

CREATING RESPONSIVE UI FOR

WEB STORE USING CSS

Magdalena Wiciak

Bachelor’s Thesis

May 2014

Degree Programme in Information Technology

Technology, communication and transport

DESCRIPTION

Author(s)
WICIAK, Magdalena

Type of publication
Bachelor´s Thesis

Date
14-05-2014

Pages
48

Language
English

 Permission for web
publication
(X)

Title

CREATING RESPONSIVE UI FOR WEB STORE USING CSS

Degree Programme
Information Technology

Tutor(s)
MIESKOLAINEN, Matti

Assigned by
Descom Oy

Abstract

Nowadays people spend most of their days using mobiles and tablets to
access web sites. It is really important to ensure that all customers are able
to access a web site no matter where they are and which devices they use.
That is why the interest in creating responsive design is increasing.

Responsive Web Design is an approach that provides responding of the web
site according to the environment where it is accessed. The thesis shows
how to create responsive UI for the web store based on the IBM WebSphere
Commerce. The first part the thesis analyses the best practices for creating
a responsive UI, which is the usage of flexible grids, images and CSS media
Queries.

IBM WebSphere commerce is a software platform for cross-channel
commerce. In the third chapter IBM WebSphere Commerce is introduced
with Management Center and Commerce Composer. Additionally, the
processes of creating a new page and layout are discussed.

The fourth chapter shows how to extend an existing starter store for the
client’s needs and provide responsive user interface for the new customized
web store. The last chapter presents the conclusion concerning this thesis.

The result of the thesis is fully responsive user interface for the Kotipizza
web store. In the future the logic of the store behind the UI needs to be
added. After all needed tests the web store is to be presented to the
customer.

Keywords
Responsive, web design, UI, JSP, RWD, CSS, IBM WebSphere, IBM WebSphere Commerce

Miscellaneous

1

CONTENTS

ACRONYMS ... 3

1 INTRODUCTION ... 4

2 WEB DESIGN ... 5

2.1 Usage of the percentages ... 5

2.2 Fixed and Fluid Layout design .. 6

2.3 Fluid Grid ... 7

2.4 Breakpoints ... 10

2.5 Media Queries ... 11

2.6 CSS Multiple Classes .. 13

2.7 Usage of JavaScript .. 14

2.8 Images .. 16

2.9 Showing and hiding content .. 19

3 IBM WEBSPHERE COMMERCE .. 22

3.1 WebSphere Commerce Architecture ... 22

3.2 WebSphere Commerce Application Layers 24

3.3 WebSphere Commerce presentation layer 26

3.4 Feature Pack 7 .. 27

3.5 IBM Management Center .. 27

3.6 Commerce Composer Tool ... 28

3.6.1 Pages ... 30

3.6.2 Layout ... 30

3.6.3 Widgets ... 31

3.7 Aurora Starter Store .. 31

3.8 Breakpoints ... 32

3.9 Store Pages .. 32

4 CASE STUDY KOTIPIZZA .. 33

2

4.1 Header and Footer .. 33

4.2 Page Template .. 37

4.3 Category Page – New layout template .. 38

4.4 Checkout Process – new breakpoints ... 40

5 CONCLUSION .. 43

REFERENCES ... 44

3

ACRONYMS

CSS

XML

JSP

MVC

RWD

Cascading Style Sheets, a style Sheet language used to style

the web pages written in HTML

Extensible Markup Language, defines a set of rules for

encoding documents

Java Server Pages, technology designed for creating dynamic

WWW pages in following formats: HTML, XHTML, DHTML

and XML. JSP uses Java language inside HTML code

Model-View-Controller architecture, where model represents

the business or database code, view – design code and

controller – navigational code

Responsive Web Design, a design that can adjust to the

user’s screen resolution

4

1 INTRODUCTION

Nowadays mobile phones and tablets are more and more used for viewing

Internet websites, which creates a need to have a web store working for all of

the different devices with different screen resolutions. Normally, without using

RWD, a web store for mobile phones is created separately from the same

store as desktop. What to do when there are different devices with totally

different screen resolutions? Should a separate design be created for each of

them?

