

T E K I J Ä : Jukka Arponen

INTEGRATING INTELLIGENT
SENSORS INTO THE EVO
DISTRIBUTED INTELLIGENCE
PLATFORM

OPINNÄYTETYÖ - AMMATTIKORKEAKOULUTUTKINTO

TEKNIIKAN JA LIIKENTEEN ALA

SAVONIA-AMMATTIKORKEAKOULU OPINNÄYTETYÖ
Tiivistelmä

Koulutusala
Tekniikan ja liikenteen ala

Koulutusohjelma
Sähkötekniikan koulutusohjelma
 Työn tekijä
Jukka Arponen
 Työn nimi

Integrating Intelligent Sensors into the EVO Distributed Intelligence Platform

Päiväys 5.5.2014 Sivumäärä/Liitteet 48/9

Ohjaaja

yliopettaja Väinö Maksimainen

Toimeksiantaja/Yhteistyökumppani(t)

Medikro Oy

Tiivistelmä

Opinnäytetyö toteutettiin Medikro Oy:lle. Työn tavoitteena oli integroida älykkäitä sensoreita EVO-Distributed

Intelligence -alustaan. Evo-alustan sensoreilla pystytään mittaamaan ympäröiviä oloja, mm. ilmanpainetta ja

kosteutta. Ympäröivien olojen mittaaminen on tärkeää Medikron tuotteiden kannalta, sillä spirometrimittauksissa

ympäröivät olot vaikuttavat varsinaisen mittaustuloksen matemaattiseen käsittelyyn. Työssä käytetty EVO-alusta ei

itsessään ole myytävä tuote, mutta sillä suoritetaan kehitystyötä ja testaillaan uusia toiminnallisuuksia.

Työ toteutettiin Medikro Oy:n tarjoamilla laitteilla ja resursseilla. EVO-alustan prosessorin ja alustalla olevien

sensoreiden välisen kommunikaation mahdollistamiseksi tuotettiin yleiset kommunikaatiofunktiot.

Kommunikaatiofunktiot mahdollistivat sensoreiden luvun ja niille kirjoittamisen. Mittauksen ajoitus toteuttiin tavalla,

joka mahdollisti sensoreiden kutsumisen käyttäjän asettamalla taajuudella. Lisäksi alustan virrankäyttöä

suunniteltiin ohjelmallisesti. EVO-alustalla olevan litiumpatterin lataus ohjelmoitiin tapahtumaan hallitusti ja

turvallisesti.

Työn tuloksena saatiin toimivat alimmat tason kommunikaatiofunktiot. I2C-väylän kautta tapahtuva datansiirto

toimi luotettavasti ja hallitusti. Isäntänä toimiva mikroprosessori kykenee lukemaan ja kirjoittamaan orjina toimiville

sensoreille. Tuotetun ohjelmiston rakenne on selkeä ja toiminnot modulaarisia. Lisäksi virranhallinnan ohjaaminen

ohjelmallisesti on mahdollista.

Avainsanat

EVO, I2C, distributed, intelligence, ambient, measurement

SAVONIA UNIVERSITY OF APPLIED SCIENCES THESIS
Abstract

Field of Study
Technology, Communication and Transport
 Degree Programme
Degree Programme in Electrical Engineering

Author
Jukka Arponen
 Title of Thesis

Integrating Intelligent Sensors into the EVO Distributed Intelligence Platform

Date 05 May 2014 Pages/Appendices 48/9

Supervisor(s)
Mr. Väinö Maksimainen, Principal Lecturer

Client Organisation /Partners
Medikro Oy

Abstract

The thesis was completed for a company called Medikro Oy. The goal of this thesis was to integrate intelligent

sensors into the EVO distributed intelligence platform. The EVO platform contains sensors for ambient measure-

ment. The ambient sensors can measure atmospheric pressure and temperature among other quantities. The

measurement of these ambient conditions is important for the functionality of the Medikro spirometers. This is

caused by the fact that ambient conditions have an effect on the spirometric measurement, and it has to be in-

cluded in the mathematical handling of the spirometer data. The EVO platform in itself is not a retail product. It is

used as a development platform for testing and planning new features.

The thesis was conducted with the resources and materials provided by Medikro Oy. The communication between

the processor and the sensors was made possible by generating general communication functions. These functions

could be used to initialize sensors as well as requesting them to measure their respective quantities. The frequency

of these measurements was implemented in such a way that it allowed the user to set each sensor to measure at a

specific frequency. Another important part of the thesis was power management. The recharging of the lithium

battery was controlled programmatically. Safety and control were key features in recharging the battery, as over-

charging and overvoltage can produce dangerous situations with lithium batteries.

As a result of this thesis, functioning communication between the master processor and slave devices was accom-

plished. I2C communication functions were created, and the data transfer worked reliably and in a controlled fash-

ion. The master processor is capable of writing and reading data from the slave devices. All of the produced code

was structurally clear, and all of the functions modular. Programming the power management was also enabled.

Keywords
EVO, I2C, distributed, intelligence, ambient, measurement

FOREWORD

This thesis was started in the early months of 2014. It was commissioned by Medikro Oy and my

primary contact in Medikro was Olli Pohjolainen. The intent of this thesis was to integrate the use of

intelligent sensors into an existing EVO platform.

I would like to thank my supervising teacher, Väinö Maksimainen, and Medikros Research and De-

velopment Director Olli Pohjolainen for their guidance during the creation of this thesis. I would also

like to extend my gratitude to the people of Medikro Oy for this great opportunity. I also want to say

a special thank you to my friends and family for their ongoing support during the creation of this

thesis.

The creation of this thesis was a valuable learning experience and I truly believe it was an extremely

beneficial experience for my future in this line of work.

Kuopio 05 May 2014

Jukka Arponen

 5 (57)

CONTENTS

ABBREVIATIONS AND DEFINITIONS .. 7

1 INTRODUCTION .. 9

2 EVO DISTRIBUTED INTELLIGENCE PLATFORM .. 10

3 MSP430 PROCESSOR ... 13

4 DEVICE COMMUNICATION ... 15

5 MICROPROCESSOR PROGRAMMING .. 16

5.1 Structure ..16

5.2 Interrupts ...17

5.3 Basic low level functions ..17

5.3.1 I2C_dataWrite ...18

5.3.2 I2C_dataRead ...20

5.4 Incoming data ..22

5.5 Command queue ...23

5.6 Power settings ..25

5.6.1 Programmed power features ...26

6 AMBIENT MEASUREMENT SENSORS.. 30

6.1 Barometer ..30

6.2 Humidity sensor ..33

6.3 Accelerometer ...36

7 DEVELOPMENT TOOLS... 42

7.1 Code Composer Studio ...42

7.2 Tortoise SVN...42

7.3 Measurement devices ..42

7.4 Realterm ..43

7.5 MSP430 USB Firmware Upgrade ..44

7.6 Logicport ..45

8 RESULTS .. 46

9 DEVELOPMENT IDEAS ... 47

APPENDIX 1: EVO PLATFORM .. 49

APPENDIX 2: LOGICPORT CONNECTION .. 50

 6 (57)

APPENDIX 3: BATTERY CHARGE CURRENT ... 51

APPENDIX 4: ACCELEROMETER TAP DETECTION VALUES.. 52

APPENDIX 5: MSP430 PIN CONFIGURATION ... 56

APPENDIX 5: MAX8934 PIN CONFIGURATION ... 57

 7 (57)

ABBREVIATIONS AND DEFINITIONS

EVO = A project in development by Medikro Oy. EVO is a programmable platform containing various

sensors and devices.

PCB = Printed circuit board. Supports and connects electrical components by electricity conducting

tracks.

MSP430 = A processor type manufactured by Texas Instruments.

MAX8934GETI+ = Power regulator unit.

Jumper = A connector for connecting nearby pins together to alter the functionality of the device.

SD-card = Secure Digital card. A non-volatile external memory card.

Master = A device that is in charge of making decisions and giving orders. Often it’s the micropro-

cessor.

Slave = A device that listens to and obeys the Masters command. In this application, the sensors

are slaves.

NTC-thermistor = Negative temperature coefficient thermistor. A device used to measure tempera-

ture.

Peripheral = A supplementary device connected to a master device in order to achieve increased

functionality.

USCI = Universal Serial Communication Interface. A device that enables the serial exchange of data

between a microprocessor and peripheral devices.

DCO = Digitally-Controlled Oscillator.

RTC = Real-time clock.

PWM = Pulse-width modulation.

RAM = Random access memory.

FRAM = Ferroelectric RAM. Random access memory that is retained even if power is turned off.

SRAM = Static RAM. Data can be retained even if power is turned off, but it will be lost eventually if

power is off for extended amount of time.

CPU = Central processing unit.

IDE = Integrated Development Environment. A platform that facilitates the development of soft-

ware.

CCS = Code Composer Studio. A commercial IDE by Texas Instruments.

I2C = Inter Integrated Circuit. A communication bus that is widely used in microprocessor applica-

tions.

SDA = Serial Data Line.

SCL = Serial Clock Line.

SPI = Serial Peripheral Interface. A communication bus that is widely used in microprocessor appli-

cations.

HAL = Hardware Abstraction Layer.

GND = Ground. Term used in electrical engineering to signify a zero reference point.

DNC = Do Not Care. An insignificant bit.

Input = A signal going into a device.

Output = A signal a device sends out.

 8 (57)

Interrupt = Signal for an event that requires immediate attention.

Ack = Acknowledge. An affirmation in a communication.

Nack = Not-Acknowledge. A negative response in a communication.

TXIFG = Transmit interrupt flag. An interrupt for a sent message.

RXIFG = Receive interrupt flag. An interrupt for an incoming message.

Buffer = Temporary storage for data while it’s being moved.

UCB1RXBUF = A buffer on the MSP430 used for sending and receiving data.

UCB1CTL1 = A register on the MSP430 that controls some functionalities in the MSP430.

Register = Small storage for holding a specific value.

UCB1I2CSA = Register that contains the address of the slave device the master is communicating

with.

Queue[100] = Array of function pointers.

pAdd = Position in Queue where we want to add new data.

PCurrent = Position in Queue that stores the next command we need to execute.

I/O = Input/Output.

SSC = Standard Accuracy Silicon Ceramic.

RH = Relative Humidity.

INT1, INT2 = Output pins from the accelerometer. Interrupts are mapped to these.

GS_INT1, GS_INT2 = Pins on the processor that are directly connected to INT1 and INT2 respec-

tively.

C = Programming language.

C++ = Programming language.

Port = Software construct used as a communications endpoint in host system.

A, mA = Ampere, a unit of current.

V = Volt, a unit of voltage.

FIFO = First In, First Out.

Callback function = a function that is called after completion of another function.

