Kenedy Yinkfu Chuye

Design and Implementation of Machine Learning and Rule-Based System for Verifying Automation System Designs

Helsinki Metropolia University of Applied Sciences
Bachelor of Engineering
Information Technology
Bachelor’s Thesis
05 December 2013
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Kenedy Yinkfu Chuye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Design and Implementation of Machine Learning and Rule-</td>
</tr>
<tr>
<td></td>
<td>Based System for Verifying Automation System Designs.</td>
</tr>
<tr>
<td>Number of Pages</td>
<td>35 pages + 7 appendices</td>
</tr>
<tr>
<td>Date</td>
<td>05 December 2013</td>
</tr>
<tr>
<td>Degree</td>
<td>Bachelor Degree</td>
</tr>
<tr>
<td>Degree Programme</td>
<td>Information Technology</td>
</tr>
<tr>
<td>Specialisation</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>option</td>
<td></td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Hannu Markkanen, Principal Lecturer</td>
</tr>
<tr>
<td></td>
<td>Jukka-Pekka Numminen, Director of IT Development and Archi-</td>
</tr>
<tr>
<td></td>
<td>tecture</td>
</tr>
</tbody>
</table>

A machine learning and rule-based system has long been applied in major areas such as bioinformatics, natural language processing and structural health monitoring. Machine learning uses algorithms to discover patterns in data and construct predictive models, whereas a rule-based system encapsulates knowledge of the domain expert from data thereby making decisions using rules. This thesis demonstrated a hybrid approach combining machine learning and a rule-based system for verifying automation system designs.

Companies producing automation plant design are faced with problems such as delivering quality products to meet the customer’s requirements within a time frame. There is, therefore, the need for the companies to improvise their automation process in order to save design time. Data produced during the automation design process of a plant can be used to create a knowledge base, which is a collection of rules captured from the data pattern. An intelligent system can be created using this knowledge base to verify automation design quality assurance.

The goal of this thesis was to design and implement a system that can be used by less experienced automation engineers at Pöyry. The method applied in this thesis uses an inductive learning algorithm to generate production rules from training data. The production rules generated were used for building a knowledge base for a rule-based system. In order to evaluate the performance of the knowledge base, three different learning classifiers were used. Effective score of the learning classifiers prove a decision-tree learner to be the best classifier with an average performance score of 92%. The outcome of the thesis was a desktop application developed using Java GUI (Graphical User Interface) widget toolkit. This application can be used to perform task such as verification of system design.

This thesis was carried out for the company Pöyry to solve automation design carried out by less experienced engineers. The results of the thesis illustrate that the proposed thesis can be implemented in a real situation.

| Keywords | algorithm, classifier, data mining, machine learning, rule-based system, decision trees, training data, inference engine |
Contents

1 Introduction 3

2 Overview of Technology 4
 2.1 Machine Learning 4
 2.2 Rule-Based System 9
 2.3 Data Mining 13

3 Design and Implementation of the Project 16
 3.1 Software 16
 3.2 Design 17
 3.3 System Overview Diagrams 23
 3.4 Implementation 25

4 Results and Discussion 27
 4.1 Learning Classifiers 27
 4.2 Production Rules Generation 28
 4.3 Benefits and Drawbacks 28
 4.4 Reliability 30
 4.5 Further Development 30

5 Conclusion 31

References 32

Appendices
Appendix 1 Decision Trees Learner Configuration
Appendix 2. J48 Classifier Configuration
Appendix 3. JRip Configuration
Appendix 4. Dataset Row Filtering into Three Categories
Appendix 5. Software Code
Appendix 6. Graphical User Interface Interaction with the System
Appendix 7. Pöyry Virtual Mill
1 Introduction

Plant design automation is a 3D model blueprint for creating industrial plants for example, for gas and oil industry, brewery and refinery industry. The 3D modelling of a plant shows detail information on equipment, structures, piping, raceways, HVAC (heating, ventilation and air conditioning) and physical support pertaining to customer requirements. This plant model is created using a software tool before the final deployment. This thesis is carried out for the company Pöyry, an international consulting and engineering company with major sectors and services in chemicals and biorefining, power generation and energy. The software tool used by Pöyry to create the plant design is Virtual Mill.

The Virtual Mill is a Pöyry industrial-scale information management system for creating, storing, maintaining and accessing technical information of plant design. The Virtual Mill comprises three integrated tools, namely a 3D model, a database and documents. This Virtual Mill serves all the phases of plant design, engineering, construction, installation, start-up, operation and maintenance. [1; 2; 28] The detailed information on the Pöyry virtual Mill is explained in appendix 7.

The goal of this thesis is to design and implement a machine learning and rule-based system for verifying automation system designs of less experienced automation engineers. This thesis was proposed by Pöyry to solve three critical problems in the automation engineering design process, namely quality control of completed engineering work, aiding the engineer during the design work and automatic design. The main components of the thesis include:

- Dataset acquisition: provided by Pöyry.
- System design: Using KNIME software by applying data mining, machine learning and rule-based techniques to generate rules; Astah-professional for designing use case and class diagram.
- Fine tuning the machine learning algorithm to yield good performance.
- Implementation and testing of the system using the Java programming language.
The datasets used in the thesis contained information on process equipment, pressure vessels, tanks, agitators, pumps, piping and valves. However, the scope of this thesis is limited to data generated by pressure, temperature and flow sensors.

2 Overview of Technology

2.1 Machine Learning

Machine learning applications have been in existence since the early 1960s and its growing application has found profound benefits in companies utilizing marketing predictions and search engine applications. An operational definition of machine learning stated by Mitchell applies: “A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E”. [14, 14]

The core task of machine learning is making inferences from data using different algorithmic types such as supervised learning, unsupervised learning, semi-supervised learning and reinforcement learning. Supervised learning will be explained here because it was implemented in the thesis.

In supervised learning the input data known as a training set contain pre-classified or labelled data as shown in the following expression:

\[
\{(x_1, y_1), \ldots, (x_N, y_N)\}
\]

where \(x_1, x_2, \ldots, x_n\) are input values and \(y_1, y_2, \ldots, y_n\) are output values

A learning algorithm seeks a function \(g\) called a classifier as shown in the following expression:

\[
g : X \rightarrow Y
\]

where \(X\) is the input space and \(Y\) is the output space.

