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1 Introduction 

 

The SunEdu project is a TEKES-funded public-private partnership formed to create 

opportunities for Finnish education export through eReader technology and to improve 

lighting, and thereby educational opportunities, for students in rural Tanzania. Partners 

include Helsinki Metropolia University of Applied Science, Suntrica Oy, LeiaMedia Oy, 

and Adamana Oy. The pilot project will consist of 75 solar chargers provided by Suntri-

ca Oy, 10 eReaders provided by Leia Media, and a mobile telephone for data access 

and distribution. The goal of the pilot is to develop a usable and marketable product or 

set of products for the Tanzanian market.  

 

The SunEdu team travelled to Tanzania in the beginning of 2013 and discussed with 

possible user groups to determine the customer requirements and possible use of the 

devices for and beyond schoolwork. They also described a status quo of kerosene 

burned in handmade tin lamps. By the time the life cycle assessment process began, 

the design processes for the charger and eReader products were already underway. 

 

Aside from the development of a marketable product, the SunEdu project is expected 

to positively impact the health and social opportunities of participants. Fuel based light-

ing, in particular kerosene, is the primary cause of unacceptable incidence of house 

fires, burns, and poisonings, as well as respiratory illnesses and deaths [1;2;3]. Lighting 

and educational resources which depend on solar power are disconnected from the 

volatility of the fossil fuel market and the on-going costs to the user of quality PV prod-

ucts are much lower [4]. 

 

Life cycle assessment (LCA) is an established method of quantifying probable envi-

ronmental impacts of a product, process, or activity by building an inventory of material 

and energy inputs and outputs, assigning characterization factors to each inventory 

item, and calculating the impacts in categories of concern. Life cycle comparison can 

help provide guidance for decision-making processes in the development and use of 

these products, processes, and activities.  

 

The life cycle assessment project took place between April and September of 2013. 

The university library did not contain the ISO 14040 and 14044 standards and no com-

puter lab had any particular LCA software nor database, so open-source software and 

database information available on the internet were used. Information on ISO stand-
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ards was obtained through secondary sources only. This study is limited by necessity 

to data provided by partner organizations and information that could be adapted from 

the EcoInvent 1.2 database. OpenLCA was used due to practical and economical ease 

of access and abundance of technical support.  

 

1.1 Review of Literature 

 

Many of the questions initially posed by the manufacturers of the equipment under 

consideration have already been examined in depth by life cycle practitioners with 

greater data access than I have. Impact analyses of different types of solar cells, ener-

gy generation methods, e-readers, and battery types are already readily available in 

existing literature [5;6;7;8;9;10;11;12;13]. There are articles addressing the economic 

and environmental impacts of solar lamps in rural east Africa, the health effects of ker-

osene lighting, the lack of e-waste disposal facilities in Tanzania, and the effects of 

informal e-waste disposal [1;2;3;14;15;16;17;18]. This area is already well-studied; as a 

result, some of the more obvious comparisons are given only passing attention in this 

study, and more time is devoted to project-specific design choices and measuring the 

magnitude of the project’s impact. 

2 Goal and Scope 

 

The goal of this life cycle assessment is to find ways to minimize the environmental 

impacts of the set of products used in the SunEdu pilot by identifying high-impact com-

ponents and suggesting low-impact alternatives. A secondary goal of the life cycle in-

ventory analysis is to determine how to provide light and educational content with the 

lowest environmental impact and the magnitude by which the possible product sets 

differ. Impact-based break-even points for electronic replacements of fuel lighting and 

paper books will be identified. A tangential benefit of this assessment will be the identi-

fication of areas with missing data that could use more attention and propose future 

studies.  

 

In pursuit of these goals, data gathering began in April of 2013 on a variety of photovol-

taic panel and laminate types, device chargers, batteries, and alternative energy gen-

eration techniques. Scenarios were built around the concept of ’learning days,’ or days 

with enough light and content to study for three hours. The kerosene and paper books 
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were included as the status quo scenario to provide a frame of reference and a ra-

tionale for proceeding or not proceeding with the project, based on comparative im-

pacts. 

 

The system boundaries include raw material extraction processes through final product 

manufacture, the most likely modes of transport for each product from closest port in 

the country of manufacture to Dar Es Salaam, Tanzania, likely emissions from use, and 

several scenarios for end of life including recycling methods and informal incineration. 

A diagram is provided for each system and indicates the type of information available. 

Fugitive and accidental emissions were impossible to measure without site visits, and 

therefore were excluded. Cotton wicks and tin lamps are assumed to be made of in-

formally recycled materials and disposed of by informal landfill. Electricity, heat, water, 

and other process considerations were unavailable for assembly of the solar chargers 

and eReaders, but approximations for printed wiring board assembly were made based 

on PWB surface area.  

 

System boundaries and data requirements depended dynamically on one another; 

where data was scarce, it was necessary to redraw system boundaries to exclude the 

missing or low quality data in such a way that the comparisons were still tenable. For 

example, exact information about the methods and impacts of transportation within 

Tanzania are not available for the Solar Strap and eReader equipment, therefore 

transportation within Tanzania is excluded for all systems. Data which was not availa-

ble from product vendors and manufacturers was estimated from the EcoInvent 1.2 

database, which provides high quality data for Europe and some other locations 

[19;20;21]. However, as most of the information is for Europe and Switzerland, the un-

certainty for various elements such as electricity mix and transportation is considerable. 

Wherever possible, location has been adjusted within the OpenLCA program to reflect 

conditions at the actual locations in question. 

 

Assumptions include the compliance of all electronics with the Restriction of Hazardous 

Substances legislation, as the electronics products are assembled in the European 

Union. Control circuitry for the diesel generator is excluded due to lack of data and 

small surface area. Emissions from informal incineration are approximated from a pre-

vious simulation of e-waste rudimentary recycling by Gullett et al. [18] with RoHS-

forbidden substances removed from emissions. 
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2.1 Devices 

2.1.1 Suntrica SS-W20432X Solar Strap 

 

The Solar Strap is a small, flexible photovoltaic laminate in a durable foam case formed 

into a strap, with Velcro to attach to clothing, backpacks, or other convenient objects. 

There is a small box with voltage regulation for charging devices such as phones. Indi-

cator LEDs tell the user about the status of the device, so it is possible to determine 

charge and error states. It comes with a set of adaptors for popular mobile telephones 

as well as USB. Packaging includes one paperboard box, several small plastic bags, 

various stickers and tapes, and an instruction manual. The battery capacity is listed as 

1500 mAh. Its approximate lifetime is required by Finnish law to be two years, as guar-

anteed by warranty. The device is RoHS compliant, components are manufactured in 

China, and the device ships from Finland. Transport is assumed to be from Helsinki-

Vantaa International Airport in Finland to Dar es salaam, Tanzania by air freight, 

though an alternative of transoceanic freighter will also be modeled. End of life for this 

product includes several scenarios; ideally, the product would be transported to the 

nearest e-waste recycling facility in Mombasa, Kenya, and copper, zinc, and the photo-

voltaic element fully recovered. In a less than ideal situation, the product would be 

transported to Iringa and recycled for copper recovery; other parts would be incinerated 

in a semi-controlled environment. In the most likely situation, the product will be infor-

mally incinerated in a fire pit on land which would potentially be used for agriculture in 

the future. All three end of life scenarios are modeled in this study. 

