

WEB-BASED DEVICE RESERVATION
SYSTEM FOR JYVSECTEC

Flórián Ákos Szabó

Bachelor’s Thesis
May 2014

Degree Programme in Software Engineering
School of Technology, Communication and Transport

DESCRIPTION

Author(s)

SZABÓ, Flórián Ákos

Type of publication

Bachelor´s Thesis

Date

7.05.2014

Pages

61

Language

English

 Permission for
web publication

(X)

Title

Web-based device reservation system for JyvSecTec

Degree programme

Software Engineering

 Tutor(s)

SALMIKANGAS, Esa

Assigned by

SILOKUNNAS, Marko
Jyväskylä Security Technology

Abstract

This thesis presents a project for developing a web application to be used for reservation of
devices inside Jyväskylä Security Technology. The purpose of the project was to develop
the server application and this thesis describes the process of development.

The first chapter of the thesis describes the background of the thesis, and lists the
objectives and requirements for the application to be developed. The second chapter covers
part of the theoretical knowledge required to implement the project. The remaining chapters
deal with the actual implementation and testing of the web server, the database and client
side implementation.

The result of the thesis is a functioning web application that can be utilized to make
reservations for the devices. The end result was reviewed and accepted by the supervisors
of the thesis and practical training, although there is still room for improvement.

Keywords

Go programming, Web development, REST, JavaScript, jQuery, HTTPS, cookie

Miscellaneous

1

CONTENTS
 Figures

 Acronyms

1 Introduction
 1.1 Jyväskylä Security Technology ... 5
 1.2 Objectives ... 5
 1.3 Requirements for the application ... 8

2 Theoretical background

2.1 Web development ... 10

2.2 Go programming language.. 12

2.3 HyperText Transfer Protocol ... 15

2.4 Session management via HTTP Cookies 18

2.5 HyperText Markup Language .. 20

2.6 Cascading Style Sheets .. 21

2.7 JavaScript ... 22

2.8 jQuery ... 24

2.9 SQLite Database ... 27

2.10 Representational State Transfer ... 28

3 The Database

3.1 Structure and layout of the Database 31

3.2 Managing the Database in Go ... 35

4 The Web server

4.1 Laying down the base of the Web server 38

4.2 URL handling by writing functions ... 39

5 The REST-like API

 5.1 Resources and operations .. 41

5.2 Implementing the REST handler functions 43

6 Client side implementation

6.1 Login page .. 46

6.2 Page for making reservations .. 47

6.3 Utilizing the REST API through JavaScript.............................. 50

7 Testing

7.1 Browser compatibility testing .. 52

7.2 Security testing ... 53

7.3 Load testing .. 54

8 Results

9 Conclusion

 References

2

FIGURES

Figure 1 - Overview of the structure of the whole system. 5

Figure 2 - Reservation system architecture. ... 7

Figure 3 - The basic model of requesting a web page using a browser. 15

Figure 4 - Example demonstrating CSS use case. ... 22

Figure 5 - jQuery Datatable plug-in example. ... 26

Figure 6 - Showing the initial layout of the database. 31

Figure 7 - Showing the current layout of the database. 32

Figure 8 - Example of an SSL certificate warning. .. 41

Figure 9 - Reservation system login page. ... 48

Figure 10 - Checking passwords using jQuery. .. 49

Figure 11 - Reservation page overall look. ... 50

Figure 12 - Selecting the method to be performed ... 50

Figure 13 - Example of how a reservation can be added. 51

Figure 14 - Example of jQuery Datepicker user interface. 52

Figure 15 - Example of the UI glitch found when testing in Internet Explorer 11 54

Figure 16 - Result of first ‘ab’ benchmark. .. 57

Figure 17 - Results of second ‘ab’ benchmark with increased concurrency. .. 57

3

ACRONYMS

AJAX Asynchronous JavaScript and XML, is a technique for creating

 fast and dynamic web pages.

API Application Programming Interface, is a set of functions and

 procedures that allow the creation of applications which

 access the features or data of an operating system,

 application, or other service.

CA Certificate Authority, is an organization that issues digital

 certificates.

CDN Content Delivery Network, is a large distributed system of

 servers with the goal to serve content to end-users with high

 availability and high performance.

CSS Cascading Style Sheets, a style sheet language used for

 describing the presentation semantics of a document written

in a markup language.

DOM Document Object Model, is an application programming interface

 for HTML and XML documents.

HTML HyperText Markup Language, is a standardized system to

 transfer information of web pages across the internet.

HTTP HyperText Transfer Protocol, is an application protocol used

 most of the time for transferring web pages over the internet.

JS JavaScript, a scripting language used by browsers.

JSON JavaScript Object Notation, is a format that uses human-

 readable text to transmit data objects across the network.

REST Representational State Transfer, a set of constraints that

 define a software engineering style popular in web

 development.

SSL Secure Sockets Layer, is a protocol providing secure

 transmission over an unsecure network.

TCP/IP Transmission Control Protocol/Internet Protocol, is a set of

 communications protocol used to connect hosts over the internet

TLS Transport Layer Security, is a protocol that ensures privacy and

 security over the internet.

URI Universal Resource Identifier, is a string which is used to

 identify resources over the internet.

4

URL Universal Resource Locator, is a string which is used to locate

 resources on the internet.

XML Extensible Markup Language, is a markup language designed

 to carry data across a network.

5

1 Introduction

1.1 Jyväskylä Security Technology

Jyväskylä Security Technology (JyvSecTec) is a development project

coordinated by JAMK University of Applied Sciences (JAMK). It was founded

in September, 2011 to kick-start information security development and

research projects in Central Finland. A so called Realistic Global Cyber

Environment has been developed, in short RGCE, which enables cyber

security development, testing and later the possibility to offer training services

in this specific field. (“Introducing JyvSecTec”, 2013)

The RGCE environment has been created as a scaled down version of

today’s Internet with as similar structure as possible. It contains network

operators and Internet Service Providers, in short ISP-s, offering their services

offered (e.g. Domain Name System, e-mail system) to the customers. This

scaled down version of the Internet enables research and development as if it

was carried out in the real world on real equipment using the existing

infrastructure, but without the risk of disrupting the public services. It can

simulate realistic corporate networks and ISP environments and enable

testing these services against real threats and provide possible solutions to

existing problems. (“Introducing RGCE”, 2013)

1.2 Objectives

The foundation for this thesis came from the time I spent at Jyväskylä Security

Technology as part of the practical training period. I joined a project called

Proxy which is a very complex project and this thesis only covers one part of

it.

The idea for this project came from the possible need to offer training services

in the future to students of JAMK University of Applied Sciences as well as

companies interested in it.

6

The project consists of three parts. The Proxy server itself is the main part

holding the system together. The other two parts: the Configurator system and

the Reservation system. The later one, the Reservation system is the one

which was developed during the practical training period. In Figure 1 an

overview of the system is presented.

Figure 1: Overview of the structure of the whole system.

A possible user scenario is studied below as follows:

 A user wants to use the training services offered by JyvSecTec. First,

the user has to log in to the ‘Reservation System’ (nr. 1. on Figure 1.)

and make a reservation for the Networking devices needed for a

specific period of time. This part is done by communication with the

Reservation system’s web server through a web browser. Here the user

can make a reservation for a set of devices, each with the selected

configuration. If successful, this reservation will be stored in the

database.

7

 After the reservation has been placed, the ‘Proxy Server’ has to make

sure that the devices are pre-configured in time before the reservation

begins. This is the accomplished by communicating with the

‘Configurator’ (nr. 2. on the Figure 1.), which will then configure the

devices before the reservations starts.

 Finally, when everything is ready, and the devices are configured

before the reservation begins, the user is able to log in to the

Networking devices during the reservation through the ‘Proxy Server’

(nr. 3. on the Figure 1.).

Although this thesis is only concerned with the implementation of the

‘Reservation system’, the overall functioning is described shortly in the next

paragraphs.

The component of the system called ‘Proxy Server’ deals with connecting

users to the ‘Networking devices’. This can be done in two ways: using the

Telnet or the Secure Shell (in short SSH) protocols. The first one, Telnet, is

not secure, because it sends the traffic across the network without encryption

and authentication, so it can only be used internally between the ‘Proxy

Server’ and the ‘Networking devices’ where hijacking the connection can only

be done if the attacker has physical access to the equipment. Since the users

may come from the “outside world”, considering from JyvSecTec’s point of

view, a secure protocol has to be used to connect to the ‘Proxy Server’, and

therefore it is required that SSH is used. After the connection is established

between the ‘User’ and the ‘Proxy Server’, it is the server’s responsibility to

translate between SSH and Telnet in both directions when the communication

is established.