Function \(g\) is an element of a space of functions \(G\) known as the hypothesis space.
Function g can be expressed in terms of a scoring function as shown in the following expression:

\[f : X \times Y \rightarrow \mathbb{R} \]

which indicates how sensitive the likelihood function \(f \) depends on the parameter \(X \).

Function g can therefore be written as shown in equation (1), which returns the value \(y \) that gives the highest prediction score.

\[
g(x) = \arg\max_y f(x, y) \quad (1)
\]

From equation (1), the right-hand side of the equation is the value of \(y \) for which the given input training sample \((x, y)\), function \(f(x, y) \) attains the highest prediction score of \(y \) for the input space \(x \). There are two approaches to choosing the scoring function \(f \) from a space of scoring functions namely, empirical risk minimization and structural risk minimization. Both approaches utilize the concept of loss and risk function. The loss function specifies the loss of making a decision on two variables whereas the risk function is the expected value of a loss function.

Given a training set given by the following expression:

\[
\{(x_1, y_1), \ldots, (x_N, y_N)\}
\]

the loss function can be expressed as follows:

\[
L(y_i; \hat{y})
\]

which is the loss of predicting \(y_i \) when the true predicted output is \(\hat{y} \).

The risk \(R(g) \) of function \(g \) is the expected loss of \(g \). The empirical risk can be expressed mathematically:

\[
R_{\text{emp}}(g) = \frac{1}{N} \sum_{i} L(y_i, g(x_i)) \quad (2)
\]
where the risk is computed over the event space of X and Y. In empirical risk minimization, the goal of the supervised learning algorithm is to seek a function g that minimizes $R_{\text{emp}}(g)$. Many learning algorithms such as ID3, C4.5 and CART are probabilistic whereby the function g can be modelled by equation (3) or the function g can be modelled using a joint probability shown in equation (4).

$$g(x) = P(y|x)$$ \hspace{2cm} (3)

$$f(x, y) = P(x, y)$$ \hspace{2cm} (4)

where x and y are given set of training examples.

When g is modelled by equation (3), the loss function is negative log likelihood as expressed in equation (5).

$$L(y, \hat{y}) = -\log P(y|x)$$ \hspace{2cm} (5)

Therefore the empirical risk is equivalent to the maximum likelihood estimation (MLE), which is a method of estimating the parameters of a statistical model. The empirical risk equation expressed in terms of MLE is shown in equation (6).

$$R_{\text{emp}}(g) = -1/N \sum_i \log P(y_i | x_i)$$ \hspace{2cm} (6)

where y_i are the class label and x_i are the input feature.

For an insufficient training set, the empirical risk minimization produces high variance and poor generalization which causes overfitting. On the other hand, structural risk minimization seeks to prevent overfitting caused as a result of generalization from fewer training samples by incorporating a regularization penalty into the optimization. The regularization penalty depends on the geometric property of the function. For example, when function g is a linear function shown in equation (7):

$$g(x) = \sum_{j=1}^{d} \beta_j x_j$$ \hspace{2cm} (7)

where β_j are the weights or scalar coefficient and x_j are the input space features, a
regularization penalty which is the squared Euclidean norm of weights can be expressed as follows:

\[\sum \beta_i^2 \]

Therefore supervised learning optimization utilizing structural risk minimization aim to find the function \(g \) that minimizes \(J(g) \) expressed in equation (8).

\[
J(g) = R_{emp}(g) + \lambda C(g),
\]

where the parameter \(\lambda \) controls the bias-variance tradeoffs, \(R_{emp}(g) \) is the empirical risk and \(C(g) \) is the regularization penalty which is the number of non-zeros of \(\beta_i \) from equation (7) [8].

Machine learning has been used in many fields to automate knowledge base building for a rule-based system using a supervised learning approach. This approach best suits training datasets containing a correct label for each input. An automated knowledge base using this approach has proven to yield good results with data scalability compared to the traditional approach which requires a domain knowledge engineer to create knowledge base. Figure 1 shows a traditional method to automating a knowledge base.

![Figure 1. Traditional method of knowledge base acquisition using a knowledge engineer. Adapted from Huang and Jensen (1997) [4]](image-url)
As illustrated in figure 1, the traditional method approach uses a knowledge engineer through dialog interaction with a domain human expert in addition to research findings from literature archives. The information gained by the knowledge engineer is encapsulated into computer-usable knowledge known as rules through the process of inductive inference mechanism.

The performance of the rules created using this approach is almost accurate but however this approach scales poorly with an increase in the dataset. The alternative approach which scales well with increased data size is through a machine-learning approach. [4]

The machine-learning approach uses a heuristic inductive learning by searching through the training data to infer facts that can be used for predicting new unseen data. Figure 2 shows a machine-learning approach using supervised learning.

![Figure 2. Machine-learning approach to automated knowledge base building through supervised learning process. Adapted from Huang and Jensen (1997) [4]](image)

As illustrated in figure 2, the domain human expert creates a training dataset which is used as an input to a machine learning program. The patterns captured from the dataset are encapsulated in the form of rules used to build a knowledge base. [4]
A comprehensive illustration of a supervised learning approach is shown in figure 3. Raw input data are processed using the feature selection process to reduce the dimensionality of the input data. The processed data is further scaled into training and test data. A training dataset is used to create a data model and the test data is used to validate the model from unseen data.

Figure 3. Supervised learning. Adapted from Huang and Jensen (1997) [4]

As depicted in figure 3, both training data and test data are sampled from raw data. The test data is used to validate the model built from the training data and the performance of the model can be validated by the profit outcome. The tradeoff for selecting a learning algorithm depends on speed of training, memory usage, predictive performance on new data and interpretability of the algorithm. [3; 4; 6; 8; 9; 14]

2.2 Rule-Based System

A rule-based system also called an expert system, has been defined as follows: "it is an intelligent computer program that uses knowledge and inference procedures to solve problems that are difficult enough to require significant expertise". [29] The main idea of a rule-based system is to capture the knowledge of a human expert in a specialized domain into an automated system. The captured knowledge is stored as rules.
The main components of a rule-based system are: working memory, inference engine and a knowledge base. [5]

Figure 4 shows the architecture of a rule-based system

![Diagram of a rule-based system](image)

Figure 4: Architecture of a rule-based system. Adapted from JBoss Drools Team [5]

As shown in figure 4, the working memory is a database used to store a collection of facts known about the domain. The facts can be asserted, modified or retracted from the working memory. A real world example of facts in a medical domain could be information of a particular patient being diagnosed, such as age, sex, height, weight and blood pressure. The knowledge base also known as production memory stores rules that are used by the inference engine to match against facts in the working memory. These sets of rules represent knowledge about the domain. The general syntax of a rule is of the form

\[\text{If } \text{<condition> THEN } \text{<action>} \]

where <condition> also known as antecedent clause is evaluated depending upon the problem being solved and the <action> also known as consequent clause is used to manipulate the facts in the working memory. [5]
The third component, inference engine, is the brain of the rule-based system. The inference engine matches facts from the working memory against rules to infer new information. The inference engine has two methods of execution, namely forward chaining and backward chaining. The forward chaining engine will be explained here because the inference engine used was based on this type. Figure 5 shows the forward chaining process.