 9 (57)

1 INTRODUCTION

Medikro Oy is a company that manufactures spirometers and various other instruments for respira-

tory measurements. A spirometer measurement can be used to determine the volume of a person’s

lungs as well as exhaling speed. This information can be used to diagnose various lung related dis-

eases as well as measure the functionality of a patient’s lungs. The spirometer measurement is sus-

ceptible to ambient conditions, so it is important to include ambient conditions when calculating the

output data. These ambient conditions include the temperature and humidity of the surrounding air

as well as atmospheric pressure.

The EVO Distributed Intelligence platform contains an MSP430 microprocessor that controls all of

the platform’s functions. Embedded on the device are various sensors that are used to measure the

ambient conditions at controllable intervals. These sensors include a barometer, humidity sensor

and an accelerometer. These sensors can measure atmospheric pressure, air humidity and tempera-

ture, as well as the orientation of the platform. The accelerometer also offers much more functional-

ity, including the detection of various taps of the device. Background materials were provided by

Medikro Oy, located in the internal network of Medikro Oy. Various datasheets were provided by

equipment manufacturers. Datasheets can be found in references.

The development of the EVO platform is being done with the assistance of students. The project is

ongoing and will remain in development after the completion of this thesis. The communication of

the master processor and the slave devices is vitally important for the functionality of the platform.

The main focus of this thesis is to facilitate I2C communication between the master and the slaves

fitted on the PCB board. Programming the power settings will also be important during the making

of this thesis.

 10 (57)

2 EVO DISTRIBUTED INTELLIGENCE PLATFORM

The EVO Distributed Intelligence platform is an ongoing project by Medikro Oy. The EVO platform is

a PCB board that is controlled by a MSP430 processor. Various components and connections are

embedded on the board. The microprocessor can programmatically control the functionality of the

board. It is also possible to externally control some of the functions by various jumpers. For in-

stance, the device can be set to reprogramming state by connecting two pins with a jumper. This

function is especially useful in situations where the device is unresponsive to communication at-

tempts and needs to be set into reprogramming state manually. In normal operation the device can

be set into reprogramming state by sending a command to via the USB connection.

The EVO platform is equipped with a serial USB communication line. The device can use this con-

nection to communicate with a PC, for example. If no other power source is available, the device

can also get its operating voltage from this USB line. The platform has also other ways of communi-

cating with external devices. A Bluetooth communication is available, as the platform has a Bluegiga

BLE113 Bluetooth chip embedded in it. The Bluetooth connection requires additional work and will

not be implemented during the making of this thesis. A micro SD card slot is also available, if the

data needs to be stored on the platform as opposed to sending it to another device. (Medikro Oy,

2013)

The platform also contains various other functional parts, such as eight pushbuttons. The buttons

can be used for external control of the device, but they are not as of yet implemented in any way.

Three USB connections are also available for connecting external devices into the platform. Current-

ly one of them is reserved for spirometer measurements. The platform contains several methods for

powering the platform and this will be discussed in more detail in Chapter 2. The EVO platform is

not a product in retail. It is used for developing new products. The Evo platform can be used for

ambient measurements. Ambient measurement means the measurement of various surrounding

conditions, such as the temperature and pressure of the surrounding air. Medikro produces spirome-

ters that are used to measure patients’ lung capacity among other quantities. The raw signal of the

flow transducer is very noisy and it has to be mathematically filtered. The ambient conditions affect

the result of the flow measurement, and this is the reason the ambient measurements are made.

They are taken into account as the data is being calculated to improve the accuracy of the results.

Different ambient measurements have different importance regarding the spirometry values. In ad-

dition some of the conditions are more susceptible to change. For example, air pressure is not

changing as fast as temperature, as the pressure of the surrounding air will not fluctuate as much.

The sensors are used to measure specific quantities and different sensors function with varying

speeds. It is important to take this into account when designing a measurement system. After the

prioritization of the measurements is carefully considered, each measurement is done with an ap-

propriate frequency. (Medikro Oy, 2013)

 11 (57)

The power usage of the EVO platform is quite versatile and user definable. The platform has three

ways of getting power and even combinations of these methods are possible. The idea behind this is

to ensure functionality as well as making the platform as versatile as possible. Having multiple ways

of powering the device brings options and flexibility to the user as well as the platform. If more than

one way of powering is present the system is capable of intelligently selecting which one to use.

During the making of this thesis the primary means of powering the device was from the USB power

source. The selection of the power source in the EVO platform is done by a jumper. Setting Jumper

5 selects between USB and DC power. Programming the power features will be further discussed in

Chapter 5.6.1

The EVO platform is equipped with a MAX8934GETI+ power regulator that handles powering the

entire board. If no power source is connected the device runs on battery, if possible. If more power

is present than needed by the functions of the board, the regulator will charge the battery. The reg-

ulator is also capable of protecting the system from various over voltages and currents. The regula-

tor is intelligent enough to be able to select the most useful power option if more than one is pro-

vided. Some of the inputs to the regulator are made with hardware, for example with resistors and

capacitors. Other inputs can be set programmatically. This means that there exists a possibility to

change some power options by coding different outputs into the power output pins. (Maxim Inte-

grated, 2010).

The USB connection functions as a communication method between the EVO platform and an exter-

nal device. Often the platform is connected to a PC in order to send the measured data to be stored.

Having a PC connected to the platform is also vitally important for developing and uploading logic

and programming into the platform. The USB connection is also capable of providing enough power

to keep the platform running. Removing the USB power cords powers down the device immediately

unless other way of acquiring power is present. The USB connection is capable of providing the sys-

tem with 5 volts and a current of 500 mA. The voltage was measured to be 4.6 volts during the

writing of Chapter 5.6. The 2.5 Watts of power that the USB is capable of providing is quite limited.

 12 (57)

A direct connection to a power supply is also possible. A DC power connection is capable of provid-

ing more power than the USB power connection but it introduces new challenges. Overheating is a

possibility and defending the delicate circuit from over voltages and currents becomes vitally im-

portant. The EVO system includes an NTC-temperature sensor that is designed to detect overheat-

ing issues and inform the regulator if such a threat is detected. A DC connection is more than

enough to power the system and recharge the battery at the same time. When the battery is fully

charged the regulator adjusts its functionality to prevent battery overheating. A DC connection pro-

vides up to 2 A of current and 5 volts to the regulator. This means a DC connection is capable of up

to 10 Watts of power.

Wireless power transmission has been around for quite some time now. One early application was

used in recharging of electric toothbrushes. The low amount of power that can be sent this way has

proved to be problematic. In the EVO platform there exists a BQ510XXRHL wireless power receiver

module. It can be used to power the EVO platform, but it is not in use at the moment. This is due to

the fact that this device requires much more additional work before it can be implemented.

The battery used by the EVO platform is a Lithium-Ion battery. The battery can be recharged when

other means of powering the device are present. If no other means of powering are present the

regulator attempts to power the system from the battery. This of course happens if a battery is pre-

sent at all. Lithium batteries can explode due to various faults and monitoring of the battery must

be extremely strict. There are three special cases that need to be specially monitored. Overtempera-

ture of the lithium-ion battery is the most important one. If an overtemperature of the battery is not

detected, the battery will swell up and in the worst case scenario it will explode. Similar reactions

can happen if the battery is overcharged. Overcharging happens if a battery keeps getting charged

after it has reached a state of full charge. Last state that needs to be monitored happens when the

regulator signals out a general fault. The battery used was Keeppower 14500. It has a charge rate

of 800 mAh and its voltage is 3.7 V.

 13 (57)

3 MSP430 PROCESSOR

The EVO platform uses an MSP430 microcontroller as its processor. The MSP430 is made by the US

electronics company Texas Instruments. MSP430 functions with 16-bits and it is specifically de-

signed for ultra-low power applications. The combination of the low cost and power consumption

makes the MSP430 very appealing for embedded applications. The MSP430 can operate with fre-

quencies up to 25 MHz. The specific processor used in the EVO platform is MSP430F5659. Key fea-

tures of the MSP430 are highlighted in Table 1.

TABLE 1 MSP430 statistics

PROCESSOR MSP430F5695

Program memory 512 kB

SRAM 64 kB

I/O pins 74

Timers 4

Watchdog timer Included

Power management module Included

Direct memory access 6 channels

ADC 16 channel ADC12 A

DAC Included

Additional features USB

USCI
Channel A: UART, LIN, IrDA, SPI

Channel B: I2C, SPI

The MSP430 is designed to be as efficient with its power usage as possible. The processor is de-

signed with several low power states, which the processor enters whenever appropriate. The ability

to enable and disable various clocks and oscillators is very important in achieving an efficient power

usage. This means that only the required clocks are enabled, and once they have completed their

functions they are once again disabled to conserve energy. (Texas Instruments, 2014)

The use of intelligent sensors is the main theme in this thesis. When an intelligent and autonomous

device is not used or commanded by the processor, it automatically enters a low power state. The

MSP430 is designed around the idea that the connected peripherals are efficient with their power

usage. This plays a key role in achieving efficient power usage in embedded applications. (Texas In-

struments, 2014)

 14 (57)

MSP430 features a digitally-controlled oscillator or DCO. The DCO can be programmatically set by

the programmer and it can reach up to 1 μs in start-up time. This means that the MSP430 can stay

in low-power state as long as possible. Staying in low-power state as long as possible further im-

proves power efficiency in embedded applications. (Texas Instruments, 2014)

The MSP430 has real-time clock or RTC modules in it. The RTC modules enable the processor to

keep up real-time and RTC_A module even provides some basic calendar functions, such as keeping

up seconds, minutes, hours, days, weeks, months and years in real time. The RTC modules can also

be reconfigured to be used as a general-purpose counter. If used as a general purpose counter, the

RTC modules can also be used as a timed interrupt. The MSP430 also contains other timers, such as

Timer_A, that can be used for captures/compares, PWM outputs or interval timings. (Texas Instru-

ments, 2014)

The newer models of the MSP430 family that contain the FR-code use FRAM type memory. This is a

ferroelectric type of RAM that stores data, even if the device is powered off. MSP430F5695 contains

regular SRAM that is used in applications. The MSP430 family uses a direct memory access control-

ler that is capable of memory transfer independent from the CPU. This functionality is not only pow-

er-efficient but fast as well. (Texas Instruments, 2014)

Texas Instruments offers a variety of IDEs to develop code for the MSP430 family. Free versions of

the commercial environments are available, but they are usually code-limited. It’s also possible to

develop software in a free and open sourced platform as well. The most common IDEs are Code

Composer Studio, IAR Embedded Workbench, Energia and MSPGCC. MSPGCC and Energia are open

sourced and free. CCS and IAR on the other hand are commercial IDEs. The IDE used in this thesis

is Code Composer Studio and it will be further discussed in Chapter 7.1.

