
Bachelor's thesis

Information Technology

Internet Technology

2014

Krister Laakso

RESPONSIVE WEB DESIGN
AND MAGENTO E-COMMERCE

– Creating a demo store

BACHELOR'S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology

2014 | 52 pages

Patrick Granholm, Tomi Niemi

Krister Laakso

RESPONSIVE WEB DESIGN AND
MAGENTO E-COMMERCE

This thesis is about responsive web design and Magento, the world’s most popular e-commerce

platform.

Today more and more people browse the web with mobile devices such as smartphones and

tablets. Compared to a typical desktop screen, these devices limit the amount of pixels on the

screen. Responsive web design is about having a one single HTML document that can be

viewed on both mobile devices and on desktop screens without having to scroll the page hori-

zontally. Hence, responsive web design eliminates the need for a separate mobile website.

As more and more people use their smart devices to browse the web, today many use their

devices to make online purchases. In Finland, responsive web design combined with online

stores has not been widely implemented.

In this thesis, a Magento-based online demo store was installed and configured with a respon-

sive layout. The project was done for a small Finnish company specializing in web and mobile

solutions, so that it could demonstrate the store to future clients.

The final piece of work can be found in http://magentodemo.sofokus.com

KEYWORDS:

Responsive, web design, Magento, e-commerce

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tietotekniikka | Information Technology

2014 | 52 sivua

Patrick Granholm, Tomi Niemi

Krister Laakso

RESPONSIIVINEN WEB-SUUNNITTELU JA
MAGENTO VERKKOKAUPPA

Tämä opinnäytetyö kertoo responsiivisesta web-suunnittelusta sekä maailman suosituimmasta

verkkokauppa-alustasta, Magentosta.

Älylaitteiden, kuten puhelimien ja tablettien käyttö on tänä päivänä hyvin yleistä ja ihmiset

käyttävät internetiä päivittäin älylaitteillaan. Näiden laitteiden näytöt ovat pienempiä, niin

fyysistesti kuin pikselimäärän suhteen, verrattuna perinteiseen pöytäkoneen näyttöön.

Responsiivisen websuunnittelun tavoite on tehdä yksi sivusto, mitä on sujuvaa käyttää

päätelaitteesta riippumatta, siten eliminoiden tarpeen erillisille mobiilisivuille.

Kun ihmiset käyttävät internetiä päivittäin, on myös tärkeää, että voi tehdä ostoksia verkossa

mobiilisti. Responsiivinen web-suunnittelu yhdistettynä verkkokauppa-alustoihin on jotain, mitä

Suomessa ei ole laajalti tehty.

Tässä opinnäytetyössä toteutetaan Magento demo-verkkokauppa responsiivisesti. Työ tehtiin

suomalaiselle IT-ratkaisuja toimittavalle pienyritykselle. Demokaupan tarkoitus oli demonstroida

Magento-pohjaisia verkkokauppoja ja niiden toimintaa tuleville asiakkailleen.

Lopullinen työ löytyy osoitteesta http://magentodemo.sofokus.com

ASIASANAT:

Responsiivinen, web-suunnittelu, Magento, verkkokauppa

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS 5

1 INTRODUCTION 6

2 RESPONSIVE WEB DESIGN 7

2.1 What is responsive web design 7

2.2 Mobile first –principle 7

2.3 Pixels to percentages 8

2.4 Media queries 9

2.5 Flexible Images 12

2.6 Optimizing for a smaller screen 14

3 MAGENTO 20

3.1 What is Magento 20

3.2 Hierarchy 21

3.3 Products, catalogs and categories 22

3.4 Designs and themes 24

3.5 Checkout process 26

3.6 Extending Magento 30

4 DEMOSTORE - A PROJECT FOR SOFOKUS OY 32

4.1 Purpose of the project 32

4.2 Why Magento? 33

5 PROJECT IMPLEMENTATION 35

5.1 Planning 35

5.2 Installation 35

5.3 Configuring 38

5.4 Release 45

6 CONCLUSION 50

REFERENCES 51

LIST OF ABBREVIATIONS (OR) SYMBOLS

CSS ID selector. See CSS for more information.

Apache HTTP server by Apache Software Foundation

CMS Content Management System. A system for managing con-
tent and providing it in various formats

CSS Cascading Style Sheets. A style sheet language for defining
the visual image of HTTP documents

CSV Comma-separated values. Files for storing tabular data.

FTP File transfer protocol. A protocol used for transferring files
over the Internet.

HTML Hypertext Markup Language. The Main markup language for
creating web pages.

HTTP Hypertext Transfer Protocol. A protocol used in transferring
HTTP documents over the Internet

JavaScript A dynamically typed programming language. Used for creat-
ing web pages.

MySQL Open-source relational database management system

PHP Hypertext Preprocessor. A programming language for web
development

PHTML A file extension type. PHTML files contain both HTML and
PHP code.

SSL Secure Sockets Layer. A protocol for encrypting information
over the Internet

XAMPP A free and open source cross-platform web server solution
stack package. Contains Apache Server, MySQL, PHP and
Perl.

XML Extensible Markup Language. Defines a set of rules for en-
coding documents

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

1 INTRODUCTION

In today's modern world people are becoming more and more dependent on the

Internet. Many mobile devices exist, including smart phones and tablets, and

they are at our disposal.

