  Service Management Function 

RCA  Root cause analysis 

Root cause  Fundamental reason for the occurrence of a problem 

 

  



6 

1 Introduction 

The bachelor’s thesis topic originated from a local software company called 

Visma Solutions Ltd. They had a problem that there was no agreed model of the 

process how people fix defects, also these defects were spread to different places 

including: email, application logs and server logs. This made it very difficult to 

manage these defects as one error can be logged thousand times in the email 

box. This project seeks information on which process model would fit best for 

SAAS defect management, what tools are available to help deal with the large 

number of defects and how to improve exception handling in .NET environment. 

Finding an appropriate process is accomplished by following Microsoft Opera-

tions Framework problem management guidance. Research for available tools is 

done by reviewing the most popular error reporting tools for .NET environment. 

Improving exception handling is done by gathering the best practices of exception 

handling for .NET environment. 

1.1 Motivation 

IT services that we use in our daily life are getting more and more popular. These 

services however generate numerous errors and most of them are not directly 

visible to end-users. These errors include performance issues, application fail-

ures, security bugs and availability problems. Problems such as these are very 

common, but without proper process and tools to analyse and fix them they can 

reduce service quality dramatically. 

These internal errors are called software defects. Defects can occur for different 

reasons and they always have a root cause. To remove the defect permanently 

software developers need to find the root cause of the defect and develop a fix 

for it. Finding these root causes can be a long and tedious process especially 

when one defect can depend on data, environment, logic or a mix of them. Some-

times defects do not even contain the required information that developers need.  

Developers are not the only ones who need defect information. According to Kirsi 

Korhonen’s doctoral dissertation: “To manage software quality successfully by 

defect data, project decisions must be based on some understanding of the cause 



7 

- effect relationships that drive defects at each stage of the process” (Korhonen 

2012, 3). 

2 Microsoft operations framework 

2.1 Introduction to MOF 

Microsoft Operations Framework (MOF) is a question-based guidance for IT or-

ganizations that shows what is needed for the organization now, as well as activ-

ities that will keep the IT organization running efficiently now and in the future. It 

is worth to note that MOF does not tell organizations how any of its process 

should be implemented, but leaves this for the organizations to decide. Mentioned 

activities and processes are organized into Service Management Functions 

(SMFs) which are grouped together in phases that mirror the IT service lifecycle. 

Each lifecycle contains a unique set of goals and outcomes supporting the objec-

tives of that phase. The IT service lifecycle has three phases and one layer that 

wraps them all together the plan phase, the deliver phase, the operate phase and 

the manage layer. Figure 1 describes the connection of each phase and the layer. 

(Pultorak 2008) 

Figure 1. Microsoft Operations Framework IT service lifecycle (Pultorak, 2008) 

2.2 Problem management SMF 

The Problem management SMF is part of Operate phase of the MOF IT service 

lifecycle. Operate phase belongs between Deliver and plan phase as shown in 

figure 1. This SMF is used to guide IT professionals to resolve complex problems 



8 

that are out of scope of customer service. The following figure shows where prob-

lem management SMF belongs within the operate phase.  

Figure 2. Position of the problem management SMF within the IT service lifecycle 

(Pultorak 2008) 

The problem management SMF includes recording the problem, researching the 

problem to identify root cause and developing workaround, reactive fixes or pro-

active fixes for the problem. Problem management should be applied to all as-

pects of IT - including application development, server building, desktop deploy-

ment, user training and service operation. This thesis heavily focuses on applica-

tion development. The basic idea is that as more problems are recorded, re-

searched and resolved the software will experience fewer defects (Pultorak 

2008.) 

2.3 Researching the problem 

Problem management process contains four different processes: to document 

the problem, to filter the problem, to research the problem and to research the 

outcome. This thesis is only interested of researching the problem process. The 

following figure shows the process flow of researching the problem. 



9 

 

Figure 3. Researching the problem process of problem management SMF (Pul-

torak 2008) 

The following five chapters describe each part of the process, the key questions 

and the best practices. 

2.3.1 Reproducing the problem 

Researching the problem process starts with reproducing the problem part. It 

takes problem record as input and the desired output is an environment where 

the problem can be studied and observed. According to Microsoft operations 

framework guidance the following things are considered as the best practices of 

this part. Firstly, production systems should not be used for problem management 

at all. Secondly, making changes to systems or services during this phase is not 



10 

allowed. Thirdly, the steps to reproduce the problem should be documented in 

full detail in the problem record. Key questions during this phase are “Can the 

problem be reproduced at will?”, “What user context or security access is required 

to reproduce the problem?” and “Will special lab equipment be required or can 

this be reproduced on any system?” (Pultorak 2008.) 