 15 (57)

4 DEVICE COMMUNICATION

I2C is an abbreviation for Inter Integrated Circuit. I2C is a communication bus and it is used to con-

nect peripheral devices to a master device. It can also be used in other applications, such as differ-

ent control architectures. I2C is designed to utilize the similarities between different device designs.

Usually every system includes some kind of control device, a microcontroller for example. A system

usually also includes some general purpose drivers, for example LCD drivers and I/O ports. Many

systems also include application oriented circuits, such as sensors. The goal of the I2C is to simplify

the physical circuitry while maximizing efficiency. The goal in this thesis was to make the lowest lev-

el functions, such as read and write. These were then used in communication between a master and

the slave devices. Functions for I2C communications were produced and tested during the writing of

this thesis. (NXP Semiconductors, 2012).

The I2C bus only requires two lines for communication. These lines are called SDA and SCL. SDA is

an abbreviation of Serial Data. SDA is used for the transfer of data. SCL is an abbreviation of Serial

Clock. SCL provides a clock pulse to the bus. Each slave device, which is connected to the I2C, has a

unique address. All slave devices are connected to the same SDA and SCL lines. The slave devices

can recognize their own address, if it is being transmitted through the data line. The Master-Slave

relationship in the system is clear, and a slave device can only use the data line when a master al-

lows it. Having only two lines is very beneficial for equipment manufacturers. For example, SPI

communication uses four lines. The amount of connections required for connecting to peripheral de-

vices complicates the designing of ICBs and increases the cost. The interface protocol of I2C is inte-

grated into the chips themselves which simplifies the design even more. Requiring only two lines for

all connected devices makes the I2C very easy to implement. (Philips Semiconductors, 2003).

 16 (57)

5 MICROPROCESSOR PROGRAMMING

5.1 Structure

The structure of the application was split into three layers. This is done in order to simplify the un-

derstandability of the code as well as providing clear structure to the entirety of the application. The

intention is that the layers do not overlap and changing one layer does not affect the others. Each

layer is responsible for a specific area. The point of making a structure like this is to make it easier

for programmers to build their applications. It is also easier to understand the code if it is structured

well. For instance, once the lowest level functions such as the communication functions are made,

it’s possible to make use of them without having to know how they work in detail. When a new fea-

tures is added into the system, only the layer that the changes occur in needs to be changed.

Application layer is the highest level of structure. It is the most visible to the users and all applica-

tions are located in this layer. This is the layer that the user sees.

The device layer contains specific information about the connected devices. It includes the address-

es of the devices as well as some device specific details. For instance, an ambient measurement

may be packed into 2-6 bytes depending on the sensor. It is important to know how many bytes

need to be read from a sensor in order to receive all the data correctly. Naturally, the incoming data

also needs to be handled in a device specific way. Different sensors have status bits and DNC bits

that need to be taken into account. Each device was made to have its own file that contains all in-

formation needed to operate that device. This makes changing or adding devices easier and more

modular. All device files are organized in a separate device folder for increased clarity.

Hardware abstraction layer is the part of the code that functions between the software and the

hardware. It provides a device driver interface allowing a program to communicate with the hard-

ware. In this thesis the hardware abstraction layer contains the functions for communicating be-

tween the master and a slave. These functions are made in such a way that their operation is not

dependant on knowing specifics about the devices. The I2C communication only sends and receives

bytes of data, it does not need to know anything about the devices themselves.

 17 (57)

5.2 Interrupts

An interrupt is a signal that requires immediate attention. An interrupt driven system means that the

system reacts to interrupt events as they appear. This is extremely useful because continuous poll-

ing of pins or sensors can cause overheating and is not power efficient. Continuous polling would al-

so take time from the processor, leaving fewer resources to other processes. The EVO platform is an

interrupt driven system. There are several things that work based on different interrupts. The ambi-

ent measurements are made with regular intervals that are generated by timer interrupts. The I2C

communication utilises a variety of interrupts, including interrupts for sending and receiving mes-

sages. Interrupts in the communication are handled according to Figure 1. Incoming data is handled

in a function called handle_ambient_measurement. This interrupt is triggered when data is coming

from a sensor. Sending a transmission send triggers a buffer_writer function.

FIGURE 1 I2C communication interrupts (Arponen 2014.04.04)

5.3 Basic low level functions

Basic low level functions are needed for communicating between a master and a slave. These func-

tions are called read and write. The master processor needs to be able command the sensors as

well as listen to their output. These functions generated during the making of this thesis can be

used to communicate to any device connected into the I2C. I2C_dataWrite can be used to write val-

ues to specific registers on a specific device. Some devices require most of their registers to be ini-

tialized before they function as intended. Other devices are simple and do not require additional ini-

tialization at all. More information about the requirements and specifics of the ambient measure-

ment sensors can be found in Chapter 6. A structure is used to store valuable information while

communicating. The structure is displayed in Figure 2. Address is used to store the address of the

device we are communicating with. Data is the information that we are sending, and datasize tell

how much data is to be sent. Completed_func is a callback function that needs to be called after all

the bytes are read. Setting justwrite to 1 means we’re writing to a register of a device, a value of 0

is used when requesting data.

 18 (57)

FIGURE 2 Store structure (Arponen 2014.04.04)

5.3.1 I2C_dataWrite

I2C_dataWrite is used by the master to write messages into the I2C. All writes begin by sending the

slave device address to the I2C. All connected slave devices check if this address matches their own

address, and if it does they respond. A functioning device responds by Ack. If a programmer wants

to write a value into a specific register on a specific sensor, the communication follows the logic dis-

played in Figure 3. Figure 4 and Figure 5 show how the communication is handled in the code.

FIGURE 3 I2C_dataWrite logic (Arponen 2014.04.04)

The master begins by writing the slave address to the UCB1I2CSA register. The master also sets the

write bit in UCB1CTL1 register to 1. After this, the master starts the transmission. A slave device in

that address responds with an Ack. This triggers a TXIFG interrupt. The TXIFG interrupt is handled

in an interrupt handler function. If the master wants to send additional info into to the slave, it can

write it to the UCB1RXBUF buffer during the TXIFG interrupt. In this example, the master writes the

address of a register on the device into the buffer. The buffer is then read by the slave device. The

slave now knows that the following value is to be written into that register. This is acknowledged by

the device with an Ack and a new TXIFG interrupt is generated. The value can now be written into

the UCB1RXBUF buffer. The value is transmitted on to the slave, and the slave stores this value in

the register that was designated before. Once again, the device responds with an Ack and another

TXIFG interrupt is generated. Writing a new value is also possible, and it is stored in the subsequent

register following the register originally specified. This functionality makes it possible to write a vary-

ing number of values into the registers of the device. The communication is stopped when the mas-

ter sends out a Nack followed by a Stop. A device specific example of initializing a slave device with

register values can be found in Chapter 6. In the code I2C_dataWrite is made in accordance with

Figure 4. Figure 5 displays how the TXIFG interrupt is handled. If a device in the designated address

is not found, Ack is never received. This means that the communication will not progress any fur-

ther. This could potentially happen in a situation in which the sensor is damaged or disconnected.

 19 (57)

FIGURE 4 I2C_dataWrite code (Arponen 2014.04.04)

FIGURE 5 TXIFG interrupt handler (Arponen 2014.04.04)

TABLE 2 I2C_dataWrite parameters

Parameter Description

Address This is the address we want to write to. Mandatory.

Data The data we want to write. Optional.

Datalen The length of the data we are writing. Optional.

Readlen Amount of bytes we want to read. Only needed when requesting data.

Callback func-
tion

Function used to handle data in a device specific way. Implemented by
the use of a function pointer.

Justwrite Parameter that signifies whether dataWrite is used just for writing.
Added to facilitate combined datafetch and request. 1 = Write, 0 =
request

 20 (57)

5.3.2 I2C_dataRead

I2C_dataRead is used by the master to read messages from the I2C. All reads begin by sending the

slave device address to the I2C. All slave devices check if this address matches their own address,

and if it does they respond. The read communication follows the logic displayed in Figure 6.

FIGURE 6 I2C_dataRead logic (Arponen 2014.04.04)

The master begins by writing the slave address to the UCB1I2CSA register. The master also sets the

write bit in UCB1CTL1 register to 0. This means that the master enters a read mode. After this, the

master starts the transmission. A slave device in that address responds with an Ack. Now that the

master is in read mode, the slave device is allowed to speak. The slave begins to send data to the

master and this triggers an RXIFG interrupt. The incoming byte is written in to the UCB1RXBUF

buffer. The master can now read this byte during the RXIFG event handler. The byte is stored into

an array called incMessage. If the master sends an Ack, the slave continues to send data. The

communication continues until the master has read the designated amount of bytes from the slave.

The communication is stopped when the master sends out a Nack followed by a Stop. Stop condi-

tion is generated after receiving data from the slave. This means that in order to receive the correct

amount of bytes, the Stop condition must be sent after reading the second to last byte of data. It is

vitally important to note that using just I2C_dataRead is not enough to get data from a sensor. The

handling of the incoming data is further described in Chapter 5.4. In the code I2C_dataRead is

made in accordance with Figure 7. Figure 8 displays how RXIFG interrupt is handled. Table 3 ex-

plains the parameters for I2C_dataRead function.

FIGURE 7 I2C_dataRead code (Arponen 2014.04.04)

 21 (57)

FIGURE 8 RXIFG interrupt handler (Arponen 2014.04.04)

TABLE 3 I2C_dataRead parameters

Parameter Description

Address This is the address we want to read from. Mandatory for writing.

Readlen Amount of bytes we want to read. Obsolete since this is set when initi-
ating request.

The I2C_dataWrite is also used to initiate a data request. A data request informs a slave device to

make a measurement and instructs it to wait for a data fetch. Data requesting follows the logic dis-

played in Figure 9.

FIGURE 9 Data request logic (Arponen 2014.04.04)

The data request is almost the same as writing a value to a register. The master begins by writing

the slave address to the UCB1I2CSA register. The master then sets the write bit in UCB1CTL1 regis-

ter to 1. The transmission is then started. A slave device in that address responds with an Ack. This

triggers a TXIFG interrupt. The master writes the address of a register on the device into the buffer.

The buffer is then read by the device. A Nack followed by a Stop is then sent by the master. The

master has now requested the value stored in this register. Following this request up with a data

fetch reads the value stored in this register. Sensor specific data requesting will be discussed great-

er detail in Chapter 6.

Data fetch follows a data request to complete the cycle of acquiring data. Data fetch is made by uti-

lizing I2C_dataRead. It is important to understand that all reads must be preceded by a data re-

quest. The master begins by writing the slave address to the UCB1I2CSA register. The master also

sets the write bit in UCB1CTL1 register to 0. This gives the sensor in question the permission to

send its data. Some sensors require a certain time between requests and fetches. This is further

 22 (57)

discussed in Chapter 6. After all bytes have been received, the data fetch uses the function pointer

provided by the data request to call a device specific function that handles the data.