In Finland alone, smart phone penetration has risen to 45% of the population

and 57% of smart phone users access the Internet every single day using their

smart device (Google, 2013). Technology is evolving rapidly and mobile devices

are here to stay. This growth obviously creates a vast demand for websites that

are mobile responsive meaning that one single website should accommodate

the needs of a mobile device screen and a desktop screen simultaneously.

In Finland 26% of smart phone users have made a purchase using on their

phone (Google, 2013), which implies that more and more people are purchasing

products and or services using their mobile device. This means that not only

information-rich websites but also task-focused websites such as online stores

should be responsive in a way that it is made easy for the consumers to browse

the web.

None of the largest online stores in Finland are optimized for mobile users and

that brings us to the purpose of this project. The purpose of the project was to

combine responsive web design with the world's most popular open source e-

commerce platform Magento (Magento Marketing, May 2013).

A responsive online store, from now on called Magento Demo Store, is created

so that a company named Sofokus Oy could use it as a reference demonstrat-

ing what they do for their perspective clients.

Although there are many other e-commerce platforms available, Magento was

chosen for three different reasons. First of all, it is open source (i.e., free). Sec-

ondly, it is the most popular in the world. Finally, during the implementation of

this project there were people who work with Magento every day available to

help.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

2 RESPONSIVE WEB DESIGN

2.1 What is responsive web design

Responsive web design is web design with one key principle in mind: to opti-

mize a website in a way that it can accommodate a screen with an arbitrary

width. This screen could be a high definition desktop widescreen, a small mo-

bile phone screen having a width of approximately 300 pixels or anything in be-

tween. A responsive website differs much from what people usually refer as a

mobile site.

A mobile website is a separate website from the original website usually built

after the original website is completed. This means that an administrator, who is

responsible for maintaining the site, has two separate websites to maintain

doubling the amount of work he or she has to do.

A responsive website has only one database behind it, meaning that when the

administrator maintains the website, the changes take place immediately in both

desktop view and mobile view. In other words designing websites to be respon-

sive reduces the workload.

The key points of responsive web design are taking advantage of CSS3 and

optimizing the content of a website for a small screen mobile device with a pos-

sibly slower Internet speed.

2.2 Mobile first –principle

Usually a mobile website or a mobile application is created after the original

website designed for a wide desktop screen is completed (Wroblewski, 2011, p.

1). Either a separate mobile site is created or the current site is redesigned to

adapt to a mobile. Regardless of which option is chosen, this could add up to an

enormous amount of extra work to be done to accomplish this one goal. This is

where the mobile first comes in.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

The mobile first -principle refers to the idea that the designing process of the

website should start with the idea that the website is first created for mobile and

after that expanded to a desktop screen. This reverses the old way of a design

process. Nevertheless, mobile first is a good and recommended practice be-

cause it can lead to a better overall user experience for a website (Wroblewski,

2011, p. 1).

As mentioned earlier in Finland alone 44% of smart phone users access the

Internet every single day using their phone. On a global scale mobile devices

account for 37% of the overall Internet traffic. These numbers are expected to

grow higher every single day as the consumer PC sales are flat and unlikely to

grow in the near future (Sterling, February 2013).

These figures support the fact that the mobile first -principle should be applied

in today’s web design due to the fact that mobile use is growing rapidly every

year.

2.3 Pixels to percentages

One of the most important aspects of responsive web design is using percent-

ages instead of regular pixels when defining width’s in the CSS code. Suppose

that a typical non-responsive website is designed to be 960px in width and, in

case a browser window is greater than 960px in width, it is centered in the win-

dow. In terms of CSS, this could be represented as follows:

#page { width: 960px; margin: 0 auto; }

Now if the browser window is resized to a width of 800px, which is less than

960px, horizontal scrollbars appear. This means that in order to see all the con-

tent in this page one needs to scroll from left to right. The same effect takes

place if viewed on a mobile phone. So, how can this be transformed into what is

called responsive size?

Instead of having pixel values in our CSS, we need to express those widths in

relative, proportional terms. Once this is accomplished, the resulting grid can

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

resize itself as the viewport changes, but without compromising the design’s

original proportions (Marcotte, 2011, p. 29).

This would transform into following:

#page { width: 100%; margin: 0 auto; max-width: 960px; }

Now that the width is 100%, the width of the page will be the width of a browser

window regardless of the window being on a desktop or a mobile screen. The

“max-width” property is entirely optional but recommended due to the fact that

the browser window could be stretched all the way to 10000 pixels, which would

be quite absurd.

As there are margins in a Word document, like this one that was written, mar-

gins are needed in a web page as well. Given that our page has a content con-

tainer, #container, margins should be defined in percentages as well.

#container { width: 90%; margin: 20px 5%; }

The value 20px represents vertical margins rather than horizontal margins. This

value was given because margins should exist not only on the left and right-

hand side but also on the top and on the bottom.

2.4 Media queries

Even though transforming pixels to percentages is the key to responsive design

it alone is not the answer. Suppose that our #page element had a content bar

on the left hand side and a side bar on the right hand side defined as follows:

#contentArea { width: 60%; margin: 0 2%; float: left; }

#sideBar { width: 32%; margin: 0 2%; float: right; }

Given that in the desktop view the width is 960px, the widths of the bars would

be 576 pixels and 307 pixels and approximately 77 pixels for margins.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

What if the browser window were narrowed down to 320 pixels? This would re-

sult in the bars having widths of 192 pixels and 102 pixels. This hardly seems

ideal. This is where media queries come in.