2.1.2 Diesel generator 

 

A 1 kWh diesel generator weighing 20 kilograms is modeled from the data given by 

Schleisner [8] and diesel fuel data from raw extraction to gate is estimated from data in 

the EcoInvent 1.2 database. The generator and fuel are used in two different scenarios, 

as described below. Control circuitry for the generator is not inventoried. Diesel genera-

tor efficiency is taken as 0.53 L/kWh, from the mean of several diesel generators at 

50% and 100% efficiencies, as measured by Fleck and Huot [7]. Fuel transport is as-

sumed to be from Durban, South America to Dar es Salaam, Tanzania via ocean tank-

er. Generator transport is assumed to be from Guangzhou, China to Dar es Salaam, 

Tanzania via transoceanic freight ship. End of life is modeled as transport by light truck 

to Dar es Salaam for metal recycling. 



5 

 

2.1.3 Kerosene lamp 

 

A handmade, 10 gram tin lamp with replaceable cotton wicks is the status quo for pro-

vision of light. Kerosene data from raw extraction to gate is estimated from data in the 

EcoInvent 1.2 database. Fuel transport is assumed to be from Durban, South America 

to Dar es Salaam, Tanzania via ocean tanker. Lamp transport is assumed to be hu-

man-powered, and is not inventoried. The end of life for this lamp is modeled as the 

informal landfilling of 10 grams of tin on land which would potentially be used for agri-

culture in the future. 

2.1.4 LeiaMedia eReader 

 

The eReader is comparable in area to a letter-sized notebook, weighs considerably 

less than a traditional paper notebook or tablet computer (about 500 grams), and uses 

a color electronic ink to display still images. It is designed for durability. The internal 

battery is rated at 1500 mAh. The reading materials can be downloaded from a cloud 

server by the instructor using a smart phone or tablet computer, then sent to students’ 

eReaders via Bluetooth. The instructor’s device, the cloud server, and the mobile tower 

used to access the cloud server are outside the system boundary for the eReader life 

cycle inventory, as it is expected that the school’s use of these resources is likely to be 

a small fraction of their total use, and the LCI information for these devices is not avail-

able within the time and cost restraints of the SunEdu project. The electricity required 

by the device was inventoried in the Power and Light scenarios, and therefore is out-

side the system boundary for this section. Transport is from Helsinki-Vantaa Interna-

tional Airport in Finland to Dar es Salaam, Tanzania by air freight, though transoceanic 

freight ship is also modeled. End of Life disposal methods are modeled in the same 

way as for the Solar Strap: ideal disposal in Mombasa, less than ideal disposal in 

Iringa, and informal disposal in a fire pit. 

2.1.5 Books 

 

The books used by the partner school are color-printed paperbacks. A selection of four 

storybooks and four course books were sent to the SunEdu project manager by the 

publisher; these books were weighed on a laboratory scale to obtain a mean mass of 

120.9 kilograms. Approximately 90% of the weight is uncoated, color-printed paper; the 

remaining 10% is coated, color-printed paper which makes up the cover. LCI infor-

mation for the books was estimated using data in the EcoInvent 1.2 database. 
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Transport is modeled from Dar es Salaam to Iringa by lorry, and end of life is modeled 

as informal incineration in a fire pit on land which could be used for agriculture in the 

future. 

 

2.2 Scenario Definitions 

 

Scenarios were built around the existing device choices made for the pilot project. It is 

assumed that the solar charger would also be used to charge mobile phones, the 

eReader would also be used for viewing periodicals. An estimated three hours of light 

and content use per day for 200 days per year is the basic requirement for each prod-

uct set. Four scenarios were created to fill this requirement. Device numbers were 

based on the original intended pilot project size, but assessment results will be given in 

impact units per learning day. 

 

The inventory and comparison of educational content devices was conducted separate-

ly from the inventories of power and light, as they are separate devices and not neces-

sarily dependent upon one another. For example, an eReader could be charged at a 

kiosk and used in the home in conjunction with a kerosene lamp, or charged at the 

school and used at home with an LED lamp, or charged by the Solar Strap. Books 

could be used in conjunction with any of the methods of providing light. Therefore, the 

most relevant comparison is of the eReader device to the status quo, paper books. The 

functional unit for comparisons of the eReader and the paper book is, as with the light 

and power scenarios, one learning day. 

 

2.2.1 Scenario 0 - Solar charger for power and light 

 

One SS-W20432X Suntrica Solar Strap charger with the future design addition of three 

light emitting diodes— also inventoried— will provide both electricity and light for a total 

lifetime of 400 learning days, or approximately two academic years.  

 

2.2.2 Scenario 1 - Diesel generator, smart phone case 

 

One 1 kWh diesel generator and 27.3 kg of diesel fuel will provide 31 kWh of electricity 

for charging 17 eReaders, 17 battery-powered LED lamps (lamps not inventoried) and 
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17 student-family mobile phones, which were modeled as Nokia 1202 for electricity 

demand but not inventoried as part of this study [22]. The instructor’s mobile phone, 

used for distributing educational content to the eReaders, will also be charged using 

this system. A Nokia Lumia 820 smart phone was used as the model for the instructor’s 

mobile phone electricity demand in this scenario, and was also not inventoried in this 

study [23]. This combination of products is expected to provide a total of 6800 learning 

days. 

2.2.3 Scenario 2 - Diesel generator, tablet case 

 

One 1kWe diesel generator and 30.0 kg of diesel fuel will provide 34.0 kWh of electrici-

ty for charging 17 eReaders, 17 battery-powered LED lamps (lamps not inventoried) 

and 17 student-family mobile phones (phones not inventoried), which were modeled as 

Nokia 1202 for electricity demand [22]. The instructor’s tablet, used for distributing edu-

cational content to the eReaders, will also be charged using this system. A Samsung 

Galaxy Tab II 7.0 Plus was used as the model for tablet electricity demand in this sce-

nario but was not inventoried here [24]. This combination of products is also expected 

to provide a total of 6800 learning days. 