The ‘Configurator’ is the part which deals with configuring the ‘Networking

devices’ in time before a specific reservation starts. It is using the database

managed by the ‘Reservation system’ to accomplish its tasks.

8

The ‘Reservation system’ is the main part that was implemented throughout

the practical training period. The end result is a web application which uses

the REST API exposed by the server to view, make, update and delete

reservations. The overview of the architecture of the Reservation System is

presented in Figure 2.

Figure 2. Reservation system architecture.

The system components, like the REST API, or the SQLite Database, are

discussed in later chapters. The server-side programming was done in

Google’s Go programming language, and the client-side programming is

achieved with a combination of HTML, CSS, and Javascript. These topics are

also discussed in later chapters.

1.3 Requirements for the application

Before the development of a system can be started, the details and objectives

have to be clarified, so that appropriate constrains can be set up for the end

result.

9

Authenticating the user before the system can be accessed was a clear

requirement right from the start. This means there has to be user accounts,

which can be used to access the Web application. Also, different user levels

are needed. There need to be ‘administrator’ and ‘normal’ user level.

Administrators can do basically anything, while normal user accounts have

restrictions, for example, they can only modify or delete their own reservation.

The communication between the user and the server needs to be secure,

which means it has to use Secure HTTP / HTTP over TLS. This means traffic

is encrypted between the client and the server.

The server needs to provide a so called REST API which allows the client to

be kept as simple as possible, and also it means that if needed new type of

clients can utilize this API (e.g.: Android application which was written to use

this API).

Once the user has authenticated and logged in to the system, it has to be able

to create a reservation for a given period of time for a set of devices with

predefined configurations to be loaded to those devices. The server has to

make sure that there are no conflicts between two existing reservations.

Since this system is developed to be used by humans, there are some

functional requirements as well, like a good looking user interface, and easy to

use functionalities.

10

2 Theoretical background

The following chapters and paragraphs discuss the theoretical knowledge that

was necessary in order to make this Web based Reservation system work

correctly.

2.1 Web development

Web development or web programming is an area in Software development

specifically dedicated to produce content which then can be accessed through

the Internet using a web browser.

Web development itself has separate sub-fields like web-design which

focuses more on the visual manifestation of a webpage, and web-

programming which more or less focuses on the underlying architecture that

serves and generates the content to be displayed. For larger companies, the

web-development team can consist of hundreds of people, while smaller

organizations may only need a single webmaster who oversees the operation

of the organization’s websites. (“Web development”, 2014)

In the early days of the Internet around the mid 90s, which era is also called

Web 1.0, web development was very different. Web servers served static web

pages which the user could only view and not contribute to. Information was

not dynamic; it was updated only by the webmaster. The users were only

consuming the content. (“Web 1.0”, 2014)

Then, with the introduction of the so-called Web 2.0 technologies and the

commercialization of the Internet, many things have changed. Web

development has become a growing industry pushed by businesses trying to

sell products and services to consumers online. Web servers no longer served

only static web pages. The content became dynamic and now users are able

to contribute to the web pages. Social media have also had a huge impact on

11

the web. Web 2.0 sites allow users to communicate and collaborate with each

other, it allows users to do much more than just retrieve information. User

experience has become much richer and responsive to input. (“Web 2.0”,

2014)

For a better understanding of web development, it can be divided into two

main areas:

 Client side coding: this part is mainly concerned with how the content is

presented to the end-user. It uses technologies like HTML, CSS,

JavaScript, jQuery, AJAX, Adobe Flash, Microsoft Silverlight etc. Some

of these technologies are discussed later in this document. (“Web

development”, 2014)

 Server side coding: this part of web development is used to provide

backend services on which client-side programming can rely. The main

programming languages are Java, PHP, Python, Ruby, .NET and

Golang. From these languages Golang will be discussed later because

that was the chosen language for implementing this project. (“Web

development”, 2014)

As the reader can see, there are many options in both categories which can

be combined in multiple ways in order to achieve the goals of certain projects.

This abundant number of possibilities means that careful planning is needed

before deciding which technologies to combine with each other because

certain tools work best with certain other tools. This needs the web developer

to be up-to-date on a wide range of old and new technologies however hard it

can be. Choosing the right technology for our purposes can pose a major

challenge in some cases, thus it requires careful consideration of all

possibilities before settling on which to use.

12

2.2 Go programming language

On server-side, a system using the Go programming language was

implemented, therefore in this chapter the language is introduced with some

detail on what parts of it were specifically used when implementing the server.

Go, its other name Golang, is a programming language developed by a team

at Google. The development itself started in September 2007, however the

first version was released only in November 2009. Despite the fact that it is a

newly developed programming language it has already gained significant

attention by the developer community around the world. (“Go history”, n.d.)

Go was born out of frustration with existing languages and environments for

systems programming. Programming had become too difficult and the choice

of languages was partly to blame. One had to choose either efficient

compilation, efficient execution, or ease of programming; all three were not

available in the same mainstream language. Programmers who could were

choosing ease over safety and efficiency by moving to dynamically typed

languages such as Python and JavaScript rather than C++ or, to a lesser

extent, Java. (“Go history”, n.d.)

The authors of the language are: Robert Griesemer, Rob Pike and Ken

Thompson. Ken was already involved in developing B, the predecessor of the

C programming language which is still used in many parts of the world today.

Ken and Rob worked together in the past at Bell Labs (“About Ken

Thompson”, 2014). These people joining forces again at Google was bound to

mean something great will follow, and it did: the Go programming language

was created.

Go was created to make development in large scale more productive and it

was designed to address the problems faced in software development at

Google, which led to a language that is not a breakthrough research language

13

; however it is nonetheless an excellent tool for engineering large software

projects.

Concurrency is important to the modern computing environment with its

multicore machines running web servers with multiple clients, which might be

called the typical Google program (“Go at Google”, Pike, 2014). Go is

specifically designed for web server programming which was one of the

reasons why it was chosen for implementing this project. Here is a simple web

server which will print “Hello World!” to the browser.

The first line “package main” is mandatory, and it has to be the main package

if it is meant to be executed. If the purpose is to build an external library then

the package name can be anything other than “main”.

The second statement import will fetch the listed libraries from Go’s standard

library. The “fmt” package deals with formatted Input/Output, while the

“net/http” package is essential for implementing the “Hello World!” web server.

The remaining parts are examined next, starting with the “main()” function.

The first line which will call the “http.HandleFunc()” will request the “http”

package to handle all HTTP requests with calling a function called “handler”

with the parameters of the request and the option to reply to this request. This

function call will be executed in parallel and this means it can handle many

client requests for the same URL at the same time concurrently. Then the next

line will call the http.ListenAndServe() function specifying that the server

should listen on port “:8080” on any existing networking interface.

package main

import "fmt"

import "net/http"

func helloHandler(wr http.ResponseWriter, req *http.Request) {

 fmt.Fprintf(wr, "Hello World!")

}

func main() {

 http.HandleFunc("/", helloHandler)

 http.ListenAndServe(":8080", nil)

}

14

The mentioned “handler” function has a really simple job to do. It takes two

parameters, an http.ResponseWriter and an http.Request. An

http.ResponseWriter represents the web server’s response to the HTTP client.

By writing to it, it can send data directly to the client. The http.Request is a

data structure which contains the request that was received by the server. It

has several fields like ‘Method’ which can hold the standard HTTP methods,

the two most common being HTTP GET and HTTP POST methods. It also

contains the ‘URL’, to which the request was issued, and also the ‘Header’

and ‘Body’ which are very important parts of an HTTP request.

The only line the “handler” function contains fmt.Fprintf(w, “Hello World!”)

requests the server to print the message “Hello World!” to the client by writing

it to the http.ResponseWriter.

Despite the fact that Go is a fairly new language, it already has a quite large

standard library making it easier to use the language to solve an ever

widening range of everyday problems in programming.

Some packages are listed here which proved to be very useful in

implementing the Reservation system:

 time – standard library for time management

 database/sql – standard library, used by the SQLite 3 database driver

 github.com/mattn/go-sqlite3 – external, third party SQLite 3 database

driver, needed for the database/sql standard library to extend its

capabilities to SQLite databases.

 encoding/json – standard library for JSON parsing

 crypto/sha512 – standard library, used in the process of storing the

hash value of passwords instead of clear-text format.