![Forward Chaining Process](image)

Figure 5: Forwarding chaining process showing rules resolution. Adapted from JBoss Drools Team[5]

As illustrated in figure 5, when a new fact is inserted into the working memory, the inference engine matches the fact against rules in the rule base and through the conflict resolution strategy a rule or multiple rules will be fired. The forward chaining inference system is based on Rete algorithm which is an efficient pattern matching algorithm for implementing a production rule system or an expert system.
An illustrative example of a medical diagnosis using forward chaining is shown in listing 1.

Assertions (Working Memory):
- A1: runny nose
- A2: temperature=101.7
- A3: headache
- A4: cough

Rules (Rule-Base):

<table>
<thead>
<tr>
<th>Rule</th>
<th>Conditions</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>if (nasal congestion) (viremia)</td>
<td>then diagnose (influenza) exit</td>
</tr>
<tr>
<td>R2</td>
<td>if (runny nose)</td>
<td>then assert (nasal congestion)</td>
</tr>
<tr>
<td>R3</td>
<td>if (body- aches)</td>
<td>then assert (achiness)</td>
</tr>
<tr>
<td>R4</td>
<td>if (temp >100)</td>
<td>then assert (fever)</td>
</tr>
<tr>
<td>R5</td>
<td>if (headache)</td>
<td>then assert (achiness)</td>
</tr>
<tr>
<td>R6</td>
<td>if (fever) (achiness) (cough)</td>
<td>then assert (viremia)</td>
</tr>
</tbody>
</table>

Execution:

1. R2 fires, adding (nasal congestion) to working memory.
2. R4 fires, adding (fever) to working memory.
3. R5 fires, adding (achiness) to working memory.
4. R6 fires, adding (viremia) to working memory.
5. R1 fires, diagnosing the disease as (influenza) and exits, returning the diagnosis

Listing 1. Medical diagnosis using forward chaining. Adapted from Dame Team [3]

As illustrated in listing 1, the Rule-Base contains six rules, labelled R1 to R6 and five facts in the working memory. During the inference engine matching process, the first rule, R1, is matched against facts in the working memory and since the antecedent part is not true, R1 is not fired. The next rule in the Rule-Base, R2, is matched against the facts in the working memory and since the antecedent part of the rule is true, R2 is fired. Finally the working memory is updated by adding a new fact to the working memory. Subsequent rules, R3 onward, in the Rule-Base are matched against the
facts in working memory until the last rule R1 is fired to predict the diagnosis, after which the process terminates with no more rules to fire. [3; 5; 11; 23]

2.3 Data Mining

The need to seek patterns in data began long since the evolution of man. For example, hunters seek patterns in animal migration seasonally, farmers seek pattern in crop growth and politicians seek pattern in voters’ opinions. In the past few decades, large amounts of data have been generated from online transactions and from sensors. These online data sources contain information on economic and financial institutions, social sciences, sports and entertainment industry. [30] There is therefore a large gap between data generation and our understanding of the data. Data mining seeks to extract patterns from data and to transform them into an understandable structure for application. Two primary goals of data mining tend to be prediction and description.

Prediction involves using feature sets which are obtained from attributes of original datasets by applying transformation techniques such as reducing the original dimensionality of the data and eliminating noisy or corrupted data. The feature set is used to predict unknown or future values whereas description focuses on finding patterns describing the data that can be interpreted by a human. [18, 79]

Figure 6 shows the steps involved in data mining.

Figure 6: Data mining iterative process showing data preprocessing and pattern recognition technique to create interpretable knowledge. Adapted from Kamath (1997) [37].
As illustrated in figure 6, data mining is an iterative process involving data preprocessing, pattern recognition and interpretation of results. Data preprocessing involves steps such as removing noisy and inconsistent data, dimension reduction and pattern recognition which is achieved by application of different clustering or classification techniques.

Clustering is a technique used to create subgroups of similar items amongst a large collection of data. Clustering is a type of classification approach known as unsupervised where the class labels of the data are unknown. The goal of clustering is to create similar data into a cluster and dissimilar data into another cluster based on similarity measurement criteria. An example of a clustering algorithm is the k-means which works by finding k unique clusters. The criterion used in clustering is based on the mean of the values in the clusters to the cluster centroid. Figure 7 shows a simple k-means clustering example. [18, 146-150; 31]

![Figure 7. K-means clustering showing five clusters and their centroid. Adapted from McCullock (2012) [31](image)](image)

As illustrated in figure 7, the data sets are grouped into five clusters based on their centroid as depicted in the blue bigger dot. Each grouping is done by computing the minimum Euclidean distance of each data in the cluster to the centroid.

Unlike clustering, classification task starts with a dataset containing class labels or target labels. The goal of classification is to predict the class label by using sampled data
known as training data with known labels through a learning process a classifier is learned which is used to classify unseen data. Classification using datasets with known labels is known as supervised learning. Examples of classifiers used in supervised learning include decision tree, logistic regression and Naïve Bayesian classifier. [32, 3-12]

In data mining, one of the core stages in data preprocessing is dimension reduction, which works by transforming existing data variables or attributes to a new reduced set of features either by feature selection or feature extraction. Figure 8 shows taxonomy of dimension reduction.