2.2.4 Scenario 3 - Kerosene in handmade tin lamps 

 

The current status quo is the burning of kerosene in handmade lamps with cotton 

wicks. The lamps are modeled as 10 grams of tin from recycled materials. Kerosene 

demand for 6800 learning days totals 584.5 kg, with the assumption that the lamp is 

burned for 3 hours per day at 15.7 grams per hour [3]. The fuel is assumed to be pro-

duced in Durban, South Africa and shipped by tanker to Dar es Salaam, Tanzania. The 

production of the tin lamps is not included in the model, as data for tin scrap and 

handmade tin products are not available at this time. The disposal of the lamp is mod-

eled as informal landfilling to agricultural land. Kerosene residue on lamps at end-of-life 

is not modeled. This combination of items is expected to provide a total of 6800 learn-

ing days. 

 

2.2.5 eReader 

 

The scenario includes 1 eReader, providing a total of 400 learning days over two aca-

demic years. 
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2.2.6 Books 

 

Seven to nine course books and an unknown number of storybooks are used per aca-

demic year. The scenario is modeled as 12 total books per academic year, each book 

providing 16.7 learning days. This number of learning days per book will be used to 

determine a break-even point with the eReader. 

3 Inventory and Impact Assessments 

 

For the Solar Strap and eReader, data for inputs has been taken from the vendors’ bill 

of materials. Other information has been estimated from data in the EcoInvent 1.2 da-

tabase, adjusted for actual component mass as measured on a laboratory scale 

[19;20;21]. Fuel quality data is not available due to the difficulty of transporting flamma-

ble substances; it is assumed that diesel and kerosene fuels meet the standards re-

quired for export to the EU. 

 

3.1 IMPACT2002+ 

 

Quantitative impact assessments were conducted in OpenLCA using the IM-

PACT2002+ assessment method. This method was chosen because the categories 

assessed are relevant to the goals and easy to understand. It is a combined midpoint 

and damage-oriented approach, with several midpoints leading to several relevant 

damage categories, as seen in Figure 1. Classical impact assessment methods do not 

proceed past the early stages of cause-effect when categorizing impacts from life cy-

cles; impacts are allotted to midpoint categories and characterization factors are calcu-

lated there. Damage-oriented methods attempt to model causes and effects until dam-

age to the environment occurs; the environmental damage is then expressed in rele-

vant characterization factors. IMPACT2002+ works on both levels to give a more spe-

cific understanding of damages [25]. However, damage categories are normalized into 

‘points,’ which are only of use when comparing impacts across phases; therefore, 

characterization factors were multiplied by the impact points in order to obtain useful 

units of impact. 
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Figure 1. Overall scheme of IMPACT2002+, taken from IMPACT2002+ USER GUIDE [25] 

 

Un-normalized units are: 

 Human Health - in Damage Adjusted Life Years (DALY) 

 Ecosystem Quality - in Percent Disappeared   (PDF-m2-y) 

 Climate Change - in kilograms of CO2 equivalent (kg CO2-eq) 

 Resources - depletion in megajoules (MJ) 

 

In this assessment, damage category scores are expressed for each product system 

and in all sensitivity analyses and comparisons. Midpoint categories may be discussed 

to characterize the type of damage dominating each endpoint damage category. 

 

It is also worth noting that there are no site-dependent emission factors or impact fac-

tors for Africa at this time. It has been recommended that these factors be developed in 

future studies, but for now the IMPACT2002+ site-generic factors are suitable for this 

report [26]. 
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3.2 Uncertainty Analysis 

 

Uncertainty analysis is used to convey the quality of results from a life cycle assess-

ment. It allows the reader of LCA reports to understand the results’ dependability or 

lack thereof.[27] As all of these individual assessments were complex and involved 

tens of variables, statistical analysis by hand would be burdensome. Uncertainty analy-

sis has been simplified by use of pedigree matrices to describe data quality and Monte 

Carlo simulations to generate a probable range and distribution of impact values re-

turned by the model. The range and distribution of each impact value will help the 

reader understand how specific or how vague the results are, and help understand how 

reliably each product or scenario can be compared to others; for example, a scenario 

which returns a wide range of values may not be reliably defined as ‘better’ or ‘worse’ 

than a scenario that returns a narrow range which is neither completely above nor be-

low the first scenario. 
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4 Light & Power Scenario Inventories 

4.1 Suntrica SS-W20432X Solar Strap 

 

The vendor provided a bill of materials which included component names and quanti-

ties. A single unit was dissembled and individual components were weighed. It is not 

possible to list the component names and details due to the non-disclosure agreement. 

Component mass was used to model most components with data from the EcoInvent 

1.2 database [19;20;21]. Lithium polymer battery life cycle inventory data is not yet 

available and may affect actual environmental impacts. The battery was modeled as a 

lithium ion battery, which uses materials similar but not identical to lithium polymer. 

These impacts are for 400 learning days. A flow chart of included processes and data 

sources is included below as Figure 2. 

Figure 2. Solar Strap life cycle flow chart 

 

A complete life cycle impact assessment was performed for the Solar Strap. Sensitivity 

to changes in modes of transportation, photovoltaic element type, and end of life dis-

posal methods were tested using a one-at-a-time method. Mean results of a linear 

analysis of the model for one Solar Strap unit is presented in Table 1.  
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  Suntrica Solar Strap Life Cycle Impacts - 1 Unit Table 1.

Impact Category Impact Unit 

Climate Change 13.6617 kg CO2 eq 

Ecosystem Quality 93.6998 PDF.m
2
.yr 

Human Health 1.8713e-05 DALY 

Resources 235.7621 MJ 

 

 

It is common that the production phase of a photovoltaic product has the highest share 

of environmental impacts when compared to other phases of the product’s life cycle; 

the use phase commonly has the lowest share of impacts [5;24]. This may be due to 

the lack of data about photovoltaic end of life impacts. In the SunEdu pilot project, the 

most likely end of life scenario is informal incineration in a fire pit on land near the us-

er’s home. This has a magnitude of impact not seen in other life cycle assessments of 

photovoltaics. A chart describing the breakdown of impacts by phase is included below 

as Figure 3. 

Figure 3. Scenario 0 Life Cycle Impacts by Phase 

 

The largest impact in the category of climate change is the electronics assembly, which 

includes the printed wire board and all components on it but not, notably, the battery. 

The production of electronic components is energy-intensive, and the electricity mix in 

China is heavily dependent upon fossil fuels. Thirty-six percent of the climate change 

impact comes from electricity production for the manufacture of the Solar Strap’s elec-
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tronics. The production of the battery is another 18%, and 25% of the climate change 

impact is from aircraft use during both production and transportation phase. Only 1% of 

the climate change impact comes from burning the product informally at the end of its 

useful life. 

 

The majority of damages to ecosystem quality are in the terrestrial ecotoxicity subcate-

gory, caused by incineration of electronics on or near land which is likely to be used for 

agriculture in the future. Of the total impact, 57% is from the incineration of the elec-

tronics assembly, 30% is from the incineration of wires, and 6% is from the incineration 

of the battery. Other contributions in this category amount to less than 5% each. The 

contribution in the production phase is due to the electronics assembly. 