Go was extensively used for creating the server application in two ways. First,

the general purpose web-server was created, defining the URL-s and handler

15

functions for those URL-s, then the REST API was written which can be used

by the client to interact with the SQLite Database.

2.3 HyperText Transfer Protocol

The HyperText Transfer Protocol, is a stateless application level protocol used

in distributed, collaborative, hypermedia information systems. It is the

foundation on which the World Wide Web is built. It is a protocol that defines

how web browsers can pull the contents of a web page from a web server. It

provides an interface between software running on a computer and the

network itself that carries the information. HTTP allows basic hypermedia

access to resources available from diverse applications. (“Hypertext Transfer

Protocol -- HTTP/1.1”, 1999)

HTTP communication usually takes place over TCP/IP connections. The

default port is TCP 80, but other ports can be used. This does not preclude

HTTP from being implemented on top of any other protocol on the Internet, or

on other networks. HTTP only presumes a reliable transport; any protocol that

provides such guarantees can be used.

HTTP functions as a request-response protocol in a client-server model. A

web browser, for example may be the client, and an application running on a

computer hosting a web site may be the server. The following figure shows

the structure mentioned above:

Figure 3: The basic model of requesting a web page using a browser

16

Most HTTP communication is initiated by the user agent and consists of a

request to be applied to a resource on the target server. HTTP defines certain

methods to specify the desired action to be performed on the identified

resource. The resource if very often corresponds to a file or the output of a

process residing on the server side. The following example shows parts of an

HTTP GET request sent to www.jamk.fi/ web page using HTTP version 1.1.

Next is a possible response to this request by the server:

To differentiate the results of executing an HTTP method, status codes were

defined. Each code is a 3 digit integer which holds the information about the

result of the request previously made. The first digit defines the class of

response:

 1xx: Informational – Request received, continuing the process

 2xx: Success – The request was received, understood and accepted.

 3xx: Redirect – Further action is needed to complete the request

 4xx: Client side error – Bad syntax or request cannot be fulfilled

 5xx: Server side error – Server failed to complete the request which is

otherwise valid.

The HTTP version 1.0 defined GET, POST and HEAD, while the currently

used HTTP 1.1 specification added OPTIONS, PUT, DELETE, TRACE and

CONNECT (“HTTP - RFC 2616”, 1999). Their effects are well known and can

HTTP/1.1 200 OK

Date: Sun, 05 Apr 2014 16:38:00 GMT

Server: Apache/2.0.3 (Unix)…

Connection: Keep-Alive

Keep-Alive: timeout=15, max=100

… (more optional header parameters could follow)

<!DOCTYPE html>

<html>

…

</html>

GET / HTTP/1.1

Host: www.jamk.fi

17

be relied upon. Any client can use any of these methods and servers can be

configured to support any of them. Though most of the time only a fraction of

the methods are used, namely: GET and POST. Next they are described with

some additional methods important for this project implementation:

 GET: used to retrieve information identified by the Request-URI. This is

a safe method that means it is only used for information retrieval.

 POST: used to transfer data to the server, for the purpose or storing or

sharing information. POST is unsafe.

 DELETE: requests the server to delete the resource identified by the

Request-URI. DELETE is unsafe.

 PUT: requests the server to update the resource identified by the

Request-URI. PUT is unsafe as well.

Implementing the project required clear understanding of these properties of

HTTP. It is very important to understand the basics of HTTP because in later

chapters the REST architecture is discussed which builds on these principles.

Secure HTTP

Technically, HTTPS is not a standalone protocol, rather it is the result of

simply encapsulating HTTP inside the SSL/TLS protocols thus, adding making

it secure. The full specification of HTTP over SSL/TLS is out of the scope of

this thesis, but it is discussed briefly in the following paragraph(s).

Conceptually, HTTPS is very simple. One key difference when using HTTPS

instead of HTTP is the protocol identifier in URLs. The keyword “https” is used

instead of “http”.

The security is achieved through simply using HTTP over SSL/TLS as it is

used over TCP. SSL provides communication security between two hosts

through integrity, authentication and confidentiality.

18

SSL/TLS uses certificates to achieve the desired security. As a consequence

certificate authorities, and public key infrastructure is needed to verify that the

certificate belongs to the correct entity. (“HTTP over TLS (HTTPS)”, 2000)

In order to prepare the web server used in this project to serve content over

HTTPS, a public key certificate was necessary to be created using a

generating code provided by the Go programming language. This certificate is

not issued by a trusted Certificate Authority (CA), therefore browsers display a

warning message when first accessing the project web page. But for

development purposes, this solution works and the warning can be neglected.

2.4 Session management via HTTP Cookies

In this project, session management is implemented using HTTP Cookies,

therefore, in the following paragraphs the details are discussed.

Because of the stateless nature of HTTP, a client using a web browser must

establish a new connection to the web server with each new GET or POST

method. The web server, therefore, cannot depend on an already existing

network connection for longer than a single HTTP GET or POST operation.

Session management is a technique applied by the web developer to enable

the stateless HyperText Transfer Protocol to utilize session state. For

instance, once a user has been authenticated to a web service, the user

should remain authenticated throughout a certain period of time without the

need of authenticating again when new requests are made to the same

service. There are some methods available to achieve this and of them is

achieved through using HTTP Cookies. (“HTTP State Management

Mechanism”, 2011)

How it works: The server receives a request by the user (usually GET

request), and sends back a response with a special Set-Cookie in the HTTP

header which contains the following properties:

19

 Name: name of the Cookie

 Value: the actual value of the Cookie. This can be random or not, but

the important thing is that it is stored also on the server side along with

more information about the client.

 Domain and Path: these two attributes of a Cookie define the scope in

which the Cookie is valid. When a new HTTP request is about to be

sent the browser will attach every Cookie that is valid in that request’s

domain to the request.

 Expires / Max-Age: defines a timestamp until the Cookie is valid. It

tells the browser when to delete the Cookie.

 Secure: this attribute does not have a value; rather the presence

indicates that this behavior is expected by the browser. In case it is

present it tells the browser to use the Cookie only via secure/encrypted

communication channel.

 HttpOnly: this is also an attribute without an actual value. An HttpOnly

Cookie is only accessible via HTTP / HTTPS methods and inaccessible

via for example JavaScript, which means that the cookie cannot be

accessed by for example JavaScript’s ‘document.cookie’ method, thus

it cannot be stolen via cross-site scripting attacks.

After a Cookie has been set on the client side (browser), with every new

request inside the Cookies domain, the name and value of the cookie is sent

in every request. Next is an example that shows this behavior.

When the server receives the request above it can check if the cookie is

present in the request and act accordingly.

GET / HTTP/1.1

Host: www.jamk.fi

Cookie: cookie1=value1; cookie2==value2; …

…
(rest of header parameters)

20

A good example of how this works that is also implemented in this project is

the login page for accessing the reservation service. The first time a user tries

to access the service it will be presented with a login page. If authentication is

successful the server can redirect the user to an internal page while setting a

cookie on the client’s browser at the same time. Here is the details of the

cookie that’s actually set on the client after successful login.

 name: ‘session_token’

 value: 50 characters long randomly generated string consisting of

digits, lower and upper case letters.

 expires: a time in the future specified in the format defined by RFC

1123 (“Wdy, DD Mon YYYY HH:MM:SS GMT”). Currently it is set to be

15 minutes from the current time.

 domain: this property is not yet defined, because the web server

application does not have a public domain registered. Once it does it

can be set here, which will mean the cookie is only valid in that domain.

 HttpOnly: true

 Secure: true.

Now, every time the user navigates to a sub-page inside the service the

server will only allow access after checking if the correct (session) Cookie is

present in the client’s subsequent requests.

2.5 HyperText Markup Language

One of the main technologies used on the client side is the HyperText Markup

Language or HTML for short. This is the foundation that provides a place for

integrating other useful technologies into the system, therefore HTML is

discussed next.

HTML is the main markup language that is meant for creating web pages that

are to be displayed in a web browser. The purpose of the web browser is to

21

read HTML code and compose it into visible or audible information, and

present it to the user.

HTML code is written in the form of elements consisting of tags enclosed in

angle brackets like <html>. HTML elements are usually made up of an

opening tag, some content and a closing tag. Also there are some exceptions

called empty elements like
 which commands the browser to insert a line

break into the web page. Here is a general example of HTML code displaying

the usual “Hello World!” message when viewed in a browser:

This example demonstrates well the meaning of markup language. It basically

encodes information between tags and makes it easy for machines to process

the information.

