

INTEGRATION BETWEEN WEB

STORE AND WEB SERVICE USING

APACHE CAMEL INTEGRATION

FRAMEWORK

Andrzej Kokoszka

Thesis

May 2014

Degree Programme in Software Engineering

Technology, Communication and Transport

DESCRIPTION

Author(s)

KOKOSZKA, Andrzej

Type of publication

Bachelor´s Thesis

Date

11-05-2014

Pages

69

Language

English

 Permission for web

publication

(X)

Title

Integration between web store and web service using Apache Camel Integration Framework

Degree Programme

Software Engineering

Tutor(s)

Ari Rantala

Assigned by

Descom Oy

Abstract

The main objective of this project was to provide integration for IBM WebSphere Commerce Server

with Itella Media Bank (EMMi) Web Service. The integration concerns the product images available

through web service to be transferred on demand to the WebSphere Commerce file system server.

The communication channel was implemented using Apache Camel integration framework.

This thesis in order to solve the presented issue brings up the topics concerning WebSphere

Commerce server, Java based web services and server application integration. The theoretical basic

part introduces the concept of integration between two server applications and presents the theoretical

solution in the form of enterprise integration patterns. The implementation part goes thoroughly over

the process of implementing the theoretical approach utilizing the Apache Camel integration

framework together with server implementation of the OSGi technology. The solution benefits from

exploiting tools such as Apache Karaf runtime environment and Maven software project

management. The final part of the thesis resolves the obstacles that occurred during thesis project and

focuses on providing an explanation and comment on possibility of progress and further

development.

The result of this thesis project is an application used by IBM WebSphere Commerce Server. The

application works as a standalone product integrating the WebSphere Commerce Application Server

with third party EMMi web service. This application was required by the developers creating

products for customers using EMMi.

Keywords

Integration, web store, web service, Apache Camel, Java, server application

Miscellaneous

1

Contents

1 Need for integration ... 5

1.1 Forward ... 5

1.2 Project goal .. 6

2 WebSphere Commerce .. 7

2.1 E-Commerce ... 7

2.2 WebSphere Commerce architecture .. 8

2.3 WebSphere Commerce application layers ... 9

3 Web Service .. 10

3.1 Service Oriented Architecture (SOA) ... 10

3.2 Web Service application ... 12

3.3 Itella Media Bank (EMMi) Web Service .. 16

4 Apache Camel .. 18

4.1 Overview of Apache Camel integration framework .. 18

4.1.1 Routing and mediation engine .. 19

4.1.2 Domain specific-language ... 21

4.1.3 Enterprise Integration Patterns ... 22

4.1.4 Camel Test Kit ... 28

4.2 Apache Camel runtime environment .. 31

4.2.1 Briefly about Open Service Gateway Initiative (OSGi) 31

4.2.2 Open Service Gateway Initiative implementation .. 33

5 Implementation .. 34

5.1 Setting the environment .. 34

5.2 Dependencies and project structure .. 35

5.3 Generating client-support code from WSDL.. 38

2

5.3.1 WSDL structure ... 38

5.3.2 Maven plugin ... 41

5.4 Creating EMMi web service client ... 43

5.4.1 Analyzing EMMi web service interface specification 43

5.4.2 Logging into EMMi Web Service ... 48

5.4.3 Search Object ... 49

5.4.4 Search Service .. 50

5.4.5 EMMiClient search method ... 52

5.4.6 Image Object ... 53

5.4.7 Generating URL .. 54

5.5 Camel route... 55

5.2 Image download .. 57

5.3 Exception handling ... 58

5.4 Bean Component ... 60

5.6 Camel logic .. 61

5.7 Camel runtime ... 63

5.8 Unit Tests ... 63

6 Results & Discussion ... 66

REFERENCES .. 68

3

FIGURES

Figure 1. Omni-channel (Malmirae, 2014) ... 7

Figure 2. WebSPhere Commerce architecture (WebSphere Commerce common

architecture, 2014) ... 8

Figure 3. WebSphere Commerce application layers (WebSphere Commerce application

layers, 2014) .. 9

Figure 4. Service oriented Architecture communication using Service Bus (ESB) 10

Figure 5. Communication between client and server (Kalin, 2009) 12

Figure 6. SOAP based server and client communication (Kalin, 2009) 13

Figure 7. WSDL Document structure (WSDL, 2011) .. 14

Figure 8. Implementations of Service Oriented Architecture by Web Service (Overview,

2014) .. 15

Figure 9. Itella Media Bank (EMMi) Web Service graphical user interface 16

Figure 10. Example of product image in EMMi Web Service .. 16

Figure 11. Web Service graphical interface representation of search function. 17

Figure 12. Apache Camel integration framework architecture diagram (Ibsen & Anstey,

2011, 15). ... 18

Figure 13. Example of file transfer by Apache Camel routing and mediation engine (Ibsen

& Anstey, 2011, 9). ... 19

Figure 14. Sender and receiver Apache Camel's endpoints diagram (Ibsen & Anstey,

2011, 18). ... 20

Figure 15. Dependency diagram between Producer, Consumer, Endpoint and Processor

(Ibsen & Anstey, 2011, 19. ... 20

Figure 16. Diagram of the Message Channel enterprise integration pattern (EIP, 2004) . 23

Figure 17. Vizualization of message inside message system (Ibsen & Anstey, 2011) 23

Figure 18. Diagram of Message Translator enterprise integration pattern (EIP, 2004) 24

Figure 19. Diagram of Splitter enterprise integration pattern (EIP, 2004) 24

Figure 20. Diagram of Recipient List enterprise integration pattern (EIP, 2004) 25

Figure 21. Diagram of Message Router enterprise integration pattern (EIP, 2004) 26

Figure 22. Diagram of Dead Letter Channel enterprise integration pattern (EIP, 2004) .. 27

Figure 23. Diagram of processing the message (Ibsen & Anstey, 2011, 155) 28

file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738415
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738416
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738416
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738417
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738417
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738418
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738419
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738420
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738421
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738422
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738422
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738423
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738424
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738425
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738426
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738426
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738427
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738427
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738428
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738428
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738429
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738429
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738430
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738431
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738432
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738433
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738434
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738435
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738436
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738437

4

Figure 24. Diagram of test case in Apache Camel (Ibsen & Anstey, 2011, 167) 30

Figure 25. Vizualization of OSGi architecture (Technology, 2014) 32

Figure 26. Ilustration of Apache Karaf structure (Karaf, 2008) .. 33

Figure 27. Creating Camel project in Eclipse integrated development environment using

Maven plugin ... 34

Figure 28. Project's files structure ... 37

Figure 29. List of Web Service client supporting classes ... 42

Figure 30. An algorithm for downloading the image from web service 43

Figure 31. SearchObject class outline ... 49

Figure 32. SearchService class outline .. 50

Figure 33. Diagram of Service Locator Pattern .. 51

Figure 34. Diagram of message flow .. 55

TABLES

Table 1. Web Service method: AuthenticateService

Table 2. Web Service method: SearchFiles

Table 3. Web Service class: SearchCriteria

Table 4. Web Service class: FileElement

Table 5. Web Service class: FileVersion

Table 6. Web Service class: ConversionOption

Table 7. Web Service parameters for image download

file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738438
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738439
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738440
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738441
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738441
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738442
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738443
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738444
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738445
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738446
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738447
file:///C:/Users/akokoszk/Desktop/thesis%20(1)/Doc6.docx%23_Toc387738448

5

1 Need for integration

1.1 Forward

Enterprises face a rapid transformation in modern world. Insatiable demand for improved

customer service along with vast growing business environments inevitably seeks for

comprehensive solution. Integration has emerged as a key to satisfy those demands. The

business processes and applications need to cooperate flawlessly to achieve the goals

imposed by the business industry. Integration has become a critical part of any enterprise

application development effort. (Hohpe, 2002, 1)

The reality of entrusting an entire business entity into the hands of a single application is

in most cases impossible to overcome. Of course, there are already systems that try to

achieve it; however, for most enterprises this simply is not good enough. The main

problem lays in theirs functionality which performs only a fraction of what a typical

enterprise needs. Business functions that are required in typical situations are so complex

and in so many numbers that the only way to fulfill all the needs is to let the multiple

applications spread the responsibility among them. Such a solution allows to decide

which application fits best the requirements for a specific business process and makes it

the one that is entirely responsible for it. What is more, dividing the business application

into small pieces - where each business process responds to separate application - offers a

sufficient amount of flexibility. (Hohpe, 2002, 2)

In order to fully manage those applications, the integration is enforced. The enterprise

applications must be able to exchange data in a secure, efficient and reliable manner and

the integration process is obligated to enable it. Integration solutions are complex systems

that span across many different technologies and levels of abstraction. (Hohpe, 2002, 2)

The thesis aims to point out the issue of integration between two business applications

and presents a valid practical answer. The thesis project is assigned by Descom Oy as a

part of creating a complex enterprise product for one of the company’s clients.

6

1.2 Project goal

The objective of the task to be completed is as follows:

To create an integration application connecting the IBM WebSphere Commerce

application server and the Itella Media Bank (EMMi) Web Service.

The IBM WebSphere Commerce Server is a web store application which by default stores

the images and the other media content on the web server file system. The client uses

EMMi to catalog all of the images required by the web store to properly display the

products. The web service does not provide a way to directly access images via link;

instead, it hands over a web service interface to get the images. The integration

application must be able to transfer those images from web server to the desired location

on the file system server.

The solution is implemented using Apache Camel integration framework and it embraces

the succeeding process:

 Acquiring product credentials for identifying the correct image

 Connecting to the web service

 Searching and generating downloadable link for image

 Transferring the image to server file system

The Apache Camel framework is to be responsible for creating and maintaining the

communication channel between the web store and web service and for the downloading

of the image. The custom web service client is to be created to conduct all the web service

actions including connecting to the web service, searching and generating the link.

The goal is to develop an integration server application that creates and manages the

connection and supports the data transfer between the web store and web service.

7

2 WebSphere Commerce

2.1 E-Commerce

E-commerce is one of the fastest growing businesses in today’s industry. It has emerged

from being a commerce introducing and selling products online to the omni-channel

experience that aims to deliver a smart and seamless shopping experience integrated

across multiple platforms.