A media query consists of a media type and at least zero expressions that

match conditions of particular media features. It is a logical expression that can

be true or false (W3C, June 2012).

An example of a media query:

 @media screen and (max-width: 480px) {

#contentArea, #sideBar { width: 100%; }

}

A media query consists of two individual parts: first, a media type “screen” and

then the query itself. A media type screen is selected due to the reason that

there is always a screen through which a web page is viewed. The query itself,

in this example is “(max-width: 480px)”. This query can be split into two parts: a

feature and a value, max-width and 480px respectively (Marcotte, 2011, p. 74).

This media query tackles our problem mentioned above. When the browser

window is narrowed down, the content and the side bar become narrower pixel

by pixel. At some point, these bars will be too narrow to fit content in such a way

that a user would still find visually acceptable.

Inside the media query statement is the CSS code and the code will be applied

when the conditions of that specific query are matched true.

Thus, when the width reaches a width of 480 pixels, these bars will receive new

values for their widths. This results in the bars being re-positioned. The content

will be on top of the sidebar both having width 100% of the width of the screen.

An example can be seen in Picture 1.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Picture 1. On the left, media queries are not supported.

In this example, both the browsers have a width less than 480 pixels. The

browser on the left side does not support media queries. However, the browser

on the right does. On the right screen, the left side bar, which starts with

“Kategoriat” (in English categories), has been assigned a width of 100% and

has been placed after the content area.

There are no limits to the number how many @media queries one CSS file can

have. In the example above, a width of 480px is considered a breakpoint be-

cause when the specific width is reached all the elements inside the media que-

ry will receive new values for their attributes. This is how a web page adapts to

different widths.

A well designed web site will have many media queries at specific breakpoints.

This allows more flexibility when adapting from desktop view to mobile view or

even tablet view in between these two.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

It could be easily assumed that the more media queries there are the better.

This is only partly true. Consider that there would be a media query every 50

pixels. This would give us extreme flexibility and the website would look perfect

in every given width. The problem at hand is that the more media queries there

are, the more work there is to be done. Like in every situation everything should

be in balance.

There are no common breakpoints because there are no common screen sizes.

However, one approach would be to create breakpoints whenever the layout of

a webpage breaks (van Gemert, 2013).

In the Demo Store, which is discussed in detail in Chapter 5, the following

breakpoints were applied:

@media only screen and (min-width: 960px) { /* css code here */ }

@media only screen and (min-width: 768px) and (max-width: 959px) { /*

css code here */ }

@media only screen and (min-width: 480px) and (max-width: 767px) { /*

css code here */ }

@media only screen and (min-width: 320px) and (max-width: 479px) { /*

css code here */ }

@media only screen and (max-width: 319px) { /* css code here */ }

Through testing these breakpoints resulted in a good, flexible design in both

desktop and mobile view.

2.5 Flexible Images

By using percentages instead of pixels and implementing media queries we are

on our way to a responsive way of designing websites. Nevertheless, one key

aspect remains and that is flexible images. By default, if an image element is

introduced into HTML code without an explicit width, what would be the width of

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

that image? Simple, it is the width of the image. So where is the problem? As-

sume that the following code is inserted into HTML:

Given that no CSS code is applied to this img-element, the width of the image

could be, for example, 600 pixels. If the width of the browser is 480 pixels and

the image 600 pixels, this will break the layout. The image will overflow beyond

the width of 480px. There is a simple way of avoiding this. In CSS, the following

needs to be defined:

img { max-width: 100%; }

In all its simplicity this assures that the image will not be wider than its contain-

er. See Picture 2.

Picture 2. Flexible (left) and non-flexible image (right).

Notice that the image with logos of Finnish banks on the right does not look like

something that the designer would want to do.

What makes this rule so simple is that newer web browsers have capabilities to

render the image proportionally. In other words, the aspect ratio remains the

same regardless of the current width of the resized image. “Max-width: 100%;”

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

is not limited only to img-elements in HTML but can be applied to video-, object-

and embed-elements as well (Marcotte, 2011, p. 45-46).

2.6 Optimizing for a smaller screen

After scaling down the images a website feels responsive and scales to different

widths. See Picture 3.

Picture 3. Desktop view and mobile view

After implementing percentages, media queries and flexible images it is time to

start discussing the content. It is fairly obvious that when a user browses the

website with his or her mobile device, there is far less pixels on the screen than

on a 1920x1080 desktop screen.

This urges the designer to prioritize the content that is served to a user because

the idea behind responsive web design is to serve one HTML document to a

number of different browsers and devices. Mobile users will most likely want to

have quicker access to different tasks than they would should they be browsing

the site on their desktop computer (Marcotte, 2011, p. 107).

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

In Picture 3, two key elements have been put to the top, the logo and a search

bar. Now when a user lands on this site, maybe through a Google search, the

logo, Sofokus Magento Demo Store, is noticed immediately. By observing the

logo, the user immediately knows what the site is about, a web store. After real-

izing it is an online store the search bar can be found just below the logo so it is

easy to start looking for a product that might interest the user.

One of the most important aspects of mobile web sites is the navigation menu.