Throughout the implementation of this project, one of the goals was to

implement the server in a way that it is able to generate valid and correct

HTML by querying the database, generating content based on the queries and

returning the document to the user’s browser upon a request.

2.6 Cascading Style Sheets

Cascading Style Sheets (CSS) is the language for describing the presentation

of Web pages, including colors, layout, and fonts. It allows one to adapt the

presentation to different types of devices, such as large screens, small

screens, or printers. CSS is independent of HTML and can be used with any

XML-based markup language. The separation of HTML from CSS makes it

easier to maintain sites, share style sheets across pages, and tailor pages to

<!DOCTYPE html>

<html>

 <head>

 </head>

 <body>

 Hello World!

</body>

</html>

22

different environments. This is referred to as the separation of structure (or:

content) from presentation. (“What is CSS?”, n.d.)

When implementing the reservation system web UI, CSS was used

extensively to achieve good design, which is essential for a good user

experience. The following figure shows a simple example how CSS was used.

Figure 4. Example demonstrating CSS use case.

On Figure X. a simple use-case of CSS is shown. With its help, HTML source

codes can be kept simpler, and less redundant, while also making the life of

the developer easier.

2.7 JavaScript

Although, on the server-side Go was used as the primary technology for

implementation, to make the client-side work, several technologies were used

in cooperation to achieve the implementation goals and create a good user

experience. One of these technologies is JavaScript, which was used to utilize

the REST API offered by the server, as well as to make an easy to use and

intuitive user interface.

23

JS is a dynamic programming language, most commonly used as part of web

browsers, whose implementations allow client-side scripts to interact with the

user, control the browser, communicate asynchronously and alter the content

displayed by the browser. It is also a prototype-based scripting language with

dynamic typing and has first-class functions. It was influenced by C, and has

similar naming conventions as Java, however, the two languages (JS and

Java) are otherwise unrelated and have very different semantics. JS is a multi-

paradigm language, supporting object-oriented, imperative and functional

programming styles. JavaScript also has other application areas for example

in PDF documents, site-specific browsers, and desktop widgets. (“JavaScript”,

n.d.)

The most common use of JS on the client-side is to write functions that are

embedded in HTML web pages thus allowing it to interact with the Document

Object Model (DOM) of the page. Some simple examples of this usage:

 animation of page elements, fading out, resizing, moving etc.

 interactive page content

 validating user input of a web form

 loading new page content or submitting data to server via AJAX

The JS source code itself can be loaded into pages in two ways. It can be

written in a separate file with ‘.js’ extension and then included anywhere in the

HTML source code. This way, the when the browser reads this line, it has to

make a new request to fetch the file specified by the <script src=””></script>

tag’s ‘src’ attribute. The source can be either local on the same server that is

serving the HTML code, or another completely independent source, for

example a public CDN.

<head>

 <!-- inserting JS from separate file -->

 <script src="path/to/code.js"></script>

 <!-- inserting JS code directly into HTML -->

 <script>

 alert("This is JavaScript");

 </script>

</head>

24

Also, the JS source code can also be inserted directly between the opening

<script> and the closing </script> html tags. Regardless of which method is

used, execution of the JS code is going to give the same result.

All JavaScript source codes, required for the implementation of Reservation

system, are stored locally (even the external libraries like jQuery, jQuery

Datatables) and served by the web server, thus minimizing the latency of

fetching the code and allowing the HTML to be kept simple and well

organized.

2.8 jQuery

During the implementation of the project, jQuery was used several times to

make the client-side programming easier, so in this chapter it is introduced

with some examples alongside as well.

jQuery is a cross-platform JavaScript library designed to simplify the client-

side scripting of HTML content. Since it is purely a JavaScript library, it is

really helpful to learn JavaScript before starting to work with jQuery. It was

released in January 2006 at BarCamp NYC by John Resig. It is currently

developed by a team of developers led by Dave Methvin at the jQuery

Foundation. Used by over 80% of the 10,000 most visited websites, jQuery is

the most popular JavaScript library in use today. (“jQuery”, n.d.)

jQuery is open source software and licensed under the MIT License

(http://opensource.org/licenses/MIT). jQuery's syntax was created to make it

easier to navigate a document, select DOM elements, create animations,

handle events, and develop Ajax applications. jQuery also provides the

environment for developers to create plug-ins on top of the JavaScript library.

This enables developers to create abstractions for low-level interaction and

animation, advanced effects and high-level, theme-able widgets. The modular

approach to the jQuery library allows the creation of powerful dynamic web

pages and web applications.

25

Before it can be used in the HTML code, it has to be included/imported, which

basically means downloading a single JavaScript file. It can either be included

locally, or from a public CDN which hosts this file in a compressed production-

ready format. These two methods can be seen on the following figure. The

option, to store the jQuery source code locally and let the web-server serve it,

was chosen when implementing the system.

Although jQuery itself is a pretty lightweight JS library it can help the

programmer achieve many complex tasks with simple and easy to remember

commands. Here are a couple of things jQuery is useful for:

 DOM element selection

 DOM manipulation

 Events, effects and animations

 AJAX

 XML and JSON parsing

 Extensibility through plug-ins

The jQuery library itself can only be used after loading a web-page is

completed. There is a built-in way to check this, using the following code.

Once the DOM is fully loaded, this function will be called and all the code

inside will be executed. Practically this is a way of making sure the webpage

will not become broken. For example, there could be a code snippet, which

would redesign the looks of a page, but if this is executed before the element

it would modify is created, then it could cause problems. Therefore it is a

common practice to put jQuery code in the block mentioned above. This

method is used in every part of the system that uses jQuery.

$(document).ready(function() {

 //everything inside these parenthesis will be

 //executed when the DOM has been fully loaded.

});

<!-- inserting jQuery from file on local storage -->

<script src="path/to/jquery.min.js"></script>

<!-- inserting jQuery from public Contend Delivery Network -->

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.0/jquery.min.js">

</script>

26

One really helpful usage of jQuery was through the plug-ins called Datatables,

Datepicker and Timepicker.

The jQuery Datatables plug-in was used to present data from the database in

an easy to use and user friendly format. It hallows the data to be loaded from

JSON source which is suitable for integration with the server’s REST API.

Next an example is shown how the plug-in was utilized during the

implementation of the system.

On the figure above, an example is shown about how the jQuery Datatable

plug-in was implemented. Inside the ‘.dataTable()’ function the parameter

“sAjaxSource” is used to specify that the content of the table is to be fetched

from the link “app/v1/reserve?for=datatable”, which happens to be part of the

REST API which will return data in JSON format to the client. Upon receiving

the data, the plug-in will parse the JSON data and present it to the user in the

following format.

Figure 5. jQuery Datatable plug-in example.

Using this jQuery plug-in allows the client interaction to be more intuitive and

user-friendly which helps to achieve a great user experience.

$(document).ready(function() {

 var table = $(’#restTable’).dataTable({

 …

 "sAjaxSource": "/app/v1/devices?for=datatable",

 …

 });

});

27

2.9 SQLite Database

During the implementation of the project, a local SQLite database was used

as storage, so in the following chapter SQLite in general is discussed.

SQLite is a free to use database software library that provides a database

engine with the following properties. (“SQLite”, n.d.)

 Self-contained, which basically means it requires only minimal support

from external libraries or from the Operating System it is running on.

 Server-less, which means unlike most SQL database engines SQLite

is not implemented as a separate server process which can only be

accessed through TCP/IP. When using SQLite, if the user wants to

access the database the only thing required is access to the database

files stored locally on the disk. One advantage this property of SQLite is

that there is no separate server process which needs to be installed,

configured, managed and troubleshot.

 Zero-configuration, which is apparently a consequence of the

previous property. Since it is server-less, there is no need for an

administrator to manage a complex database server system. This

makes SQLite an ideal tool for development purposes and small-scale

systems.

 Transactional, which guarantees that the database implementation

complies with the ACID principles. That is all changes in the database

are Atomic, Consistent, Isolated and Durable, even if the transaction is

interrupted by a program crash, operating system crash or power

failure. (“ACID properties”, n.d.)

As a consequence of these properties, SQLite is very well suited for

development purposes. It is compact and lightweight hence it is easily

deployable to any system. Also Go has good supporting libraries to manage

28

SQLite databases, so the decision to choose SQLite for implementing it into

the project was easy to make.