The shopping process as known is simply not sufficient. In a world driven by technology

progress the whole trading group from small local merchant to global corporations is

struggling to improve the marketing process efficiency to better meet the changing

environment.

IBM WebSphere Commerce provides a powerful customer interaction platform for cross-

channel commerce.(WebSphere Commerce product overview, 2014)

It is adaptable to fit large enterprises as well as minor businesses. It helps to deploy a

cross-channel strategy by equipping business users with manageable tools. It is possible

to build and conduct marketing campaigns, products, across all sales channels.

Figure 1. Omni-channel (Malmirae, 2014)

8

WebSphere Commerce allow to do business with consumers as well as other businesses

all in one unified platform.(WebSphere Commerce product overview, 2014)

2.2 WebSphere Commerce architecture

The following diagram shows how the components of the WebSphere Commerce

architecture relate to each other.

The heart and core of the Web Sphere Commerce application is the WebSphere

Commerce Server. This entity is deployed inside the WebSphere Application Server

which gives all the benefits and features coming from server applications. The majority of

the data is handled by the Database Server including merchandise and customer data.

The link between the request coming from the outside world and WebSphere Commerce

application is delegated to the Web server. Web server uses WebSphere Application

Server Plug-in to interact smoothly and efficiently with the WebSphere Application

Server. All the changes and development of the application features are implemented by

customizing or adding code to the WebSphere Application Server. WebSphere

Commerce Developer is the one to use when performing those actions. It provides an

Figure 2. WebSphere Commerce architecture (WebSphere Commerce

common architecture, 2014)

9

integrated development environment to modify or create business logic as well as the

appearance of the web site. Rational Application Developer base on Eclipse environment

and the Development datab ase for creating and testing new features. (WebSphere

Commerce common architecture, 2014)

2.3 WebSphere Commerce application layers

WebSphere Commerce defines an application architecture in forms of layers. The

application layers defines what parts of the system are free for developers to modify and

what parts are not. (WebSphere Commerce application layers, 2014)

Models represent the starter store that is available as a model along with the sample data.

Business process is described as a particular flow. The catalog browsing flow or order

processing flow can be an example of a business process. Forms and Views creates a

presentation layer that displays the results such as shopping cart page, registration form or

the product display page. Service Layer exposes the business logic to the outside world.

Business Logic contains the actual functions of the WebSphere Commerce Server.

Adding item to a shopping cart is one of them. Business objects are the Java

representation of the data such as order or person. Database is the product persistence

layer. It stores all the server data. (WebSphere Commerce application layers, 2014)

Models

Business
Process

Forms and Views

Service Layer

Business Logic

Business Objects

Database

Figure 3. WebSphere Commerce application layers (WebSphere Commerce

application layers, 2014)

10

3 Web Service

3.1 Service Oriented Architecture (SOA)

In software development business there has always been a need for creating code that is

extendable, easy to maintain and capable of integrating with other systems. The first

theoretical solution was the modularity. Organizing code into modules fulfill both the

need for low maintaining costs as well as the reusability. For quite some time there was

a belief that object oriented programming could be the answer. Together with software

components that was a natural step from object orientation it could have been the

practical equivalent for modularity. (What is SOA, 2010)

What comes after those two is to consider the best fit for today’s demands. The Service

Oriented Architecture defines the software functionality as a collection of services.

Service Oriented Architecture is a style of architecting applications in such a way that

they are composed of discrete software agents that have simple, well defined interfaces

and are orchestrated through a loose coupling to perform a required function. (What is

SOA)

 Figure 4. Service oriented Architecture communication using Service

Bus (ESB)

11

The services communicate and can be invoked by messages. The messages from different

services are transformed to uniform standard and sent by the Service Bus. (Kodali, 2005)

Those services are the implementation of the individual functions or the business logic of

the application. The service model is based on the request/reply infrastructure. The

loosely coupled structure allows to separate service implementation from the interface.

Each of the services serves as different functionality and is independent from one another.

The services do not require a specific knowledge about other services thus, the

application built from different services can be easily created. (What is SOA, 2010)

All those specifications allow to build a system that is (What is SOA, 2010):

 Platform independent – the service implementation is separate and hidden in

contrary to the interface that is public and available. The service communication is

done by messaging system. This construction allows to use and develop services

despite the underlying system.

 Available – services are platform independent and use message channel

communication, which is why there is no restriction about the service location.

Services do not need to possess the knowledge about other services location they

work with.

 Scalable – because of the platform independent characteristic the services can be

expanded accordingly to needs. There are no limitations of any kind to the service

oriented system. Nevertheless considering the availability of the services there

might be no need for creating systems that accumulate services whereas the

services can exist on its own and still be used.

 Reliable – SOA communication channel bases on messaging. Systems based on

messages provide certain functionality like “deliver only once”, “eliminate

duplicates” “confirms delivery” that guarantee message delivery.

 Manageable – systems build from independent and self-efficient parts like

services are easy to maintain due to the low dependency between components.

12

 Efficiently testable – small parts of the system like services are easy and fast to

test. This helps to achieve more reliable code.

3.2 Web Service application

To fully benefit from service oriented architecture applications, a specific infrastructure is

needed. Such an infrastructure must be built according to the software design principal

which in this case is the SOA. (Kodali, 2005)

One of the technologies that implements the service oriented architecture is the Web

Service.

Web Services are self-contained, modular, dynamic applications that can be described,

located, or invoked over the network to create products and processes. These applications

can be local, distributed, or Web-based. Web services application are typically delivered

over Hyper Text Transport Protocol (HTTP). (What are Web Services, 2014)

Web-based services are published on web servers. A web service client executes the

service functionality over HTTP.

Communication between server and client is based on request/response model. Client

requests the functionality from web service and server responses by invoking required

service. All is done by the HTTP messages. (Kalin, 2009, 1)

HTTP according to its definition is an application-level protocol that is used to transfer

data on the Web (Kristol, 1). When client and server establish a connection, the request

and replies from one to another are sent by HTTP file.

Figure 5. Communication between client and server

(Kalin, 2009)

13

There is more than one type of Web services. The one that will be discussed is also used

in the further part of the thesis. The one in question is the Simple Object Access Protocol

(SOAP)-based type. (Kalin, 2009, 2)

The SOAP-based type web service uses the Extensible Markup Language (XML) type

documents as a message to communicate between client and server. The message

exchange pattern between client and server that is described as request/response is carried

out through SOAP messages. (Kalin, 2009, 2)

In most cases web service client tends to be an application rather than a web browser. The

key feature that puts SOAP type web service before any other is the interoperability. The

interoperability allows clients and servers to operate seamlessly regardless of the

programming languages they were written in or their platform. The server and client can

be written in any language as long as it supports the required libraries.

This language transparency can be achieved by using a mediator that deals with the

differences in data types between the client language and the language that service is

written in. Such an intermediary is the XML technology.

Extensible Markup Language is a language that can be used to create markup languages

for specific applications. It is used to define documents with a standard format that can

be read by compatible applications. (XML, 2014)

XML allows to create sophisticated and service-specified documents that serves as a

SOAP messages during server/client dialect. (Kalin, 2009, 1)

Figure 6. SOAP based server and client communication (Kalin, 2009)

14

As mentioned before web services are mainly used by the dedicated applications. In order

to develop the client application the service must provide a contract that describes its

functionality.

The Web Service Description Language (WSDL) is an XML-based language that defines

what operations, functions or methods are available on the web service. (Kalin, 2009, 31)

The portType entity describes definition for abstract service interface. The service unit

points to the location of the service. The binding define how the service is implemented

and how the client application should interact with it. (Kalin, 2009, 37)

The WSDL file plays an important part in the Universal Description, Discovery and

Integration (UDDI) registry. The UDDI is a platform independent registry where services

are registered. UDDI allows to discover and invoke web services applications. It stores

information about every web service that is signed in. Those information include a web

service interface description in form of WSDL. (Rose, 2005)

Figure 7. WSDL Document structure

(WSDL, 2011)

15

All three technology presented in this chapter are essential parts of SOA infrastructure.

The Web service technology based on those three pieces fulfill the requirements imposed

by the service oriented architecture principals.

Modern software systems work on numerous platforms. Furthermore, the programming

languages used to write those systems keep changing rapidly. This tendency is unlikely to

change mostly because of the technological progress that improves every aspect of

software development.

Web services can undertake those issues directly mainly because of their distinguish

features such as (Kalin, 2009, 3):

 Language transparency – Clients and web services can operate despite their

language difference.

 Modular design – One of the first rule that is arise from the SOA concept is the

modularity. Web services were designed to be modular by means of every benefits

that comes from it (scalability, management, reliability and much more).

 Open infrastructure – Web services use ubiquitous and standardized protocols

among networking, which promotes the cooperation among them.

Figure 8. Implementations of Service Oriented Architecture by Web Service

(Overview, 2014)

16

3.3 Itella Media Bank (EMMi) Web Service

The Itella Media Bank (EMMi) web service is a media service that as explained in project

goal is the third party web service that is supplying the web store with the media content

which specifically is the product images.

The images available through the web service are meant to be integrated with the web

store located on a different server.

Figure 9. Itella Media Bank (EMMi) Web Service graphical user interface

Figure 10. Example of product image in EMMi Web Service

17

Figure 9 and Figure 10 shown in this chapter illustrate the process of searching and

downloading images using graphical user interface available through web browser. To

access the FileElement object, the client application must use the methods of the interface

described by the WSDL file.

Each image inside the system is described by the FileElement class. According to the

specification: File element has one or more links to file versions (class: FileVersion)

which describes a physical file in the filesystem. For downloading the image the file

version and the unique identifier of the image are required. Besides those two values, the

conversion type must also be specified for downloading different image sizes.

By obtaining those three variables together with the web address of the service it is

possible to successfully download image by generating the web link.

In order to acquire those values the FileElement object must be found. The search method

in EMMi web service allow to search using huge amount of criteria; however, to properly

locate the image only the name of the image and EAN code are needed.

The combination of name and EAN code returns the image object. While adopting

concrete processing on the image, the required values can be extracted. After those

actions the image can be downloaded and the service of the EMMi is no longer required.