![Figure 8. Dimension reduction process using feature selection technique. Adapted from Rokach and Maimon (2010) [9, 85]](image)

As depicted in figure 8, the major reasons for applying a dimension reduction technique to a dataset are namely, decreasing learning cost and increasing learning performance by a classifier and reducing irrelevant and redundant dimensions through feature selection process. The objective of feature selection is to identify the best attributes and discard redundant information, which increases the prediction error rate. [9, 83-97; 10]
There are two approaches to feature selection namely forward and backward selection. The forward selection method starts with an empty set and sequentially adds the attribute that best improves the classifier performance until further addition of an attribute will no longer improve the classifier performance. On the other hand, backward selection involves starting with all attributes in a dataset and deleting the attribute that best decreases the classifier performance until further deletion of an attribute does not affect the performance. [8; 9, 83-97; 10; 14, 29-39; 18, 77-96; 21, 53-85; 24, 100-141, 33]

3 Design and Implementation of the Project

The thesis design illustrated the schematic design process which established the general scope and relationships amongst the components. These components included machine learning and data mining. KNIME software was used to build the thesis design because KNIME has both machine learning and data mining components integrated into the software. Using KNIME, a schematic diagram was created interconnecting node from both machine learning and data mining that was used to analyze trends in the datasets and also used to build the prediction models from the training dataset.

The prediction model was used to predict unseen data. Rules were further created from predicted data which were in the form of “IF THEN” expression. These rules were served as input to the implementation part of the thesis using Drools Expert, one of the components of Drools developed by JBoss. Drools Expert was chosen because it uses rules in the form of “IF THEN” expression to perform reasoning. The implementation was carried out using the Eclipse integrated development environment. [5]

3.1 Software

The software used in the thesis were Konstanz Information Miner Desktop (KNIME), Eclipse integrated development environment (IDE) and Astah-professional a unified modelling language (UML) software. KNIME Desktop is an open-source platform for data access, data mining, statistics, visualization and reporting. KNIME software pro-
vides a rich graphical user interface where processes are created. This thesis development was done using the KNIME Desktop with KNIME SDK version 2.7.1.

Figure 9 shows an example of a workflow created in KNIME.

![Figure 9. KNIME workflow diagram showing different nodes connectivity to build a data report. Adapted from KNIME (2013) [15]](image)

As shown in figure 9, nodes are the basic processing units with a variable number of input ports and output ports for transporting data. The node labelled “XLS Reader” is used to read input data from a data source, from a Microsoft Excel file extension (.xls) and the data processing node labelled “Column filter” is used to filter unwanted columns in the data to be further processed.

3.2 Design

The datasets used in the thesis contained information on plant design components such as pipe diameter, substance measurements flowing in the pipe and the speed of
substance flow in addition to devices such as flow, pressure and temperature sensors. The datasets comprised attributes and class labels. Attributes are collectively used to identify a class label. A class label also known as target attribute is the output to each attributes in a record. For example in medical diagnose data, attributes such as age, sex or blood pressure can be collectively used to diagnose if a patient is having cancer or heart attack.

<table>
<thead>
<tr>
<th>Patient A record</th>
<th>Age</th>
<th>Sex</th>
<th>Blood pressure</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient B record</td>
<td>45</td>
<td>Female</td>
<td>100</td>
<td>Heart attack</td>
</tr>
<tr>
<td>Patient C record</td>
<td>56</td>
<td>Male</td>
<td>98</td>
<td>Cancer</td>
</tr>
<tr>
<td>Patient D record</td>
<td>68</td>
<td>Male</td>
<td>110</td>
<td>Heart attack</td>
</tr>
<tr>
<td></td>
<td>91</td>
<td>Female</td>
<td>128</td>
<td>Heart attack</td>
</tr>
</tbody>
</table>

Figure 10. Illustration of attributes and labels in medical diagnosis.

As shown in figure 10, cancer and heart attack are class labels. For example, Patient A record with attributes such as age with value 45, sex with value female and blood pressure with value 100 is used to the diagnosis of Patient A as having a heart attack.

The thesis dataset comprised 35 column attributes, 12327 rows, 423 class labels and 2335 rows containing one or more missing values. The objectives were to learn a classifier using training data to build a model. The model was tested against test data and an acceptable model was chosen to have minimum output performance score of at least 75%. The model with the best score was further used to predict unseen or new data. In order to build the model used in prediction, a representational flow diagram was built. This flow diagram shows the data reading, processing and prediction score. The thesis data used was in a Microsoft Office Excel comma separated value file (.csv). The data was read using a file reader, a KNIME processing node for reading files.
The input data contained inconsistent data type. The data processing stage involved attribute data type conversion, column and row filtering.

Figure 11 shows the process of reading and processing the data attributes.

Figure 11. Flow diagram showing data reading and processing.

As depicted in figure 11, data is read from a .csv file and the processing is carried out on the data using String to Number conversion and row and column filtering using the Java regular expressions syntax to remove redundant data attributes. Data processing steps involve applying feature selection techniques such as forward selection to obtain the best feature set that can improve the classifier performance during prediction.

The thesis dataset comprised two columns each for six attributes namely, design and operating values. The design value is the maximum value that the system is designed to handle and the operating value is the normal operational value. Some of the attributes indicate flowing substances such as water or steam, the speed of flowing substance, the material that the flowing substance flow through, a unique identifiable
attribute and a target attribute or class label. Some the attributes contained nominal, interval and ordinal values. Nominal values have distinct symbols or basically refers to categorically discrete data. Interval values on the other hand are measured in fixed equal units whereas ordinal values can be ordered. Detailed information on the datasets is not shown because of the company sensitive information.

Understanding each attribute values helps to choose appropriate learning algorithms that can be used for classification. For example, JRip and J48 supports a limited number of dataset attributes with nominal values. During the data processing stages, 15 columns out of the original 35 columns were filtered out. Some of the filtered attributes contained descriptive information on other attribute columns and some contained the SI unit of other attribute columns. Moreover, the row filtering was further carried out by filtering out the entire row containing target attribute with invalid data. During the pre-processing stage, one of the exceptions used was ignoring the missing data from the attribute columns because a huge amount of the data had missing values. Some of these values could have been accounted for that it was not necessary during the automation design process. [34]

After the initial data pre-processing stage was performed, the column size was reduced to 20. Despite the reduction in the column size, the dimensionality was still a problem because the more features, the higher the computational cost for predictions, which increases polynomially especially with a large number of class labels. By further employing the feature selection process, input features with little effect on the output predictions were removed in order to keep the feature size used by the learning classifier small, so as to give better prediction performance.