2.10 Representational State Transfer

During the discussion about the implementation of the project, it was a clear

requirement that the system needs to use the REST architectural style,

therefore it is discussed next.

The term REST, was first mentioned in an academic dissertation by Roy

Fielding at the University of California in 2000 with the title “Architectural

Styles and the Design of Network-based Software Architectures”.

In short, REST is a software architectural style consisting of a coordinated set

of architectural constraints applied to components, connectors and data

elements, within a distributed hypermedia system. (“Representational State

Transfer”, n.d.)

REST is a resource-based architecture, in comparison to SOAP-RPC for

example, which is action based. In a REST environment each resource is

identified by an URI (Universal Resource Indicator), which then is used in

each request to specify the type of action, like HTTP GET or POST, to

perform on the given resource pointed by the URI. The result of the action can

be sent back to the client by using HTTP status codes. A couple of examples

are “200 – OK”, “201 – Created”, “401 – Unauthorized”.

Most of the time the data representation format is JSON or XML with JSON

being more common, but the REST architecture does not define a strict rule

for this.

The architecture is most commonly described by the 6 constraints that has

been established in Roy Fielding’s dissertation. The following 6 constraints are

29

deducted from the dissertation: “Architectural Styles and the Design of

Network-based Software Architectures”, 2000.

 Client-Server model: This is probably the most common architectural

model and is a requirement for REST. It basically means that there is a

clear separation of concerns, which means clients are not concerned

with data storage; that is the server’s task, so that clients can be kept

simple. On the other hand, servers are not concerned with the user

interface or user state, which means they can also be simpler and more

scalable. Servers and clients can also be replaced and developed

independently so long as the interface between them remains the

same.

 Stateless: Which means that no session data is stored on the server

side, thus each request has to have every required parameter to be

successfully processed by the server. It means that each request is

independent from every other request. These requests do not require

the server to retrieve any kind of application context or state. One

trade-off with this constraint is the fact that it might decrease network

performance by increasing the repetitive data sent in a series of

requests, because it cannot be left on the server in a shared context.

 Cacheable: This is an effort to try to minimize the network overhead

caused by statelessness. What this constraint means is that the server

responses must be cacheable whenever it is possible. It can be implicit

when the client decides to cache despite the fact that the server did not

explicitly set an Expires / Max-age header field when returning a

response. This feature has the potential to partially or completely

eliminate some interaction, improving efficiency, scalability and

performance as perceived by the user, since it reduces latency.

 Uniform interface: This is the fundamental feature which distinguished

the REST architectural style from other network-based styles. It

describes the interface between the client and the server.

Consequentially, what this means is that, HTTP methods are

30

associated with operations which can be applied on resources identified

by URI-s found on the server, and the result of the operation is signaled

by the HTTP response status. Though it has to be noted that REST

does not specify that HTTP has to be used for this purpose, any other

suitable protocol can be used as well.

 Layered system: This is a feature which means that the client, when

communicating with the server, cannot actually tell whether it is directly

communicating with the server or with some intermediary between the

client and the server. This feature is connected with the Cacheable

constraint.

 Code-on-demand [OPTIONAL]: This feature allows client functionality

to be extended by transferring code on demand in the form of applets

and scripts to the client which can utilize them. This allows clients to be

simpler by reducing the number of features required to be pre-installed.

All these features, except the optional 6th feature, are needed to rightfully state

that a system is implemented in the REST architectural style. Compliance with

the REST constraints provides: scalability, simplicity, modifiability, visibility,

portability and reliability.

However, this cannot be stated about the Reservation system because of two

reasons. First, it uses HTTP Cookies to manage session state, which

contradicts the statelessness constraint. Second, it does not utilize the

caching services offered by HTTP headers, therefore caching is missing from

the API.

Despite these two reasons, the most important constraint, the “Uniform

interface” is satisfied, therefore it can be considered as a REST-like service,

but not a full REST API, because it does not meet all the requirements.

31

3 The Database

In this chapter, the actual process of planning and implementing the database

is detailed.

3.1 Structure and layout

Before the database structure can be implemented, it was necessary to think

about what information is needed to make a well functioning system. Then

when this information is ready, it needs to be translated into actual database

tables with certain fields holding important information, and links have to be

defined between these tables which helps to make sense of the data.

The first version of the database structure plan was very simple, but as the

development of the system was evolving over time, new requirements arose

that required small modifications to be applied to the structure, for example

adding new table, or adding new columns to existing tables, or defining new

connections between tables. The next figure shows the first version of the

database that was created when development of the reservation system

started.

Figure 6. Showing the initial layout of the database.

32

After some time spent developing and improving the system, as new features

were added, modifications were needed to be made to the structure of the

database. For example, to enable registering a new user account, and

recovering an existing because of a forgotten password, two new tables had

to be introduced: ‘recover’ and ‘activate’. The following figure shows the

current structure of the database.

Figure 7. Showing the current layout of the database.

Users table

This table contains information about users that can log in with its ‘name’ and

‘password’ to access the Reservation system. After a successful user

33

registration process, information is stored here. For security reasons the

‘password’ column contains the hash value of the actual password, which is

generated using the SHA-512 algorithm. The ‘admin’ column signals whether

a user has administrator privileges or not, by containing ‘1’ if it does and ‘0’ if it

does not.

Devices table

This is the table containing information about the devices that can be reserved

by the system. Later, when it is needed it can be extended to add new

columns if needed to store additional information about each device. The

‘name’ attribute has to be unique, as well as the ‘ip_address’ which is used to

log in remotely to the device and access its services.

Configurations table

This table contains information about configurations that can be applied to

certain networking devices. The ‘description’ and the ‘configuration’ columns

have to be unique separately and together as well.

Sessions table

This is one of the three tables that are holding the whole system together. It

contains 1 row of each reservation that has been made. The start and end

time of a particular reservation is stored in UNIX time format, defined as the

number of seconds that have elapsed since the 1st of January, 1970 (“UNIX

time”, n.d.). The ‘user_id’ column refers to the user that owns the reservation

(it can be different from the user that has placed the reservation, since ‘admin’

users can create reservation for others. Also, there is a constraint defined

which assures that the end time of a reservation is always after the start time.

Reservations table

This is another table which is essential to the reservation system to function

properly. It ties a session from the ‘sessions’ table to devices through another

34

table ‘restodevs’ and also stores information about which user made this

reservation.

Restodevs table

This is the last of the three main tables needed to properly store a reservation.

It specifies which devices with which corresponding configuration selected for

the device, are needed for a reservation. It has a couple of constraints to

make sure that a device cannot be present twice in the same reservation, and

also that a configuration can only be selected once per device per reservation.

Onlineusers table

This table is used in keeping track of the logged in users. Once a user

successfully authenticated to the system, a new record is created in this table

with the specified columns. ‘Name’ stores the username, ‘admin’ contains ‘1’ if

user is admin and ‘0’ is user is not. The ‘session_token’ column stores the

randomly generated string which is used when setting the cookie in the client’s

browser. The ‘time_stamp’ column holds information about when the user

logged in, which is used in limiting the length of a session for a specific

amount of time for security reasons. Right now, a user will be automatically

logged out 15 minutes after the login.

Recover table

This table is used in the recovery process of accounts whose owner has

forgotten the password and is unable log in. This is done after the user has

filled in a form containing the username and email which belongs to the same

account. After this information has been submitted, the Reservation system

will send an email to the specified email address containing a link which can

be used to recover the account by creating a new password. This link that is

sent contains a randomly generated 50 characters long token which will be

stored in this table. When the user clicks the link the server will check if this

35

token exists in this table and if it does it will allow the user to reset the

password for the account.

Activate table

This table is used in registering a new user account for the Reservation

system. When filling out the form for registering a new account, the

information is stored in this table. After the registration is done an email will be

sent to the specified email address containing a link which needs to be

opened in order to fulfill the registration. The link contains a randomly

generated 50 characters long token which is used to identify which account

needs to be put to the ‘users’ table from this table. Until this is done, the

account cannot be used to log in, as the user account details are only moved

to that table upon opening the link from the email.

3.2 Managing the Database in Go

In this chapter the process of integrating the SQLite Database into a Go

program is explained in more detail as well as how the Database is utilized in

the application.