Figure 11. Web Service graphical interface representation of search function.

18

4 Apache Camel

4.1 Overview of Apache Camel integration framework

Approaching enterprise projects it is considered common practice not to start working

from scratch but use already finished components. Those components - whatever they

might be - combined and joined determine the working product; however, in almost every

case those components were not designed to be working together. Having that in mind it

is decisive to determine the proper integration between components. This is where

Apache Camel comes with a solution.

By definition Apache Camel is an open source integration framework that aims to make

the integration of systems easier. (Ibsen & Anstey, 2011, 1).

The most important feature of the integration systems is the ability to communicate. That

is why the message routing was chosen to be the most important Camel functionality. The

key features that make a difference for Apache Camel are high-level abstraction and

freedom of using any kind of data type. High-level abstraction in Apache Camel is

fulfilled by components. Those components implement huge number of protocols and

data types. What is more the modular architecture components can be created according

to the needs, which eliminates any unnecessary conversions. The figure below picturing

the Apache Camel architecture, shows the modular structure including components,

processors and routes.

Figure 12. Apache Camel integration framework architecture diagram (Ibsen

& Anstey, 2011, 15).

19

As mentioned before, the ability of creating routes for messages is the key. For creating

those routes Camel delivers a domain-specific language. The processors are responsible

for changing and managing the message itself. Components are the bridge between Camel

core and any other systems that needs to be integrated. Those and more are the central

features that will be explained next (Ibsen & Anstey, 2011):

 Routing and mediation engine

 Domain-specific language

 Enterprise integration patterns (EIPs)

 Test kit

4.1.1 Routing and mediation engine

The routing and mediation engine is the core of the Apache Camel. This engine delivers

the basic and most important functionality which is consuming producing and processing

the messages. Precisely this element relies on the developer because what Camel does is

deliver a route engine builder. It is up to the user what routing rules does he/she define

and how the path for message to follow will be implemented.

In Apache Camel terminology the consumer is the component that consumes the message

meaning that it is in the start of the route. The producer on the contrary delivers the

message to its destination point. (Ibsen & Anstey, 2011):

The source and destination for messages are called endpoints. An endpoint is virtual

model at the both ends of the channel, as shown in the figure 14 below.

Figure 13. Example of file transfer by Apache Camel routing and mediation engine

(Ibsen & Anstey, 2011, 9).

20

The message endpoints are the branch for the producers and consumers described above.

The producer and consumer entities associate particular endpoints with the needed data.

Traveling message is able to arrive in particular endpoint due to the producer and data

information. Analogically the process works the other way. When message is being

pulled from the endpoint it is because of the consumer and data payload. (Ibsen &

Anstey, 2011)

The processor is used to manipulate the messages. Technically speaking the producer and

consumer are also processors programmed to work as endpoints. During routing,

messages travel from one processor to another. This architectural solution simplifies

internal message flow by using one type for every message. (Ibsen & Anstey, 2011):

Figure 14. Sender and receiver Apache Camel's endpoints diagram (Ibsen & Anstey,

2011, 18).

Figure 15. Dependency diagram between Producer, Consumer,

Endpoint and Processor (Ibsen & Anstey, 2011, 19.

21

Nonetheless, the processors are mainly used in their true way, by giving the programmer

the access to the message during route flow. In every case there is a need for custom

change of the traveling message somewhere between the nodes. The processor can work

on the message any time during the route:

public class MyProcessor implements Processor {
 public void process(Exchange exchange) throws Exception {
 // do something...
 }
}

The Exchange type is the message type described in the previous paragraph. By making

the message easy to handle through the Exchange type, it is possible to modify it without

any restrictions. Camel does not make any rules and boundaries when it comes to

message handling. Everything that is possible in Java language is welcome here. After all

down beneath it is still the Java Object. After the changes the object is wrapped up by the

exchange type and send further away. (Ibsen & Anstey, 2011):

The endpoints describe the start and finish. Together with processors they transform into

routes. The route is configured using domain-specific language and enterprise integration

patterns.

4.1.2 Domain specific-language

A domain-specific language is a programming language tailored specifically to an

application domain: rather than being general purpose it captures precisely the domain's

semantics. (Spinellis, 2001).

Camel defines a DSL to form a route. Those routes are nothing more than endpoints and

processors connected together.

from("file:data/inbox")

.process("myProcessor")

.to("file:data/outbox ")

A fragment of the code presented above shows the simplest Camel route. The route

contains two endpoints. The consumer starts pulling the messages in this case files from

the specify destination. Those files converted to messages go to the processor that is

22

defined, customized by developer. The changed message finally ends in the second

endpoint which also points to the folder path. This example uses the Java DSL. Camel

delivers also domain-specific language in other languages such as Spring and Scala.

The main advantage of using DSL is the help that user gets by focusing directly on the

connection problem rather than on the tool. Usually routes that are being created are

much more complex that the one introduced here. To help build those routes Camel gives

the full implementation of enterprise integration patterns implanted into the DSL.

4.1.3 Enterprise Integration Patterns

A vast amount of enterprises today struggle with the integration of applications and

business processes. A growing company, changing environment, and more demanding

clients presents some of the many reasons. Enterprises are very often shaped of hundreds

or thousands of applications each customized to fulfill a dedicated task. What is more,

those applications usually came from different vendors in different formats with different

purposes. This may easily advance to corporate mess and spider web of systems that are

impossible to maintain. That is why it is crucial for an integration system to be

lightweight, efficient and clear to those using it. Creating a business oriented

application/system is hard. Many companies have been doing this for quite some time and

have succeeded to the point where particular patterns have emerged. Those patterns have

been cataloged by Gregor Hohpe and Bobby Woolf in their book Enterprise Integration

Patterns – the Book (Hohpe & Woolf, 2004), which consists of 65 enterprise integration

patterns, all of which are available and widely used in Camel applications. In this chapter

some of them will be explained. Because of their number only those used in the project

were chosen.

The basic enterprise design pattern which additionally describes the implemented

architecture is the Message Channel. This pattern directly indicates that the system is

based on message exchange. Such a system comes with many advantages, couple of them

are:

 Data can be sent asynchronously

 Sender communicates with the receiver directly

 Each message can be processed and handled independently

23

The pattern is by default implemented inside Camel. The user does not see it directly

during developing the application. Consumer and producer along with the processor

communicate using message system.

At the core of the message system is the message itself. It is the fundamental entity from

which everything starts. There is no point in creating the message system without the

proper design and implementation of the message.

A message contains of Body and Headers. Headers point directly to the message

properties such as information about content, sender identifiers and many more. There is

no restriction about it. The Body is of Java Object type and it is able story any kind of

content; however, various object data types inherited from Java Object are not the same.

That is why Camel supports numbers of tools to translate the data into adequate format.

The conversion is done automatically under the hood. (Ibsen & Anstey, 2011)

Figure 16. Diagram of the Message Channel enterprise integration pattern (EIP,

2004)

Figure 17. Vizualization of message inside message system (Ibsen & Anstey, 2011)

24

The next important pattern used by the project is the Message Translator. This pattern is

the one to pick when it comes to message operations (Figure 18).

The Message Translator is the pattern responsible for implementation of the Camel

processor. This pattern is important not only for internal communication between nodes

in Camel projects; but, moreover as a solution in connecting systems with different data

formats. In many cases messages are routed between different systems and applications

where each and every one of those has different understanding of corresponding entities.

One application can see a data object through some of its properties whereas another

application through other properties. Usually this is dictated by the underlying data

schema. It is up to the Message Translator to deliver the message that is expected by each

of the application. (EIP, 2004)

Plenty of messages traveling through different applications usually are built of very

complex data types consisting of multiple elements. This introduces the Splitter pattern.

Figure 18. Diagram of Message Translator enterprise integration pattern

(EIP, 2004)

Figure 19. Diagram of Splitter enterprise integration pattern (EIP, 2004)

25

The Splitter pattern allows to split the message into pieces and to handle each of them

separately. This solution may become needed when multiple applications talk to each

other. A message originated from one system may contain numerous objects to be

processed by different systems. The Splitter sends each of the components as a separate.

Following the Splitter pattern there might by cases where there is more than one receiving

system. In this case the best practice is to adopt the Recipient List pattern.

The logic behind the Recipient List pattern indicates that there are multiple receiver

systems that can evaluate the message. It might be used as comparison between systems

with the same functionality. Also, this pattern may serve as notifier, using everyday life

example such as mailing list. An author of the message can specify for each e-mail a list

of recipients. Then it is up to the system to ensure that every message gets delivered

properly to the right address.

Recipient List delivers one more very important functionality, namely, the ability to create

recipients dynamically. It is the most used advantage of using this pattern. Let’s imagine

that there are multiple web pages that the application needs to visit; however, the exact

addresses of those web pages along with all the properties are created during the route.

Figure 20. Diagram of Recipient List enterprise integration pattern (EIP, 2004)

26

The Recipient List can accomplish this issue without using any external tools. This

example is real and was solved in the thesis application.

Yet another integration design pattern that finds its purposes in the project application is

the Message Router pattern (Figure 21).

Message Router similarly to the Recipient List allows for multiple destinations. The main

difference between those two patterns is the prospect of choice. In this pattern the output

for the message can be chosen by evaluating a predicate. The condition statement inside

this pattern decides where to send a message or which path of processors the message

should followed.

from("direct:a")
 .choice()
 .when(header("foo").isEqualTo("bar"))
 .to("direct:b")
 .when(header("foo").isEqualTo("cheese"))
 .to("direct:c")
 .otherwise()
 .to("direct:d");

The actual implementation of this pattern is very simple. The author is obligated to

determine the conditions and output destinations. The condition inside the .when()

Figure 21. Diagram of Message Router enterprise integration pattern (EIP, 2004)

27

function decides which way to push the message. The condition statement is created using

other DSL functions.

In every application one of the developer’s tasks to do is to ensure correct error handling;

especially when one is working with third party web services. Camel implements yet

another integration design pattern that helps to secure this problem. Dead Letter Channel

moves the message to the special channel when it determines that it cannot be delivered.