 

Of the human health impact, 63% is from the production of the electronics assembly, 

the largest fraction of this from the mining and refining of palladium for electronic com-

ponents. Twelve percent of impact is from the production of the battery, and 11% is 

from informal incineration of the electronics assembly. Approximately 8% of the human 

health impact is from air transportation in the production and transit phases. The re-

maining 1% of transit phase impact is from lorry transportation. 

 

Resource depletion occurs not surprisingly in the production and transit phases. The 

production of the electronics assembly accounts for 52% of resource impact, followed 

by 11% for battery production and 8% for the production of LEDs. The large impact in 

this category is due to the electricity mix in China and its dependence on fossil fuels. 

Forty-four percent of the resource impact comes from the electricity used to extract raw 

materials for and produce the electronics assembly; only 8% is from the actual materi-

als themselves. Twenty-four percent of the resource impact is from the transit phase; 

22% from aircraft and 2% from lorry transportation.  

 

4.1.1 Sensitivity Analyses 

 

Several sensitivity analyses were performed; photovoltaic element types, transportation 

methods, and end of life disposal methods are compared both to choose the most ben-

eficial as well as to determine the magnitude of impact reductions possible. 
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 Type of Photovoltaics 4.1.1.1

 

At the request of the manufacturer, the unit was modeled using different types of pho-

tovoltaic elements. The photovoltaic element, while it is the centerpiece of the product, 

does not have a large share of the overall product’s impacts in any category. Figure 4 

is a graphical comparison of the results. 

 

Figure 4. Sensitivity analysis of different photovoltaic element types 

 

Different choices for photovoltaic element types create a difference of less than 10% in 

most categories. In the category of human health, the amorphous silicon PV element 

causes a significantly lesser impact than other types. Amorphous silicon is the envi-

ronmentally wisest choice of the photovoltaics examined here. 

 

The new version of the EcoInvent database would allow a comparison of photovoltaics 

manufactured in China and those manufactured in the EU. Unfortunately, the updated 

database was not available at the time of this report. 

 

 Transportation methods 4.1.1.2

 

The noticeable impact of transportation in the total impacts of the Solar Strap suggest-

ed it may be interesting to model the product using transoceanic freight as the mode of 
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transport between electronics production and unit assembly, and between unit assem-

bly at factory and gate at Dar es Salaam. The results of such a model are displayed 

below in Figure 5. 

 

Figure 5. Sensitivity analysis of different transportation types 

 

Transportation by boat overall creates little reduction in most categories. It does nota-

bly the climate change impact by about twenty-eight percent-- remembering that trans-

portation happens also in the production phase. While the size of the shipment for the 

pilot project does not lend itself to transit by container ship, it may be interesting to 

consider ocean freight for future product shipments. 

 

 End of Life 4.1.1.3

 

Three possible end of life scenarios were modeled. The informal case is the one taken 

to be most likely; the device is informally incinerated on agricultural land. A ‘likely’ case 

in which the object is transported to Dar es Salaam and shredded to recover copper is 

also modeled. Recovery is modeled as 100% for this metal, even though recycling pro-

cesses cannot deliver that recovery rate. Other materials are modeled as incinerated. 

An ‘ideal’ case in which the device is transported to the nearest e-waste recycling facili-

ty in Mombasa, Kenya is also modeled. Ideal recycling is modeled as returning 100% 

of copper, nickel, and the photovoltaic element, as there was no data on the recovery 
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rates for photovoltaics of this type as of the writing of this report. A second model of 

ideal recycling is modeled as returning 50% of copper, nickel, and the photovoltaic el-

ement, in order to test sensitivity to recycling return rates. Other materials are modeled 

as incinerated. The recycling models include transportation by lorry from Iringa to the 

city where treatment occurs. Table 2 shows values from linear analysis of the Scenario 

0 models, named after their end-of-life options. 

 

 Scenario 0 End of Life Models Table 2.

Impact Category Informal Ideal 100% Ideal 50% Likely Unit 

Climate Change 13.6617 12.1698 12.3306 13.7041 kg CO2 eq 

Ecosystem Quality 93.6998 5.3597 5.4111 93.7133 PDF.m
2
.yr 

Human Health 1.8713e-05 1.5900e-05 1.6000e-05 1.8800e-05 DALY 

Resources 235.7621 212.1127 215.0050 236.4848 MJ 

 

Figure 6 is a graphical comparison of the above values. 

 

Figure 6. Scenario 0 End of Life Options, Informal as 100% Impact 

 

The reduction in the category of resources is to be expected for any comparison of 

resource recovery scenarios. It is worthy to note that the benefits of recycling the prod-

uct for copper in the ‘likely’ recycling method are outweighed by transporting the prod-

uct to the recycling facility by lorry.  
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The largest benefits are in the ‘Ideal’ scenario, but after a certain recovery rate there 

are diminishing environmental returns. Further study would be required to determine 

theoretical recovery rates for each substance which would make transporting the unit to 

Kenya a worthwhile effort. 

 

The significant reduction of ecosystem quality impacts when moving from end of life 

disposals which incinerate the electronics components to end of life scenarios which do 

not indicate the sensitivity of the model of metal emissions to agricultural land. An indi-

vidual case of burning this product does not cause severe ecological damage on its 

own, but more units receiving the same treatment will cause cumulative damage. 

 

4.1.2 Uncertainty Analysis 

 

The Solar Strap is a pre-existing product acting as a reference for a device still in pro-

duction, which will be specifically designed for the SunEdu project. Some parameter 

uncertainty is due to design changes taking place between materials measurement for 

LCA purposes and the finalization of the SunEdu device. Another source of uncertainty 

is the lack of information on electronic component manufacturing impacts from the spe-

cific country where the SunEdu components are manufactured, which would have been 

available in the newer version of the EcoInvent database. Vendors of solar cells and 

batteries did not have any information about the manufacturing processes behind their 

products; those who did have relevant information were largely uninterested in sharing, 

even after non-disclosure agreements were signed. 

 

A Monte Carlo simulation was performed with 5000 iterations to propagate uncertainty 

throughout the model and generate probable return values. Uncertainties were defined 

using the pedigree matrix at the earliest occurrence of each item or process. Linear 

analysis and Monte Carlo simulation means are presented in Table 3; values are in 

their normalized form, wherein the units are points. 

 

 Scenario 0 Informal, Monte Carlo Simulation Results Table 3.

Impact Category Linear Mean Monte Carlo Mean Standard Deviation 

Climate Change 1.372e-03 6.518e-04 4.103e-05 

Ecosystem Quality 6.839e-03 2.652e-04 6.554e-05 

Human Health 2.636e-03 1.903e-03 2.076e-04 

Resources 1.551-03 -6.738e-04 8.382e-05 
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Below is a visual representation of the Monte Carlo simulation data, with median, max-

imum, minimum, and 5th and 95th percentiles shown, in Figure 7. 