Responsive Web Design is an answer to this question. Responsive Web

design gives possibility to dynamically resize and show different content while

changing screen resolution. Using RWD gives many benefits. First, it is

reduction of code duplication. It also makes conservation much easier. The

second benefit is the ability to use the same web store for the devices with a

screen resolution that is new on the market. (IBM Info Center 2014)

One of the most important matters to remember while creating responsive UI

is that the layout not only needs to look good in every screen resolution but it

also must be user-friendly. It is not possible to show all the content from a

desktop on devices with a smaller screen, which is why some of the content

should be hidden and replaced by other usability.

The thesis shows how to create responsive UI for WebStore. WebStore is

created for Kotipizza restaurant. The project is implemented by Descom Oy.

There are eight people working with this project, three of them are in UI

development team. In the thesis, the default IBM code and the customization

made for the purposes of Kotipizza Web Store are analyzed.

5

2 WEB DESIGN

The following chapter will show the best practices that can be used while

implementing the RWD.

2.1 Usage of the percentages

The first thing that needs to be done while creating responsive layout is

changing the fixed pixel-based width to percentage width. This one

modification can provide that the width of the target element changes

correspondingly with the resized page.

Ethan’s Marcotte (2011) math formula can be used to be sure that the

percentage dimensions are calculated correctly: target / context = result,

where the target is the amount of pixels that the target should have and the

context is the container to which relation pixels are checked. The result is the

searched quantity of pixels expressed by a percentage. (28 – 33)

The example situation for non-responsive websites can be considered. The

page width is set to 960 pixels, inside the page is a wrapper that has the width

600px, and inside this wrapper is a column with width 500px. The CSS code

could look like this:

.wrapper { width = 600px; }

.column { width = 500px; }

Now if the layout needs to be changed to be responsive; however, leaving the

same proportion between widths of each of the element. The percentage

values need to be calculated. For wrapper it will be 600 / 960 = 0.625 which

means 62.5% and for column: 500/600 = 0.8333333 which equals to

83.333333%. An important issue is that the context for each of these elements

is different. The new CSS code looks like this:

.wrapper { width = 62.5%; }

.column { width = to 83.333333%; }

6

This formula can be used not only to calculate the page width but also other

page components such as the size of the margins. The proportion between

page width and margins set using percentage will always be the same despite

the fact that the size of the browser window will change.

2.2 Fixed and Fluid Layout design

There are a few layout designs that can be chosen while creating a website.

Two of them are Fixed and Fluid design. In the fixed layout the whole content

is wrapped into container with a fixed size given in pixels, and all components

inside have the width measured in pixels or in percentages. On the other hand,

in the fluid layout almost all components have dimensions defined in

percentages. In fluid layout some of the elements, such as margins can have

their widths set in pixels. The whole layout will still adjust to the screen

resolution. (Knight 2009)

An example of this in use is shown in Figure 1 and Figure 2.

Figure 1. Fixed website design

7

Figure 2. Fluid website design

The major disadvantages of using the fixed layout design are that on the

devices with screen resolution smaller than the container not the entire

layout is shown. Therefore the horizontal scroll bar is required which

decrease the usability. Usage of the fluid layout can eliminate this issue.

(Knight 2009)

2.3 Fluid Grid

Fluid Grid is a CSS framework which divides the page layout for rows and

columns. The size of the column is fluid which means that the actual size of it

is calculated based on the percentage of the context. (Responsive Web

Design (RWD) framework 2014)

The 12-column grid is used in the web store. Each of the columns has the

width of 8.333333% thus all 12 columns connected together give a total width

of 100%.There are no margins between columns in the grid. Columns are

defined at CSS file as the classes col*. The defined col classes can be used

to create the Grid system for responsive layout template.

8

/* Columns */

.col1 { width: 8.333333%; }

.col2 { width: 16.666666%; }

.col3 { width: 25%; }

.col4 { width: 33.333333%; }

.col5 { width: 41.666666%; }

.col6 { width: 50%; }

.col7 { width: 58.333333%; }

.col8 { width: 66.666666%; }

.col9 { width: 75%; }

.col10 { width: 83.333333%; }

.col11 { width: 91.666666%; }

.col12 { width: 100%; }

The example shows the usage of the col classes in the jsp file.