Data request and fetch can be integrated together. This way the data fetch is sent immediately after

the stop signal from data request. This produces a single function for reading a designated amount

of bytes from a sensor. This single function can be seen in Figure 5, since dataread is called imme-

diately. Some sensors have limits that need to be taken into consideration when combining these

functions. Currently all ambient measurements are done by a combined data request and fetch.

5.4 Incoming data

Every incoming byte is stored into an array called incMessage. Bytes are written into the array when

they are read from the UCB1RXBUF buffer. The size of the incMessage can be changed depending

on the amount of bytes that are read from the sensors. The structure of the array is described in

the Table 4. Once all the bytes have been read, a function pointer calls a device specific data han-

dling function. A function pointer is a pointer that points to a function. By using a function pointer it

is possible to do the data handling in a device specific file. This enables us to have a clear structure.

(The Function Pointer Tutorials, 2011) As the data handling is very device specific, it will be further

explained in Chapter 6. Measurements are updated and averaged so that they can be used in fur-

ther calculations.

TABLE 4 Incoming data

Image Indexing Description

incMessage[0] The first index of the array always contains the
address of the device that data is coming from.
This is used to identify what device the data is
coming from. Made obsolete by the use of func-
tion pointers.

incMessage[1] This index contains byte 1.

incMessage[2] This index contains byte 2.

incMessage[3] This index contains byte 3.

incMessage[4] This index contains byte 4.

incMessage[5] This index contains byte 5.

incMessage[6] This index contains byte 6.

 23 (57)

5.5 Command queue

The ability to queue commands is desired in situations where commands need to be dealt with

roughly at the same time or in quick succession. A command queue was implemented by adding an

array of function pointers. When a measurement time for a sensor is reached, the measurement

command is added to the queue. The index of the queue called pAdd will increase so that a new

command may be added to the queue. When the master has time, a command is picked a com-

mand queue. After the command has been performed, it is removed from the queue and the queue

is ready for the next command. The logic is displayed in Figure 10.

FIGURE 10 Command queue (Arponen 2014.04.04)

Adding functions to the function queue is implemented in the code according to Figure 12. The exe-

cuteFunction is a defined type for a function pointer. The definition of executeFunction is displayed

in Figure 13. The queue is handled in FIFO style. This means commands will be handled in the order

they arrive in. FIFO comes from words “First In, First Out”. Figure 11 displays the type defition that

is used in the queue.

FIGURE 11 Type definition (Arponen 2014.04.04)

FIGURE 12 Adding commands to queue (Arponen 2014.04.04)

 24 (57)

FIGURE 13 Executing commands from queue (Arponen 2014.04.04)

Functions are added to the queue from a timer interrupt. This timer interrupt frequency was defined

in Medikro to be 800 times each second because of the flow measurement sampling requirements.

Each interrupt the system checks if it is time to measure ambient conditions. One command is exe-

cuted for each timer interrupt. This means that the combined amount of measurements per second

cannot exceed 800. If it does the queue will be filled faster than it’s emptied and commands will be

lost. Timer logic is further explained for each sensor in Chapter 6. The logic of updating global bat-

tery variables is explained in Chapter 5.6.1. Commands in Figure 14 are executed each time the

timer interrupt is triggered.

FIGURE 14 Timer logic (Arponen 2014.04.04)

 25 (57)

5.6 Power settings

MAX8934GETI+ controls the powering of the EVO platform. The power regulator unit has several

input/output settings that are set with physical means, such as resistors or a capacitors. These are

the features that are to remain constant throughout the use of the platform. For example, it is im-

portant to limit the maximum charge current for the battery. Such a limit is produced by connecting

a resistor between the ISET pin of the regulator and a GND connection. Charge limiting can also be

done by setting register values in accordance with Table 7. Charging the lithium battery is a delicate

operation and values of these resistors are to be carefully selected. The inputs/outputs of the

MAX8934GETI+ regulator are documented in Table 5. An overline means that the pin is active-low.

TABLE 5 Power regulator pins of MAX8934. (MAXIM INTEGRATED, 2010).

PIN NAME FUNCTION

1 DONE Charge Complete Output. Used to signify that the battery is fully charged.

2,3 DC DC Power Input. Current is limited by PEN1, PEN2 and RPSET.

4 CEN
Charger Enable Input.

 0 = Battery charging is enabled.
 1 = Battery charging is disabled.

5 PEN1 Input Limit Control 1.

6 PEN2 Input Limit Control 2.

7 PSET DC Input Current Limit. Is connected to RPSET = 3.3 kΩ. See Equation 1.

8 VL
Internal Logic LDO Output Bypass Pin. Connected to 100 µF capacitor from VL

to GND. Powers the internal circuitry.

9,13 GND Ground.

10 CT Charge Timer Program Input. Connected to 68 nF capacitor.

11 ISET Charge Current Limit. Is connected to RISET = 6.8 kΩ. See Equation 2.

12 USUS USB Suspend Digital Input.

14 THM
Thermistor Input. Is connected to a NTC-thermistor to monitor battery tem-
perature.

15 THMEN Thermistor Enable Input.

16 THMSW Thermistor Pull-up Supply Switch.

17 LDO
Always-On Linear Regulator Output. Always outputs 3.3 V and 30 mA. 1 µF
capacitor is connected between LDO and GND.

18,19 USB USB Power Input. USB current is limited by PEN2 and USUS.

20,21 BATT
Battery Connection. Pin is connected to the positive terminal of the Li+ bat-
tery.

22 CHG
Charger Status Output.

 0 = fast charge or prequel
 1 = high impedance

23,24 SYS System Supply Output. SYS is bypassed to GND with 10 µF capacitor.

25 OT
Battery Overtemperature FLAG.

 0 = battery temperature ≥ 75 C.
 1 = no overtemperature detected

26 DOK
DC Power-OK Output.

 0 = valid DC power connection
 1 = no DC power connected

27 UOK
USB Power-OK Output.

 0 = valid USB power connection
 1 = no USB power connected

28 FLT
Fault Output.

 0 = battery timer expired before prequel or fast charge complete
 1 = no fault

- EP Exposed Pad. Connected to GND.

Some of these inputs/outputs are connected directly to the pins of the MSP430 processor. These

pins can be read or written to, in their designated port. All programmed power features are per-

formed by manipulating these pins. The ports involved with the power control are P1, P3 and P5.

 26 (57)

TABLE 6 MSP430 port values with USB power, 95mA limit.

 NAME I/O MSP430 Port.Pin Default Value Description

P1

DOK Input 1.7 1 NO DC power connected.

UOK Input 1.6 0 USB Power connected.

FLT Input 1.5 1 No fault.

DONE Input 1.4 1 Charging is not done.

CEN Output 1.3 0 Charging is enabled.

PEN1 Output 1.2 1 See TABLE 7.

PEN2 Output 1.1 0 See TABLE 7.

USUS Output 1.0 0 Digital input not suspended

P3

CHG Input 3.1 1 Battery not charging

OT Input 3.0 1 No overtemperature

P5 THMEN Output 5.5 1 Thermistor enabled

5.6.1 Programmed power features

Table 7 displays the logic behind controlling the current limits for the power regulator. These limits

need to be taken into account when the device is connected to a new power source.

TABLE 7 Input limit control. (MAXIM INTEGRATED, 2010).

Power DOK UOK PEN1 PEN2 USUS
DC input

current limit

USB input

current limit

Maximum

charge current

AC adapter

at DC input
0 X 1 X X Equation 1.

USB input off,

DC has priority

Equation 2.

USB power

at DC input

0 X 0 1 0 475 mA 475 mA

0 X 0 0 0 95 mA 95 mA

0 X 0 X 1 USB suspend 0

USB power

at USB input

1 0 X 1 0

No DC input

475 mA
Equation 2.

1 0 X 0 0 95 mA

1 0 X X 1 USB suspend 0

No power 1 1 X X X No USB input 0

 27 (57)

Calculating the maximum DC input current limit follows the Equation 1. This equation describes the

limit of the maximum input current into the system.

IDCIMAX =
3000 V

RPSET
=

3000 V

3300 Ω
≈ 0,91 A (1)

Calculating the maximum charge current is defined by Equation 2. This equation describes the limit

of the maximum charge current that will be used to charge the battery.

ICHGMAX =
3000 V

RISET
=

3000 V

6800 Ω
≈ 441.17 mA ≈ 441 mA (2)

During the initialization of the EVO platform, the system reads port P1. From this port the system

can see the connected power source. It is then possible to set the limits properly. The DC current

limit is set with PEN1, PEN2 and RPSET. The USB current limit is set with PEN2 and USUS.

The default values given in Table 6 are used with the USB power connection. From Table 7 it is pos-

sible to see that those values limit the USB input current to 95 mA. The maximum charge current in

this case follows Equation 2. However, the maximum charge current cannot exceed the input cur-

rent limit. This means that the USB connection will charge the battery with a maximum charge cur-

rent of 95 mA. A battery charge current measurement setup can be seen in Appendix 3.

If the USB power source was replaced with a DC power source, the DC input current limit would be

set in accordance with Equation 1. From Equation 1 it is possible to see that the maximum DC input

current is 1 A. The maximum charge current follows Equation 2. The DC connection will therefore

have a maximum charge current of ~441 mA and a DC input current of 1 A.

Initialization functions were created to enable the user to set charge current values. Two versions

were created, a 95 mA version and a 475 mA version. When the charge limit was set to 95 mA, the

system charged the battery with an average of 65 mA. When the charge limit was set to 475 mA,

the battery was charged with about 440 mA. This was because the system load was drawing rough-

ly 30 mA to power the functions of the board. The initialization of the ports was done in accordance

with Table 7.

Battery charging can be manually disabled. This is done by setting CEN to 1. If the lithium battery

has been fully charged, the regulator will set DONE to 0. Overcharging lithium batteries can cause

them to swell up and eventually catch on fire. If the thermistor detects temperatures that exceed 75

C in battery discharge mode, OT will be set to 0. When the battery timer expires before prequel or

fast charge is complete, FLT will be set to 0. In this case as well, CEN will be set to 1 and the charg-

ing will be disabled. The regulator is capable of doing this independently. Monitoring the regulator

outputs is important because the processor needs to be aware of possibly dangerous events.

 28 (57)

Special functions were created to control the settings to the regulator. Functions were created to set

and clear the bits of a port. A function for checking a value of a specific bit was also created. These

functions can be seen in Figure 15 and Figure 16.

FIGURE 15 Bit operators

FIGURE 16 Check pin function (Arponen 2014.04.04)

Initialization of the current limits was made with the bit operator functions. The periodic checking of

the power regulator outputs are made with the help of Check_Pin. In order to make the system

modular, some port mapping is required. This is due to the fact that the ports and pins of the sys-

tem may change in future versions. Having a port mapping done in a separate file enables the sys-

tem to be changed easily in the future. The port mapping of the current system can be seen in Fig-

ure 17. After the functions and ports mappings are defined, the desired settings can be easily han-

dled. The initialization of the charge currents is displayed in Figure 18, and it is done in accordance

with Table 7.