 

 

Figure 7.  Scenario 0 Informal, Life Cycle Impacts in Points, Box & Whisker Chart 

 

The Monte Carlo simulation gave a negative mean value in the resources category, 

inexplicably, though linear analysis did not. 

 

4.2 Diesel Generator 

 

Generator manufacturers were unwilling or unable to share a Bill of Materials, so gen-

erators were modeled with information from Fleck and Huot’s study comparing a small 

wind turbine to other power solutions [7]. Data for fuel from crude extraction to gate is 

from EcoInvent. As before, a flow chart depicting included processes and data sources 

is included below, in Figure 8. 
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Figure 8.  Diesel and Generator life cycle flow chart 

 

Two diesel-powered scenarios were modeled to reflect possible power demand scenar-

ios. It is expected that the generator will be installed at the school and the electricity will 

be used to charge students’ solar lamps, mobile phones, and eReaders as well as a 

lamp, smart phone or tablet, and eReader for the teacher’s use. The generator and 

additional diesel fuel would most likely be used for other purposes such as lighting the 

school or cooking, but the generator does not currently exist at the school, so it is as-

sumed that it would be installed specifically for this project. With that assumption, the 

scenarios include 100% of the impacts from the generator and impacts from the fuel 

specifically demanded for the uses listed above. These impacts represent 6800 learn-

ing days. Table 4 shows mean life cycle impacts from linear analysis of each model. 
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 Scenarios 1 and 2 Life Cycle Impacts Table 4.

Impact Category S1 Result S2 Result Unit 

Climate Change 201.3407 211.2063 kg CO2 eq 

Ecosystem Quality 44.3752 45.7085 PDF.m
2
.yr 

Human Health 2.6437e-04 2.8100e-04 DALY 

Resources 2975.4005 3123.4280 MJ 

 

Figure 9 is a graphical representation of life cycle impacts by phase. It is expected that the use 

phase impacts will be larger than in the solar charger scenario. 

 

Figure 9. Scenario 1 Life Cycle Impacts by phase 

 

The largest single impact in the category of climate change comes from the combustion 

of diesel in the generator, which is the entire Use phase. Other components of this cat-

egory include aluminium production which accounts for 39% of the impact due to its 

energy intensive process, steel production which accounts for 9%, diesel fuel produc-

tion at 6%, and production of LEDs at a little over five percent. Generator recycling pre-

vents impacts from mining of new materials, equal to about 3% of the total climate 

change impact of this product set, and causes a negative value for climate change im-

pact and ecosystem quality in the End of Life phase, thus the absence of graphical 

representation and the value below 100% in these categories in the figure above. 
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Ecosystem quality impact is mostly in the production phase. The production of alumini-

um accounts for 34% of the impact, production of copper is 21%, and production of 

steel is 17%. Blasting to extract raw ore is 18% and disposal of drilling waste from 

crude extraction is 13% of the impact. Diesel production accounts for 12% of the im-

pact, and only 8% is caused by fuel combustion for energy. Recycling the generator 

prevents impacts from mining new materials, equal to about 4% of the total ecosystem 

quality impact of this product set.  

 

Human health impact is largely from the combustion of diesel fuel in the Use phase. In 

the production phase, impact components include aluminium production which is 23% 

of total impact, steel production for 8%, copper production for 5%, and diesel fuel pro-

duction for another 5%. Other production phase impacts account for less than 5% 

each. Transit phase impacts are 2% and due to the operation of freight and tanker 

ships. 

 

Resource impacts are 45% from the extraction and production of diesel fuel, 34% from 

the production of aluminium, 10% from the production of steel, and 7% from the pro-

duction of the LED lamp. It is notable that recycling the generator causes more impacts 

on resource depletion than it prevents, as the generator must be transported to Dar es 

Salaam. 

 

Total impacts are not significantly different when a few extra kilowatt hours must be 

generated. It is reasonable to suspect that the percentage shares of each impact are 

not significantly different between Scenario 1 and Scenario 2. 

4.2.1 Uncertainty Analysis 

 

The diesel generator numbers are taken from literature. Some parameter uncertainty 

would be due to the difference between a measurement of average generator material 

contents and emissions, and the actual material contents and emissions of the genera-

tor chosen for the purpose. Other sources of uncertainty are the lack of information on 

electronic components used for generator controls, fuel quality in Tanzania, the method 

and capacity of fuel transportation from fueling station to schools with generators, and 

the location of the fueling station closest to the school. 
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A Monte Carlo simulation was performed with 5000 iterations to propagate uncertainty 

throughout the model and generate probable return values. Uncertainties were defined 

using the pedigree matrix at the earliest occurrence of each item or process. The Mon-

te Carlo simulation again gave a negative mean value in the resources category, inex-

plicably, though linear analysis did not. Results in Table 5 are in their normalized form, 

wherein the units are points. 

 

 Scenario 1 Monte Carlo Simulation Results Table 5.

Impact Category Linear Mean Monte Carlo Mean Standard Devia-

tion 

Climate Change 2.024e-02 3.545e-01 1.008e-01 

Ecosystem Quality 3.216e-03 1.099e-01 4.338e-02 

Human Health 3.724e-02 4.535e-01 1.486e-01 

Resources 1.958e-02 -4.371e-01 1.321e-01 

 

Figure 10 is a visual representation of the Monte Carlo simulation data, with median, 

maximum, minimum, and 5th and 95th percentiles shown. 

 

 

Figure 10. Scenario 1. Life Cycle Impacts in Points, Box & Whisker Chart 
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4.3 Kerosene lamp - Status Quo 
 

Data for kerosene consumption in handmade lamps is taken from Fan & Zhang [3]. 

Emissions factors for Carbon monoxide, Carbon dioxide, and particulate matter from 

0.1 to 10 µm diameter are also taken from Fan & Zhang. It seems likely that these are 

not the only substances emitted from handmade kerosene lamps, but further study on 

the matter is needed before dependable emissions factors can be determined. Figure 

11 is a flow chart of included processes and data sources. 

 

Figure 11. Kerosene and Tin Lamp flow chart 

 

The kerosene scenario was designed to reflect the status quo situation of students be-

fore the pilot project. The model represents 6800 learning days, or two school years for 

seventeen students. Table 6 shows life cycle impacts from a linear analysis of the Sce-

nario 3 model.  
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 Scenario 3 Life Cycle Impacts Table 6.

Impact Category Result Unit 

Climate Change 837.5475 kg CO2 eq 

Ecosystem Quality 164.8543 PDF.m2.yr 

Human Health 3.41e00-04 DALY 

Resources 31861.3100 MJ 

 

Figure 12 is a graphical representation of life cycle impacts by phase. 