<div class="rowContainer" id="container_${pageDesign.layoutID}">

<div class="row">

<div class="col12">

// Content

</div>

</div>

<div class="row">

<div class="col12">

// Content

</div>

</div>

<div class="row">

<div class="col4 acol12">

// Content

</div>

<div class="col8 acol12" data-slot-id="3">

// Content

</div>

</div>

</div>

9

The page layout of this example is divided into three rows. The first row and

the second row have one column with the width of 100%. The last row has two

columns: col4 – 33.333333% and col8 – 66.666666%. The width of the

columns changes responsively according to the width of the whole page. The

page using the example JSP file could look like the page shown in Figure 3.

Figure 3. The page based on the example JSP file with the page width

1200px

The fluid grid page layout of the example looks good for a page width bigger

than 600px. When the size of the web browser is resized to the smaller

resolution the columns start to be too narrow and the layout does not look

good and useful anymore (See Figure 4). The layout is broken and the

solution for this problem is shown in the following chapter.

10

Figure 4. The page based on the example JSP file with the page width

620px. The page layout is broken; the word “tilaushistoria” is no longer

on one line with the icon.

2.4 Breakpoints

The breakpoints are the points where the new style sheet should be used

because the old layout is broken. The breakpoints are set according to the

different screen resolution – page width, when the content of the page is no

longer suitable. It does not only mean that the new style needs to be set when

the screen size is changing from the bigger to the smaller one, but also when

the change is done in the opposite way. (Van Gemert, 2013)

When the breakpoints are defined they can be used in media queries.

11

2.5 Media Queries

In the previous chapters it was shown how to make the browser resize the

content when the screen size is changed; however, as shown in Figure 4 it is

not enough.

How to optimize the content that is shown on the page depending on the

browser size and device on which it is used? The answer to this is question is

the usage of media queries. The media queries allow setting different styles

when the screen matches the criteria set in the parameters of the media

queries. (Media Queries 2012)

@media screen and (max-width: 600px) { … }

Media queries consist of two parts. The first part is media type. It needs to be

set as screen for screen-based devices like Smartphone, tablet or desktop. If

a media query is left without media type defined it will apply to all media types.

The second part is the query itself. The query can be split into another two

parts: the feature and the value that must be matched. The most interesting

features that can be used to create responsive UI are width, height and

orientation. The width and the height can be used with min and max prefixes.

The min width and the max width can apply to screen size and to the browser

width. The min-device-width and max-device-width check the actual device

width, not the screen width. Different queries can be connected together by

using the and keyword.

A media query is the logical expression which means that it can be either true

or false. A media query can be true only if the media type of the media queries

matches the media type of the devices and all expressions set in the query

are true.

@media screen and (max-width: 600px) and (orientation: landscape)

{ … }

12

In the example above the browser renders the CSS code only if the viewport

width is smaller than 600px and orientation is landscape. If it is not then the

part of the code outside a media query is rendered. If the media queries are

true only the features set inside media queries are overridden and the rest of

the features remain without changes.

@media (max-width: 600px) {

.acol1 { width: 8.333333%; }

.acol2 { width: 16.666666%; }

.acol3 { width: 25%; }

.acol4 { width: 33.333333%; }

.acol5 { width: 41.666666%; }

.acol6 { width: 50%; }

.acol7 { width: 58.333333%; }

.acol8 { width: 66.666666%; }

.acol9 { width: 75%; }

.acol10 { width: 83.333333%; }

.acol11 { width: 91.666666%; }

.acol12 { width: 100%; }

.rowContainer > .row.margin-true {

padding-left: 0;

padding-right: 0;

}

.row.margin-true > div > div {

margin-left: 0;

margin-right: 0;

}

}

13

2.6 CSS Multiple Classes

The CSS language allows the use of multiple classes to set different styles for

the elements. Classes can be added to the class selector as attributes. Each

of the class names must be separated by space. (Kyrnin)

<div class="col3 acol12"> </div>

Usage of the div element from example above and media query defined in last

subchapter ensure that if the screen width is wider then 601px, the width from

the col3 class is rendered for the div element. Otherwise the screen width fits

to the breakpoints set in media query. The browser uses the acol12 class and

overrides the width from col3 class.