By comparing the two views in Picture 3, the menu element is reduced into one

Menu element in the mobile view. Furthermore, by observing Picture 4, the

more categories and sub-categories are in the navigation menu, the greater the

height of the element will be. By looking at the browser on the right, the menu

fills the whole screen and there is no more room left for actual content. This

greatly reduces the user experience and is not under any circumstances ideal.

Picture 4. Responsive menu

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

To solve this issue, a responsive menu should be applied. The menu element

simply reduces the menu into one small element and by clicking (or tapping) it,

it opens. This way, if a user wants to read what is on the front page he or she

might not be interested in exploring the menu. Thus unnecessary scrolling is

avoided.

Another important technique is to implement the CSS Display property. This

simply hides a given element in the HTML document without removing it. An

example is below:

#nonDesktopElement { display: none; }

Looking back at picture 3 (desktop view), next to the slider element there are

three colored boxes on stacked on top of each other. On the right side they are

nowhere to be seen. This is due to the reason that “display: none” was applied.

The first reason was that if it had been there, there would not have been

enough room to accommodate the slider element properly. The second reason

was that the hidden element was not considered that important to show to the

user. This is because in the mobile view the space is limited. However, the hid-

den images were still loaded when the page was loaded but this is not neces-

sarily a problem due to the reason that the images were small in size.

Loading times are crucial when browsing the web with a mobile device. Alt-

hough Finland may have decent mobile network coverage, other countries

might not. Another aspect to consider is that some mobile operators or Internet

service providers might have a type service which limits the data usage for the

user. For example, a user might pay a fixed amount of money per month to use

mobile data, but only up to two gigabytes a month. After two gigabytes have

been used the service provider might the user extra.

This also emphasizes the importance of hiding content, which is not considered

mandatory, but is recommended for good user experience. By applying the dis-

play none rule, it is possible to prevent content from loading at all which saves

the user some data and loads the page faster.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

This rule could be applied in a case where in a desktop view there is a large

background image and a smaller optimized image in the mobile view.

In HTML:

<div id=”desktopParent”><div id=”desktopImage”></div></div>

<div id=”mobileParent”><div id=”mobileImage”></div></div>

And in CSS:

#desktopImage { background: url(‘large.jpg’); }

#mobileImage { background: url(‘small.jpg’); }

#desktopParent { display: block; }

#mobileParent { display: none; }

@media all and (max-width: 768px) {

#desktopParent { display: none; }

#mobileParent { display: block; } }

When the width is smaller than 768 pixels, the larger element is hidden and the

smaller element is displayed. By wrapping the image in a parent element and

hiding it, the child element is not requested, i.e., the image will not be loaded.

This feature was tested to confirm that this was true. A simple page was created

applying the same principle mentioned above and two screenshots were taken.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Picture 5. One image visible, the other hidden. The browser width is 767 pixels.

Picture 6. Both images are visible. The browser width is 768 pixels.

On right side are Google Chrome developer tools which were used to monitor

traffic from the server when loading a page. By comparing Pictures 5 and 6, it

can be observed that the second image was not loaded until the browser width

reached a breakpoint of 768 pixels. As a result, by applying the principle above

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

it is clear that by hiding such elements and implementing CSS display none the

loading times are reduced.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

3 MAGENTO

3.1 What is Magento

Magento, in short, is an e-commerce web application or in simpler terms a web

browser based online store. It was originally launched in 2008 and its latest sta-

ble release version as of September 2013 is version 1.8.

Magento is an open source product, which means that the source code is open

for anyone to explore and modify much like Linux operating systems. Magento’s

source code is written in PHP and for storing data it uses a MySQL database.

Magento’s PHP code runs within an Apache web server (Williams, 2012, p 14).

In terms of e-commerce platforms, Magento is the most popular e-commerce

platform in the world (Magento Marketing, 2013) and by 2012 Magento Inc. it-

self claimed that users had downloaded the software package more than 2.5

million times and that it was used by over 80 000 companies worldwide (Master-

ing Magento, 2012).

There are three different versions of Magento available today. The first and the

most important one is the Community Edition, which is completely free. Second

and third are the Go Edition and Enterprise editions respectively. However, the-

se versions cost $15 per month and $15 550 per year respectively. In this thesis

the Community version was used due to the fact that it is free of charge.

The Community Edition, albeit free, is a versatile and highly scalable frame-

work. It is certainly feature rich, from products and categories to search engine

optimization and sales reporting to name a few (Magento Inc. 2012). Consider-

ing the large number of features supported by Magento this thesis focuses on

the basic features in order to gain an understanding of the most important as-

pects of an e-commerce platform.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

3.2 Hierarchy

One of the reasons Magento is flexible and scalable is the hierarchy. Magento

calls this Global-Website-Store, or GWS, methodology. See picture 7.

Picture 7. Global-Website-Store methodology (Source:

http://www.magentocommerce.com/images/uploads/multiple_websites_diagram

.gif)

Global refers to a Magento installation. Global data is shared between all the

websites and stores. An example of a common shared value is a product price.

(Williams, 2012, p. 16)

A website refers to a website itself. One Magento installation can include one or

more websites, each with their own domain name. The website is the root of a

Magento store. A website may consist of a number of stores where each store

represents a different set of products for example (Williams, 2012, p. 17).