 

Figure 12. Scenario 3 Life Cycle Impacts by phase 
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11% from flared refinery gas. The impact of the transit phase is only 1% of total climate 

change impact. 
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is caused in the transit phase. Human health metrics used in LCA do not measure the 

burns, poisonings, and other human injuries related to kerosene. 

 

Ecosystem quality impacts are also mostly from the production of kerosene. The ex-

traction of crude oil causes 89% of the total impact and electricity use causes 7% of the 

impact.  

 

Resource impact is 96% from crude oil extraction and 4% from the fuel and energy 

used for transit within the production phase and fuel processing. 

 

4.3.1 Uncertainty Analysis 

 

The kerosene emissions are modeled from factors taken from literature. Some uncer-

tainty is due to the difference between the conditions of the test and the conditions of 

actual kerosene lamp use. Other sources of uncertainty are the lack of information on 

kerosene quality in Tanzania, the method and capacity of fuel transportation from mar-

ket to homes, and the location of the market closest to the users’ homes. 

 

A Monte Carlo simulation was performed with 5000 iterations to propagate uncertainty 

throughout the model and generate probable return values. Uncertainties were defined 

using the pedigree matrix at the earliest occurrence of each item or process. The Mon-

te Carlo simulation gave a negative mean value in the resources category, as before, 

but the Monte Carlo and linear analyses have returned results more similar than other 

light & power scenarios. Results in Table 7 are in their normalized form, wherein the 

units are points. 

 

 Scenario 3 Monte Carlo Simulation Results Table 7.

Impact Category Linear Mean Monte Carlo Mean Standard Deviation 

Climate Change 8.418e-02 8.041e-02 3.871e-03 

Ecosystem Quality 1.203e-02 2.087e-02 3.342e-02 

Human Health 4.802e-02 6.101e-02 2.659e-02 

Resources 2.096e-01 -2.048e-01 8.620e-03 

 

Below, in Figure 13, is a visual representation of the Monte Carlo simulation data, with 

median, maximum, minimum, and 5th and 95th percentiles shown. 
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Figure 13. Scenario 3. Life Cycle Impacts in Points, Box & Whisker Chart 
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Figure 14. Comparison of impacts per learning day 
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In most categories, kerosene has the greatest impacts. The exception to this is the 

category of ecosystem quality, where Solar Straps which are partially or entirely incin-

erated have the largest impact. When compared only to responsibly recycled devices, 

kerosene has the greatest impacts per learning hour. The responsibly recycled Solar 

Straps and the diesel generator scenarios all have impacts within the same order of 

magnitude. The uncertainty of the model suggests that these product sets may not be 

significantly different. 

6 Content Scenario Inventories 

6.1 eReader 

 

Data for color eInk screens is unavailable due to the proprietary nature of the infor-

mation and the great secrecy that inventors and manufacturers observe. In past stud-

ies, Liquid Crystal Displays (LCDs) are used to model eReader displays [11;12]. LCDs 

are assumed to have two glass plates and enable input; in the LeiaMedia eReader 

used for the SunEdu project, these features are not present. Glass is excluded to re-

duce weight, replaced by a plastic protective film. The screen is not used for input; in-

stead, input is from buttons on the frame of the device. Therefore, parameter uncertain-

ty for the eInk screen is considerable. Table 8 shows life cycle impacts returned by a 

linear analysis of the eReader model. 

 

 eReader Life Cycle Impacts Table 8.

Impact Category Result Unit 

Climate Change 103.75 kg CO2 eq 

Ecosystem Quality 271.81 PDF.m
2
.yr 

Human Health 1.01e-04 DALY 

Resources 1768.27 MJ 

 

Figure 15 is a graphical representation of impacts by phase. 
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Figure 15. eReader (informal) Life cycle impacts by phase 

 

Climate change impact is overwhelmingly centered in the production phase; major con-

tributors include the production of integrated circuits, of which logic is 20.9% and 

memory is 56.5% of the total impact. The production of these circuits requires a lot of 

electricity, much of which is generated by fossil fuels.  Production of the battery is 

about 7.5% of total climate change impact. Transportation by aircraft causes 7.3% of 

total climate change impact. Use and end of life phases cause less than 1% altogether. 

 

As with the Solar Strap, the ecosystem quality impact is mostly from the end of life of 

the eReader, as it is burned in a fire pit on agricultural land. Production phase owns 

16.7% of the ecosystem quality impact, 5.9% due to blasting and refining of metals and  

5.1% due to generation of electricity from fossil fuels. Transit and use cause less than 

1% of the ecosystem quality impact. Incineration of the electronics assembly causes 

76.1% and incineration of the battery causes 6.9% of the total impact. 

 

Human health impact is caused mostly in the production phase. Large shares of the 

total are held by processes related to electronics; disposal of waste silicon wafers, 

electricity generation, and blasting and refining metals contribute to the impact caused 

by electronic component production. Logic type ICs cause 19.9%, memory type ICs 

cause 42.5%, and resistors and capacitors each cause about 7% of the total impact. 

Battery production causes 7.2% of the impact. Transit causes about 2% of the impact; 

use phase contributes nothing. At end of life, incineration of the electronic parts causes 

about 7.7% of the total impact. All other processes contribute less than 1% of the total. 
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Resource depletion impacts are mostly from the generation of electricity from fossil and 

nuclear fuels, which accounts for about 68% of the total impact. Other impacts come 

from gold, natural gas and fuel oils used for the production of electronic components-- 

mostly for logic and memory components. Altogether, these contributions are about 

13% of the total. Production of the battery contributes 4.5% of the total impact. Transit 

by aircraft in both production and transit phases contributes 6.6% of the total; 4.8% in 

the transit phase itself. Use and end of life phases contribute very little to resource de-

pletion, but neither do they return any materials to use. 

 

6.1.1 Sensitivity Analyses 
 

Sensitivity Analyses are performed for modes of transportation and different end of life 

scenarios, as these are of particular interest for partner organizations.  

 

 Transportation 6.1.1.1

 

Two modes of transportation are considered for both component transport from place 

of manufacture in China to place of assembly in Finland, and from Finland to Dar es 

Salaam; a comparison is shown in Figure 16. Air freight and oceanic freight are com-

pared, with distances estimated using Air Distances and Sea Distances web tools 

[28;29]. 

Figure 16. Sensitivity analysis of different transportation types 
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Transport by boat rather than air freight provides a 7.8% reduction in climate change 

impact, 2.9% reduction in human health impact, 6.9% reduction in resource impact, 

and less than 1% reduction in resource depletion impact. As with the Solar Strap, these 

impact reductions are not significant for the pilot project, but may be more significant 

once large quantities of the unit are required. 