FIGURE 17 Port mapping (Arponen 2014.04.04)

 29 (57)

FIGURE 18 Charge limits (Arponen 2014.04.04)

The regulator can intelligently control itself based on the limits it is given. The regulator can turn off

the battery charging, when appropriate, but the application needs to be aware of the state the regu-

lator is in. This is achieved by making global variables that are periodically updated. The global vari-

ables contain all the I/O values of the regulator. The system can then react to changes in the power

settings. For instance, the system can send out a message, or toggle LEDs. If the system detects

that the battery is in discharge mode, it will set THMEN high to enable battery temperature monitor-

ing. While charging the battery, the power regulator is monitoring the temperature automatically.

Figure 19 displays the updating of the global battery variables.

FIGURE 19 Global regulator I/O (Arponen 2014.04.04)

 30 (57)

6 AMBIENT MEASUREMENT SENSORS

6.1 Barometer

A barometer is a device that is used to measure atmospheric pressure. The barometer is made by

Honeywell and it’s a part of their TruStability sensor line. The specific brand of the barometer on the

EVO platform is SSCMNNN015PA3A3. The barometer is a part of the SSC series and its functionality

is based on the piezoresistive phenomenon. Piezoresistive material is a material that changes its re-

sistivity when a pressure is applied to it. The barometer does not require initialization or register

specific instructions. (Honeywell, 2010).

The barometer does not require any initialization from the master. It also does not have any regis-

ters that need to be polled to acquire its measurement data. When the barometer gets a data re-

quest, it makes a new measurement. The barometer only needs to see its address, 0x38, to be writ-

ten into the I2C. Requesting data from the barometer follows the logic displayed in Figure 20. The

I2C_dataWrite is made in such a way that it can be used to write just the slave address on to the

I2C. (Honeywell, 2010).

FIGURE 20 Barometer data request (Arponen 2014.04.04)

Requesting data causes the barometer to power up, make the measurement and start the conver-

sion of the measurement into its output. The conversion typically lasts 36.65 milliseconds and after-

wards new data is ready to be fetched. The measurement data is fetched by I2C_dataRead and the

output is two bytes long. Fetching data from the barometer follows the logic displayed in Figure 21.

FIGURE 21 Barometer data fetch (Arponen 2014.04.04)

 31 (57)

Figure 22 displays how two bytes of barometer data are requested. The address of the barometer is

0x38, and there is no need to write additional data. After the two bytes are read,

I2C_Barometer_datahandler is called by a callback function pointer. Justwrite is set to 0 as we are

requesting data and not writing to the registers.

FIGURE 22 I2C barometer data request (Arponen 2014.04.04)

Timing of barometer measurements is done in accordance with Figure 23. If the counter exceeds

the value calculated from the desired frequency, a barometer measurement request is added to the

function queue.

FIGURE 23 Barometer timer (Arponen 2014.04.04)

The barometer outputs two bytes of data. The data is packed according to Table 8.

TABLE 8 Barometer output

Byte 1

Byte 2

Status Barometer data Barometer data

S1 S0 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

The first two bits are status bits to indicate various faults. These bits are taken into account in the

handling of the data. When both status bits are zero, the device is in normal operation. They can

show if a conversion is not yet ready, or if the device is not working. If the device is working as in-

tended, the status bits are bit masked off of the measurement. Both of the measured bytes need to

be combined so that the measurement can be used. The first byte is bit shifted to the left eight

times and added to the second byte. Then a device specific calculation is performed to transform

the two bytes into an actual barometric value. Figure 24 displays how incoming data is handled in

the barometer specific data handler.

 32 (57)

The two status bits are masked off and the data is combined in accordance to Equation 3. These

equations describe how the measured bytes from the sensor are handled.

Barometer output = ((Byte 1 & 0x3F) ≫ 8) + Byte 2 (3)

The PSI value of the barometric measurement is calculated in accordance with Equation 4.

Papplied =
(

Barometer output∗100%

214 −10%)∗15 PSI

80 %
 (4)

Figure 24 Barometer data handling (Arponen 2014.04.04)

TABLE 9 contains actual measurement data from the barometer. The measurement value for byte 1

is 0x37 and the value for byte 2 is 0x83.

TABLE 9 Example calculation

Byte 1 = 0x37

Byte 2 = 0x83

Status Barometer data Barometer data

S1 S0 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1

Barometer output = ((0x37& 0x3F) ≫ 8) + 0x83 = 0x3783 = 14211

Papplied =
(

14211 ∗ 100%
214 − 10%) ∗ 15 PSI

80 %
≈ 14,388 PSI ≈ 14,4 PSI ≈ 0,99 bar

These calculations are done in accordance with EQUATION 3 and 4. This measurement roughly

equals the pressure of the atmosphere, which means the device is working as intended.

 33 (57)

6.2 Humidity sensor

The humidity sensor measures the humidity of the surrounding air. The same sensor can measure

the temperature of the surrounding air as well. The humidity sensor is a part of the HumidIcon

product line and it is manufactured by Honeywell. The specific brand of the humidity sensor on the

EVO platform is HIH-6130-021-001S. The humidity sensor does not require initialization or register

specific instructions. (Honeywell a, 2012)

The humidity sensor is almost identical to the barometer in its operation. The humidity sensor does

not require any initialization from the master. It also does not have any registers that need to be

polled to acquire its measurement data. The humidity sensor is powered down unless it receives a

measurement request. It only needs to see its address, 0x27, to be written into the I2C. Requesting

data from the humidity sensor follows the logic displayed in Figure 20. The conversion of the meas-

ured data typically lasts 36.65 milliseconds and afterwards new data is ready to be fetched. The

measurement data is fetched by I2C_dataRead and the output is four bytes long. The address of the

humidity sensor is 0x27, no additional data is needed and four bytes are being read.

I2C_Humidity_datahandler designates the callback function for the humidity data. (Honeywell a,

2012)

FIGURE 25 Humidity data request (Arponen 2014.04.04)

Timing of humidity measurements is done in accordance with Figure 26. If the counter exceeds the

value calculated from the desired frequency, a humidity measurement request is added to the func-

tion queue.

FIGURE 26 Humidity timer (Arponen 2014.04.04)

 34 (57)

The humidity sensor outputs four bytes of data. The data is packed according to Table 10.

TABLE 10 Humidity output

Byte 1

Byte 2

Status Humidity data Humidity data

S1 S0 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

Byte 3 Byte 4

Temperature data Temperature data DNC

T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0 x x

The status bits indicate various faults. These bits are taken into account in the handling of the data.

When both status bits are zero, the device is in normal operation. They can show if a conversion is

not yet ready, or if the device is not working. If the device is working as intended, the status bits

are bit masked off of the measurement. Both humidity data bytes need to be combined to so that

the measurement can be used. The last two bits of the fourth byte are DNC bits.

The two status bits are masked off and the data is combined in accordance to Equation 5.

Humidity output = ((Byte 1 & 0x3F) ≫ 8) + Byte 2 (5)

The relative humidity value of the measurement is calculated in accordance with Equation 6.

Humidity (%RH) =
Humidity output

214−2
∗ 100% (6)

Byte 3 needs to be shifted six times to the right because of the DNC bits in the fourth byte. Byte 4

needs to be shifted twice to the left to eliminate the DNC bits. This is done in accordance with Equa-

tion 7.

Temperature output = ((Byte 3 ≫ 6) + (Byte 4 ≫ 2) (7)

The temperature value of the measurement is calculated in accordance with Equation 8.

Temperature (°C) =
Temperature output

214−2
∗ 165 − 40 (8)

FIGURE 27 Humidity data handling (Arponen 2014.04.04)

 35 (57)

Table 11 contains actual measurement data from the humidity sensor. The measured value for byte

1 is 0x08, byte 2 is 0xE4, byte 3 is 0x60 and byte 4 is 0xD8.

TABLE 11 Example calculation

Byte 1 = 0x08

Byte 2 = 0xE4

Status Humidity data Humidity data

S1 S0 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 0

Byte 3 = 0x60 Byte 4 = 0xD8

Temperature data Temperature data DNC

T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0 x x

0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0

These equations describe how the measured bytes from the sensor are handled. They are done in
accordance with EQUATION 5-8.

Humidity output = ((0x08 & 0x3F) ≫ 8) + 0xE4 = 0x08E4 = 2276

Humidity (%RH) =
2276

214 − 2
∗ 100% ≈ 13,893 % ≈ 14 %

Temperature output = ((0x60 ≫ 6) + (0xD8 ≫ 2) = 0x1836 = 6198

Temperature (°C) =
6198

214 − 2
∗ 165 − 40 ≈ 22,426 °C ≈ 22,4 °C

These values were measured inside an office building and they are quite accurate.

 36 (57)

6.3 Accelerometer

An accelerometer is a device that can measure acceleration. The accelerometer used in the EVO

platform is capable of measuring acceleration in three axes. The accelerometer is made by Analog

Devices and its specific brand is ADXL346. The accelerometer is very complex in comparison to the

other sensors. There are many registers that contain different values and the accelerometer can be

used as a control method as well. (Analog Devices, 2010.)

Some of the values in the registers of the accelerometer need to be initialized before the accelerom-

eter begins to function. Initializing is handled by writing all the values with a single I2C_dataWrite.

Initializing the registers follows the logic displayed in Figure 3. The registers of the accelerometer

are described in Table 12. The Read/Write registers are used for settings that define functionalities.

Generally speaking, all the READ ONLY registers are outputs that are generated from the measure-

ments. In its current operation, the orientation of the platform is read from the X, Y and Z statuses.

It is also possible to detect taps of the device. INT_MAP register maps single tap to INT1 and dou-

ble tap to INT2. These are physical output pins that are connected directly to the GS_INT1 and

GS_INT2 pins on the processor. This way we can directly detect taps on processor side. Once a tap

interrupt has occurred, INT_SOURCE must be read to clear the interrupt. The settings for register

values that limit tap detection can be found in APPENDIX 4. (Analog Devices, 2010.)

TABLE 12 Accelerometer initialization

Register
address NAME DEFAULT Initialized Type Note

0x1D THRESH_TAP 0x00 0x30 R/W Threshold for tap detection, 3g.

0x1E OFSX 0x00 0x00 R/W X-axis offset.

0x1F OFSY 0x00 0x00 R/W Y-axis offset.

0x20 OFSZ 0x00 0x00 R/W Z-axis offset.

0x21 DUR 0x00 0x10 R/W Max duration for tap, 10 ms.

0x22 Latent 0x00 0x10 R/W Latency after tap, 20 ms.