2.3.2 Observing the symptoms 

Observing the symptoms takes problem record as input and also lessons learned 

during the reproduction phase. The output of this phase is understanding of the 

timing, triggers and results of the problem. This phase’s key questions are  the 

following: “What are the symptoms of the problem?”, “How can they be ob-

served?” and “What tools are required to capture and record the occurrence of 

the problem?”  This part of the process is meant to get more information about 

the problem so that the next part Performing root cause analysis is possible. Get-

ting as much information as possible will help with the next part. (Pultorak 2008.) 

2.3.3 Performing root cause analysis 

Performing root cause analysis is the most important part of the whole process, 

because this is where things can go well or wrong. This is also the part that takes 

most of the time in the process. Before starting this phase it is required to select 

a root cause analysis technique and update the problem record. The desired out-

put is hypothesis to test. The only key question MOF gives for this phase is “What 

technique should be used for performing root cause analysis?” More of this can 

be found in Chapter 4 Root cause analysis techniques. (Pultorak 2008.) 

2.3.4 Developing hypothesis 

The input for developing hypothesis part is the output from root cause analysis 

and problem record. In this phase developers basically develop what was found 

in the earlier phase. Key questions to keep in mind are the following: “What ac-

tions might work around this problem?”, “What actions might fix this problem?”, 

“Could this problem be the result of another problem?” and “Have changes been 

made to the service or system recently that may have created the problem?” The 

desired output is hypothesis to test and new or updated known error record. The 



11 

best practice during this phase is simply to document. As the problem manage-

ment process is repeated, it can be much more efficient using data created in the 

earlier phases. (Pultorak 2008.) 

2.3.5 Testing hypothesis 

Testing hypothesis takes hypothesis to test and problem record as input. The 

desired output is simply a new or updated problem record. This is the phase 

where the developed functionality or workaround is tested. Key questions are the 

same as in the previous phase. The best practices: Test no more than one hy-

pothesis at a time, keep a control in place to results of the testing, and document 

all of the results – both positive and negative. (Pultorak 2008.) 

3 Root cause analysis techniques 

One of the most difficult areas of the problem management process is analysing 

the root cause of a problem. Since problems are best solved by attempting to 

correct their root causes, this is a critical part of resolving any problem. This part 

can be made little easier with some well-known techniques to help finding possi-

ble root causes. It should be noted that the selected root cause analysis tech-

nique should depend on the defect and available resources. (Pultorak 2008.) 

3.1 Five whys 

The most common method for root cause analysis is known as “Five whys”. The 

idea of five whys is to ask question “why” five times for example: 

 Problem: User sees error 500 when trying to open a link 

1. Why: Because error handling class is showing error page to hide critical 

information 

2. Why: Because repository class is throwing exception 

3. Why: Because database cannot find the required foreign key  

4. Why: Because the required foreign key is not there 

5. Why: Because database is not up-to-date 



12 

This method is quick and useful in some situations, but it always leads to one 

cause, also the outcome varies depending of whys that have been questioned. 

Repeating the procedure with different answers gives different output. This tech-

nique also requires a lot of information to start with or it can lead to useless out-

come. (Six Sigma 2013, 5 Why’s.) 

3.2 Fishbone Diagram 

The idea of Fishbone diagram is to categorize the problem, placing the most likely 

cause first. Fishbone diagram helps to visualize the problem and areas that de-

pends on the problem. Fishbone diagram is handy for complex problems, but it 

is too time consuming for simple ones. 

  

Figure 4 Software Fishbone Diagram Example (MSDN 2008, Root Cause Analy-

sis for Software Problems) 

Using fishbone diagram proceeds by first selecting the most likely categories why 

did some problem occur. Second, after the categories are in place start asking 

question why this category causes the problem, until you cannot think of any other 

reason. Repeat this for all the categories. Third, when there are possible root 

causes in place, verify the logic by adding ‘cause’ before the statement. (Youtube, 

Root Cause Analysis (RCA) using Ishikawa/Fishbone Diagrams 2010.) 



13 

3.3 Fault Tree analysis 

Fault tree analysis is another visual technique used to help with root cause anal-

ysis. Fault tree graphically illustrates events that might lead to a failure so the 

failure can be prevented. This is usually used to prevent something from happen-

ing, for example, finding security issues or critical logic failures, but it can be used 

for defect’s root cause analysis as well as shown in figure 5 (Microsoft Office, 

Create a fault tree analysis diagram.) 