Using the media queries and the fluid grid it is possible to ensure that the

same column on a big screen has only a specified part of the width and on the

smaller screen it is positioned with full width.

Figure 5 shows the same page that was shown on Figure 4 but with a new

style sheet. Each of the columns used on the page has now width 100% and

they are placed one below the other.

14

Figure 5. The page based on the example jsp file with the page width

620px. New style sheet from media queries is used.

2.7 Usage of JavaScript

Unfortunately not all of the browsers support the CSS3 media queries. Web

page caniuse (http://caniuse.com/) can be used to check if the method is

supported by every browser. Nowadays only Internet Explorer version 8 is not

supporting media query. Another method that can be used instead of media

query is JavaScript.

JavaScript is an object-oriented language. It is used as scripting language for

Web pages. When the content and structure of the web page are created by

http://caniuse.com/

15

HTML and the style of the content is defined by CSS, the JavaScripts can be

used to add interactivity to the web page. (JavaScript Introduction)

The example below shows how to use JQuery to detect the browser width.

The width of the window is assigned to the variable var newWindowWidth.

Then in two if loops the variable is compared to the breakpoint width which is

600. If the condition will be met by if loop correct style sheet will be used. In

this example two separate CSS files must be created. (Knight 2011)

However, for creating responsive UI, if it possible, it is better to use media

queries because they are the pure CSS solution.

16

2.8 Images

It is possible to create page which text will reflows depending on the size of

the changing flexible container. It is happening because line of the text can be

broken in every spot and continued from the new line. The size of the text is

not really changing only the spot where it is placed; however, pages usually

do not only consist of the text elements. What will happen if the fixed-width

components will be placed in the flexible grid?

An image can be dropped in the HTML structure of the page. The snippet of

the code can be looking like this shown in example below.

<div class="col7">

</div>

Until the column col7 has the width greater than the width of the image layout

is looking fine, and the image is placed in borders of the left column (See

Figure 6). The image has resolution 610x610 while the width of the column is

683px.

Figure 6. The fixed-size image placed in flexible grid layout, width of the

column is bigger than width of the image.

17

However, if the size of the screen is to be changed to smaller, flexible col7 will

automatically resize its width, based on the 58.3333% of whole page, while

the width of the fixed-size image will still be the same.

The figure 7 shows resized page to the width 757px. The left column col7 has

the width 424px. The image is too big to be placed correctly on the page. It

overflows the col7 because there are no constraints that can make the image

respond to change of the flexible grid.

Figure 7. The fixed-size image placed in flexible grid layout, width of the

column is smaller than width of the image.

18

The solution to this problem is to change the fixed size image to the flexible

image. It can be achived by using the style max-width: 100% for the image

tag. (Marcotte 2011, 42-47)

.img {

max-width: 100%;

}

As long as the image is narrower than the container it will be shown in its

normal size, but when it will be too big for the container the image width will be

forced to match the width of the container.

The image size will be changed proportionally that mean the height of the

image should not be set. This rule will apply to all of the img elements used

on the page. It can be also used to other fixed-size element like video.

Instead of the rule width which forces the image to always match the width of

the container usage of the max-width requires the width of the image to never

be bigger than the width of the container. That means the max-width rule

provides that the image will not be up-scale. This is a really important

difference if small images likes thumbnails will be used.

Figure 8 shows the same page as Figure 7 but with a flexible image.

19

Figure 8. The flexible image placed in flexible grid layout

2.9 Showing and hiding content

Using the techniques shown in previous subchapters, it is possible to resize

and adjust all of the contents to make them fit to the smaller pages. However

showing every piece of content available at the big screen on the smaller

screen is not always a good idea.

Mobile users usually want to find quickly information that they looking for,

without long scrolling down the page. When creating pages for phones and

smaller devices the most important matter is to keep it as simple as is possible.