It is a common issue - especially when it comes to work with third party web services or

any application that communicates through the internet - for requests or replies to get lost

during transition. In most cases a one or more tries of repeating the process fixes the

problem. That is why Dead Letter Channel implements the Redelivery Policy. Redelivery

Policy allows to specify how to redeliver the message:

 Amount of redelivery attempts before sending the message to dead letter queue

 Redelivery timeout

 Possibility of changing the time between redeliveries.

Figure 22. Diagram of Dead Letter Channel enterprise integration pattern

(EIP, 2004)

28

All three options create a delay pattern that can be customized for different receivers. The

application can be suited to the environments and it keeps on trying to redeliver message

or stop and consider the message a failure and send it to the dead letter queue from where

it can be further processed. Dead letter queue can be set to accept all sorts of errors. The

failed message in some cases might by desired, it can be used as a filter when the Camel

route encounters heavy traffic. On the other hand, this pattern must be used with highest

precaution. There is nothing more dangerous for the application than catching an

unwanted error and letting it go without showing any warnings. (EIP, 2004)

4.1.4 Camel Test Kit

Testing is a fundamental part of the developing software process. Applications are tested

all the time during their formation. The first test conducted by the developer is to run the

application and see if the results are as expected.

Figure 23 shows a typical test case. The message is sent to the application, then it is being

transformed according to the specifications and the result which is verified is returned.

This scenario is repeated for every unit test:

1. The expectations are being set up.

2. Message is being sent and starts the test

3. The results are being verified.

Figure 23. Diagram of processing the message (Ibsen &

Anstey, 2011, 155)

29

Those are the three steps that define the unit test. Those are the principals on which

Camel Test Kit was built. Every feature and function should be tested regardless if it is

the integration module or the logic module of the application to ensure that different

components work together. There is always a specification that needs to be followed

which is why testing should be an integral part of every step in creating an application.

especially the one that involves integration.

Camel Test Kit was designed to make unit tests with Camel much easier. It is built on top

of the JUnit framework. JUnit was started by Kent Beck and Erich Gamma (Massol &

Husted, 2004, 4). During the time it has emerged to be the standard for unit testing in Java

applications.

A unit test examines the behavior of a distinct unit of work. Within a Java application, the

“distinct unit of work” is often (but not always) a single method. (Massol & Husted,

2004, 6)

It was created due to the author’s belief that unit testing is important enough that it should

be standardized. Because of the large popularity of the JUnit most of developers that

wrote tests before already are familiar with this framework. Camel Test Kit gives the

tools to test Camel projects and embeds itself on top of JUnit so they use the same

interface. Both of these features significantly ease the process of creating tests for

developer.

The one component that is delivered by the Camel Test Kit and is needs to be pointed out

is the Mock component. Mock component strictly speaking can simulate real

components. It can be useful in many situations. For example, a Camel route is being

built but the message itself does not exist yet. In this situation we can simulate the

message by using the Mock component. It can be useful as well when the real component

is very complex and requires couple some systems to initiate. Then for testing the Camel

parts only the mock is used and do not engage other entities. The Mock component

follows the three steps explained before. (Ibsen & Anstey, 2011)

30

The first point is the set the expectations. The second point is the test started. What

follows is the result being verified. The Mock component simplifies the process of

implementing those steps when testing. It can verify numerous of expectations. The

example below uses the simple route trying to copy files from one direction to the other.

from("file:data/inbox").to("mock:outbox");

The Mock component is used to test this functionality:

@Test
public void testQuote() throws Exception {

MockEndpoint quote = getMockEndpoint("mock:outbox");
quote.expectedMessageCount(1);

template.sendBody("file:data/inbox", "Camel rocks");

quote.assertIsSatisfied();

}

In the above test the Mock component is set as an endpoint and is expected to receive one

message. What follows is the file containing message “Camel rocks” being sent to the

start endpoint. The last part checks if the test was passed and everything worked correctly

or failed and the file was not moved. (Ibsen & Anstey, 2011)

Figure 24. Diagram of test case in Apache Camel (Ibsen & Anstey, 2011,

167)

31

4.2 Apache Camel runtime environment

4.2.1 Briefly about Open Service Gateway Initiative (OSGi)

OSGi technology is a set of specifications that defines a dynamic component system for

Java. These specifications reduce software complexity by providing a modular

architecture for large-scale distributed systems as well as small, embedded applications.

(Technology, 2014)

Modularity in modern software development is an important aspect and it is expected as a

standard for every enterprise environment. Systems built from independent modules

greatly reduce the complexity of the application and save development and maintenance

expenses. The OSGi technology started in 1998 and being a great success is developed

until now by the consortium of the technology innovators called OSGi Alliance. The

motives behind creating this technology were to allow the applications to rise from setting

together different components, each of them without any knowledge about others.

Furthermore, this process was expected to be dynamical. This way of creating

applications significantly reduces complexity and operational costs. The OSGi modular

and dynamic model brings numerous benefits:

 Reduced Complexity – Adopting OSGi technology involves using modules

known as OSGi components. Components communicate over services without

exposing itself.

 Easy deployment – The OSGi technology standardize the managing and installing

the components. Because of the uniform interface OSGi is easy to integrate with

already existing and future systems.

 Reuse – Many third party components can be used in an application. Also open

source projects significantly expand the modules library.

32

The OSGi architecture is illustrated in Figure 25 as follows:

Bundles are earlier mentioned components made by developers. The Service layer

dynamically connects bundles. Life-Cycle is an OSGi interface used to manage and

handle the bundles (update, start, stop uninstall). Modules is the layer responsible for

importing and exporting code for bundle. Security layer is responsible for security

aspects. Execution Environment defines functionality according to specific platform.

In the thesis from the project perspective the two most important layers are the Bundles

and the Services. Bundles are the Java archive file that contains code responsible for some

functionality. Bundles represent the fundamental concept of the OSGi which is

modularity. Modularity by default is about keeping things private. Bundles hide their

code and share only the object functionality. The less the bundles know about each other

the lower the complexity of assembled applications/systems. The only sharing part of the

bundles is to support the Services. The Services helps bundles to collaborate. Each bundle

that creates entities is registered by the services and has access to all other bundles. Such

a process is dynamic and basic for every modular application or system. (Technology,

2014)

Figure 25. Vizualization of OSGi architecture

(Technology, 2014)

33

4.2.2 Open Service Gateway Initiative implementation

Creating an OSGi compatible application means following the OSGi interfaces in

building the application and deploying it into OSGi container. One of the freely available

OSGi implementations serving as a container is the Apache Karaf.

Apache Karaf is a small OSGi based runtime environment which provides a lightweight

container onto which various components and applications can be deployed. (Karaf,

2008)

Apache Karaf supports list of features that are widely used and helps deploying and

maintaining an OSGi type application (Karaf, 2008):

 Hot deployment – Karaf enables hot deployment allowing bundles to be installed

by simply copying the Java archive file into specified directory. It is possible to

perform changes on the file that will be handled automatically.

 Remote access – Karaf gives the ability to operate it by console using remote

client.

 Logging System – The unified logging system supports various different

interfaces

Figure 26. Ilustration of Apache Karaf structure (Karaf, 2008)

34

5 Implementation

The project application described in corresponding chapter reflects and contains all

technical aspects including program code, scripts and print screens of the process and

results; however, certain parts of the code have been concealed and replaced due to

confidentiality concerns at Descom Oy.

5.1 Setting the environment

For creating Camel project as well as any other Java application it is inevitable to use one

of the widely accessible IDEs. Eclipse was chosen not only because it is the most popular

and supported development environment but mainly because the author has used it with

every Java project he has worked on. Eclipse is an open-source integrated development

environment created by IBM and supported by Eclipse Foundation used to develop

application. Enough experience and knowledge were gained to use it freely and to be able

to benefit from every of it features.

Eclipse used during the thesis project was preinstalled with Camel and equipped with

Maven plugin. This configuration is powerful enough to enable to create a Camel project

ready to be deployed in OSGi container.

Figure 27. Creating Camel project in Eclipse integrated

development environment using Maven plugin

35

5.2 Dependencies and project structure

Developing projects that are big enough to include multiple platforms or the ones meant

to work on servers always involve dealing with many externals modules. The dependency

issue on many shared packages or libraries and their versions arises and needs to be

addressed properly.

Maven is a software project management tool that allows to clarify a project’s build.

What follows and is of most importance is dependency management.

<!-- For OSGi bundle -->

 <dependency>
 <groupId>org.apache.felix</groupId>
 <artifactId>org.osgi.core</artifactId>
 <version>1.0.0</version>
 </dependency>

 <!-- JUNIT -->
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>
 <!-- JAXBContext -->
 <dependency>
 <groupId>com.sun.xml.bind</groupId>
 <artifactId>jaxb-impl</artifactId>
 <version>2.2.5</version>
 </dependency>

The code above illustrates several of many dependencies included in the project. All this

information came from the pom.xml file. This file contains the Project Object Model

(POM) of the project and works as a basic unit of work in Maven. Essentially the POM

file stores every important piece of information about the project. Each dependency

figures as a module that is vital for project to be working. With Maven including,

building and automatically updating those libraries is no longer the developer duty.

36

Moreover, Maven is much more than just a project building tool. There are areas of

concern that Maven attempts to deal with:

 Delivery of a uniform build system

 Simplifying the build process

 Modeling based builds

Those are only several of many Maven features. These have been selected due to their

direct influence on the thesis project.

Uniform build system allows to be indifferent on the IDE. More than one developer can

work on code without being forced to use author’s environment and preferences. This

really is a helpful feature considering that properly configured IDE is the first step to fast

and efficient working.

As mentioned before, making the build process easy is an invaluable advantage. It assures

the programmer to focus on creating actual content rather than fixing the building

process.

Model based build allows to build a project into a predefined output type. Maven can be

customized to set the JAR file to be packed as an OSGi bundle. This feature is extremely

useful because it complements with Karaf hot deployment functionality. The JAR file

created from Maven’s build is used by Karaf to install the application without any

additional commands. The plugin responsible for this conversion is shown below.