 

Figure 5 Fault tree analysis technique (Pultorak 2008). 

Fault tree analysis begins by defining the top defect. After that it continues by 

adding events that could lead to the defect. Repeating this until there is the final 

stage when there is no need to add anymore events. Figure 5 shows an example 

of level three root cause analysis using fault tree technique. 

4 Difficulties in managing software defects 

4.1 Managing large number of defects 

One of the most common difficulties of managing software defects is the fact that 

software is used to solve complex problems. The book “Code Complete” by Steve 

Security

 Windows Vista Desktop is 
unable to achieve remote 
access connectivity to AB 
network 

Network

Latest 
updates 
are not 

installed 

Antivirus
not updated

VPN is not 
accepting 

any 
connections

Incorrect 
user name 

or password

General 
network 
failure

Level 3

Level 2

Level 1



14 

McConnell has a section about error expectations. According to McConnell In-

dustry average is about 15-50 errors per 1000 lines of delivered code. He later 

on mentions that this is structural code that has some logic behind it and might 

include a mix of coding techniques. (McConnell 2004, Amartester 2007 Bugs per 

lines of code.) 

However customers usually see the most common problems first and this same 

problem will get logged to the error management tool multiple times. Luckily there 

are ways to find this kind of errors to increase the product quality. 

4.1.1 Detecting important defects 

One way to reduce the number of defects is to fix first the defects that are caused 

by the same root cause. This can be accomplished by doing root cause analysis 

for defects. However, doing RCA manually for all tickets will take too much time 

and sometimes will not even provide the desired output.  

Heuristics are a good way to filter down the number of the defects. For example 

heuristics could be used as occurrence filter to see how many duplicate excep-

tions have happened in a specific time. Table 1 shows the occurrence based 

exception filter. 

Exception  Exception Message  Occ.

System.DivideByZeroException  Attempted to divide by zero.  2

System.NullReferenceException  Object reference not set to an instance of an object.  52

System.IO.FileNotFoundException  Could not find file 'data.lib'.  3

Table 1 Exceptions by occurrence 

Assuming all defects in Table 1 are the same level issues fixing System.NullRef-

erenceException should have higher priority than others as it seems to happen 

more often.  

Kevin Bartz from Hardvard University and Jack W. Stokes and John C. Platt from 

Microsoft Research have taken this even further. They have created a mathemat-

ical algorithm to analyse different error reports. This algorithm also categorises 

the errors by error and callstack details. The primary use case is to allow a de-

veloper to check if a similar error report was already resolved. A secondary use 

case is to provide diagnostic help, for example, multiple different errors occurred, 



15 

but all of them share common attributes. These attributes are highlighted and can 

provide clues about the underlying failure. (Usenix Finding Similar Failures Using 

Callstack Similarity.) 

Each error report gathers the following metadata about the failure: 

 Type of failure: a crash, hang or deadlock. 

 Name of the process that launched offending stack 

 Exception code: For crashes only, four-byte code such as ‘0xc0000005’, 

hangs and deadlock do not have exception code 

 Offending callstack: The ordered sequence of the offending thread’s stack 

at the time of the failure. 

Module Function Offset

kernel32 ByteCallback 0x3

kernel32 WideCharExpand 0x2

kernel32 MultiByteToWideChar 0x9

A3DHF8Q – 0x3820523

A3DHF8Q – 0x3723952

A3DHF8Q – 0x3945323

kernel32 ProcUserText 0x4

user32 TextDecode 0x4096

user32 ReadDialog 0x4096

user32 OpenDialog 0x4096

ntdll RtlThreadStart 0x0

ntdll RtlInitThreadThunk 0x0

Table 2 Example of callstack (Usenix, Finding Similar Failures Using Callstack 

Similarity) 

In table 2 there is an example of a callstack that is used to analyse the defect. 

This callstack has five different frame groups which are associated with modules 

A3DHF8Q, user32, ntdll and kernel32. To make it possible to categorize two dif-

ferent errors by the same root cause Microsoft uses already existing data made 

by their developers as shown in figure 6. 



16 

 

Figure 6. Illustrating how to categorize similar errors (Usenix, Finding Similar Fail-

ures Using Callstack Similarity) 

After resolving a defect developers mark the defect resolution as third-party, du-

plicate of another defect, unreproducible or fixed. When this is done the created 

resolution data can be used to pair the errors making similar and dissimilar pairs. 