The unique identifiable attribute column was further filtered out because its entries were unique and it could cause the problem of overfitting by generalization, whereby the prediction could be finally determined by the unique attribute column. Overfitting occurs when a learning algorithm produces accurate results on training data but produces a less accurate performance score when predicting unseen data. An example could be to predict online shopping behavior on purchasing products. Some of the attributes used in the prediction could be age, size, sex, location or credit card identification (ID). Since the credit card ID is unique for each customer, a learning algorithm can produce 100% prediction performance based on the customer credit card but when
given unseen data to the learned classifier, the performance would be less accurate because the classifier overfitting was a generalization from the credit card attribute.

Moreover, the dataset contained both design and operating values for some attribute columns. The operating values of the datasets were filtered out. More attribute columns were filtered out because they had more missing values than actual values. The total number of columns left after data preprocessing was 7. The dataset is not disclosed because of the company sensitive information. The remaining dataset that comprised 7 attributes were grouped into three categories and each of these categories was partitioned in the ratio of 85%:15%. The 85% of the data were further partitioned into training and test sets using relative stratified sampling of which 70% were training sets and 30% test sets. The remaining 15% of the data were used to further validate the performance of the learned model.

Figure 12. An illustrated diagram showing classifiers, in (a) JRip and J48 and in (b) Decision Tree Learner used for the data prediction stage.
As shown in figure 12, the datasets are partitioned into training and test data using the Partitioning node. The Decision Tree Predictor node and the Weka Predictor are used to test the model built by the Decision Tree Learner, JRip and J48 respectively. The performance score is obtained from the scorer node. The classifier J48 is an open source Java implementation of C4.5 algorithm in the Weka data mining tool. C4.5 is an algorithm used to generate decision trees. J48 was a good classifier to use because it is designed to work with both continuous and discrete attributes and in addition, it also works with training data with missing values.

The next classifier used was JRip an inductive rule learner. It is amongst the basic and most popular algorithms. The rule sets of JRip are relatively easy to interpret and this algorithm is good for imbalanced problems. The sample rule sets obtained using the JRip from the thesis is not disclosed because it contains company sensitive data.

The third classifier used was the Decision Tree Learner. The Learned trees of this classifier can be converted into a set of IF-THEN rules because each node uses a condition to infer the next tree node. [4; 7; 11; 14, 52-78; 21, 167-197; 22] Detailed information on the Decision Learner classifier is provided in appendix 1.
3.3 System Overview Diagrams

The system overview was used to model communication between an actor and the rule-based system. An actor specifies a role played by a user that interacts with the rule-based system. Figure 13 shows a use case diagram showing interaction of an actor with the system.

![Use case diagram showing interaction of a user with the rule-based system.]

As illustrated in figure 13, the use case illustrates the principal functioning of the system where the user logs in to interact with the system. This use case diagram shows a high-level view of what the rule-based system does and who uses it. For example the user can log in into the system through a user interface and perform operations such as verifyDesign and InsertFact and finally log out of the system. [36, 25-41]

In addition to use case diagram, a class diagram was modeled to show the static structure of the rule-based system. Classes are basic building blocks for class diagrams.
which show the features of classes, principally the attributes and operations. Attributes are the properties of a class and operations are the methods or the functionalities of the class. Figure 14 shows classes interaction in the class diagram.

As shown in figure 14, there are four classes, Fact, User, InsertFactGUI and UpdateFactGUI. Some of these classes have an inheritance relationship, for example InsertFactGUI and UpdateFactGUI inherit a method login from User class. Inheritance is an object-oriented concept where a class inherits attributes and methods from another class called a super class. Moreover, UpdateFactGUI class has a composition associ-
tion with RuleSession interface. A composition association represents a whole-part relationship, where in this case the whole object is the RuleSession interface. When the whole object is deleted, the part object has no meaning. For example, if RuleSession is deleted, the method readKnowledgeBase can never be executed in UpdateFactGUI class. [36, 47-89]

3.4 Implementation

The language used for the thesis implementation was Java. The application comprised the following: Runner (Java files) - creates rule packages needed by the inference engine, loads facts into the working memory, load rules, executes inference engine; Rules – Business logic of the application that contain the production rule. The facts components are Plain Old Java Object (POJO) which are ordinary Java Objects with a setters and getters method. These facts are persisted in a MySQL database for retrieval, deletion and update during execution of the inference engine.

Moreover, production rules were implemented using Drools rule language with an extension .drl. A rule file, drl file, could have multiple rules, queries and functions in addition to imports, globals and attributes declarations. A rule starts with the keyword “rule” followed by the name of the rule in quotes and each rule is terminated with the keyword “end”. Each rule has an antecedent part preceded by the keyword “when” and a consequence part that is preceded by the keyword “then”. When the antecedent or condition part is true, the consequence will be executed. The production rules are not disclosed because it contains the company sensitive information. Sample rule is shown in listing 2. [5, 7-35]

```
rule "rule A"
when
    $server : Server(processors==4, memory==2048)
then
    retract($server);
end
```

List 2. Example of a rule declaration.
As shown in listing 2, “rule A” is the name of the rule, “$server” is an object instantiation with two variables “processors” and “memory” and “retract()” method is the action performed on the object “$server”.

The other components of the implementation, loading rules and facts into the inference involve creating a KnowledgeBase by calling the createKnowledgeBase method. KnowledgeBase is an interface that manages a collection of rules, processes and internal types. Since the creation of rules is expensive, the KnowledgeBase stores and reuses the rules. The KnowledgeBase is further used to create a stateful knowledge known as StatefulKnowledgeSession which is the main interface for interacting with the Drools engine. Finally, fireAllRules method is executed to fire a rule or rules that match with facts in the working memory. [5, 7-35]

Figure 15. A diagram showing how collection of rules in KnowledgePackage and Facts are inserted into the inference engine for rules execution.

As illustrated in figure 15, when rules and facts are inserted into the inference engine by the StatefulKnowledgeSession, the inference engine determines the set of rules which can be fired. The fired rules are those with which the antecedent is satisfied.
The client application user interface was created using a Swing, a Java graphical user interface (GUI) widget toolkit. Figure 16 shows a login GUI dialog box for which the user first provide authentication before interacting with the system.