 

 End of Life 6.1.1.2

 

Three end of life scenarios were considered: informal incineration in a fire pit on land 

which is likely to be used for agriculture in the future; shredding and recycling the unit 

for steel and copper in Dar es salaam, all other components incinerated; and the idea 

scenario being transport of the unit to the e-waste facility in Mombasa for 100% recov-

ery of steel, nickel, and copper, treatment of PWB and eInk screen for further metallur-

gical treatment, and all other components incinerated. A comparison of results is 

shown in Figure 17. 

 

 

Figure 17. Sensitivity analysis of different end of life scenarios, Informal as baseline 

 
Impacts from the transport of the unit to Dar es Salaam are offset by the impact reduc-

tions of reclaiming the steel and copper pieces; however, impact reduction totals are 
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creases the climate change impact by a little over 2% but reduces ecosystem quality 

impacts by over 76 percent. The impact on human health is reduced by almost eight 

percent. Resource depletion is decreased less than one percent. 

 

6.1.2 Uncertainty Analysis 
 

The eReader was specifically designed for the SunEdu project, and thus some pa-

rameter uncertainty is due to design changes taking place between materials meas-

urement for LCA purposes and the final product release. Another source of uncertainty 

is the lack of information on electronic component manufacturing impacts from the spe-

cific country where the eReader components are manufactured, which would have 

been available in the newer version of the EcoInvent database. Further significant un-

certainties are due to lack of information about the eInk display; the substitution of a 

weight-adjusted LCD screen is popular in similar reports, but unfortunate. 

 

A Monte Carlo simulation was performed with 5000 iterations to propagate uncertainty 

throughout the model and generate probable return values. Uncertainties were defined 

using the pedigree matrix at the earliest occurrence of each item or process. Results in 

Table 9 are in their normalized form, wherein the units are points.  

 

 Monte Carlo Simulation Results - eReader Table 9.

Impact Category Linear Mean Monte Carlo Mean Standard Devia-

tion 

Climate Change 1.043e-02 4.328e-03 3.193e-04 

Ecosystem Quality 1.984e-02 1.895e-02 5.758e-04 

Human Health 1.423e-02 1.083e-02 2.245e-03 

Resources 1.163e-02 -3.520e-03 6.062e-04 

 

The Monte Carlo simulation gave a negative mean value in the resources category. 
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Figure 18. eReader Life Cycle Impacts, Box & Whisker Chart  

 

6.2 Books 
 

Due to complete lack of communication from any of the Tanzanian printing facilities 

contacted, books were modeled using data from the EcoInvent database; unfortunate-

ly, this leads to high spatial and temporal uncertainty, as the data is from Europe while 

the actual books to be modeled are printed and bound in Africa. The book model in-

cludes raw materials for both paper and ink, electricity, and machinery needed to pro-

duce a complete book.  Paper is modeled as transported approximately 20 kilometers 

from the mill to the print facility, as both are assumed to be located in Dar es Salaam. 

The finished book is then transported to Iringa by light truck. Transport from Iringa to 

the users is not modeled due to lack of data on locations of schools or markets. With 

such high uncertainty and numerous assumptions, this is the least reliable part of the 

analysis. 

 

In Table 10, mean values for life cycle impacts of one book are given.  
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 Book Life Cycle Impacts, 1 unit Table 10.

Impact Category Result Unit 

Climate Change, total 0.1725 kg CO2 eq 

Ecosystem Quality, total 0.0900 PDF.m
2
.yr 

Human Health, total 1.5856e-07 DALY 

Resources, total 3.3914 MJ 

 

Figure 19 below shows the life cycle impacts of a book by phase. 

Figure 19. Book life cycle impacts by phase 

 

Most impacts are from the raw material through production phase. Climate change im-

pact is 32.8% from the generation of electricity; because this is modeled as a European 

power mix, this number could significantly change the total impact if adjusted for Tan-

zania’s power mix. Ten point one percent of climate change impact is from transporta-

tion by lorry and 5.5% from transportation by rail freight of raw materials to the paper 

mill. This is also likely to be significantly different with Tanzanian transport data. Ex-
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for the book accounts for 53.3% of total climate change impact. Transportation in the 

transit phase accounts for 11.4% of total climate change impact. Informal incineration 
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A little more than a quarter of total ecosystem quality impact is from the harvesting of 

trees for paper. Another 8.4% is from the sulfate bleaching process, and 7.6% is from 

transport by lorry of raw materials and of paper from mill to printing press. Electricity 

generation creates 21.3% of the ecosystem quality impact. The transit phase impact 

share is 7.4%, and informal incineration causes 2.8% of the total impact. All other im-

pacts are less than 5% of the total. 

 

Electricty generation causes 29.4% of the human health impact; another 17.5% is from 

transportation during the production phase-- 12.2% by lorry and 5.3% by rail freight-- 

and 4.5% is from the sulfate bleaching process. Transit phase share of impacts is 

14.5% and end of life is 4.2 percent. All other human health impact contributions are 

less than 5% of the total. 

 

Resource depletion impact is divided into two categories: non-renewable energy and 

mineral extraction. As such, it is important to note that the temporary depletion renew-

able resources, such as trees, are not accounted for in this category. Of the total re-

source depletion impact, 55.8% is from uranium and fossil fuel use in electricity genera-

tion. This is likely to change significantly if data could be obtained for the Tanzanian 

power mix. Natural gas used at the paper mill accounts for 10.4% of the resource de-

pletion impact; heavy fuel oil used at the plant is another 5.8% of the total. Ten point 

four percent is from lorry transportation and 5.2% is from rail freight in the transit 

phase. No resources are depleted during use and end of life phases. All other impacts 

are less than 5% of the total, individually. 

 

6.2.1 Uncertainty Assessment 

 

A Monte Carlo simulation was performed with 5000 iterations to propagate uncertainty 

throughout the model and generate probable return values. Uncertainties were defined 

using the pedigree matrix at the earliest occurrence of each item or process. Results 

here are in their normalized form, wherein the units are points. 
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 Monte Carlo Simulation Results - Book Table 11.

Impact Category Linear Mean Monte Carlo Mean Standard Deviation 

Climate Change 1.734e-05 9.306e-06 1.224e-06 

Ecosystem Quality 6.569e-06 -5.376e-08 9.806e-07 

Human Health 2.233e-05 1.778e-05 2.561e-06 

Resources 2.231e-05 -1.062e-05 1.674e-06 

 

The Monte Carlo simulation gave negative mean values in the cases of ecosystem 

quality and resources categories. This appears to be a problem with the software, ob-

served by others in the technical support forums on the OpenLCA website.  