A store, in a hierarchical structure, is used to associate different product cata-

logs to different stores within a website (Williams, 2012, p. 17). Suppose there

is an entrepreneur who office supplies and printers. Although the supplies and

the printers could be sold in a single catalog, one might consider dividing these

products into two separate catalogs and thus two separate stores, both within a

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

single website. Regardless of the decision, Magento supports this feature mak-

ing it flexible.

In addition to Picture 7 above, each individual store may include one or more

store views. These views can be implemented for different language versions.

These views can be identical but the other one could be e.g. in Finnish and the

other one in Swedish. These store views are discussed further in Section 3.4

Designs and themes.

3.3 Products, catalogs and categories

In Magento a catalog represents a set of products. A catalog may include a va-

riety of different products. These products can be divided into smaller groups,

categories, and within these categories are the products themselves.

Every single store within a Magento installation can be assigned a catalog but a

single product may be included into one or more catalogs (Williams, 2012, p.

58).

A category represents a sub section in a catalog. This can something as simple

as "laptops" in a catalog called "computers". However, Magento also supports

special categories for special display options, such as "New products" or "Fea-

tured products". It is very common for a retail store to have something like this

on their front page (Williams, 2012, p. 58-59).

The concept of a product is simple and self-explanatory. A product could a sim-

ple piece of equipment or a repair service. This is where flexibility of product

types in Magento comes in. Potential customers first decide the style of a prod-

uct they find interested in and after that the possible variations. If someone is

interested in acquiring a new shirt, they will go shopping for a shirt. It is after

they enter the store when they start thinking about the color or the size of the

shirt. This is why products in a store need to be presented in a logical and con-

venient way. (Williams, 2012, p.66)

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Magento groups these products into six different types: Simple, grouped, con-

figurable, virtual, bundle and downloadable (Williams, 2012, p 62-66).

A simple product is an individual product. An example could be an issue of a

magazine. There might be a number of different issues of a certain magazine

and most likely a number of magazines by a different publisher but in general,

this product is sold individually.

Grouped products are products including two or more simple products displayed

on a single product page. A shopper may choose only the products he or she

wishes to buy. The grouping is usually applied to a group of products in a same

category (Williams, 2012, p 62).

Configurable products are products with different variations. A t-shirt could be

sold in three different colors and three different sizes. This adds to a total of

nine different t-shirts each with their own stock-keeping-unit identifier. A configu-

rable product combines these products into one single product with options to

select for a customer, for example, a green shirt with in size M. This is a more

convenient way of shopping for a customer (Williams, 2012, p 63).

A virtual product is a product that requires neither shipping nor inventory. This

could be as simple as a repair service or a warranty (Williams, 2012, p 64).

A bundle product is a very customizable type of product. A bundle product, as

its name suggests, bundles a list of products and gives the customer the option

to create a product they desire by choosing the combination they like. A typical

example is a "Build your own PC". Customers may select the components he or

she will to get the combination that is best suited for him or her (Williams, 2012,

p 64-65).

Downloadable products are distributed electronically. These are typically an

eBook or a music file. Magento also keeps track of how many times a specific

file has been downloaded (Williams, 2012, p 65).

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

3.4 Designs and themes

Having a business and selling products is not only about the products or the

inventory. The store owner has to consider the interior design of the store. This

is because if there was a jewelry store selling high end products, it would nei-

ther make much sense to have the products on display sitting on an old dusty

table nor have the walls full of cracks. The same analogy applies to an online

store. The graphics of a website have to have credibility telling the customer

that it is a vendor one can trust. Respectively, the content has to be easily ac-

cessible for a natural browsing experience for it takes only a few seconds for

the visiting person to decide whether to stay on the website or move one. (Wil-

liams, 20012, p. 83)

As mentioned in Section 3.2, a store in the GWS hierarchy may contain one or

more store views. This allows customization at many levels within a website.

(Williams, 20012, p. 84)

These store views may be customized with something that is referred to as a

design package. When installing Magento, it comes with two design packages:

 A base package: a special type of package containing all the core files.

 A default package: a package containing the files for a default store.

A design package must contain at least one theme (Williams, 20012, p. 84).

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Picture 8. Design package hierarchy (Source: http://blog.belvg.com/create-

custom-themes-magento-front-end-developer-certification.html)

The design packages contain the following files:

 Layout files: XML files to define areas of the pages and how the HTML

code of a page is structured.

 Template files: PHTML files which contain HTML and PHP code to define

the visual structure of the pages.

 Locale files: Files that are used in language translations.

 CSS files: CSS code to give the elements a certain outlook.

 Image files: The image files used on the pages

 JavaScript files: JavaScript files for example for a slider element on the

front page. (Williams, 20012, p. 84)

The package structure can be grouped into two different groups:

 Theme structure: This group contains layout files, template files and lo-

cale files.

 Skin structure: This group contains CSS files, Images and JavaScript

files. (Williams, 20012, p. 85)

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

If a theme is missing one file in a package (reasons could be many), this is not

considered a problem since Magento has implemented a theme fallback model.

In other words, when Magento builds a page it first looks into the theme used in

a given store view. If there is a file missing it looks back into default theme with-

in that same package. If there still is no file to be found it finally looks back into

the base package's default theme and finds a match. This is why the files is the

base package that should never be modified in any way due to the fact it is the

key to Magento's fallback model. (Williams, 2012, p. 86)

These themes could be used to give the store a different look during Christmas

time, for seasonal sales or perhaps use the same look for two different store

views but have one view in English and the other one in Finnish.