0x23 Window 0x00 0x40 R/W Time limit for double tap, 80 ms.

0x24 THRESH_ACT 0x00 0x00 R/W Activity threshold.

0x25 THRESH_INACT 0x00 0x00 R/W Inactivity threshold.

0x26 TIME_INACT 0x00 0x00 R/W Inactivity time.

0x27 ACT_INACT_CTL 0x00 0x00 R/W Axis enable for activity/inactivity.

0x28 THRESH_FF 0x00 0x00 R/W Freefall threshold.

0x29 TIME_FF 0x00 0x00 R/W Freefall time.

0x2A TAP_AXES 0x00 0x07 R/W Include all axes in tap detection.

0x2B ACT_TAP_STATUS 0x00 - R Axis tap status, READ ONLY.

0x2C BW_RATE 0x0B 0x0C R/W 400 Hz mode.

0x2D POWER_CTL 0x00 0x08 R/W Measure mode on.

0x2E INT_ENABLE 0x00 0x60 R/W Enable single and double tap.

0x2F INT_MAP 0x00 0x20 R/W Single tap to INT1, double to INT2

0x30 INT_SOURCE 0x02 - R Interrupt source, READ ONLY.

0x31 DATA_FORMAT 0x00 0x0B R/W full resolution, +-16g.

0x32 DATAX0 varies - R X-axis status x0, READ ONLY.

0x33 DATAX1 varies - R X-axis status x1, READ ONLY.

 37 (57)

0x34 DATAY0 varies - R Y-axis status y0, READ ONLY.

0x35 DATAY1 varies - R Y-axis status y1, READ ONLY.

0x36 DATAZ0 varies - R Z-axis status z0, READ ONLY.

0x37 DATAZ1 varies - R Z-axis status z1, READ ONLY.

0x38 FIFO_CTL 0x00 0x00 R/W FIFO Control.

0x39 FIFO_STATUS 0x00 - R READ ONLY.

0x3A TAP_SIGN 0x00 - R READ ONLY.

0x3B ORIENT_CONF 0x25 0x25 R/W Orientation configuration.

0x3C ORIENT 0x00 - R Orientation, READ ONLY.

Tap detection values are explained in FIGURE 28. Tap threshold is the limit that must be exceeded

before an event will be registered as a tap. Duration is the maximum amount of time an event can

last to be registered as a tap. If acceleration exceeds this time it won’t trigger a tap interrupt. Laten-

cy is an amount of time where no new taps can be detected. Window is a time limit in which another

tap must occur to trigger a double-tap.

FIGURE 28 Tap detection (ANALOG DEVICES, 2010)

Communication to the accelerometer is a bit more complicated than the previous sensors. The ac-

celerometer requires the address of a specific register to be defined. This is due to the fact that

there are over 30 registers on the device. Requesting the value of a specific register follows the log-

ic displayed in FIGURE 29.

FIGURE 29 Accelerometer data request

 38 (57)

Fetching the data is done exactly the same way as the previous sensors. The amount of bytes read

depends on what register is being read. For instance, it is recommended to read both the axis status

bits in orientation measurements. It’s highly useful to read all six axes status registers so the orien-

tation can be accurately used in calculations. An example of a single register read is the reading of

the INT_SOURCE register. This is done to clear tap interrupts. Theoretically it is possible to read all

the registers at once. This could done by setting the amount of bytes to match the amount of regis-

ters on the device. FIGURE 30 displays how six bytes of data starting from register 0x32 are re-

quested. The accelerometer is located in address 0x1D, the register we’re interested in is designated

at axisStatus[1]. The amount of bytes we want to read is six and the callback function is designated

to be specific for the accelerometer.

FIGURE 30 I2C accelerometer register 0x32 request (Arponen 2014.04.04)

Timing of accelerometer measurements is done in accordance with Figure 31. If the counter ex-

ceeds the value calculated from the desired frequency, an accelerometer measurement request is

added to the function queue.

FIGURE 31 Accelerometer timer (Arponen 2014.04.04)

The accelerometers output format varies greatly depending on the register. In this thesis, the most

important outputs were the orientation of the device and the source of the interrupts. The outputs

for these registers are explained in Table 13 and Table 14.

TABLE 13 Interrupt source output

INT_SOURCE

D7 D6 D5 D4 D3 D2 D1 D0

DA-

TA_READY

SIN-

GLE_TAP

DOU-

BLE_TAP

ACTIVI-

TY

INACTIVI-

TY

FREE_FAL

L

WATER-

MARK

OVER-

RUN/ORIENTATION

 39 (57)

TABLE 14 Axis status output

Byte 1

Byte 2

DATAX0 DATAX1

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Byte 3 Byte 4

DATAY0 DATAY1

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Byte 5 Byte 6

DATAZ0 DATAZ1

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

As the tap interrupts are directly connected to the processor, INT_SOURCE register only needs to be

read to clear interrupts after they occur. The detection and handling of the taps is done by the pro-

cessor. GS_INT1 and GS_INT2 are connected to P4IN port on the processor. GS_INT1 is connected

to P4.5 and GS_INT2 is connected to P4.4. The interrupts are handled on processor side according

to Equation 9. If TAP INTERRUPT equals 2, then a single tap has occurred. A value of 3 means a

double tap has occurred. This value can then be used to trigger the reading of INT_SOURCE to clear

the interrupt.

TAP INTERRUPT = P4IN & 0x30 (9)

It is important to note that axis status for each axis is two bytes long. When sending the axis status

information the sensor sends the least significant byte first so the data must be handled in accord-

ance with Equations 10, 11 and 12. The output data is a 16-bit twos complement.

X AXIS =
Byte 2 ≫ 8+Byte 1

256
 (10)

Y AXIS =
Byte 4 ≫ 8+Byte 3

256
 (11)

Z AXIS =
Byte 6 ≫ 8+Byte 5

256
 (12)

 40 (57)

FIGURE 32 Accelerometer data handling

Table 15 contains actual measurement data from the accelerometers axis status registers. The

measured value for byte 1 is 0x11, byte 2 is 0x00, byte 3 is 0x0E and, byte 4 is 0x00, byte 5 is 0xFA

and byte 6 is 0x00.

TABLE 15 Example calculation

Byte 1 = 0x11

Byte 2 = 0x00

DATAX0 DATAX1

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

Byte 3 = 0x0E Byte 4 = 0x00

DATAY0 DATAY1

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

Byte 5 = 0xFA Byte 6 = 0x00

DATAZ0 DATAZ1

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

 41 (57)

X AXIS =
0x00 ≫ 8 + 0x11

256
=

17

256
≈ 0,07

Y AXIS =
0x00 ≫ 8 + 0x0E

256
=

14

256
≈ 0,05

Z AXIS =
0x00 ≫ 8 + 0xFA

256
=

250

256
≈ 0,99

These equations describe how the measured bytes from the sensor are handled. They are done in

accordance with Equation 10-12. The orientation of the accelerometer can be interpreted from Table

16. The measurement was made when the EVO platform was placed flat on the table. Based on this

knowledge the measurement is fairly accurate. Various axis offsets can be calibrated by initializing

the OFSX, OFSY and OFSZ registers in accordance with Table 12.

TABLE 16 Orientation interpretation (ANALOG DEVICES, 2010)

X-axis Y-axis Z-axis Orientation

1 0 0

0 -1 0

0 1 0

-1 0 0

0 0 1

0 0 -1

 42 (57)

7 DEVELOPMENT TOOLS

7.1 Code Composer Studio

Code Composer Studio, CCS, is an integrated development environment (IDE) and it is made by

Texas Instruments. It is used for developing embedded applications on TI-made processor families.

CCS is based on an open source software framework called Eclipse. A free version of the CCS is

available, but it is code-size limited. CCS supports C/C++ languages. The applications made during

this thesis were coded in C.

7.2 Tortoise SVN

Tortoise SVN is an open sourced version control system. It enables users to copy existing projects

into their own workstations. A user can then work on their own copy of the project without altering

the original project. Once a user is done with their work, they can submit their work back to the

shared folder. All versions are stored and it is possible to track the progression of the entire project.

It is also possible to produce various graphs and charts to monitor the branching of the project ver-

sions. During the making of this thesis, the source code was periodically submitted into the Tortoise

SVN version history folder of Medikro Oy. This enabled several useful features. It enabled the stor-

ing of several versions with varying implementations. The best version was naturally always contin-

ued. Tortoise SVN also enabled Medikro employees to review the code to make sure it was up to

their standards.

7.3 Measurement devices

Various voltages and currents were measured while working on this thesis. Multimeters were used

for these measurements. A current voltage setup can be seen in Appendix 3. Voltage measurements

were made to check if the inputs and outputs matched the values they were supposed to be. Cur-

rents were measured to verify that charge currents were limited properly.

 43 (57)

7.4 Realterm

Realterm is a simple serial terminal. Realterm can be used to show communication on the serial line.

It was used to debug the software as all the measurements from the sensors can be sent to the se-

rial. The connection to the EVO platform is opened by first checking what port the platform is con-

nected to. This can be done from Devices and Printers menu. It can also be done in Realterm by

double-clicking the Port drop-down menu. Once the port is selected, it can be opened by pressing

the Open button. Figure 33 displays the Port-page of Realterm. The values seen on the screen are

measurement values from the sensors. First two bytes are from the barometer, following four from

the humidity sensor and the last six from the accelerometer. Realterm was also used to set the EVO

platform into programming state. EVO platform communicates via the USB connection and the de-

vice driver on the PC generates a Virtual Serial Port for communications.

FIGURE 33 Realterm Port select (Arponen, 2014.03.13)

 44 (57)

7.5 MSP430 USB Firmware Upgrade

MSP430 USB Firmware Upgrade is used to upload the code into the EVO platform. The text file con-

taining the code we want to upload is selected by pressing Browse. If the device is not connected or

set to programming state, the program reports that no device is connected.

FIGURE 34 MSP430 USB Firmware (Arponen, 2014.03.13)

Once the device is connected and set to programming state, code can be uploaded by pressing the

Upgrade Firmware button. A successfully uploaded code is displayed in Figure 35. After uploading

the code the device will function with it until a new code is uploaded.

FIGURE 35 MSP430 Firmware upload (Arponen, 2013.03.13)

 45 (57)

7.6 Logicport

Logicport is an extremely useful logic analyser. Various signals can be measured by connecting a

Logicport measurement device into the components. The measurement device is connected to a PC

through a USB-connection and the signals can be followed on a program. This enables the reading

of messages sent on the I2C. The inputs are fully user definable. This makes following the communi-

cation very easy. Figure 36 shows Logicsport’s view of communication on the I2C. We can see that

the communication follows the logic of a measurement request. The device address is 0x1D, so we

know that the device is the accelerometer. The value following the Ack is the register being re-

quested. In this case, it is register 0x32. This register contains values is explained by Table 12.