![Login GUI](image)

Figure 16: Login GUI of the application.

As shown in figure 16, a user interface with the system is through a GUI login using a username and password. On successful log in, the user can perform actions such as submitting queries to the database, insert new entries, update and select facts. The displayed query data is not disclosed because of the company sensitive information. [24; 25; 26; 27] A more representational view of the user interaction with the system is shown in appendix 6.

4 Results and Discussion

4.1 Learning Classifiers

The classifiers that were used in the thesis were J48, JRip and Decision Tree Learner. The main reason why the JRip classifier was not successfully utilized was because it scales poorly with the training set size and noisy data. When datasets contain string type attributes, the JRip classifier will generate errors such as “cannot handle string attributes” and when the attribute size is reduced, it will produce a good learning model. However, since the thesis data size was very large, this type of classifier was not the best choice and assumptions based on limited data classification will not be justified.

On the other hand, the J48 classifier scales well with large datasets. In addition it generated the Java source code containing the pruned tree output. J48 classifier yielded a score of 75%. Finally, the Decision Tree Learner was proven to be the best classifier.
because it scaled well with the training set size and it yielded a score of 92%. [9; 12; 14; 17; 21, 169-198] Detailed information on how these classifiers work and how to tune the performance is illustrated in appendices 1, 2 and 3.

4.2 Production Rules Generation

The production rules set were obtained from disjoint subsets of the complete data set. These data sets were partitioned into three categories, data generated by pressure, temperature and flow sensors. The learned decision trees from the disjoint subsets of the data were converted into rules and combined into a single rule set. Conflicting rules from the disjoint subset of the data were resolved before combining them into a single rule set. Resolving conflicting rules required finding all the rules that had the same antecedent conditions and also attributes that were the same with different continuous values that differed by no more than 60%.

Another method to resolve conflicting rules is by finding attributes containing an inequality condition having a strictly greater than sign (>), for example, say, Attribute_A > 55 and Attribute_A > 56 then the condition with a smaller continuous value, Attribute_A > 55, is selected. Likewise, when a rule contains the inequality condition of less than or equal to (<=), say, Attribute_A <= 55 and Attribute_A <= 56, then the rule with a greater continuous value, Attribute_A <= 56, will be selected. Conflicted rule sets were kept in a separate file of conflicting rule set that can further be processed. Non-conflicting rules were combined into a rule set used to build the knowledge base of the application. [4; 17; 18; 21; 22] Detailed information on how the Decision Learner Trees configuration was set up is in appendix 1.

4.3 Benefits and Drawbacks

The benefit of using Drools is that it is a declarative style programming approach and it is easy to understand. Declarative programming expresses logic of a computation without describing the control flow. This programming style focuses on describing “what you want to be done” rather than how it is supposed to be done. Compared to other imperative style languages such as Java and C++, the rules can be easily managed
compared to updating a C++ or Java program. Imperative programming however describes program computation in terms of statements that change the program states, that is, it focuses on describing “what to do”.

Moreover, the declarative style solution provides improved maintainability. In imperative style programming languages such as C++ and C#, the programming task is always focused on telling a computer precisely how to do something, the steps to follow and in what order. Contrary to rule-based system, the task is focused on telling the computer what you want to be done and the inference engine figures out how it can be done. This makes rule-based systems more ideal for solving non-algorithmic problems such as control, classification and decision rules.

Another benefit of using a declarative style solution is that it scales with evolving complexities. It is easier to modify the rule-based system by adding new rules, modify or remove existing rules compared to updating a Java program. Another benefit of using the declarative style solution with Drools is its flexibility and performance. The Drools rule engine is based on the Rete algorithm and it is a generic if-then statement executor and in addition the Rete algorithm provides Rete node sharing, node indexing and parallel execution optimization. Using the declarative style solution provides a reusability and embedability benefit from its architectural pattern where rules are separated from the business logic. The Drools application can therefore be embedded (component of a program used in another program) into other existing applications.

Some of the drawbacks of using Drools is time investment in training of developers. The rule base being a critical component of a rule-based system, inefficient rules and seemingly unpredictable results would affect the complex decisions of a rule-based system. Another drawback is that rules debugging requires the developer to understand how the underlying system works compared to other imperative languages such as Java where debugging involves stepping into the code to find the bug. Finally, another drawback of using Drools is its memory consumption because huge amounts of calculation are cached in order to prevent event reprocessing. [5; 19]
4.4 Reliability

The inference mechanisms for decision tree predictions are statistically probabilistic and therefore the results are not always accurate. [15; 19]

4.5 Further Development

Moreover, this thesis can be further extended to a rule-based web application using the architecture shown in figure 17.

![Rule-based web application architecture](image)

Figure 17. Rule-based web application architecture. Adapted from Canadas, Palma and Tunez (2010) [13]

As shown in figure 17, this approach uses Model View Controller (MVC) architecture. This architectural pattern separates the model, which comprised JavaBean Classes, the view which comprised JSF and RichFaces pages and the controller which comprised Jess.

In this architecture, the model manages the behaviour and data of the application domain and it notifies the views and controllers when the state changes. This model class represents Java EE components, JavaBeans. The view manages the display of information and this can be designed using JavaServer Pages (JSP), JavaServer Faces (JSF) and AJAX which generates dynamic web pages. The controller is used to update the states of the model. The proposed architecture utilizes a Jess Engine Bean which
uses the Jess application programming interface (API) to embed the rule engine into the architecture. [13]

Furthermore, future work can be done by datasets mapping. The data used comprised of 6 different thesis datasets from which there were identical class labels for different thesis datasets. The thesis can be further improved by performing mapping of data attributes to find a pattern of how the attributes vary from one thesis to another. By performing the mapping, a known pattern can be used to generate a prediction model with generic rules for the dynamic attributes from one thesis dataset to another instead of combining the entire datasets.

5 Conclusion

The aim of this thesis was to design and implement a machine learning rule-based application for verifying automation systems design. The application stages included a machine learning and data mining phase for creating production rules and a rule-based phase for implementation using Drools, a business rule management system with a forward chaining inference engine developed by JBoss.

A rule-based system also known as an expert system uses knowledge specific to a problem domain to provide “expert quality” performance in that application area. Some earlier known applications that had been implemented using a rule-based system was DENDRAL (1967): determines molecular structure based on mass spectrograms.