 

 

Figure 20. Book Life Cycle Impacts, Box & Whisker Chart  
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7 Comparison of Content Scenarios 

 

As with the power and light scenarios, impacts were divided by the provided learning 

days for both content objects. The break-even point of the eReader is calculated as 

both the number of books the eReader would have to replace and the Learning Days 

the eReader would have to provide in order to have the same impact score in each 

category. In order to estimate the number of learning days a book ought to provide, the 

total number of learning days in an academic year was divided by the number of books 

used in one academic year-- 9 subject books and 3 story books. This yields 16.67 

learning days per book. For initial comparison purposes, lifetime of the eReader is as-

sumed to be two years, giving 400 learning days. 
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7.1 Impacts per Learning Day 

Impacts per learning day provide the following comparison: 

Figure 21. Impacts per Learning Day of Content Devices 
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Even comparing amongst impacts per learning day, the eReader has significantly high-

er impacts than the locally produced, locally printed books. As more is learned about 

the production of books in Tanzania, this could change, but electronic devices are likely 

to always have a higher impact than books. 

 

7.2 Break-even Points 
 

Break-even points are calculated for both the number of books and the number of 

learning days the eReader would have to replace in order to create equal environmen-

tal impacts. 

 

 Break-even Points for eReader Table 12.

 eReader  

(informal)  

eReader  

(informal) 

eReader (Ideal)  eReader (Ideal)  

 # of Books Learning Days # of Books Learning Days 

Climate Change 601 10 017 616 10 267 

Ecosystem 

Quality 

3020 50 334 707 11 784 

Human Health 637 10 617 588 9 800 

Resources 521 8 683 517 8 617 

 

The E-reader would have to be in service for 252 academic years in order to replace 

the books required in the same amount of time. This is not technically feasible in any 

imaginable universe. If the eReader were in use every day, rather than every learning 

day, the impacts per day would be significantly lower, but in that case the eReader 

would not replace only school books, but also newspapers and other content devices 

not modeled for this report. 

8 Interpretation  

 

Interpretation is not required by the ISO 14040 standard on Life Cycle Assessment, but 

if present it is recommended to include the identification of issues based on the inven-

tory and analysis phases, evaluation of the study for completeness, sensitivity, con-

sistency, and limitations, and any conclusions or recommendation [30]. 
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8.1 Interpretation of Light & Power Scenarios 
 

The impacts of burning kerosene make clear that the status quo is the least sustainable 

of all the light and power scenarios. Any one of the other scenarios would be an im-

provement. Due to the uncertainty of the model, it is not clear which of the other sce-

narios is the best, or if any of them is significantly better than any other. Responsible 

recycling practices provide a clear environmental benefit over informal incineration, but 

recycling only for copper is not environmentally beneficial. Responsible recycling may 

provide an even bigger benefit, were a facility for e-waste treatment located nearer to 

the product users, i.e. in Tanzania. The smaller benefit of oceanic shipping is shown; 

this benefit will be more significant after the pilot project, if the product is to be shipped 

in larger quantities.  However, production of any of the devices closer to or even in 

Tanzania would provide an even greater impact reduction. 

 

If the Solar Strap were assumed to be used at home every day, rather than only on 

school days, a two year life span would be 730 days. Increasing the Solar Strap prod-

uct life without significantly altering the product would decrease the impact per learning 

day. Two years of product life would then yield impacts shown in Figure 22. 
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Figure 22. Impacts per day with everyday use of Solar Strap 

 



 

 

8.2 Interpretation of Content Scenarios  
 

Changing mode of transport would not significantly reduce the eReader’s impact per 

unit, but could provide significant net reductions if units were mass produced. Produc-

tion closer to the ‘gate’ would likely have greater reductions than changing the mode of 

transportation, and should be considered for the future. Ideal recycling would provide 

greater impact reductions if a responsible e-waste facility were located closer to the 

end user, eliminating the need for lengthy lorry journeys to Mombasa and eliminating 

the additional climate change impact that results from that trip. The lack of e-waste 

recycling facilities in Tanzania has become a recurring theme in this report; some en-

terprising parties may consider establishing such a facility. 

 

Books still have a lower impact in spite of the advances made in technology and com-

pliance with the Restriction on Hazardous Substances. It is not technically feasible to 

make the life of the eReader sufficiently long to close this gap. Reduction of materials 

used, particularly electronic components, and production in a facility receiving or gen-

erating its own clean electricity supply would reduce the impacts of the device.  

 

8.3 Interpretation of Combined Scenarios 

 

As an academic exercise as well as for building policy recommendations, what follows 

are the combined impacts per learning day for a variety of device combinations, regard-

less of feasibility in the target area. All electronics are assumed to be recycled as de-

scribed in the Ideal end of life situations. The last combination represents the status 

quo, already in use. 

 

 Combinations of Impacts per Learning Day Table 13.

Impact  

Category 

S0 + eReader S0 + book S1 + eReader S1 + book S3 + book 

Climate 

Change 

2.795e-01 2.437e-02 2.951e-01 3.996e-02 1.335e-01 

Ecosystem 

Quality 

1.662e-01 1.248e-02 1.656e-01 1.188e-02 2.964e-02 

Human Health 2.541e-07 3.057e-08 2.719e-07 4.839e-08 5.965e-08 

Resources 4.630 4.540e-01 4.817 6.410e-01 4.889 

 



 

 

If the choice of devices were based solely upon environmental concerns, a combination 

of the solar charger and books would be the most likeable. Due to the uncertainties of 

these models, it is not possible to know if that combination is significantly better than 

the diesel generator and books, but it seems clear that the use of kerosene generates 

high environmental impacts that, with consideration of model uncertainties, may negate 

the impacts from the eReader in the best cases. However, responsible e-waste recy-

cling and production closer to the users would be necessary for that to be true. With 

further changes in both solar charger and eReader design, it could be that together, 

they create little or no net increase in environmental impacts when replacing kerosene 

and books, while easing distribution of information and providing significant benefits to 

the user’s health. 

8.4 Completeness, Sensitivity, Consistency, Limitations 

 

This study has been as complete as possible without access to records of emissions, 

materials and energy flows, and other documents; it has been limited by the coopera-

tion-- or lack thereof-- of related industries. It is also limited by lack of information from 

the region in question. Life cycle assessment is not as popular in Africa as in Europe, 

and data from specific regions in Africa was not available. As the models are all de-

pendent in some way on electricity from the grid and raw materials from non-European 

regions, this could have a significant effect on the forecasted impact values’ distance 

from true values. The study has also been limited by either software or user error; the 

systematic problem with negative resource category values returned by simulations 

leaves both the author and her advisors somewhat befuddled.  

 

It is recommended that future studies concentrate on regional impact characterization 

factors and building a database of life cycle inventory information for industries and 

activities in Africa, subdivided by region. Climatic conditions and population distribution 

should be taken into account when developing a set of regional factors. There is also a 

need for some legal protection for IPR holders, industrial partners, and LCA practition-

ers, so that all three parties may share information freely without fear of espionage, 

legal penalties for (previously unreported) excessive emissions, bad press, loss of 

business, or other consequences. The non-disclosure agreement does not seem to be 

sufficient, and life cycle assessment cannot take place without reliable, accurate, and 

useful data. It is not possible to build bricks without clay.  
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