FIGURE 36 Logicport data request (Arponen, 2014.03.13)

The data fetch following the request is displayed in Figure 37. We can clearly see that the accel-

erometer is outputting several bytes of data. Logic errors in the communication are very easy to see

when using this software.

FIGURE 37 Logicport data fetch (Arponen, 2014.03.13)

 46 (57)

8 RESULTS

The structure of the entire system was made modular by separating the layers of operation. This in-

cluded making new files for each device, as well as separating the entire I2C into its own file. All of

the restructuring was taken into account in the code. The structure model makes it easy to add new

functionality and devices due to the modularity of the software.

The I2C communication functions were created in a way that enables the user to communicate with

any device in the I2C. Setting values to the registers of a device was made possible, as well as read-

ing values from them. The functions were simple and easy to use.

Measurements were made possible by the functions in the I2C layer. Reading and writing to the sen-

sors was made possible. The sensors were initialized by writing values to their registers, if neces-

sary. The values read from the sensors were returned to a device specific data handler. The ambient

conditions were then updated and used in calculations.

Power settings from the regulator were studied and tested. Functions were created to read the out-

puts of the regulator. This enabled the system to know what state the power management is. It was

then possible to take further action, e.g. send a note to the user that the battery is overheating. It is

also possible to control the power settings programmatically.

The timer logic allows functions to be called at a desired frequency. The frequency is calculated

from timer interrupts. This method allows the system to remain interrupt driven. When a measure-

ment time is reached, the function in question is added to the queue. Commands are executed from

the queue based on the timer in a controlled and logical manner.

Queueing function calls functions based on the timer. Several functions can be added to the queue

in the same clock interrupt. Commands are executed from the queue once every clock interrupt.

The queue worked perfectly and allowed flexibility in the timing routine.

 47 (57)

9 DEVELOPMENT IDEAS

In the future, the use of LEDs could be implemented to signal statuses of various inputs and out-

puts. For instance, it could be useful to use the LEDs with the global outputs of the power regulator.

This way the power settings could be monitored, even without having to print the outputs to the PC.

The switches located in the B-side of the EVO platform could be used to control outputs. The

switches can be seen on Appendix 1. For example, these switches could be used to toggle the pow-

er regulator settings. They could also be used to add commands to the command queue. This could

be used in a situation where commands need to be added to the queue manually. Tap interrupts are

cleared by reading the tap source register from the accelerometer. This could be done by the

switch, so that the interrupt is cleared after it has been detected by a user.

The EVO platform contains a Bluetooth communication chip. In the future this chip could be used

for wireless communication. Measurement data could be sent to PC or phone wirelessly. However,

setting up Bluetooth communication needs a lot of work that has to be done.

The wireless power source could also be implemented in the future. This would bring additional flex-

ibility into the power management.

Tap interrupts could be used for control or for discarding data. Tapping a measurement device while

a measurement is being made may alter the results. In this case, it would be wise to discard these

measurements. Taps could also be used for adding commands to the command queue. Tilting the

accelerometer can also be used as an interrupt. All three axes could be used as separate tilt inter-

rupts.

 48 (57)

REFERENCES

ANALOG DEVICES, 2010. ADXL346 Ultralow Power Digital Accelerometer. [Product datasheet].

Available: http://www.analog.com/static/imported-files/data_sheets/ADXL346.pdf

HONEYWELL, 2010 July. TruStabilityTM Silicon Pressure Sensors: SSC Series-Standard Accuracy.

[Product datasheet]. Available: http://sensing.honeywell.com/honeywell-sensing-ssc-silicon-

pressure-sensors-analog-product-sheet-008215-2-en.pdf

HONEYWELL a, 2012 June. I2C Communication with the Honeywell HumidIcon™ Digital Humidi-

ty/Temperature Sensors. [Technical note]. Available:

http://sensing.honeywell.com/i2c%20comms%20humidicon%20tn_009061-2-en_final_07jun12.pdf

HONEYWELL b, 2012 June. Entering and Using Command Mode on the Honeywell HumidIcon™ Digi-

tal Humidity/Temperature Sensors. [Technical Note]. Available:

http://sensing.honeywell.com/command%20mode%20humidicon%20tn_009062-3-

en_final_07jun12.pdf

MAXIM INTEGRATED, 2010. Dual-Input Linear Charger, Smart Power Selector with Advanced Bat-

tery Temperature Monitoring. [Product datasheet]. Available:

http://datasheets.maximintegrated.com/en/ds/MAX8934G.pdf

MEDIKRO OY, 2013 May 31st. Medikro EVO platform. [PowerPoint slides].

NXP SEMICONDUCTORS, 2012 October. UM10204 I2C-bus specification and user manual. [User

manual]. Available: http://www.nxp.com/documents/user_manual/UM10204.pdf

PHILIPS SEMICONDUCTORS, 2003 March. AN20216-01 I2C Manual. [Application Note]. Available:

http://www.nxp.com/documents/application_note/AN10216.pdf

TEXAS INSTRUMENTS, 2014. MSP430™ Ultra-Low-Power Microcontrollers. [Product brochure].

Available: http://www.ti.com/lit/sg/slab034w/slab034w.pdf

TEXAS INSTRUMENTS, 2008 June. MSP430x5xx and MSP430x6xx Family. [User’ Guide]. (Revised

2013 February). Available: http://www.ti.com/lit/ug/slau208m/slau208m.pdf

TEXAS INSTRUMENTS, 2012. MSP430F665X, MSP430F645X, MSP430F565X, MSP430F535X MIXED

SIGNAL MICROCONTROLLERS. [Product datasheet]. Available:

http://www.ti.com/lit/ds/symlink/msp430f5658.pdf

The Function Pointer Tutorials, 2011. [Referenced 27.3.2014]. Available:

http://www.newty.de/fpt/index.html

http://www.analog.com/static/imported-files/data_sheets/ADXL346.pdf
http://sensing.honeywell.com/honeywell-sensing-ssc-silicon-pressure-sensors-analog-product-sheet-008215-2-en.pdf
http://sensing.honeywell.com/honeywell-sensing-ssc-silicon-pressure-sensors-analog-product-sheet-008215-2-en.pdf
http://sensing.honeywell.com/i2c%20comms%20humidicon%20tn_009061-2-en_final_07jun12.pdf
http://sensing.honeywell.com/command%20mode%20humidicon%20tn_009062-3-en_final_07jun12.pdf
http://sensing.honeywell.com/command%20mode%20humidicon%20tn_009062-3-en_final_07jun12.pdf
http://datasheets.maximintegrated.com/en/ds/MAX8934G.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/application_note/AN10216.pdf
http://www.ti.com/lit/sg/slab034w/slab034w.pdf
http://www.ti.com/lit/ug/slau208m/slau208m.pdf
http://www.ti.com/lit/ds/symlink/msp430f5658.pdf
http://www.newty.de/fpt/index.html

 49 (57)

APPENDIX 1: EVO PLATFORM

APPENDIX 1 EVO platform (Arponen, 2014.03.13)

 50 (57)

APPENDIX 2: LOGICPORT CONNECTION

APPENDIX 2 Logicport connection. (Arponen, 2014.03.13)

 51 (57)

APPENDIX 3: BATTERY CHARGE CURRENT

APPENDIX 3 Charge current with 95 mA limit. (Arponen 2014.03.31)

 52 (57)

APPENDIX 4: ACCELEROMETER TAP DETECTION VALUES

Register value
DEC

Register value
HEX

Threshold
(g)

Duration
(μs)

Latency
(ms)

Window
(ms)

0 0x00 0,00 0 0,00 0,00

1 0x01 0,06 625 1,25 1,25

2 0x02 0,13 1250 2,50 2,50

3 0x03 0,19 1875 3,75 3,75

4 0x04 0,25 2500 5,00 5,00

5 0x05 0,31 3125 6,25 6,25

6 0x06 0,38 3750 7,50 7,50

7 0x07 0,44 4375 8,75 8,75

8 0x08 0,50 5000 10,00 10,00

9 0x09 0,56 5625 11,25 11,25

10 0x0A 0,63 6250 12,50 12,50

11 0x0B 0,69 6875 13,75 13,75

12 0x0C 0,75 7500 15,00 15,00

13 0x0D 0,82 8125 16,25 16,25

14 0x0E 0,88 8750 17,50 17,50

15 0x0F 0,94 9375 18,75 18,75

16 0x10 1,00 10000 20,00 20,00

17 0x11 1,07 10625 21,25 21,25

18 0x12 1,13 11250 22,50 22,50

19 0x13 1,19 11875 23,75 23,75

20 0x14 1,25 12500 25,00 25,00

21 0x15 1,32 13125 26,25 26,25

22 0x16 1,38 13750 27,50 27,50

23 0x17 1,44 14375 28,75 28,75

24 0x18 1,51 15000 30,00 30,00

25 0x19 1,57 15625 31,25 31,25

26 0x1A 1,63 16250 32,50 32,50

27 0x1B 1,69 16875 33,75 33,75

28 0x1C 1,76 17500 35,00 35,00

29 0x1D 1,82 18125 36,25 36,25

30 0x1E 1,88 18750 37,50 37,50

31 0x1F 1,95 19375 38,75 38,75

32 0x20 2,01 20000 40,00 40,00

33 0x21 2,07 20625 41,25 41,25

34 0x22 2,13 21250 42,50 42,50

35 0x23 2,20 21875 43,75 43,75

36 0x24 2,26 22500 45,00 45,00

37 0x25 2,32 23125 46,25 46,25

38 0x26 2,38 23750 47,50 47,50

39 0x27 2,45 24375 48,75 48,75

40 0x28 2,51 25000 50,00 50,00

41 0x29 2,57 25625 51,25 51,25

42 0x2A 2,64 26250 52,50 52,50

43 0x2B 2,70 26875 53,75 53,75

44 0x2C 2,76 27500 55,00 55,00

45 0x2D 2,82 28125 56,25 56,25

46 0x2E 2,89 28750 57,50 57,50

47 0x2F 2,95 29375 58,75 58,75

48 0x30 3,01 30000 60,00 60,00

49 0x31 3,07 30625 61,25 61,25

50 0x32 3,14 31250 62,50 62,50

51 0x33 3,20 31875 63,75 63,75

52 0x34 3,26 32500 65,00 65,00

53 0x35 3,33 33125 66,25 66,25

54 0x36 3,39 33750 67,50 67,50

55 0x37 3,45 34375 68,75 68,75

56 0x38 3,51 35000 70,00 70,00

57 0x39 3,58 35625 71,25 71,25

58 0x3A 3,64 36250 72,50 72,50

59 0x3B 3,70 36875 73,75 73,75

60 0x3C 3,76 37500 75,00 75,00

 53 (57)