The last part of the process is to pick randomly one similar and one dissimilar pair 

and the data of those two pairs is used to filter the large number of defects to find 

similar root causes. (Usenix, Finding Similar Failures Using Callstack Similarity.) 

4.1.2 When to throw exception 

Another way of reducing number of defects is to remove unnecessary exception 

calls. User The Digital Gabeg on Stackoverflow forums has a nice guideline when 

to throw exception. “An exception is thrown when a fundamental assumption of 

the current code block is found to be false”. (Stackoverflow, When to throw an 

exception.) 



17 

 

Figure 7 Example of not throwing exception 

In figure 7 there is a function that is checking “is this text numeric”. This function 

should never throw exception, because it can always be answered true or false. 

Every single string either is numeric or is not, there is no exception. Using Try-

Parse function helps to accomplish this, because in case it fails the function re-

turns false. 

 

Figure 8 Example of throwing exception 

Figure 8 shows an example when exception should be thrown. The function is 

simply just checking a length of an integer based list. However it is making an 

assumption that the object that it is given is actually an integer based list. If we 

hand it a null object it could not check its length and therefore returning just true 

or false would break its own logic. In this case throwing exception is necessary, 

and developers should fix the root cause of the problem why null object was 

handed to this function. (Stackoverflow, When to throw an exception.) 

4.2 Available tools for defect management 

Without proper tools managing large number of software defects is nearly impos-

sible. These defects are logged to many different places, for example SQL-server 

log, Server application log, txt files, email etc.  It is highly recommended to use 

some error reporting tool or service to keep the defects organized. This chapter 



18 

goes through some error reporting tools that could be used for the defect man-

agement. For this research Visual Studio 2012 Ultimate Update 3, Microsoft Win-

dows 8.1 and Google Chrome 30.0 software are used. 

4.2.1 Raygun 

Raygun is SAAS based real-time error logging solution made by Mindscape. The 

main objective of Raygun is to make finding, diagnosing and fixing errors easier. 

When user generates an error in the application it is automatically reported to 

Raygun. These errors can be viewed by using Raygun’s web UI. 

Installing Raygun error reporting to .NET web application is rather straightfor-

ward. The first step is to install Mindscape.Raygun4NET package using NuGet 

package manager. This can be done either by using UI or command line tool by 

the following command: Install-Package Mindscape.Raygun4NET. After suc-

cessfully adding Mindscape.Raygun4NET package to the required project the 

next step is to configure web.config file as shown in following figure 9. 

 

Figure 9 Raygun’s web configuration 

After configuring the web.config file the only part left is to send errors to Raygun. 

This can be done with the following code block. 

 

Figure 10 Example of sending exception to Raygun 

Adding the above code block to Global.asax file will send any error to Raygun. 

These errors can be viewed by using web browser. Raygun has a simple and 

clean dashboard that shows the overview of the project. Dashboard can be used 

to see the latest exceptions and their occurred count. There is also trend line that 



19 

shows the trend of occurred exceptions by selected time period. This is useful to 

follow the projects’ overall quality. 

 

 

Figure 11 Raygun’s user interface (YouTube, Raygun September updates) 

In figure 11 under the trend line there is Error Reports summary that contains all 

the occurred errors of the selected project. These errors can be filtered by their 

status or ordered by their time occurred or count. By clicking occurred error you 

can open detailed error page, where you can view the insights of the error. Figure 

12 shows an example of this page. 



20 

 

Figure 12 Raygun’s exception details page 

The first tab of the detailed page includes a short summary of the occurred error.  

The second tab contains callstack information, exception message, occurred time 

and class name. The third page has all the available request based data of the 

error for example: form variables, header values, url, user-agent data and server 

variables. The fourth tab contains all environment related data: OS version, com-

puter architecture, available memory, CPU, OS and the used web browser. The 

last tab of detailed error page contains the raw data of the occurred error with 

some basic text formatting and colours. 

4.2.2 New Relic 

New Relic is another SAAS based error reporting tool, however they have taken 

different approach compared to Raygun. New Relic is monitoring the whole com-

puter, this includes performance monitoring, CPU usage, memory usage, remain-

ing disk space and RAM and Events including: errors, alerts, deployment statuses 

and thread profiler. 

The installation procedure of New Relic is different from Raygun in a way, be-

cause it needs to have New Relic agents installed on the server. New Relic has 

x86 and x64 windows installer packages available for the agents. After agents 

are installed, their services need to be started and IIS restarted. New Relic also 



21 

offers .NET API that comes as NuGet package so developers can send errors 

manually to the service, installation of this NuGet package is very similar to 

Raygun’s approach and therefore it will not be described here. 