In order to be able to use a SQLite database two Go software libraries have to

be imported to the application:

The first one is from to Go standard library. Because it is a general purpose

database library, it cannot operate on a SQLite Databases on its own. It needs

a database driver, which is provided in the second import statement. The ‘go-

sqlite3’ library is a third party library developed by a github.com user called

‘mattn’. This library has passed the compatibility test and is recommended for

use (see the full list: https://code.google.com/p/go-wiki/wiki/SQLDrivers) by the

Go community.

import (

 "database/sql"

 _"github.com/mattn/go-sqlite3"

)

36

Next when the required packages are imported, to operate on a database, it

either has to be created or opened from the computers local storage. The

Reservation system is implemented in a way that the creation of the database

is decoupled from the actual web server. The code for this is in a separate file

which has the following code to create the database.

After the database is created, it can be manipulated by using functions

provided by the third party database driver, in this case the ‘go-sqlite3’ driver

by ‘mattn’. A couple of examples follow to demonstrate the functionality.

As it can be seen in the example above, it is fairly easy to write functions that

can create, delete, query tables in the database. There are a couple of

functions that can be used for this purpose, like Exec(), Query() and

QueryRow(). The Exec() function can be used to do “INSERT”, “UPDATE” and

“DELETE” operations while Query() and QueryRow() functions can be used to

execute “SELECT” statements, as the name suggests.

Another important thing that is useful in some cases is the ability to execute

transactions in the database. This can be done as shown in the following

code.

//inserting into the a database table

_, err = db.Exec("INSERT INTO users … ;")

if err != nil {

 return err

}

//running a query on a table in the database

result, err := db.QueryRow("SELECT name FROM users WHERE id=?", id)

if err != nil {

 return err

}

os.Remove("first.db")

db, err := sql.Open("sqlite3", "./jyvsectec.db")

 if err != nil {

 log.Fatal(err)

 return

 }

defer db.Close()

37

Using transactions can be very useful in some cases, especially when there is

a batch of operations that have to be executed as a block. If the execution of

one statement fails the whole transaction is cancelled and the database is

rolled back to the state before the transaction was started. This was

particularly useful during development and made the implementation of the

reservation handler much easier, because a successful reservation required

data to be inserted into three separate tables, and in case of failure of an

insert, a database rollback was automatically executed.

//this is the beginning of the transaction

tx, err := db.Begin()

if err != nil {

 return

}

 //then prepared statements are defined with the following code

 stmt, err := tx.Prepare("INSERT INTO ex (id) VALUES (?)")

 if err != nil {

 return

 }

 defer stmt.Close()

 //then these prepared statements can be executed

 result, err := stmt.Exec(userID)

 if err != nil {

 return

 }

//then as the last step the transaction has to be closed

tx.Commit()

38

4 The Web server

In this chapter the process of implementing the Web server is discussed,

highlighting the most important aspects of the server.

4.1 Laying down the base of the Web server

The development of the Web server was started from a single “Hello World!”

server as shown in Section 2.2. From that point several aspects of the server

were improved. One of these things was switching from an HTTP server to an

HTTPS server which makes the communication between the client and the

server encrypted, thus the connection becomes secure, which was a

requirement for the application. Here is how it is achieved, containing the

scenario when a user tries to access the site using HTTP but gets redirected

by the server to use HTTPS.

For this feature to work, a certification and a key had to be generated.

Thankfully there is a tool for this in the ‘net/http’ package’s folder, named

‘generate_cert.go’. It allows the developer to generate a self signed certificate

which can be imported by the HTTPS server as shown in the code snippet

above. Using this certificate by the server will cause the browsers, which

connect to this web server, to display a warning message about the fact that

the server’s certificate is not valid. In this case this warning can be safely

ignored. Next is an example of such a warning.

//start the HTTPS server in a separate goroutine

go func() {

 err := http.ListenAndServeTLS(":7777", "cert.pem", "key.pem", nil)

 if err != nil {

 log.Fatal(err)

 }

}()

//start the HTTP server in current goroutine

err := http.ListenAndServe(":7770", http.HandlerFunc(redirectHTTPS))

if err != nil {

 log.Fatal("ListenAndServe error: %v", err)

}

//this part is outside of the main() function body

func redirectHTTPS(w http.ResponseWriter, r *http.Request) {

 http.Redirect(w, r, "https://localhost:7777"+r.RequestURI, 301)

}

39

Figure 8. Example of an SSL certificate warning.

4.2 URL handling by writing functions

At this point, when the server is started, it can serve requests, but for that to

happen different functions have to be declared which will be invoked when a

request arrives for the URL handled by that function. The next example shows

how to declare the URL handlers.

After the web server is deployed, the effect of these two commands will be

that the URL ‘https://custom.domain/’ will be served by the defaultHandler()

function while the URL ‘https://custom.domain/main’ will be served by the

mainPageHandler() function.

Here is a list of URLs which are handled by the Web server and their

corresponding functionality.

 ‘/’ – This is the default page which is displayed when the client first

visits the webpage, and also where the client is redirected in case of

running out of the session window.

 ‘/main’ – which is handling the main page from where the client can

navigate to different pages.

//these commands have to be executed inside main()

http.HandleFunc("/", defaultHandler)

http.HandleFunc("/main", mainPageHandler)

40

 ‘/[users/devices/configs/sessions/reservations/restodevs]’ – which are

handlers for interacting with individual tables in the database. Only an

admin user can access these and make modifications in them.

 ‘/[recover/activate]’ – These two URL-s are used by the account

registration and recovery process.

 ‘/reserve’ – This is the URL which will display the Web UI for making a

reservation

 ‘/app/v1/[users/devices/…]’ – This is the URL for accessing the REST-

ful API. As the last part of the URL, a table name can be inserted and

this way the client can interact with the database tables directly using

the API.

Next an example function is shown which handles the URL ‘/users’.

Explanation: First, the server checks if the client, which sent the request, is

logged in or not. If not, it will redirect the client to the default page: ‘/’ with a

message that the session has expired. Next, the server check if the current

used has admin privileges or not. If it does not, it will display an error message

in the middle of the screen saying in red: “Permission denied! Only the

administrator can interact with this URL.”

The rest of the URL handler functions work exactly like that, except the

function which handles the URL ‘/reserve’, because it does not require the

client to have administrator privileges to access the page.

func usersHandler(w http.ResponseWriter, r *http.Request) {

 user, err := getCurrentUser(r)

 if err != nil {

 http.Redirect(w, r, "/?redirect=session_expired", 302)

 return

 }

 if !isAdmin(user.Name) {

 renderTemplate(w, "error",

 map[string]string{"Error":"Permission denied!

 Only the administrator can interact

 with this URL."})

 return

 }

 w.Header().Set("Content-Type", "text/html")

 renderTemplate(w, "user", user)

}

41

5 The REST-like API

In this chapter, one of the most important aspects of the server, the REST-like

API is discussed. It is important because it gives the possibility, in case it is

needed, to port the Reservation system to other clients like mobile (e.g.

Android, iOS, Windows Phone) or desktop clients (e.g. native Windows

application).

5.1 Resources and representations.

In the world of REST-ful services, it is important to understand the fact that the

system consists of resources rather than actions. Often these resources are

database records, or other kinds of information. Another important thing is the

representation of these resources which will be applied during the transferring

of the resource between the client and the server.

For example, in the Reservation a User from the ‘users’ table is a resource,

and the representation can be the particular User’s name, email address,

password, admin rights represented in JSON format, like it is implemented in

the system, however it can also be in XML format. Next is an example of that

resource represented being sent to the server in JSON format.

This JSON representation describes a User account in the reservation

system. Each resource like this has a clearly defined URI which can be used

to gain access to the resource with a protocol like HTTP. For example, the

above mentioned resource has the following URI in the Reservation system.

/app/v1/users/1

{

 "id": 1,

 "name": "Florian",

 "email": "test@example.com",

 "password": "test",

 "admin": 1

}

42

When the resources are clearly described, HTTP can be used to define

operations on these resources using the URI. Next the 4 operations, that are

needed to manage resources of the Reservation system, are shown.

 Querying a User resource: To get the details of a specific user though

the REST API, the following HTTP request has to be sent.

The method is HTTP GET, the URI has to specify the Users’s ID that

we want to query, and the ‘Accept:’ header can specify that the sender

of the request is expecting the resource in JSON format.

 Creating a User resource: In order to create a new user in the

database through the REST API, the following HTTP request has to be

sent to the server:

The request has to be HTTP POST to the URI which does not specify a

particular user, rather the collection of users (/app/v1/users). In the

‘Content-type’ header the sender specifies that the body of the request

is in JSON format and ‘Accept’ header specifies that the response it is

expecting should also be in JSON format.

 Updating a User resource: In order to update an existing User in the

database through the REST API, the following HTTP request is sent.