3.5 Checkout process

From a customer's point of view, purchasing online is a simple process. First, a

product is inserted into the shopping cart. After that, the customer proceeds to

checkout. During the checkout, the customer supplied the merchant with re-

quired information, such as contact information, shipping information and pay-

ment information. Finally, an order is made and ready to be processed by the

merchant.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Picture 9. Magento purchase flow chart. (Source:

www.magentocommerce.com/wiki/_media/general/magento_order_flow.png)

From the merchant's point of view, there many aspects to consider. Not only

having an inventory of products is sufficient but when a purchase is made, there

are payment methods, shipping methods and taxes to consider.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Picture 10. Order processing flow chart (Source:

www.magentocommerce.com/wiki/_media/general/magento_order_flow.png)

Selling, whether online or not, merchants are always subject to paying taxes to

the government and tax rules differ from country to country. In Magento tax

rules are applied. A tax rule consists of three pieces of information: customer

tax class, product tax class and tax rate & zone. Based on the rule, Magento

calculates the tax for a product. (Williams, 2012, p. 130)

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

After the tax rules have been applied to the products in the inventory, it is im-

portant to consider the possible shipping methods. Magento offers three differ-

ent shipping methods: flat rate shipping, free shipping and table rate shipping.

The first two are quite self-explanatory as flat refers to a fixed amount of money

for the shipping fees and free is simply free.

The third, table rates, offer more flexibility when shipping different products to

various shipping addresses.

Picture 11, example of table rates (Source:

http://www.magentocommerce.com/images/uploads/admin_shipping_tablecsv_

hiak.jpg)

Referring to Picture 11, the example shows an example of price-based shipping

fee calculations. The asterisk symbol refers to the keyword “any”. In other

words, in the example regions are divided into three groups: all states except

Alaska and Hawaii, Alaska and Hawaii. Next, the column order subtotal defines

the shipping rates based on the subtotal of the shopping cart.

Other methods include weight-based shipping and price-based shipping. Using

these methods, the table looks the same except for the fact that the column

“Order subtotal” is changed to either “Order weight” or “Item quantity”. (Williams,

2012, p. 129)

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Finally, after taxes and shipping methods are in order, it is time to accept the

payment from the customer. Magento supports two types of payment systems:

on-site and off-site (Williams, 2012, p. 121).

On-site payments refer to a payment system where the transaction takes place

on the same site as the online store itself. The advantages are that the custom-

er is kept on the same site as opposed to redirecting to an outside payment sys-

tem such as PayPal thus eliminating the need for the buyer to register to an

outside payment system. The disadvantages are that if the merchant is new, the

customer might not trust the merchant enough to actually submit credit card

information to the store owner. Moreover, on-site payments may make the mer-

chant subject to PCI compliance, which in turn introduces concerns for security

issues. Common examples of on-site payment systems include MoneyBookers

and PayPal Pro. (Williams, 2012, p. 122-123)

Off-site payments take place on another website. In some cases, a customer

might consider this a more secure way of submitting credit card information in

order to make the purchase. After the customer has paid the off-site payment

service, the payment service verifies that the merchant is legitimate and then

pays the merchant. The advantages are more protection to customers against

suspicious merchants and that there are no PCI compliance requirements. The

disadvantages are that the customer is taken off the site thus giving the mer-

chant limited access to buyer information. In addition, the customer may be re-

quired to register in a third-party payment system. Common off-site payment

systems include PayPal Express and Google Checkout. (Williams, 2012, p.

121-122)

3.6 Extending Magento

Although Magento is a powerful and feature rich e-commerce framework some-

times a need to extend Magento's functionality might occur.

As Magento is a flexible and scalable framework, it is possible to install exten-

sions on top of Magento. There are thousands of extension modules available

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

online, which include themes, utilities, site management tools and integrations

to name a few. All of these extensions are found on Magento's website,

http://www.magentocommerce.com/magento-connect/. (Williams, 2012, p.193)

There are free extensions available as well as paid extensions. Free extensions

are easy to install using Magento's built-in Magento Connect Manager but paid

extensions require manual installation. Once a suitable, and free, extension is

found all the user needs to do is copy an extension key given and paste it into

Magento Connect Manager. After that, Magento installs the extension automati-

cally. (Williams, 2012, p.198-200)

Picture 12. Magento Connect Manager

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

4 DEMOSTORE - A PROJECT FOR SOFOKUS OY

4.1 Purpose of the project

Online stores in Finland, or in the whole world, are nothing new and they have

been around for a while now. By observing some of the largest online stores in

Finland such as CDON, Gigantti, NetAnttila, Stockmann and Verkkokauppa on

a mobile device, it is clear that none of these websites are built to be respon-

sive. They either have no mobile optimized version of the site or upon entering

the site, a prompt is displayed to the user to confirm whether to stay on the site

or move to a mobile optimized one.

Pictures 13. Upon entering the site the user must select between the original

site and a mobile optimized one, as opposed to one responsive site.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Pictures 14. The sites are not mobile optimized.

Therefore, the purpose of this project was to create an online store which was

built responsive, adapting to the screen regardless of the width of the screen.

This was also an opportunity to study Magento, the world’s most popular

ecommerce platform (Magento Marketing, May 2013). Hence, responsive web

design and Magento were ideal topics to combine in order to write a thesis.