New relic can show which pages are taking the most time to load as well as which 

pages are generating most errors. Figure 13 shows an example of new relic’s 

application monitoring. 

 

Figure 13 New Relic’s application monitoring page 

New Relic’s errors detail page is not comparable to Raygun’s, because it is lack-

ing some information for example all browser specific data is missing and with 

New Relic you cannot mark error as resolved you can only delete or hide all sim-

ilar errors. New Relic can be used to error reporting, but it seems to focus more 

on monitoring the server, however it has some nice graphs that give the overall 

picture of the project quality including error rate, apdex score and avg server re-

sponse times etc. 

4.3 Best practices in error handling 

Error handling will allow the application gracefully to handle errors and display 

error messages properly. Error logging is usually a part of error management and 

allows developers to find and fix occurred errors (Asp.Net, Asp.Net Error han-

dling). A well-designed error handling can make the program more robust and 

less prone to crashing, because the application handles such errors (MSDN, Best 



22 

Practices for Handling Exceptions). There are multiple ways how error handling 

can be implemented. 

4.3.1 Defects do not contain required information 

Sometimes defects do not contain the required information that developers need 

to find the root cause for a defect. This is usually caused by poor error handling 

and there are many reasons why this can happen. 

 

Figure 14 poor example of throwing exception 

With the above code shown in figure 14, the callstack is truncated and only con-

tains error information starting from the method that failed. The origin of the ex-

ception will always appear to be in application code. This is not always the case. 

Exceptions can originate in various external systems and eventually get thrown 

as CLR exceptions. SqlException and SoapException are a good example of 

these. The SqlException can be generated at the Database driver or Data Access 

Layer and therefore is not an application level problem. SoapException can gen-

erate outside of the process boundary and passed into the CLR as a general 

SOAP exception. 

 

Figure 15 Better example of throwing exception 



23 

Figure 15 shows a solution to the problem described above. Instead of using 

throw ex, simply using throw retains the whole callstack of the occured error (Anu-

jvarma, C#, .NET Exception Handling Best Practices). 

4.3.2 Exceptions to avoid in .NET 

Microsoft’s .NET documentation identifies practices to avoid when throwing ex-

ceptions: First, exceptions should not be used to change the flow of a code block 

as part of ordinary execution. Exceptions should be used only to report and han-

dle error conditions. Second, Exceptions should always be thrown instead of re-

turned as a return value or parameter. Third, The following exceptions: Sys-

tem.Exception, System.SystemException, System.NullReferenceException, or 

System.IndexOutOfRangeException should not be intentionally used in source 

code. These exceptions are meant to be thrown by the .NET framework itself. For 

example instead of throwing NullReferenceException use ArgumentNullExcep-

tion in case the required parameter is null. Fourth, do not create exceptions that 

can be thrown in debug mode but not in the release mode. To identify run-time 

errors during the development phase, use Debug Assert instead of just throwing 

exceptions (MSDN, Creating and Throwing Exceptions). Using debug assert can 

be handy if run-time debug details are needed, because when source-code is 

compiled to release build, debug assert calls will be removed so they do not affect 

the performance of the software. (MSDN, Assertions in Managed Code.) 

4.3.3 Naming of exceptions 

One thing that .NET community prefers is to name all exceptions end with Excep-

tion. This may seem a minor thing, but codes are not written to computers but for 

human readers. Naming of variables is one important thing even in error man-

agement. Proper naming provides abstraction, but also higher maintainability of 

code. Readability is important. (MSDN, Designing Custom Exceptions.) 

 

 



24 

5 Reflection 

I found Microsoft Operations Framework, when I was actually looking for infor-

mation about ITIL (Information Technology Infrastructure Library). Microsoft Op-

erations Framework was chosen to this thesis instead of ITIL, because I found a 

lot of similarities between it and the current way of working in Visma Solutions. 

Going through MOF problem management process helped me to understand bet-

ter the big picture of what is going on at each stage of the defect management 

process. Reading about .NET  

MOF provides a detailed and accurate researching problem process, but at the 

same time it leaves it for the organization to decide how they implement it. An-

other good side of MOF is that most of the models are independent and organi-

zations can freely choose which parts they want to implement, without needing 

to implement the whole framework. One of the negatives of MOF is that there is 

not as much literature available compared to ITIL. 