PUT /app/v1/users /1 HTTP/1.1

Host: reservation.com

Accept: application/json

Content-type: application/json

{ "id": 1, "name": "Florian", "email": "test@example.com",

"password": "test", "admin": 1 }

GET /app/v1/users/1 HTTP/1.1

Host: reservation.com

Accept: application/json

POST /app/v1/users HTTP/1.1

Host: reservation.com

Accept: application/json

Content-type: application/json

{"id": 1, "name": "Florian", "email": "test@example.com",

"password": "test", "admin": 1}

43

In this case, the request is very similar to the one before, when creating

a new user, but two changed are needed. The HTTP method is PUT

instead of POST, and the URI has to point to a specific user by its ID,

which already exists in the database.

 Deleting a User resource: To delete an existing User in the database

the following HTTP request has to be sent.

This action is very simple. The HTTP method is DELETE and the URI

has to point to an existing User resource in the database to perform the

delete operation.

These operations are implemented in the same manner for the following

tables in the database: ‘users’, ‘devices’, ‘configs’, ‘sessions’, ‘reservation’,

‘restodevs’.

5.2 Implementing the REST handler functions

After the URI structure of the REST API has been constructed, developing the

functions which serve the HTTP requests, arriving to those URI, can be

started. Next an example is shown, which is the handler function that

processes the actual reservation requests using the URI ‘/app/v1/reserve’.

The function itself is very similar to the ones that serve normal web pages.

The whole code for this one function is too long to be copied here, but the

basic structure is shown next.

DELETE /app/v1/users/1 HTTP/1.1

Host: reservation.com

44

The first part of the function decides whether the user is authorized to access

this page or not, based on the cookie that it provides in its request. If the user

has already logged in to the reservation system, it will be allowed to view the

reservations or make a new reservation. First one will be handled in the “case

“GET”:” branch, the second in the “case “POST”:” branch of the function.

 In case the request was a GET, the only thing the server has to do, is

fetch the reservations from the database by querying the tables, then

construct the JSON response and send it.

 In case the request was a POST request, the server has to make some

checks first to make sure the parameters of the reservation are valid

and make sure that after inserting the reservation to the database there

will be no conflict between two reservation trying to own the same

device.

Deleting and updating an existing reservation is handled by another function,

since it is using a different URI, ‘/app/v1/reserve/{id}’. Next the function is

shown with some explanation.

//handler function for the URI: "/app/v1/reserve"

func resRESTHandler(w http.ResponseWriter, r *http.Request) {

 loggedInUser, err := getCurrentUser(r)

 if err != nil {

 sendJSON(w, 401, map[string]string{

 "Status": "401 - Unauthorized",

 "Message": "This request needs

 authentication. Please log in!"})

 return

 }

 switch r.Method {

 case "GET":

 //code to handle HTTP GET

 case "POST":

 //code to handle HTTP POST

 }

}

45

This function is constructed in the same way that the one shown before. One

difference is that it needs to extract the ID specified in the URL and use it

when making queries, updates or deletes. This is accomplished with the help

of the ‘regexp’ standard package. Using regular expressions provides a

powerful tool for pattern matching with very little effort. The example above

shows an example of using the ‘regexp’ package to make sure the ID

contained in the URL is a valid ID, not zero, or a number with leading zeros,

etc…

//handler function for the URI: "/app/v1/reserve/{id}"

func resByIdRESTHandler(w http.ResponseWriter, r *http.Request) {

 user, err := getCurrentUser(r)

 if err != nil {

 sendJSON(w, 401, map[string]string{

 "Status": "401 - Unauthorized",

 "Message": "This request needs

 authentication! Please log in!"})

 return

 }

 urlParam := r.URL.Path[16:]

 var regexID = regexp.MustCompile("^[1-9][0-9]*$")

 switch r.Method {

 case "GET":

 //code to handle HTTP GET

 case "PUT":

 //code to handle HTTP PUT [UPDATE]

 case "DELETE":

 //code to handle HTTP DELETE

 }

}

46

6 Client side implementation

In this chapter, the client side implementation of the Reservation system is

detailed. On the client side, HTML, CSS and JavaScript were used extensively

to achieve a good user experience.

6.1 Login page

On the next figure the login page is shown, which is used to authenticate the

users before accessing the internal services offered by the server. Upon

successful authentication, a cookie named ‘session_token’ will be set on the

browser which will expire in 15 minutes, requiring the client to re-authenticate.

Figure 9. Reservation system login page.

On the second and third tabs of the login box, the client can sign up for a new

account, or recover one that cannot be accessed because of a forgotten

password. These features are implemented by sending an email to the

specified address with a link to either activate or recover an account. With the

47

help of jQuery, it is checked if the given password and the repeated password

were matching, in case they were not, the border of the input fields will change

to red color, until the problem is fixed, as shown in the following figure.

However, this still does not eliminate the need to check every detail of the

user input at server side. Next is a figure showing the password checking

feature in action.

Figure 10. Checking passwords using jQuery.

6.2 The page for making reservations

The webpage contains two main areas, one for a set of inputs that are used

for adding, deleting or updating a reservation, and another for the jQuery

Datatables plug-in, which will display all the reservations that exist in the

database in a sort-able and searchable way. Here is the overall look of the

reservation page opened in a Firefox browser.

48

Figure 11. Reservation page overall look.

The first block can be shown or hidden by pressing the big blue button in the

middle of the page. If pressed for the first time, it will drop down and display

the following contents as shown on the figure.

Figure 12. Selecting the method to be performed.

Next, the action which the client wants to perform can be selected. There are

3 options: ‘Add new’, ‘Update existing’ or ‘Delete existing’. Upon selecting one,

the appropriate fields for that option will appear.

49

Figure 13. Example of how a reservation can be added.

This option will require the client to specify a username for which the

reservation will be assigned, a starting and ending date and time for the

reservation and the devices with corresponding configurations. To make sure

the dates are in the correct format, a JavaScript plug-in was used which will

display a calendar to help choosing dates for the reservation. Next an

example of that is shown. This way editing the input field can be disabled, and

this will help to make sure the correct date format is maintained when making

subsequent reservations (while this also does not eliminate the need to

validate these inputs at server side).

Figure 14. Example of jQuery Datepicker user interface.

50

6.3 Utilizing the REST API through JavaScript

When all input fields are filled in, pressing the Add, Update or Delete

reservation button will make an AJAX call to the REST API communicating the

parameters through JSON. Next and example code is shown for adding a new

reservation by sending an AJAX request.

For this to work, first a new object needs be defined with fields named the

same as the required JSON parameters. Next, these fields have to be filled

populated, before the object can be turned into JSON using the built in

JSON.stringify(object) JavaScript function.

When the JSON string is ready the AJAX request can be send with the help of

jQuery library’s AJAX function. Inside the request several fields have to be

filled in like the request’s type: ‘POST’ and the URL which has to be the same

one that REST API is programmed to listen on: ‘/app/v1/reserve’. As the data

parameter inside the AJAX request, the result of calling the JSON.stringify()

function of the newly generated object can be used enclosed inside ‘[..]’

parenthesis. In the request, it can also be defined what action should be taken

in case of success or failure of the sent request.

var jsonObject = {};

jsonObject["userid"] = parseInt($("#user").val());

jsonObject["start"] = $("#date_start").val() + "T" +

 $("#hour_start").val() + ":00Z";

jsonObject["end"] = $("#date_end").val() + "T" +

 $("#hour_end ").val() + ":00Z";

jsonObject["devtoconf"] = deviceToConfig;

$.ajax({

 type: 'post',

 url: '/app/v1/reserve',

 dataType: "json",

 data: "[" + JSON.stringify(jsonObject) + "]",

 success: function (result) {

 //display some message about success of reservation

 },

 error: function (result) {

 //display some error message on the screen in case of error

 }

});

51

7 Testing

Testing of an application is a very complex but important process. It has to be

carefully planned and executed on different levels. During and after the

implementation of the system, the following tests were carried out.

7.1 Browser compatibility testing

Users are very likely to access the web page, that is being developed, using a

number of different browsers, so taking this fact into consideration already in

the development phase, and focusing on adapting browser specific settings

for dealing with different browsers is considered a good practice.

During the implementation the project was constantly tested using a number

of different web browsers on both Linux and Windows operating systems,

including browsers like Firefox, Chrome and Internet Explorer. One problem

was found with the use of Internet Explorer, not recognizing certain CSS

settings, which in return breaks some animations on the web pages. For this it

is recommended to use Firefox or Chrome, until a fix can be found for this.