The goal was to create a responsive online demo store for Sofokus Oy, a small

Finnish IT company, to use for marketing. Ideally, this store would demonstrate

what Sofokus does – specialize in web and mobile solutions.

4.2 Why Magento?

Magento ecommerce platform was selected for the following reasons:

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

 It is the world’s most popular ecommerce platform.

 It is feature rich.

 Its Community Edition is free and open source.

 Sofokus Oy specializes in Magento-based solutions and embraces open

source technologies, thus giving the writer of the thesis much needed

support in setting up the website.

 Magento has a very steep learning curve (Boag, 2011). Although not all

the features of Magento were used during this process, it is always a

wise decision to start from something difficult and later adapt to some-

thing easier than vice versa.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

5 PROJECT IMPLEMENTATION

5.1 Planning

Once the idea of the project was clear, like every project, everything starts from

planning. From the beginning it was clear that the Magento Demo Store was

supposed to be a store where no real life money transactions were ever to be

made. Nevertheless, the store still needed to look and feel real as if it were a

legitimate online store.

 During the first meeting the following requirements were set:

 One Magento installation with one database

 Three different responsive design themes

 Localization for both Finnish and English

 A few products

 Appropriate extensions such as Checkout Finland. Checkout Finland is a

payment service of Finnish banks such as Nordea and OP.

 Indexing and caching for better performance

With the following goals set, it was time to start setting up the store.

5.2 Installation

As Magento requires PHP and MySQL in order to operate, these services were

needed to be installed. Luckily, a package called XAMPP is available free of

charge and the package can be downloaded from their website

http://www.apachefriends.org/en/xampp.html. XAMPP includes Apache Server

(HTTP server), PHP (programming language compiler) and MySQL (database).

After the installation of XAMPP, two tasks had to be performed before installing

Magento itself. First of all, a modification to the Apache server configuration was

made. The document root folder and the server name had to be changed.

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Pictures 15a and 15b. Apache configuration changes

Secondly, Magento provides a download link for sample data for testing pur-

poses. In other words, the sample data populates the database with sample

products. Given that the store was a demo store, it was considered easier to

use sample data rather than manually input products to the database. The data

was inserted to the database with the following MySQL command:

Picture 16. The command used to populate the database with sample data. The

“msd.sql” refers to Magento sample data SQL file.

After these initial steps, it was time to install Magento itself by navigating to

http://localhost/install.php. The installation was relatively simple as basic pa-

rameters were configured such as the language, time zone, currency, database

settings and URL settings.

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Picture 17. Magento Installation wizard

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Picture 18. The front page after the installation

5.3 Configuring

The first step of configuring was to change the default theme (see Picture 18) to

a theme that was responsive. For this demo store, two different themes were

selected: one called “Ultimo” and another one called “Ves Hitech”. Most of the

screenshots in this thesis taken from the demo store are from the theme “Ulti-

mo”.

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Theme installation was a simple and straightforward procedure. After download-

ing the source files, they were merged with the Magento installation folder and

then by navigating to Admin backend -> System -> Configuration -> Design.

Picture 19. Configuring themes in Magento Admin Panel.

Changing the “Current package name” from “default” to “Ultimo” Magento looks

for a package called Ultimo and its source files. Recall that if files are missing in

package “Ultimo”, Magento will use its theme fallback model and use files from

the default base package thus preventing any errors.

Next, the theme needed to be customized by changing the colors of the site and

adding sliders to website. Luckily, the “Ultimo” package provided a menu for

simple configuration under System - > Configuration -> Ultimo Theme

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Picture 20. Configuring the Ultimo theme.

Now that the theme was basically set up, it was time to set the locale to Finnish

and add static content, i.e., pages (in Finnish). The locale settings are under

System -> Configuration -> General. When a locale is set to Finnish, Magento

looks into a folder Magento root/app/locale/fi_FI where the translation files are

located. These files are in CSV, comma separated value, format.

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Picture 21. Setting the locale to Finnish.

Picture 22. Translation files on the server. CSV file on the left hand side.

Obviously, changing a locale does not mean that all static content will be trans-

lated as well. Therefore, a few pages were needed to be made. Adding static

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

content takes place under CMS -> Pages. Pages such as home page and about

page were created.

Picture 23. Creating pages in Magento.

Picture 24. Home page content is displayed with a slider “block” before the

HTML H1 heading.

Lastly, catalogs and the products themselves needed to be translated. Import-

ing the sample data mentioned in the previous chapter, the catalogs for the

store were already assigned but still needed some modifications. Products and

catalogs can be configured under Catalog -> Manage products and Catalog ->

Manage categories.

43

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Picture 25. Managing products and catalogs

44

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Still, due to the imported sample data, the currency and tax rules did not corre-

spond to a Finnish online store. Therefore, the currency was changed from US

Dollar to Euro and the tax rates were changed to VAT 24%.

At this point, the store was already looking neat but one key aspect still re-

mained, which was the checkout. There is an extension available for Magento

called Checkout Finland. This enables the customer to pay directly to the mer-

chant through Finnish online bank payment method. Considering that no real

life transactions were to be made on this site because it was a demo store, luck-

ily, there was a demo version of Checkout Finland available for testing purpos-

es. This method was enabled along with credit card payment option and an ad-

vance payment option (“Ennakkomaksu tilisiirtona”). The payment methods are

configured under System -> Configuration -> Payment methods. Note that the

credit card payment option was enabled for credibility reasons and did not actu-

ally work properly due to the fact that this was a demo store.