Raygun and New Relic were chosen to this thesis, because of simple installation 

process and because they both represent different approach of error reporting. 

Also Airbrake error reporting tool was tested, but because of some incompatibility 

issues I was having with it in .NET environment it was dropped out from the re-

search. Raygun seemed to be more suitable for defect management in Visma 

Solution Severa’s context than New Relic, because of better diagnostic data and 

resolution possibilities it provides for exceptions.   

This project did not take a position on disaster recovery and that would be an 

obvious target for further research. Also more comparison between ITIL, MOF 

and COBIT process models could be done to get the best possible end result. 

Comparison was left out of the project, because it requires a lot of time and rep-

etition to go through all these models.  

 



25 

6 Summary 

The main goal of this thesis was to create a model for the defect management 

process and find a way to handle a large number of defects. This was accom-

plished by doing a research about MOF Researching the problem process. This 

process model seems to fit rather well to Visma Solution, because their current 

way of working does not differ that much from it. The tool Raygun was chosen to 

be tested in the future to see if it could actually help with managing the defects.  

However, because testing the tool and the process in organization will take time 

there will not be any results to show in this thesis. In the end as the goal was to 

improve the defect management it seems that this project was successful. 

  



26 

References 

 

1. Korhonen, K. 2012. Supporting Agile Transformation with Defect Manage-
ment in Large Distributed Software Development Organisation. Doctoral dis-
sertation. Tampere University of Technology. Publication 1032. 

2. Pultorak, D. 2008 MOF 4.0: Microsoft Operations Framework 4.0 

3. Six Sigma. 5 Why’s http://www.isixsigma.com/dictionary/5-whys/.  Read 
9.11.2013. 

4. MSDN. 2008. Root Cause Analysis for Software Problems. 
http://blogs.msdn.com/b/nickmalik/archive/2008/03/31/root-cause-analysis-
for-software-problems.aspx.  Read 16.10.2013. 

5. YouTube. Root Cause Analysis (RCA) using Ishikawa/Fishbone Diagrams. 
2010. http://www.youtube.com/watch?v=Kz5Pr8aPKtw. Read 5.10.2013. 

6. Microsoft Office. Create a fault tree analysis diagram. http://office.mi-
crosoft.com/en-us/visio-help/create-a-fault-tree-analysis-diagram-
HP001207628.aspx. Read 10.10.2013. 

7. Usenix. Finding Similar Failures Using Callstack Similarity. https://www.use-
nix.org/legacy/event/sysml08/tech/full_papers/bartz/bartz_html/. Read 
1.11.2013. 

8. McConnell S. 2004. Code Complete: A Practical Handbook of Software Con-
struction. Second Edition. 

9. Amartester. Bugs per line of code. http://amartester.blog-
spot.fi/2007/04/bugs-per-lines-of-code.html.   Read 9.11.2013. 

10. Stackoverflow. When to throw exception. http://stackoverflow.com/ques-
tions/77127/when-to-throw-an-exception. Read 1.11.2013. 

11. YouTube. Raygun September updates - charts, filtering & sorting. 
http://www.youtube.com/watch?v=rSlS5Ajm4g0. Read 6.11.2013. 

12. Asp.NET. Asp.Net Error handling. http://www.asp.net/web-forms/tutori-
als/aspnet-45/getting-started-with-aspnet-45-web-forms/aspnet-error-han-
dling. Read 1.11.2013. 

13. MSDN. Best Practices for Handling Exceptions. http://msdn.mi-
crosoft.com/en-us/library/seyhszts.aspx?cs-save-lang=1&cs-
lang=csharp#code-snippet-1.  Read 1.11.2013. 

14. Anujvarma. C#, .NET Exception Handling Best Practices. http://www.anu-
jvarma.com/c-net-exception-handling-best-practices/. Read 9.11.2013. 



27 

15. MSDN. Creating and Throwing Exceptions. http://msdn.microsoft.com/en-
us/library/ms173163.aspx. Read 6.11.2013. 

16. MSDN. Assertions in Managed Code. http://msdn.microsoft.com/en-us/li-
brary/ttcc4x86.aspx. Read 6.11.2013.  

17. Raygun. Exceptional Error Tracking. http://raygun.io/. Read 7.11.2013. 

18. New Relic. New Relic monitoring application. http://newrelic.com/. Read 
7.11.2013. 

19. MSDN, Designing Custom Exceptions http://msdn.microsoft.com/en-us/li-
brary/vstudio/ms229064(v=vs.100).aspx Read 11.11.2013 