61 0x3D 3,83 38125 76,25 76,25

62 0x3E 3,89 38750 77,50 77,50

63 0x3F 3,95 39375 78,75 78,75

64 0x40 4,02 40000 80,00 80,00

65 0x41 4,08 40625 81,25 81,25

66 0x42 4,14 41250 82,50 82,50

67 0x43 4,20 41875 83,75 83,75

68 0x44 4,27 42500 85,00 85,00

69 0x45 4,33 43125 86,25 86,25

70 0x46 4,39 43750 87,50 87,50

71 0x47 4,45 44375 88,75 88,75

72 0x48 4,52 45000 90,00 90,00

73 0x49 4,58 45625 91,25 91,25

74 0x4A 4,64 46250 92,50 92,50

75 0x4B 4,71 46875 93,75 93,75

76 0x4C 4,77 47500 95,00 95,00

77 0x4D 4,83 48125 96,25 96,25

78 0x4E 4,89 48750 97,50 97,50

79 0x4F 4,96 49375 98,75 98,75

80 0x50 5,02 50000 100,00 100,00

81 0x51 5,08 50625 101,25 101,25

82 0x52 5,15 51250 102,50 102,50

83 0x53 5,21 51875 103,75 103,75

84 0x54 5,27 52500 105,00 105,00

85 0x55 5,33 53125 106,25 106,25

86 0x56 5,40 53750 107,50 107,50

87 0x57 5,46 54375 108,75 108,75

88 0x58 5,52 55000 110,00 110,00

89 0x59 5,58 55625 111,25 111,25

90 0x5A 5,65 56250 112,50 112,50

91 0x5B 5,71 56875 113,75 113,75

92 0x5C 5,77 57500 115,00 115,00

93 0x5D 5,84 58125 116,25 116,25

94 0x5E 5,90 58750 117,50 117,50

95 0x5F 5,96 59375 118,75 118,75

96 0x60 6,02 60000 120,00 120,00

97 0x61 6,09 60625 121,25 121,25

98 0x62 6,15 61250 122,50 122,50

99 0x63 6,21 61875 123,75 123,75

100 0x64 6,27 62500 125,00 125,00

101 0x65 6,34 63125 126,25 126,25

102 0x66 6,40 63750 127,50 127,50

103 0x67 6,46 64375 128,75 128,75

104 0x68 6,53 65000 130,00 130,00

105 0x69 6,59 65625 131,25 131,25

106 0x6A 6,65 66250 132,50 132,50

107 0x6B 6,71 66875 133,75 133,75

108 0x6C 6,78 67500 135,00 135,00

109 0x6D 6,84 68125 136,25 136,25

110 0x6E 6,90 68750 137,50 137,50

111 0x6F 6,96 69375 138,75 138,75

112 0x70 7,03 70000 140,00 140,00

113 0x71 7,09 70625 141,25 141,25

114 0x72 7,15 71250 142,50 142,50

115 0x73 7,22 71875 143,75 143,75

116 0x74 7,28 72500 145,00 145,00

117 0x75 7,34 73125 146,25 146,25

118 0x76 7,40 73750 147,50 147,50

119 0x77 7,47 74375 148,75 148,75

120 0x78 7,53 75000 150,00 150,00

121 0x79 7,59 75625 151,25 151,25

122 0x7A 7,65 76250 152,50 152,50

123 0x7B 7,72 76875 153,75 153,75

124 0x7C 7,78 77500 155,00 155,00

125 0x7D 7,84 78125 156,25 156,25

126 0x7E 7,91 78750 157,50 157,50

 54 (57)

127 0x7F 7,97 79375 158,75 158,75

128 0x80 8,03 80000 160,00 160,00

129 0x81 8,09 80625 161,25 161,25

130 0x82 8,16 81250 162,50 162,50

131 0x83 8,22 81875 163,75 163,75

132 0x84 8,28 82500 165,00 165,00

133 0x85 8,35 83125 166,25 166,25

134 0x86 8,41 83750 167,50 167,50

135 0x87 8,47 84375 168,75 168,75

136 0x88 8,53 85000 170,00 170,00

137 0x89 8,60 85625 171,25 171,25

138 0x8A 8,66 86250 172,50 172,50

139 0x8B 8,72 86875 173,75 173,75

140 0x8C 8,78 87500 175,00 175,00

141 0x8D 8,85 88125 176,25 176,25

142 0x8E 8,91 88750 177,50 177,50

143 0x8F 8,97 89375 178,75 178,75

144 0x90 9,04 90000 180,00 180,00

145 0x91 9,10 90625 181,25 181,25

146 0x92 9,16 91250 182,50 182,50

147 0x93 9,22 91875 183,75 183,75

148 0x94 9,29 92500 185,00 185,00

149 0x95 9,35 93125 186,25 186,25

150 0x96 9,41 93750 187,50 187,50

151 0x97 9,47 94375 188,75 188,75

152 0x98 9,54 95000 190,00 190,00

153 0x99 9,60 95625 191,25 191,25

154 0x9A 9,66 96250 192,50 192,50

155 0x9B 9,73 96875 193,75 193,75

156 0x9C 9,79 97500 195,00 195,00

157 0x9D 9,85 98125 196,25 196,25

158 0x9E 9,91 98750 197,50 197,50

159 0x9F 9,98 99375 198,75 198,75

160 0xA0 10,04 100000 200,00 200,00

161 0xA1 10,10 100625 201,25 201,25

162 0xA2 10,16 101250 202,50 202,50

163 0xA3 10,23 101875 203,75 203,75

164 0xA4 10,29 102500 205,00 205,00

165 0xA5 10,35 103125 206,25 206,25

166 0xA6 10,42 103750 207,50 207,50

167 0xA7 10,48 104375 208,75 208,75

168 0xA8 10,54 105000 210,00 210,00

169 0xA9 10,60 105625 211,25 211,25

170 0xAA 10,67 106250 212,50 212,50

171 0xAB 10,73 106875 213,75 213,75

172 0xAC 10,79 107500 215,00 215,00

173 0xAD 10,85 108125 216,25 216,25

174 0xAE 10,92 108750 217,50 217,50

175 0xAF 10,98 109375 218,75 218,75

176 0xB0 11,04 110000 220,00 220,00

177 0xB1 11,11 110625 221,25 221,25

178 0xB2 11,17 111250 222,50 222,50

179 0xB3 11,23 111875 223,75 223,75

180 0xB4 11,29 112500 225,00 225,00

181 0xB5 11,36 113125 226,25 226,25

182 0xB6 11,42 113750 227,50 227,50

183 0xB7 11,48 114375 228,75 228,75

184 0xB8 11,55 115000 230,00 230,00

185 0xB9 11,61 115625 231,25 231,25

186 0xBA 11,67 116250 232,50 232,50

187 0xBB 11,73 116875 233,75 233,75

188 0xBC 11,80 117500 235,00 235,00

189 0xBD 11,86 118125 236,25 236,25

190 0xBE 11,92 118750 237,50 237,50

191 0xBF 11,98 119375 238,75 238,75

192 0xC0 12,05 120000 240,00 240,00

 55 (57)

193 0xC1 12,11 120625 241,25 241,25

194 0xC2 12,17 121250 242,50 242,50

195 0xC3 12,24 121875 243,75 243,75

196 0xC4 12,30 122500 245,00 245,00

197 0xC5 12,36 123125 246,25 246,25

198 0xC6 12,42 123750 247,50 247,50

199 0xC7 12,49 124375 248,75 248,75

200 0xC8 12,55 125000 250,00 250,00

201 0xC9 12,61 125625 251,25 251,25

202 0xCA 12,67 126250 252,50 252,50

203 0xCB 12,74 126875 253,75 253,75

204 0xCC 12,80 127500 255,00 255,00

205 0xCD 12,86 128125 256,25 256,25

206 0xCE 12,93 128750 257,50 257,50

207 0xCF 12,99 129375 258,75 258,75

208 0xD0 13,05 130000 260,00 260,00

209 0xD1 13,11 130625 261,25 261,25

210 0xD2 13,18 131250 262,50 262,50

211 0xD3 13,24 131875 263,75 263,75

212 0xD4 13,30 132500 265,00 265,00

213 0xD5 13,36 133125 266,25 266,25

214 0xD6 13,43 133750 267,50 267,50

215 0xD7 13,49 134375 268,75 268,75

216 0xD8 13,55 135000 270,00 270,00

217 0xD9 13,62 135625 271,25 271,25

218 0xDA 13,68 136250 272,50 272,50

219 0xDB 13,74 136875 273,75 273,75

220 0xDC 13,80 137500 275,00 275,00

221 0xDD 13,87 138125 276,25 276,25

222 0xDE 13,93 138750 277,50 277,50

223 0xDF 13,99 139375 278,75 278,75

224 0xE0 14,05 140000 280,00 280,00

225 0xE1 14,12 140625 281,25 281,25

226 0xE2 14,18 141250 282,50 282,50

227 0xE3 14,24 141875 283,75 283,75

228 0xE4 14,31 142500 285,00 285,00

229 0xE5 14,37 143125 286,25 286,25

230 0xE6 14,43 143750 287,50 287,50

231 0xE7 14,49 144375 288,75 288,75

232 0xE8 14,56 145000 290,00 290,00

233 0xE9 14,62 145625 291,25 291,25

234 0xEA 14,68 146250 292,50 292,50

235 0xEB 14,75 146875 293,75 293,75

236 0xEC 14,81 147500 295,00 295,00

237 0xED 14,87 148125 296,25 296,25

238 0xEE 14,93 148750 297,50 297,50

239 0xEF 15,00 149375 298,75 298,75

240 0xF0 15,06 150000 300,00 300,00

241 0xF1 15,12 150625 301,25 301,25

242 0xF2 15,18 151250 302,50 302,50

243 0xF3 15,25 151875 303,75 303,75

244 0xF4 15,31 152500 305,00 305,00

245 0xF5 15,37 153125 306,25 306,25

246 0xF6 15,44 153750 307,50 307,50

247 0xF7 15,50 154375 308,75 308,75

248 0xF8 15,56 155000 310,00 310,00

249 0xF9 15,62 155625 311,25 311,25

250 0xFA 15,69 156250 312,50 312,50

251 0xFB 15,75 156875 313,75 313,75

252 0xFC 15,81 157500 315,00 315,00

253 0xFD 15,87 158125 316,25 316,25

254 0xFE 15,94 158750 317,50 317,50

255 0xFF 16,00 159375 318,75 318,75

APPENDIX 4 Accelerometer tap detection values (Arponen 2014.03.31)

 56 (57)

APPENDIX 5: MSP430 PIN CONFIGURATION

APPENDIX 5 MSP430 Pin configuration (TEXAS INSTRUMENTS, 2012.)

 57 (57)

APPENDIX 5: MAX8934 PIN CONFIGURATION

APPENDIX 6 MAX8934 Pin configuration (MAXIM INTEGRATED, 2010).