<plugin>

<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<version>2.3.7</version>
<extensions>true</extensions>
<configuration>

<instructions>
<Bundle-SymbolicName>EMMiWCSAdapter</Bundle-SymbolicName>
<Private-Package>com.descom.camel.commerce.*</Private-Package>
<Import-Package>*</Import-Package>
</instructions>

</configuration>
</plugin>

37

The project structure generated by Eclipse divides the code into three main parts:

 Main

 Resources

 Test

The main part encloses the proper code of the application. All classes are allocated to the

package. This is default for any Java application. The resources folder is the trigger for

the program. The files inside that location are the application’s needed resources. The test

directory has all tests files and classes able to work as a separate application allowing to

run a test without deploying the application to the server. The last file that is worth

mentioning is the Project Object Model file that already has been explained. This file’s

location is directly in the project folder. The Figure 28 illustrates the project files tree.

Figure 28. Project's files structure

38

5.3 Generating client-support code from WSDL

The first step in creating EMMi SOAP client that calls web service is to generate Java

artifacts from WSDL file. The requirement of downloading an image from EMMi web

service forces to create a web service client able to access the service and use it for the

purpose of the goal.

5.3.1 WSDL structure

WSDL document is a contract between a service and a client. The contract provides

information about service endpoint, service operations and data type required for those

operations. The service contract also describes the message exchanged in the service. The

following section represents definitions provided by WSDL (Kalin, 2009, 31):

 The types section provides data type definitions. If this section is empty then the

service uses only simple data types such as string and int. However, in EMMi

case there are several complex data types, for example:

39

<s:element name="AuthenticateService">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="serviceId" type="s:int"/>
 <s:element minOccurs="0" maxOccurs="1" name="userName" type="s:string"/>
 <s:element minOccurs="0" maxOccurs="1" name="password" type="s:string"/>
 </s:sequence>
 </s:complexType>
</s:element>

 The message section defines the message implementing the service. Messages are

constructed from data types.

<wsdl:message name="AuthenticateServiceSoapIn">
 <wsdl:part name="parameters" element="tns:AuthenticateService"/>
 </wsdl:message>

For EMMi service, there are six messages:

 <wsdl:message name="AuthenticateServiceSoapIn">[..]
 <wsdl:message name="AuthenticateServiceSoapOut">[..]
 <wsdl:message name="SearchFilesSoapIn">[..]
 <wsdl:message name="SearchFilesSoapOut">[..]
 <wsdl:message name="SaveFileMetaDataSoapIn">[..]
 <wsdl:message name="SaveFileMetaDataSoapOut">[..]

The In/Out properties come from service perspective which means that an in

message is to the service, whereas an out message is from the service. All those

messages indicate request/response communication and specify the functionality

of the service.

 The binding section is where the WSDL definitions go from the abstract to the

concrete. A WSDL binding is akin to Java implementation of an interface. It also

40

provides important concrete details about the service. It specifies the

implementation details of a service defined abstractly as is shown below

<wsdl:binding name="EmmiSoapSoap" type="tns:EmmiSoapSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="AuthenticateService">[..]
<wsdl:operation name="SearchFiles">[..]
<wsdl:operation name="SaveFileMetaData">[..]

 </wsdl:binding>

The transport protocol for transporting the SOAP messages implementing the

service is used to sending and receiving messages. The value of a transport

element signals that the SOAP messages of the service will be sent and received

over HTTP protocol.

 The service section specifies one or more endpoints at which the service’s

functionality is available. The service section lists ports elements where the port

consists of a portType (interface) together with binding (implementation).

<wsdl:service name="EmmiSoap">

<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
WebService provides basic functions for external use of EMMi service.
</wsdl:documentation>

 <wsdl:port name="EmmiSoapSoap" binding="tns:EmmiSoapSoap">
 <soap:address location="http://localhost/webService"/>
 </wsdl:port>
 <wsdl:port name="EmmiSoapSoap12" binding="tns:EmmiSoapSoap12">
 <soap12:address location="http://localhost/webService"/>
 </wsdl:port>
 </wsdl:service>

As presented above, the WSDL file describes the service functionality in detail. It is

important for further process to be able to read the WSDL file properly and see how and

with what component the service is built. All this information will be later on converted

41

into Java classes and the knowledge about their purpose is crucial for building a client

upon them. (Kalin, 2009)

5.3.2 Maven plugin

The actual process of creating client-support code is hidden from the programmer. It is all

being handled by the project management tool Maven.

The Apache CXF service framework includes a Maven plugin which generates Java

artifacts from WSDL.

<!-- generating Java code from WSDL -->
<plugin>

<groupId>org.apache.cxf</groupId>
<artifactId>cxf-codegen-plugin</artifactId>
<version>${cxf.version}</version>
<executions>

<execution>
<id>generate-sources</id>
<phase>generate-sources</phase>

<configuration>
<sourceRoot>${basedir}/src/main/java</sourceRoot>

<wsdlOptions>
<wsdlOption>
<wsdl>${basedir}/src/main/resources/WSDL/EMMi.wsdl</wsdl>

<extraargs>
<extraarg>-impl</extraarg>
</extraargs>

</wsdlOption>
</wsdlOptions>

</configuration>
<goals>
<goal>wsdl2java</goal>
</goals>

</execution>
</executions>

</plugin>

After project build including the above code, Apache service plugin will generate artifacts

in the sourceRoot. The whole procedure will be specified on the basis of the WSDL file

the location of which needs to be put in wsdlOption. Those two settings along with the

42

CXF version are the basics allowing to proceed without any errors. The result of the

above code that is the whole package of classes shown below:

Figure 29. List of Web Service client supporting classes

43

5.4 Creating EMMi web service client

The support-code generated by Maven along with JAX-WS implementation delivers the

basic functionality of the service, those classes will be used as a starting point in creating

a web service consumer fully benefiting from EMMi inventory.

5.4.1 Analyzing EMMi web service interface specification

The next step is to understand the concepts of EMMi service. Given the WSDL file and

service technical specification the up to bottom approach is required to find exactly how

searching and downloading an image is executed in the service.

Following the given scenario looking from a client perspective, the direct path of actions

can be distinguished in Figure 30:

Log in to service

Search for image

Extract needed properties

Assemble the URL

Figure 30. An algorithm for downloading the

image from web service

44

The first step of the algorithm shown above is performed by the AuthenticateService

method. Authentication verifies user credentials and creates a session after successful

authentication. The return value is an identifier of the created session. If authentication

fails the method throws Soap exception.

Searching for image is the most important functionality of EMMiClient class. It’s the

main purpose of the consumer to be able to locate the proper image and prepare it for

further processing.

EMMi Service method responsible for image searching is SearchFiles method. This

function searches for images with given search criteria resulting with array of

FileElement.

Parameter Description Type

serviceId Identifier of the service to login. Usually 1,

provided by service provider

int

userName User identifier string

Password Password string

Table 8. Web Service method: AuthenticateService

Parameter Description Type

sessionId Valid session identifier provided by

AuthenticateService method

String

serviceId Service identifier. Usually 1 Int

Query Search criterias. Array of

SearchCriteria

Table 9. Web Service method: SearchFiles

45

SearchCriteria is an object used to specify a query. This object together with the text

string as one of arguments creates the done query for SearchFiles method.

SearchableField and StringSearchOption fields are to specify the options for narrowing

down the results of searching. They play a vital role in the searching process. Besides

finding the correct image, it is a must for client searching method to return exactly one

image object.

The image object to which references were made several times is the FileElement in

EMMi service. The FileElement object describes the metadata and possesses a unique

identifier. Each file element has the following properties:

 Name

 Description

 Publish time

All other are optional, however, included

Field Description Type

SearchableField

Information to search

-1 = name -2 = description

-3 = creation time -4 = publish time

-5 = status -6 = keyword

-7 = property field value

-8 = anything -9 = folder id

-13 = modification time -14 = filename

int

StringValues Text criteria. Used when SearchableField is

1, 2, 6, 8, 14 or when SearchableField = 7

and PropertyFieldType is 1, 2, 3, 5, 7, 13

Array of string

StringSearchOption

Text criteria behavior. Must be used always

together with StringValues

-1 = contains

-2 = contains words

-3 = exactly

-4 = begins with

-5 = ends with

int

Table 10. Web Service class: SearchCriteria

46

 Table 11. Web Service class: FileElement

Field Description Type

Id Unique identifier int

PublishStart Publish start time UnixDateTime

PublishEnd Publish end time UnixDateTime

StatusId Status identifier int

CreatorUser Info of user which created

the element

UserInfo

ModifierUser Info of user which made the

most recent change in

element

UserInfo

Name Human readable name MultilingualValue

Description Description MultilingualValue

Created Creation time UnixDateTime

Modified Most recent modification

time

UnixDateTime

Write Indicates if the current user

has the privilege to modify

element

boolean

PropertyValues Additional metadata field

values

Read more

Array of

PropertyFieldValue

Keywords KeywordsRead more Array of Keyword

Links Links to folders Array of LinkItem

ActiveVersion Active version information FileVersion

AllVersionIds Identifiers for all file

versions of element

Array of int

File element has one or more links to file versions which describe a physical file in the

file system. Each file version has a unique identifier. The file version includes all

information about the file.

Field Description Type

Id Unique identifier int

ElementId Identifier of related FileElement int

Extension Filename extension string

Created Creation time UnixDateTime

Size File size in bytes long

PreviewSupported Support for previews boolean

Previews Keys of supported preview settings Array of int

Filename Filename without extension string

CreatorUser Info of user which created the

version

UserInfo

Description Description MultilingualValue

Table 12. Web Service class: FileVersion

47

Conversions Available conversions Array of

ConversionOption

Info Additional info about file if detected FileVersionInfo

Format Additional info about file format FileFormat

The file version might include the defined conversions. ConversionOption is an object

describing a possible conversion of the file version, in other words, an image can be

downloaded in more than one resolution.