This thesis demonstrated a hybrid combination of machine learning and rule-based system. These technologies can be applied to the dataset created during automation design process. The dataset comprised information that met the classifier’s characteristics from machine learning techniques, which was used to create rules that encapsulate human expert domain knowledge. The created rules were further used to implement a rule-based system. The hybrid combination of a machine learning and rule-based system showed to be very applicable to automation design process to help solve problems such as aiding a less experienced engineer during the design work and reduced work time in verification designs.
References

21 Kantardzic M. Concepts, Models, Method, and Algorithms. 2nd ed. NJ, USA: Wiley; 2011;

URL: http://www.generation5.org/content/2005/PDAMum.asp.

30 Ma L, Simonoff J S. Links to Useful Data [online]. NY, USA: New York University.

URL: http://www.cse.msu.edu/~cse802/Feature_selection.pdf.

34 Witten I H, Frank E. Data Mining [online]. MD, USA: University of Maryland; 2013.

Decision Trees Learner Configuration

Decision tree is an important form of knowledge representation but however it is not commonly implemented directly in a rule-based system. The complexity of the tree increases with large datasets which makes it difficult to maintain and update the tree. This can be illustrated in figure 18.

Figure 18: Decision tree output nodes from thesis design.

As shown in figure 18, decision tree is composed of nodes which correspond to attributes being classified. The central choice of the algorithm is selecting the attributes to test at each node. The quantitative measure used to choose an attribute at each node is a statistical property called information gain. Information gain is a change in information entropy from a prior state to a state that takes some information. Mathematically, it can be expressed using training data sets as follows:

Given that \(T \) is a set of training examples in the form

\[
(X, y) = (x_1, x_2, x_3, \ldots, x_k, y)
\]
Decision Trees Learner Configuration

where $X_a \in \text{vals}(a)$, value of the ath attribute of sample X and y is the corresponding class label. The information gain for attribute a is therefore shown in equation (10).

$$IG(T, a) = H(T) - \sum_{v \in \text{vals}(a)} \frac{|\{x \in T | x_a = v\}|}{|T|} \cdot H(\{x \in T | x_a = v\})$$

Attribute with the highest information gain will therefore be used as the root node in the decision tree. The process of selecting new attribute and partitioning, the branch node from the root node, repeats until every attribute has been used.

The Decision Tree Learner configuration used in the thesis is shown in figure 19.

![Decision Tree Learner configuration](image)

Figure 19: Decision Tree Learner configuration.

As illustrated in figure 19, the Class column contained the class label to be predicted. The quality measured used was Gini index that measures how equitable a resource is
Decision Trees Learner Configuration

distributed in a population. It is the difference between a theoretical equality of some quantity and the actual value over a range of related variable. It can be represented mathematically as shown in equation (11) and the evaluation criterion for selecting an attribute, \(a_i \) is shown in equation (12).

\[
Gini(y, S) = 1 - \sum_{c_j \in \text{dom}(y)} \left(\frac{\left| \sigma_{y=c_j} S \right|}{|S|} \right)^2
\]

(11)

\[
GiniGain(a_i, S) = Gini(y, S) - \sum_{c_i_j \in \text{dom}(a_i)} \frac{\left| \sigma_{a_i=a_j} S \right|}{|S|} \cdot Gini(y, \sigma_{a_i=a_j} S)
\]

(12)

On the other hand, the gain ratio can be expressed mathematically as shown in equation (13):

\[
GainRatio(a_i, S) = \frac{\text{InformationGain}(a_i, S)}{\text{Entropy}(a_i, S)}
\]

(13)

Gain ratio therefore favours attributes for which the denominator is very small. This quality measure biases decision tree against attributes with large number of distinct values. One of the drawbacks of gain ratio is that it prefers unbalanced splits whereas Gini index biases towards multivalued attributes and also with large number of classes, the quality measure decreases. Gini index quality measure gave a performance score of 82% compared to 72% performance score using gain ratio.

The next configuration option was pruning method which is a technique in machine learning that reduces the error and complexities of induced trees. Pruning avoids overfitting which increases the generalization performance and the prediction quality. The method options were minimum description length (MDL) and no pruning.
Decision Trees Learner Configuration

Figure 20 shows the configuration pruning options.

Figure 20. Pruning method options.

MDL can be used for evaluating generalized accuracy of a node. The main concept behind MDL is that the best tree is one that can be encoded using fewer numbers of bits. The cost of encoding a tree using MDL depends on the structure of the tree, the splits and the classes in the leaves and it can be given mathematically as shown in equation (14).
Decision Trees Learner Configuration

\[
\text{Cost}(t) = \sum_{c_i \in \text{dom}(y)} |\sigma_{y=c_i} S_t| \cdot \ln \frac{|S_t|}{|\sigma_{y=c_i} S_t|} + \frac{|\text{dom}(y)|-1}{2} \ln \frac{|S_t|}{2} + \ln \frac{|\text{dom}(y)|}{1! \left(\frac{|\text{dom}(y)|}{2} \right)}
\]

(14)

where \(S_t \) denotes instances that have reached node \(t \). Since the datasets contained noisy data, this method was chosen compared to the option of no pruning where by noisy data can affect the overall performance.

Moreover, Min number of records per node used was 2 and the number of records to store view was set to 10000 because of the size of the attributes; Average split point was set to default, whereby the split value for numeric attributes is determined according to the mean value of the two attribute values that separate the two partitions; Number of threads set to default processors or cores that are available in KNIME; The other options such as skip nominal columns without domain information, binary nominal splits, max #nominal and filter invalid attribute values in child nodes which can be used to tune the performance of the decision tree on attributes with nominal values. [7; 9; 14, 20]
J48 Classifier Configuration

J48 decision tree classifier is Waikato Environment for Knowledge Analysis (Weka) optimized implementation of C4.5. Weka is an open-source machine learning software developed at University of Waikato.

Figure 21 shows the configuration of J48 decision tree classifier.

![Figure 21: J48 classifier configuration](image)

As illustrated in figure 21, there are 12 options to configure the classifier. The binarySplits option is set to false otherwise setting to true will set binary splits on nominal attributes when building the trees.