Pictures 26. Managing payment methods

45

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Picture 27. Checkout page with Checkout Finland enabled.

5.4 Release

The most important step before releasing the demo store was testing. This test-

ing included general testing and cross-browser testing. General testing included

browsing through the site to assure that all the pages function accordingly.

Cross browser testing, on the other hand, was CSS-related testing. Different

web browsers, such as Mozilla Firefox, Google Chrome and Microsoft Internet

Explorer interpret CSS code differently so it was crucial to assure that the pages

looked the same regardless of the browser used. This step was time-consuming

because small bugs were found throughout the site and needed to be fixed. In

addition, some CSS code alterations had to be made.

46

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Picture 28. Styles.css file located in (Magento root)/frontend/ultimo/default/css.

Picture 29. Cross browser testing: Firefox, Chrome and Internet Explorer. This

picture shows that the site looks good regardless of the browser or the page.

47

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Magento also features methods to improve performance such as cache man-

agement and file merging. Cache management pre-renders XML and HTML

files, to name a few, so whenever a page is requested by a client, i.e., the user

Magento delivers the HTML document faster. File merging includes merging

CSS and JavaScript files into one single file thus limiting the HTTP requests

that are made by the user’s browser. These performance improvements might

not be huge but it is worth considering that the faster the page loading time, the

smoother the experience for the user. Therefore, these features were turned on

before the release.

48

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Pictures 30. Cache management and file merging settings.

Finally, all the files were uploaded to a server and a new database was set up.

The store URL was configured to be http://magentodemo.sofokus.com and the

required DNS configurations were made in order for the URL to correspond with

the IP-address. Typically, an online store requires an SSL certificate to encrypt

the traffic (HTTPS) over the public Internet but given that this was a demo store,

the certificate was not considered mandatory.

49

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

Picture 31. URL settings, secure and unsecure.

50

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

6 CONCLUSION

Finally, the project has been completed. The idea was not only to study

Magento but to use that knowledge to set up a live store. What gave this project

an extra challenge was applying a responsive layout to this store. Considering

these facts, the goal was achieved with concentration, hard work, and technical

assistance from Sofokus personnel. Even though this store was a demo store, it

still looked and functioned like a legitimate one. This project was a very good

opportunity to extend skills in web designing and web developing.

As Magento is an extremely feature rich framework and has a steep learning

curve, the store could be extended in the future by studying features that were

not in the scope of this project. Examples could be for example creating new

plugins for the store, customizing the back end admin panel or even creating a

new theme package.

Though it is not considered an enormous task to install and set up a Magento

store, this project had some significance. This was through applying to respon-

sive layout because this is something that has not been done in Finland. As

mentioned earlier, many Finnish online stores have to separate sites: a desktop

site and a mobile site. The key is this project was to have one singe website

and to find a balance between a desktop site and a mobile site.

Personally, I think that this project was not only something I liked but also very

challenging. The first challenge was the complexity of Magento. After a while

things started to make sense and I felt that I could actually accomplish some-

thing in Magento. The second challenging aspect was translating the store in

Finnish. As Finnish and English are two very different languages, it is not al-

ways easy to find perfect translations. This is because if an online store is poor-

ly translated into Finnish, this takes away the credibility of the store for Finnish

customers.

51

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

REFERENCES

Boag, P. (2011). Magento Review: Why Magento is worth it… for some. Available at:

http://boagworld.com/reviews/why-magento-is-worth-it-for-some [accessed 27.1.2014]

Google Inc. (2013). Our Mobile Planet: Finland. Understanding the Mobile Consumer. Available

at: http://services.google.com/fh/files/misc/omp-2013-fi-en.pdf [accessed 18.2.2014]

Magento Inc. (2012). Magento Community Edition User Guide. Available at:

www.magentocommerce.com/resources/user-guide-download [accessed 27.1.2014]

Magento Inc. (2012). Magento Features List. Available at:
http://www.magentocommerce.com/images/uploads/magento-feature-list.pdf [accessed
27.1.2014]

Magento Marketing (2013). Magento Is The Leading eCommerce Platform For Alexa’s Top 1M
Sites. Available at: http://www.magentocommerce.com/blog/comments/magento-is-the-leading-

ecommerce-platform-for-alexas-top-1m-sites/ [accessed 27.1.2014]

Sterling, G. (2013). Report: Nearly 40 Percent Of Internet Time Now On Mobile Devices. Avail-
able at: http://marketingland.com/report-nearly-40-percent-of-internet-time-now-on-mobile-

devices-34639 [accessed 27.1.2014]

van Gemert, V. (2013). Logical Breakpoints For Your Responsive Design. Available at:
http://www.smashingmagazine.com/2013/03/01/logical-breakpoints-responsive-design/ [ac-
cessed 27.1.2014]

W3C® (2012). Media Queries. Available at: http://www.w3.org/TR/css3-mediaqueries/ [ac-

cessed 27.1.2014]

Marcotte, E. (2011). Responsive Web Design. New York, New York: A Book Apart.

Williams, B. (2012). Mastering Magento. Birmingham, UK: Packt Publishing Ltd.

Wroblewski, L. (2011). Mobile First. New York, New York: A Book Apart.

52

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Krister Laakso