When the searching process is complete all needed information for image download are

available:

 Session identifier

 File version

 Conversion identifier

Session identifier value is the result of AuthenticatService method and it is collected

during the login process. The file version can be extracted from File element object which

is the result of SearchFiles method. Conversion identifier is the Id filed from

ConversionOption class and also originates from File element. The last step involves

putting all this data into one URL string as specified below:

Field Description Type

Id Unique identifier int

Original Identifies if this option represents the

original file of FileVersion

boolean

Name Human readable name MultilingualValue

LinkedVersion If NULL, option is automatic conversion,

else option is manually linked to the

described FileVersion

FileVersion

Table 13. Web Service class: ConversionOption

48

5.4.2 Logging into EMMi Web Service

The connecting process is essential for all other operations. Without a valid session

identifier the service cannot be accessed and all following actions are pointless.

This phase was completed using the EmmiSoap and AuthenticateService classes.

EmmiSoap class provides an object that represents endpoint for service. Such object

inherits from javax.xml.ws.Service class and is the client view of a Web service. The code

below illustrates creating the EmmiSoap object and using it to call for authenticateService

method.

public class EMMiClient{

 private EmmiSoap emmiSoap;
 private String sessionId;

public EMMiClient(){

 emmiSoap = new EmmiSoap();
 }

public String connect(String userName, String password) {

sessionId = emmiSoap.getEmmiSoapSoap().authenticateService(1,
userName, password);

 return sessionId;
}

GET parameter Description GET parameter

a Download action = CONVERSION a

s Service identifier. Usually the same that

was used during the authentication.

s

fv Identifier of file version to be

downloaded(FileElement.ActiveVersion.Id)

fv

coid Conversion identifier

(ConversionOption.Id)

Available conversion can be found at:

FileElement.ActiveVersion.Conversions

coid

sid Valid session identifier provided by

AuthenticateService method.

sid

Table 14. Web Service parameters for image download

49

5.4.3 Search Object

In order to process and extract incoming data from WCS a supporting class needed to be

built. The SearchObject class was designed especially for this purpose. It is a small and

simply class that serves as container for options and arguments of an image that need to

be passed on further in the code.

SearchObject class features three string variables and getter and setter methods to those

variables. Those strings represent the basic search unit in EMMi Web Service. For the

basic search there must be defined:

 SearchableField

 SearchOption

 Argument

The searchable field defines what kind of field to search, e.g. “Name”, “Description”.

SearchOption defines how to search the string argument value, e.g. “Contains”,

“Exactly”. Argument represents the string value to be searched. . List of SearchObjects

will be set into array of SearchCriteria class.

Figure 31. SearchObject class outline

50

5.4.4 Search Service

Search Service class is an abstract class that serves as base for every possible combination

of search option and searchable field. While Search Object class is dedicated to be used as

a container for data, the Search Service class is an actual functionality designed for

creating every possible search query. Search query in this case is a mix of argument,

search option and search field.

Search Service allows EMMiClient to build arrays of SearchCriteria that are directly

applied into EMMi searchFiles method. Search Service class objects and methods tree is

shown below.

Search Service class was designed to be a frame for classes that represent values from

search field. Simplifying, each and every option available in search field can be represent

by class in EMMiClient. This approach was achievable by using simplified Service

Locator Pattern.

Figure 32. SearchService class outline

51

The service locator design pattern is used when there is a need to locate various services.

The original service locator pattern makes use of a caching technique, which in this case

is unnecessary due to the fact that search field services do not carry any heavy abilities.

Not only such a solution allows to move from different search field classes dynamically

but also allows to use these classes outside the main module.

For the time being only two SearchService classes have been implemented. In the future

when the search method will need to be even more precise, more searchable field classes

can be implemented very easily because all processing work was moved to SearchService

abstract class.

The SearchOption preference is implemented inside SearchService abstract class.

SearchOption is single type selection and it does not carry any correlation with

SearchableField , which is why it has been decided to treat it as part of it. Together with

argument value SearchableFiled method completes the search unit functionality.

Figure 33. Diagram of Service Locator Pattern

52

5.4.5 EMMiClient search method

The search unit action appears in many-to-one relationship with the search method in

EMMiClient. This search method is parent for all unit actions. The amount of unit actions

depends on inbound data if there are more than one combination of argument,

SearchOption and SearchableField, then there will be more units. For image purposes

two units are sufficient enough to meet the demands.

EMMiClient search method works as an adapter between the SearchObject data,

SearchService process and actual search service in EMMi.

public ArrayOfFileElement search(){

 criterias = new ArrayOfSearchCriteria();

 for(SearchObject o : searchObjects){

 service = lookupService(o.getSearchableFiled());
 service.setArgumentValue(o.getArgument());
 service.setOption(o.getSearchOption());

 criterias.getSearchCriteria().add(service.getCriteria());
 }
return elements = emmiSoap.getEmmiSoapSoap().searchFiles(sessionId, 1,

criterias);
}

Search method extracts data from SearchObject objects and creates and calls for proper

search unit actions. The reason why it is feasible is the service locator pattern; because of

this approach right units can be created quickly and what is most important dynamically:

public SearchService lookupService(String jndiName){

if(jndiName.equalsIgnoreCase("NAME")){
 LOG.info("Looking up and creating a new NAME search class");

 return new SearchByName();
 }else if (jndiName.equalsIgnoreCase("ANYFIELD")){
 LOG.info("Looking up and creating a new ANYFIELD search class");
 return new SearchByAnyField();
 }else{
 LOG.error(jndiName + " search class not found");
 }

53

 return null;
}

The unit with loaded arguments from SearchObject is being turned into SearchCriteria

object. Each unit adds search criteria to the ArrayOfSearchCriteria object which is passed

as an argument to the actual search function in EMMi service. The result from EMMi in

ArrayOfFileElement format is being saved and ends the search process.

5.4.6 Image Object

Image class like the SearchObject class was designed to serve as container, yet for image

data. There is an exact amount of variables needed for generating URL and those are the

content of Image class. Search method returns the the FileFormat type that is too

complex to use deftly. That is why Image class was brought to life.

public class Image {

 private int idOfFileVersion;
 private int conversionIdentifier;
 private String sessionID;

private String base = "http://localhost/file/Download";
 private String and = "&";
 private String sid;
 private String fv;
 private String coid;

 public int getIdOfFileVersion() {[..]
 public void setIdOfFileVersion(int idOfFileVersion) {[..]

 public void setConversionIdentifier(int conversionIdentifier) {[..]
 public int getConversionIdentifier() {[..]
 public void setConversionIdentifier(int conversionIdentifier) {[..]
 public String getSessionID() {[..]

public String URL(){
 return base+and+sid+and+fv+and+coid;
 }
}

Image class poses numerous String values all of which needed to properly create a

downloadable link. All methods are setters and getters including URL() method that

returns fixed link. It is simply enough for a class to know which data is required for

download and sufficient enough to be used inside EMMiClient.

54

5.4.7 Generating URL

The output data that comes from generateURL() method successfully ends the logic

process of acquiring the image.

One of the Image class variables that must be mentioned before explaining how this

method executes is the conversionIdentifier integer. Besides the SearchObject object as

input data there is also the size of the image. Because all methods in EMMiClient work

on internal private variables, different methods can be called independently and in

different parts of the application which is why the size of the image did not have to be

proceed along with other inbound data.

public String generateURL(String size){

 if(size.equalsIgnoreCase("SMALL")){
 LOG.info("Looking up and creating URL for SMALL image");
 image.setConversionIdentifier(2);
 }else if (size.equalsIgnoreCase("MEDIUM")){
 LOG.info("Looking up and creating URL for MEDIUM image");
 image.setConversionIdentifier(8);
 }else if (size.equalsIgnoreCase("LARGE")){
 LOG.info("Looking up and creating URL for LARGE image");
 image.setConversionIdentifier(1);
 }else if(size.equalsIgnoreCase("THUMBNAIL")){
 LOG.info("Looking up and creating URL for THUMBNAIL image");
 image.setConversionIdentifier(12);
 }else{
 LOG.error(size + " Image size string not found");
 }
image.setIdOfFileVersion(elements.getFileElement().get(0).getActiveVersion().g
etId());
 image.setSessionID(sessionId);
 return image.URL();
 }

The above method checks the required size of the image through incoming argument.

According to the value of this argument, a different conversion identifier is signed in to

the Image object. The next value is the id of the file version which essentially is the

unique code that determines the right image. It is being pulled from the “elements”

variable that is the outcome of search method. Session id String text is the last one. The

55

complete URL fulfills the task set to the EMMiClient client. The next parts of the

application do not concern EMMi service any more.

5.5 Camel route

One of the most significant parts of the application is routing. Routing is also considered

as one of the most important features of Camel. Without routing the program will

essentially be a stack of loosely coupled functions. Routing provides the fundamental

ability of moving data across the process pipeline.

The route shown in figure 34 was designed using more than one process. The first part

was to create the main route from first endpoint to the last one on which more details will

be added.

Camel allows to use various methods for creating routes. The one used in the project

adopts Java DSL. The class responsible for building routes in Camel is the abstract

org.apache.camel.builder.RouteBuilder class. For building a custom route the particular

class needs to extend the camel abstract class mentioned previously and implement the

configure method. (Ibsen & Anstey, 2011)

Figure 34. Diagram of message flow

56

The code shown below has been modified due to confidentiality reasons. The changed

parts have been replaced with a sample code defining how the actual data should be

inserted. Any other inconsistence presented below will be explained.

public class AdapterRoute extends RouteBuilder{

 /*
 *
 * (non-Javadoc)
 * @see org.apache.camel.builder.RouteBuilder#configure()
 */

 @Override
 public void configure() throws Exception {

from("file://./inbound/start/?noop=true")

.choice()

 .when(simple("${...}"))
 .to("sftp://username@hostName/directoryName/?options

.when(simple("${...}"))
.to("sftp://username@hostName/directoryName/?options

.when(simple("${...}"))
.to("sftp://username@hostName/directoryName/?options

 .otherwise()
 .to("sftp://username@hostName/directoryName/?options

The main concept of complete route is simple. The source files are consumed by Camel

because of the from method. The to method sends the file away. In Camel terminology

the from method is called the consumer and the to method is called the producer. The

naming conventions may be misleading. To fully understand this concept one has to look

outside the route. The consumer starts the route because it consumes files from source

location. The producer ends the route because it produces the outcome files and sends

them to their final destination. (Ibsen & Anstey, 2011)

The file as well as sftp components implementations allow to be called by URIs. Uniform

resource identifiers are strings of characters used to identify a name of the resource. The

57

file component can pool a file from directory. What is important the file stays in the same

directory unchanged in consequence of noop option. The sftp component is more

complex. It gives the ability to receive, in this case sending files over Secure File Transfer

Protocol. The only obligation using the sftp component is in providing a correct address

and credentials. All trouble of creating and maintaining the connection lies within the

component duty. (Ibsen & Anstey, 2011)

One of the requirements of the application was the ability to download different image

sizes. The Message Router, one of the Enterprise Integration Patterns gives the perfect

solution. According to the predicate expressions that are inside simple function (replaced

by three dots in the code snippet above) the Camel can deliver the message to different

receivers which in this case are different locations for different image sizes on the WCS

file system.