The next option is the confidenceFactor which is set to 0.25. It ranges from 0 to 1 and the smaller the confidence factor used the higher the tree pruning. The debug option is
J48 Classifier Configuration

set to false in order not to output classifier info to the console every run of the classifier. The next option is minNumObj which specifies the minimum number of instances per leaf. The option numFolds is used to determine the amount of data used for reduced-error pruning. The numFolds is set to 3 where one fold is used for pruning the two folds for tree growing. Option reducedErrorPruning is set to true because of its simplicity and speed with respect to the datasets used in the thesis. The options saveInstanceData, unprunned, useLaplace all set to false and the seed used randomizing the data is set to 1. Depending on the datasets, these options can be fine tuned to yield different optimal solution.

Figure 22 shows a tree representation of J48 classifier.

![Tree visualization of J48 classifier](image)

Figure 22: Tree visualization of J48 classifier

As illustrated in figure 22, by adjusting the confidenceFactor, the tree representation is created.
JRip Configuration

JRip implements a propositional rule learner, Repeated Incremental Pruning to Produce Error Reduction (RIPPER). A detail algorithm for RIPPER adapted from KNIME is outlined as follows:

Initialize RS = {}, and for each class from the less prevalent one to the more frequent one, DO:

1. Building stage:
Repeat 1.1 and 1.2 until the description length (DL) of the ruleset and examples is 64 bits greater than the smallest DL met so far, or there are no positive examples, or the error rate >= 50%.

1.1. Grow phase:
Grow one rule by greedily adding antecedents (or conditions) to the rule until the rule is perfect (i.e. 100% accurate). The procedure tries every possible value of each attribute and selects the condition with highest information gain: p(log(p/t)-log(P/T)).

1.2. Prune phase:
Incrementally prune each rule and allow the pruning of any final sequences of the antecedents; The pruning metric is (p-n)/(p+n) -- but it's actually 2p/(p+n) -1, so in this implementation we simply use p/(p+n) (actually (p+1)/(p+n+2), thus if p+n is 0, it's 0.5).

2. Optimization stage:
After generating the initial ruleset {Ri}, generate and prune two variants of each rule Ri from randomized data using procedure 1.1 and 1.2. But one variant is generated from an empty rule while the other is generated by greedily adding antecedents to the original rule. Moreover, the pruning metric used here is (TP+TN)/(P+N). Then the smallest possible DL for each variant and the original rule is computed. The variant with the minimal DL is selected as the final representative of Ri in the ruleset. After all the rules in {Ri} have been examined and if there are still residual positives, more rules are generated based on the residual positives using Building Stage again.
JRip Configuration

3. Delete the rules from the ruleset that would increase the DL of the whole ruleset if it were in it and add resultant ruleset to RS.

Figure 23 shows the dialog option diagram for configuring the classifier.

![JRip dialog configuration diagram](image)

Figure 23: JRip dialog configuration diagram.

As illustrated in figure 23, checkErrorRate is set to true where the stopping condition is for error rate $\geq \frac{1}{2}$. The option debug is set to false to avoid classifier info display at console; folds set to 3 from which one fold is used for pruning and two folds for tree growing; the minimum total weight of instance in a rule is set with option minNo to a value of 2; the number of optimization runs is set to 2; the seed used to randomize the data is set to 1 and pruning option usePruning set to true. [9; 12; 14; 21]
Dataset Row Filtering into Three Categories

Figure 24. Row filter of temperature data into TT category.

Figure 25. Row filtering of temperature data into TI category.
Dataset Row Filtering into Three Categories

Figure 26. Row filtering of temperature data into TE category.

Figure 27. Row filtering of flow data into FT category.
Dataset Row Filtering into Three Categories

Figure 28. Row filtering of flow data into FI category.

Figure 29. Row filtering of flow data into FE category.
Dataset Row Filtering into Three Categories

Figure 30. Row filtering of pressure data into PE category.

Figure 31. Row filtering of pressure data into PT category.
Dataset Row Filtering into Three Categories

Figure 32. Row filtering of pressure data into PI category.
Software code

```java
insertIntoInferenceEngine.addActionListener( new ActionListener(){

    @Override
    public void actionPerformed( ActionEvent e ){
    try {
        // load up the knowledge base
        knowledgeBase = readKnowledgeBase( );
        ksession = knowledgeBase.newStatefulKnowledgeSession( );
        logger   = KnowledgeRuntimeLoggerFactory.newFileLogger( ksession, "logfile" );
        Facts fact = new Facts( );
        fact.setDn( Double.parseDouble( dnTextField.getText( ) ) );
        fact.setId( Integer.parseInt( idTextField.getText( ) ) );
        fact.setFlowcode( flowcodeTextField.getText( ) );
        fact.setParentType( parent_typeTextField.getText( ) );
        fact.setTempDesign( Double.parseDouble( temp_designTextField.getText( ) ) );
        fact.setPressureDesign( Double.parseDouble( pressure_designTextField.getText( ) ) );
        fact.setPipeClass( pipeclassTextField.getText( ) );
        fact.setWinnerClass( winnerClassTextField.getText( ) );
        ksession.insert( fact );
        JOptionPane.showMessageDialog( null, "Facts successfully inserted into Working Memory" );
        ksession.fireAllRules( );
        logger.close( );
    } catch ( Throwable t ) {
        t.printStackTrace( );
    }
}

Listing 3. Insertion of facts and rules into Inference Engine.
```
Graphical User Interface Interaction with the System

Figure 33. User interface to insert fact into database.

Figure 34. User interface to delete fact from database.
Graphical User Interface Interaction with the System

Figure 35. UI to select fact from database to insert into inference engine.

Figure 36. UI showing predicted label after fact is inserted in inference engine.
As illustrated in figure 37, the Virtual Mill consist of a 3D model for design, a database for storing and maintaining design data and documents that contain technical information.

Pöyry Virtual Mill Concept comprise of 5 tools namely: ProElina, Jalina, UserReports, MoDeAcad and WebPub. ProElina stores functional and technical information on processes, equipments such as pressure vessels, tanks, pipes and operation. Jalina tool is used for document browsing, creation and editing. The UserReport offers a flexible report design environment for creating and maintaining reports. WebPub is a web-based interface to the Virtual Mill, for browsing plant information and last MoDeAcad, a set of applications namely: process, mechanical, electrical, automation and HVAC engineering for creating 2D documents. [28]