Figure 15. Example of the UI glitch found when testing in Internet Explorer 11.

52

7.2 Security testing

Security testing of web applications is a very big topic in itself, and has to be

applied extensively.

Two very important things to consider, is to prepare the server against HTML

and SQL injection attacks, when there is a possibility to submit input through

forms or AJAX requests. This is one of the reasons why every input coming

from clients needs to be handled carefully and safely inside the server. One

example of SQL injection attack is shown next.

This is a query that might be executed when a user tries to log in with the

username ‘test’ and password ‘test’ entered in input fields of a login page. This

information is then sent to the server and possibly inserted to a query like the

above example, giving back the number of matches found. An SQL injection

attack could be executed by writing this to the password field “test’; DROP

TABLE users; --“ which then inserted into the query looks like this.

With this command, an attacker can effectively delete an entire table which is

very unfortunate. This is a very powerful security hole in systems that use

SQL databases, and needs the developers to take actions to defend the

system against these kinds of attacks.

Normally, SQL statements are created by joining strings together and

executing the result, like in the following example.

Creating the query string by inserting the received content like in the example

above is dangerous, because the content can come from an attacker trying to

insert malicious SQL statement. With prepared (parameterized) SQL

statements this can be avoided. Here is an example of prepared statements.

str := fmt.Sprintf("SELECT * FROM users WHERE id=%d", user_id)

result := db.QueryRow(str)

SELECT count(*) FROM users WHERE username=’test’ AND password=’test’; DROP TABLE users;

SELECT count(*) FROM users WHERE username=’test’ AND password=’test’;

53

Using this method will mean the query is not executed by inserting the string

in the place where the question mark is, but rather taking the parameter of the

‘pstmt.QueryRow()’ function and checking the database against this value.

The reservation system is tested against both HTML and SQL injection

attacks. SQL injections were eliminated by using prepared statements.

Protection against HTML injection is achieved through escaping all user input.

7.3 Load testing

To test how the server can handle large amounts of data, two different

methods were used.

First one is a built-in tool in Linux system called ‘ab’, which can be used

through the command line with the following command:

Executing the above command will make generate 100 HTTP GET requests

to the given URL with all those requests being executed one after the other

(no concurrency). This way the following results were received.

pstmt, _ := db.Prepare("SELECT * FROM users WHERE id=?")
result := pstmt.QueryRow(user_id)

ab -n 100 -c 1 -C session_token=’…’ https://localhost:7777/app/v1/users/1

54

Figure 16. Result of first ‘ab’ benchmark.

For the second time, a concurrency level of 10 was set. Next is the result.

Figure 17. Results of second ‘ab’ benchmark with increased concurrency.

55

It can be seen clearly that as the number of concurrent requests increases the

time it takes for the server to process the requests and send back the

response increases. This can be accepted until the system is not constantly

receiving big amounts of client requests concurrently. At some point it might

be feasible to deploy the application to a cluster of servers and use a load

balancer to balance client requests so no single instance of the server gets

overloaded.

The second method used in testing was by writing an automated application

that makes a large amount of reservation. The idea for this test was to see

how the serve can handle it, and also to see how the client interface can

visualize those reservations. The specially written application for this testing

purpose made a hundred reservations, each one being a week apart from one

another. The server was able to handle the load, and when viewed it

displayed the existing reservations in a nice and compact way, thanks to the

Datatables jQuery plug-in which is used to display the reservations.

56

8 Results

The result of the practical training is a working web application which can be

used for reserving devices. All the requirements of the application have been

fulfilled. The system developed is ready to be used for reservation. It is using

secure HTTP connection as required and user authentication as well. The

user interface is intuitive and easy to use.

One of the main goals of the project, the development of the REST API has

been successfully completed. It can be used for querying data from the

database, and also to create, update and delete data in the database.

Therefore, in the future it can be used to implement the system on other

platforms like mobile devices.

However there are still some areas where the system can be improved. Here

are some examples.

- Making the reservation web page mobile friendly by using responsive

CSS design.

- Implementing an intuitive graphical representation of the reservations

that are already in the database, so users can check more easily if the

devices they wish to reserve are free or already reserved for a given

period of time.

- Implementing the system on another platform, for example native

mobile applications (Android, iOS, Windows Phone), or desktop

applications on different operating systems (Windows, Linux, Mac).

57

9 Conclusion

During the time spent on implementing the system I have learnt many new

and useful technologies, of which I had no knowledge before. Before I started

working on it, I have never done web development or web application

programming so this was all new to me, but my experience has been very

positive.

Starting the development of the application was quite challenging, because I

had to learn a lot of new and different technologies in a short amount of time,

so that I can start writing the application. But in the end as I looked back I

realized how much I learnt.

I really appreciate the fact that I got into developing this system, and learnt so

much about things I thought I knew as a networking student, but in reality I did

not. I would never have thought that web development can teach me so much

about networking. I believe this knowledge is going to be very useful later in

my career.

58

REFERENCES

Introducing JyvSecTec. N.d. Page on JyvSecTec’s website. Accessed on
03.03.2014. Retrieved from http://jyvsectec.fi/en/presentation/

Introducing RGCE. N.d. Page on JyvSecTec’s website. Accessed on
03.03.2014. Retrieved from http://jyvsectec.fi/en/rgce/

Web development. N.d. Article on Wikipedia’s website. Accessed on
25.03.201. Retrieved from http://en.wikipedia.org/wiki/Web_development

Web 1.0. N.d. Article on Wikipedia’s website. Accessed on 25.03.2014.
Retrieved from http://en.wikipedia.org/wiki/Web_1.0

Web 2.0. N.d. Article on Wikipedia’s website. Accessed on 25.03.2014.
Retrieved from http://en.wikipedia.org/wiki/Web_2.0

Go history. N.d. Page on Golang’s website. Accessed on 20.03.2014.
Retrieved from http://golang.org/doc/faq#history

About Ken Thompson. N.d. Article on Wikipedia’s website. Accessed on
20.03.2014. Retrieved from http://en.wikipedia.org/wiki/Ken_Thompson

Pike, R. Go at Google. N.d. Page in Golang’s website. Accessed on
25.03.2014. Retrieved from
http://talks.golang.org/2012/splash.article#TOC_13

Fielding, R., Gettys, J., Mogul, J. C., Frystyk, H., Masinter, L., Leach, P.,
Berners-Lee, T. Hypertext Transfer Protocol -- HTTP/1.1. 1999. Pdf document
at IETF’s website. Accessed on 05.04.2014. Retrieved from
http://tools.ietf.org/pdf/rfc2616.pdf

Rescorla, E. HTTP over TLS. 2000. Pdf document at IETF’s website.
Accessed on 06.04.2014. Retrieved from http://tools.ietf.org/pdf/rfc2818.pdf

Barth, A. HTTP State Management Mechanism. 2011. Pdf document at IETF’s
website. Accessed on 06.04.2014. Retrieved from
http://tools.ietf.org/pdf/rfc6265.pdf

HTML. N.d. Article on Wikipedia’s website. Accessed on 04.04.2014.
Retrieved from http://en.wikipedia.org/wiki/HTML

What is CSS? N.d. Page on W3’s website. Accessed on 01.05.2014.
Retrieved from http://www.w3.org/standards/webdesign/htmlcss#whatcss

JavaScript. N.d. Article on Wikipedia’s website. Accessed on 25.03.2014.
Retrieved from http://en.wikipedia.org/wiki/JavaScript

59

jQuery. N.d. Article on Wikipedia’s website. Accessed on 04.04.2014.
Retrieved from http://en.wikipedia.org/wiki/JQuery

SQLite. N.d. Page on SQLite’s website. Accessed on 05.04.2014. Retrieved
from https://sqlite.org/

ACID properties. N.d. Article on Wikipedia’s website. Accessed on
05.04.2014. Retrieved from http://en.wikipedia.org/wiki/ACID

Fielding, R. Architectural Styles and the Design of Network-based Software
Architectures. 2000. Pdf document on University of California’s website.
Accessed on 02.04.2014. Retrieved from
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Representational State Transfer. N.d. Article on Wikipedia’s website.
Accessed on 02.05.2014. Retrieved from
http://en.wikipedia.org/wiki/Representational_state_transfer

UNIX time. N.d. Article on Wikipedia’s website. Accessed on 03.05.2014.
Retrieved from http://en.wikipedia.org/wiki/Unix_time