5.2 Image download

The second part of building the route is the implementation of image download process.

After EMMiClient returns the website link the Camel has to take care of actual download

action.

Working on the main route concept there are two patterns that give a suitable solution for

image download.

The first one is the Splitter. Splitter allows to split a message into a number of pieces and

process them individually. This pattern is required for the same reason as the Message

Router. The possibility of downloading more than one image imposes the message to be

split so more than one web link can be executed. (EIP, 2004)

The second solution comes from Recipient List pattern. The recipient List allows to route

a message to a number of dynamically specified recipients. One of the recipients is the

HTTP image server that the image was downloaded from. Recipient List pattern meets

the project needs because the link is created after the routes start. (EIP, 2004)

public class AdapterRoute extends RouteBuilder{
 @Override
 public void configure() throws Exception {

58

from("file://./inbound/start/?noop=true")
.split(body())
.recipientList(body())
.choice()

 .when(simple("${...}"))
 .to("sftp://username@hostName/directoryName/?options

.when(simple("${...}"))
.to("sftp://username@hostName/directoryName/?options

.when(simple("${...}"))
.to("sftp://username@hostName/directoryName/?options

 .otherwise()
 .to("sftp://username@hostName/directoryName/?options

5.3 Exception handling

Another detail that needs to be considered and added to the main route is the download

delay. As specified, one of the problems with downloading image from EMMi service is

the delay caused by the conversion. For some sizes the conversion needs to be done

before the image can be downloaded. Conversion itself is not fast enough to be completed

before the server response is sent and therefore the server returns error, which is why

more than one request to the image server needs to be done.

To overcome this issue the Dead Letter Channel pattern was used. This pattern allows to

perform many redeliveries with custom delay between each of them. The redelivery

policy defines how the message is to be redelivered. Customizable conditions are (EIP,

2004):

 Amount of times the message is attempted to be redelivered before it is

considered a failure

This option allows to set maximum redelivery tries.

 The initial redelivery timeout

The time between every redelivery is set here.

 Whether or not exponential back off is used

The exponential back off is a function that can increase the time between retires.

59

Once all attempts at redelivering the message fail, then the message is forwarded to the

dead letter queue. Dead letter queue is nothing more than a specified location. In this case

it is the local folder.

Before Dead Letter Channel can work, the error response from server needs to be

handled. The Exception Clause can be used to specify error handling. Thus, if certain

exceptions are raised, the specific piece of processing can be performed instead or

reporting error. For Exception Clause to be working onException() method must be

applied; however, this function carries the danger of catching other errors and letting

them pass through unnoticeably. Hence, the conditional statement has been added to

secure the application.

public class AdapterRoute extends RouteBuilder{
 @Override
 public void configure() throws Exception {

errorHandler(deadLetterChannel("file://./inbound/error/?autoCreate=true"));

onException(HttpOperationFailedException.class)

.onWhen(simple("${exception.statusCode} == '591' || ${exception.statusCode}
== '592' || ${exception.statusCode} == '593'"))

.handled(true)

.redeliveryDelay(1000)

.useExponentialBackOff()

.backOffMultiplier(2)

.maximumRedeliveries(13)

.end();

from("file://./inbound/start/?noop=true")
.split(body())
.recipientList(body())
.choice()

 .when(simple("${...}"))
 .to("sftp://username@hostName/directoryName/?options

.when(simple("${...}"))
.to("sftp://username@hostName/directoryName/?options

.when(simple("${...}"))
.to("sftp://username@hostName/directoryName/?options

 .otherwise()
 .to("sftp://username@hostName/directoryName/?options

60

The delay pattern created by the combination of all three Dead Letter Channel features

starts redelivery after one second. The next attempt is performed after two seconds, next

one after four and so on. It stops when it has encountered thirteen trials.

5.4 Bean Component

The last part of the route to be included is the logic part. Beside the parts of the task for

which Camel route was directly responsible the processing logic must also take place on

the pipeline. The messages in some point must be handed to the components that manage

the EMMiClient. Those components are Beans.

Beans are not the only components that allow to transform the data. The reason behind

choosing beans is to reduce coupling. Using beans is a great practice because it allows to

use any Java code and library. Java DSL comes with a special treatment as far as beans

are concerned. Instead of calling methods directly from the route and specifying it

explicitly as the endpoint, it is possible to call it to be reference by inserting the class

name and method name as shown below (EIP, 2004):

public class AdapterRoute extends RouteBuilder{
@Override
public void configure() throws Exception {

errorHandler(deadLetterChannel("file://./inbound/error/?autoCreate=true"));

onException(HttpOperationFailedException.class)
.onWhen(simple("${exception.statusCode} == '591' || ${exception.statusCode}

== '592' || ${exception.statusCode} == '593'"))
.handled(true)
.redeliveryDelay(1000)
.useExponentialBackOff()
.backOffMultiplier(2)
.maximumRedeliveries(13)
.end();

from("file://./inbound/start/?noop=true")

.beanRef("processData", "extractImageProperties")

.beanRef("processData", "connectEMMi")

.beanRef("processData", "searchImage")

.beanRef("processData", "generateDownloadURL")

.split(body())

.recipientList(body())

.beanRef("processData","setImageFileName")

.choice()
 .when(simple("${...}"))
 .to("sftp://username@hostName/directoryName/?options

61

.when(simple("${...}"))
.to("sftp://username@hostName/directoryName/?options

.when(simple("${...}"))
.to("sftp://username@hostName/directoryName/?options

 .otherwise()
 .to("sftp://username@hostName/directoryName/?options

}

}

5.6 Camel logic

The fundamental unit in Camel transmission is the message. These entities are used by

the systems to communicate with each other when using messaging channel. Messages

have a body and headers where the body is of type java.lang.Object and headers are

values associated with the message. The java.lang.Object class guarantees to store any

kind of content. During pushing the message through different beans the exchange

abstractions for modeling message are exploited. This message container provides two

fundamental elements used during routing. In message and Out message. These methods

allow to control input and output messages by modifying the body and headers of the

message. As shown in the route, the processData class handles the Camel logic. Each

method in this class takes control of image accusation using EMMiClient:

public class ProcessDataFile {

private static final transient Logger LOG =
LoggerFactory.getLogger(ProcessDataFile.class);

public void extractImageProperties(Exchange exchange) throws Exception {
 LOG.info("Extracting image properties");
 String [] size = {"large"};
 List<SearchObject> list = new ArrayList<SearchObject>();
 list.add(new SearchObject("Name","Exactly","BROILERIHAMPURILAINEN"));
 exchange.getIn().setHeader("imageSizesToDownload", size);
 exchange.getIn().setBody(list);
}

The extractImageProperties method imitates the starting message by setting the list of

sizes and the list of SeachObjects. The code above has been created as an example

because the original function cannot be shown.

62

public void connectEMMi(Exchange exchange) throws Exception {
 LOG.info("Connecting to EMMi");
 String login = "descom-mhelin";
 String password = "passw0Rd";
 EMMiClient em = new EMMiClient();
 em.connect(login, password);
 exchange.getIn().setHeader("emmiclient", em);

}

The connectEMMi method creates authentications in EMMi service using EMMiClient.

The EMMiClient object is then sent in the message header.

public void searchImage(Exchange exchange) throws Exception {

LOG.info("Searching for image");
 EMMiClient em = (EMMiClient) exchange.getIn().getHeader("emmiclient");
 em.setSearchObjects((List<SearchObject>)exchange.getIn().getBody());
 exchange.getIn().setBody(em.search());
}

The searchImage method looks for image, packs the results in the message body and

pushes it forward.

public void generateDownloadURL(Exchange exchange) throws Exception {
 LOG.info("Generating URL for download");
 EMMiClient emmi = (EMMiClient) exchange.getIn().getHeader("emmiclient");

String[] sizes =
(String[])exchange.getIn().getHeader("imageSizesToDownload");

 List<String> lst = new ArrayList<String>();
 for(String st : sizes){
 lst.add(emmi.generateURL(st));
 }
 exchange.getIn().setBody(lst);
}

The generateDonwloadURL method creates an URL for every size of the image specified

at the extractImageProerties method. The list of URLs is put in the message body. The

body is then examined and processed by .spliy() and .recipentList() functions.

63

public void setImageFileName(Exchange exchange) throws Exception {
String []parts = exchange.getIn().getHeader("Content-
Disposition").toString().split("\"");

 exchange.getIn().setHeader(Exchange.FILE_NAME, parts[1]);
 }
}

The setImageFile extracts data from the Content-Disposition header. This header was set

by the HTTP response from the image server. Based on content the file name is set.

5.7 Camel runtime

All the components and routes are contained within the CamelContext which is the

Camel’s runtime. Because the Camel context is configured by the spring framework it

starts automatically along with any reference routes defines inside. (Ibsen & Anstey,

2011)

<bean id="route" class="com.descom.camel.commerce.route.AdapterRoute" />
 <bean id="processData"
class="com.descom.camel.commerce.bean.ProcessDataFile"/>

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <routeBuilder ref="route" />
 </camelContext>

5.8 Unit Tests

The application tests were performed using Camel test kit. Camel Test Kit is built on top

of the JUnit. JUnit is a Java based framework for unit testing. Being familiar with JUnit

automatically makes one competent enough to write tests for Camel. The Test Kit

delivers special endpoints call Mocks. Mocks can simulate a real component so the actual

source files from WCS are not needed. For mocks to be implanted the special test route

needed to be created (Ibsen & Anstey, 2011):

public class TestRoute extends RouteBuilder{
 @Override
 public void configure() throws Exception {

64

 from("direct:start")
 .beanRef("processData", "extractImageProperties")
 .to("mock:Properties")
 .beanRef("processData", "connectEMMi")
 .to("mock:EMMi")
 .beanRef("processData", "searchImage")
 .to("mock:Search")
 .beanRef("processData", "generateDownloadURL")
 .to("mock:URL")
 .split(body())
 .recipientList(body())
 .beanRef("processData","setImageFileName")
 .choice()

 .when(simple("${"))
 .to("mock:output")
 .when(simple("${...}"))
 .to("mock:output")
 .when(simple("${...}"))
 .to("mock:output")
 .otherwise()
 .to("mock:output");

 from("direct:startWCSConnection")
 .to("sftp://username@hostName/directoryName/?options")
 .to("mock:WCS");

 }

The location of Mock endpoints indicates that every route step has its test. Presented

below ImageServerResponseTest method tests if the response from the image server has

the same type of image it should have:

@Test
public void ImageServerResponseTest() throws Exception{
 LOG.info("TEST: start EMMiResponseTest ");
 MockEndpoint mock1 = (MockEndpoint) context.getEndpoint("mock:output");
 mock1.expectedMessageCount(1);
 mock1.message(0).body().isInstanceOf(java.io.InputStream.class);
 mock1.assertIsSatisfied();
 LOG.info("TEST: EMMiResponseTest:complete");
 }

Another test case analyze if the connection between thesis application and server file

system is establish properly. Without the access to the file system server the application

cannot work because the destination endpoint is invalid.

65

 @Test
 public void connectEMMiTest() throws Exception{

 LOG.info("TEST: start connectEMMiTest");

 MockEndpoint mock1 = (MockEndpoint) context.getEndpoint("mock:EMMi");

 mock1.expectedMessageCount(1);
 mock1.message(0).header("emmiclient").isInstanceOf(EMMiClient.class);

 mock1.assertIsSatisfied();

 LOG.info("TEST: connectEMMiTest:complete");
 }

Beside the Mock’s advantage when it comes to simulating real components, Camel test

can also be run locally and thus relies the application from the necessity of being installed

on a server. The special set up is being conducted to run the test locally:

public class TestCamel extends CamelTestSupport {
@Override
public void setUp() throws Exception {

 SimpleRegistry registry = new SimpleRegistry();
registry.put("processData", new ProcessDataFile());

list = new ArrayList<SearchObject>();
list.add(new SearchObject("Name","Exactly","BROILERIHAMPURILAINEN"));
size = new String[]{"large"};

context = new DefaultCamelContext(registry);

template = context.createProducerTemplate();

context.addRoutes(new TestRoute());

context.start();

}

In tests the new Camel context is being created. The context is filled with route and

registry with processData class. It is started and the results can be seen inside Eclipse

without any server interpose.

66

6 Results and Discussion

The main objective of the thesis project was to deliver a reliable communication channel

between a web store and a web service. The integration application needed to face various

conversions and breakpoints along the route. Most of the burdensome work with

communications was resolved by Apache Camel and its components:

 File Transfer Protocol Component – This component imported into Apache Camel

framework significantly simplifies the process of transferring images into web

store file server system.

 Hypertext Transfer Protocol Component – The image download part of the

process was not be able to perform without this component. Downloading image

was performed by Camel simply by providing this component with the correct

web link. The process of sending a request to the server and fetching the image

was all done “under the hood” without the developer’s contribution.

 Apache Web Service Framework Component - This component took a huge part

in creating and managing the web service client that directly delivered the web

service functionalities. It allowed to create an interface of the web service

functions from the Web Services Description Language which later on turned into

the implementation of those functions. Furthermore, it manages to connect to the

web service each time there is an image request, even right in this moment.

One of the biggest obstacles that was encountered during the process of developing the

application was the web service image conversion. The particular image on web service

had more than one resolution and there were cases where more than one resolution

needed to be downloaded. The problem laid in the conversion that must be done before

downloading, which caused the application to pause and wait.

The solution comes with the Enterprise Integration Patterns. Those design patterns were

used widely during each step of the application working process. Their functionality was

exploited to control the flow of every data object that was moving along the channel. The

conversion problem in particular was solved by creating a combination of delay and

redeliver patterns that successfully united the control of the waiting action.

67

The thesis project was designed to follow the Service Oriented Architecture. It was built

in consequence of abiding the modularity pattern. That is why the web service client is

able to work separately, outside the Apache Camel route. This feature was sought by the

other Descom employees who are working with this client.

The web service client was built inter alia to search for a particular image; however, it

was designed to do much more. The modular and service oriented interface of the client

allows for further development. More functions with more search criteria are to be

implemented in an easy and simple way.

Without any questions, the integration development takes a notable role when it comes to

e-commerce. The number of different software and vendors still grows, which even more

assures the need for integration. The combination of Apache Camel integration

framework together with WebSphere Commerce Server application may bring the correct

answer for the industry’s growing needs.

68

REFERENCES

EIP, 2004. Enterprise Integration Patterns. Article on Apache Camel website. Accessed

18.2.2014. Retrieved from https://camel.apache.org/enterprise-integration-patterns.html

ESB, n.d. Article about Enterprise Service Bus posted on centeractive portal. Accessed on

10.3.2014. Retrieved from http://www.centeractive.com/content/enterprise-service-bus

Hohpe, G. 2002. Enterprise Integration Patterns. Accessed on 6.3.2014. Retrieved from

http://hillside.net/plop/plop2002/final/Enterprise%20Integration%20Patterns%20-

%20PLoP%20Final%20Draft%203.pdf

Ibsen, C., Anstey, J. 2011. Camel in Action. Manning Publications Co.

Kalin, M. 2009. Java Web Services: Up an Running. Published by O’Reilly Media Inc.

Karaf, 2008. Article about Apache Karaf. Accessed on 17.2.2014. Retrieved from

http://karaf.apache.org/index.html

Kodali, R. 2005. What is service-oriented architecture. Accesed on 10.3.2014. Retrieved from

http://www.javaworld.com/article/2071889/soa/what-is-service-oriented-architecture.html

Kristol, D. n.d HTTP. Silicon Press. Accessed on 13.3.2014. Retrieved from http://www.silicon-

press.com/briefs/brief.http/brief.pdf

Malmirae, P. 2014 Future of Commerce. Internal presentation in Descom Oy. Accessed on

12.3.2014

Massol, V., Husted, T. 2004. JUnit in Action. Manning Publications Co.

Overview, 2014. Article posted on the IBM Info Center. Accessed on 12.3.2014. Retrieved from

http://pic.dhe.ibm.com/infocenter/adiehelp/v5r1m1/index.jsp?topic=%2Fcom.ibm.etools.scenario.

hospital.doc%2Fhtml%2Fzxmlovr.htm

Rose, M. 2005. UDDI (Universal Description, Discovery and Integration).Accesed on

12.3.2014. Retrieved from http://searchsoa.techtarget.com/definition/UDDI

Spinnelis, 2011. Notable Design Patterns for Domain-Specific Languages. Accesed on 7.3.2014.

Retrieved from http://www.spinellis.gr/pubs/jrnl/2000-JSS-DSLPatterns/html/dslpat.html

Technology, 2014. Article on OSGi Alliance web site. Accesed 19.2.2014. Retrieved from

http://www.osgi.org/Technology/HomePage

WebSphere Commerce application layers, 2014. Accessed on 12.3.2014. Retrieved from

http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.developer.doc/conce

pts/csdapplication.htm

WebSphere Commerce common architecture, 2014. Article posted on the IBM Info Center page.

Accessed on 12.3.2014. Retrieved from

http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.developer.doc/conce

pts/csdsoftwarecomp.htm

https://camel.apache.org/enterprise-integration-patterns.html
http://hillside.net/plop/plop2002/final/Enterprise%20Integration%20Patterns%20-%20PLoP%20Final%20Draft%203.pdf
http://hillside.net/plop/plop2002/final/Enterprise%20Integration%20Patterns%20-%20PLoP%20Final%20Draft%203.pdf
http://karaf.apache.org/index.html
http://www.javaworld.com/article/2071889/soa/what-is-service-oriented-architecture.html
http://www.silicon-press.com/briefs/brief.http/brief.pdf
http://www.silicon-press.com/briefs/brief.http/brief.pdf
http://searchsoa.techtarget.com/definition/UDDI
http://www.spinellis.gr/pubs/jrnl/2000-JSS-DSLPatterns/html/dslpat.html
http://www.osgi.org/Technology/HomePage
http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.developer.doc/concepts/csdapplication.htm
http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.developer.doc/concepts/csdapplication.htm
http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.developer.doc/concepts/csdsoftwarecomp.htm
http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.developer.doc/concepts/csdsoftwarecomp.htm

69

WebSphere Commerce product overview, 2014. Accessed on 12.3.2014. Retrieved from

http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.admin.doc/concepts/

covoverall.htm

What are Web Services, 2014. One of the tutorialspoint’s portal articles. Accesed on 11.3.2014.

Retrieved from http://www.tutorialspoint.com/webservices/what_are_web_services.htm

What is SOA, 2010. Article about Service Oriented Architecture by IWD Services. Accesed on

10.3.2014. Retrieved from http://www.indiawebdevelopers.com/resource_center/articles/soa.html

WSDL, 2011. Example tutorial on teqlog portal. Accessed on 12.3.2014. Retrieved from

http://www.teqlog.com/wsdl-example-explained-step-by-step.html

XML, 2014. Article on TechTerms portal. Accesed on 14.3.2014 Retrieved from

http://www.techterms.com/definition/xml

http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.admin.doc/concepts/covoverall.htm
http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.admin.doc/concepts/covoverall.htm
http://www.tutorialspoint.com/webservices/what_are_web_services.htm
http://www.indiawebdevelopers.com/resource_center/articles/soa.html
http://www.teqlog.com/wsdl-example-explained-step-by-step.html
http://www.techterms.com/definition/xml