It is because the lack of space that can be used to show the content and the

internet connections is usually slow. The best working layout for smaller

screen device is one column layout.

20

To hide elements that not need to be shown on smaller devices following style

can be used on the html block element display: none. This style can be used

also on the elements that should be hidden on the desktop devices and be

only shown on the smaller one. (Knight 2011)

As an example the basic page with two sidebar on the left and right side, and

the main content at the middle of the page, can be considered (See Figure 9).

Figure 9. Page with two sidebar on the left and right side, and the main

content at the middle of the page. Desktop View.

When the page is viewed on the wider screen, all of the components will be

shown; however, on the smaller screen the sidebars have the style display

none, which means that they will not be shown. Instead of it the links to these

sidebars are shown in the top of the main content (Figure 10). Links will be

hidden on the wider screen when the sidebars are available.

21

Figure 10. The same page as on Figure 9; however, viewed on the

smaller device. Two sidebars from the wider screen are hidden and

replaced by links.

The snippet of the CSS file responsible for the style from the example above

could be looking like this:

.content { width: 54%; float: left; margin-left: 3%; }

.sidebar-left { width: 20%; float: left; margin-left: 3%; }

.sidebar-right { width: 54%; float: left; margin-left: 3%; }

.sidebar-navigation { display: none; }

@media (max-width: 600px) {

.sidebar-left { display: none; }

.sidebar-right { display: none; }

.sidebar-navigation { display: block; }

}

22

3 IBM WEBSPHERE COMMERCE

Electronic commerce (e-commerce) includes processes that are connected

with selling and buying products or services and their distribution and

marketing using electronic systems. Nowadays e-commerce mostly uses the

Internet network.

IBM WebSphere Commerce is a software platform that provides all of the

functionality connected with e-commerce. Usage of the IBM WebSphere

Commerce can be beneficial for all kind of companies, the small one but also

for the large, in every type of the industry. (WebSphere Commerce product

overview 2014)

3.1 WebSphere Commerce Architecture

The following software components are associated with WebSphere

Commerce: Web Server, WebSphere Application Server and WebSphere

Commerce Developer. (WebSphere Commerce common architecture 2014)

Figure 11 shows how they are interconnected.

23

Figure 11. Software components that relate to Websphere Commerce

The incoming HTTP request for e-commerce application is coming at first to

the web server. The WebSphere Application Server Plug-in is being used to

ensure connections between Web server and WebSphere Application Server.

The WebSphere Commerce Server runs inside the WebSphere Application

Server, and can use all of the features from application server. The database

server stores most of the application data, like product and customer data.

(WebSphere Commerce common architecture 2014)

Rational Application Server can be used to execute several tasks such as:

 Creating and customizing storefronts assets like JSP and HTML pages

 Creating and modifying business logic in Java

 Testing code and storefront assets

 Creating and modifying Web services

24

3.2 WebSphere Commerce Application Layers

WebSphere Commerce Application architecture consists of 7 layers. Each of

these layers has the different functionality (WebSphere Commerce application

layers 2014)

Business models

Business processes

Presentation layer

Service layer

Business logic

Persistence layer

Database schema

Figure 12. WebSphere Commerce Application Layers

Database schema

It is the bottom layer which stores all data from the WebSphere Commerce

Server. Examples of the tables that are stored in database can be Order Table,

Member Table, CatEntry Table. (WebSphere Commerce application layers

2014)

Persistence layer

This layer registers the data and operations made using WebSphere system.

The layer represents entities used to encapsulate the data-centric logic that is

needed to take information from database. They act like an interface between

25

the business components and the database. (WebSphere Commerce

application layers 2014)

Business logic

It contains the actual actions of the WebSphere Commerce Server. In this

layer the business rules are implemented using the command pattern. There

are two types of commands: controller commands and task commands.

Implementation is made independently of the presentation layer. (ibid.)

Service layer

This Layer includes channel independent mechanism that allows accessing

WebSphere Commerce business logic. It shows the business logic to the

outside world. It supports two transport mechanisms: local Java binding and

Web services. (ibid.)

Presentation layer

The task of the layer is to display results. There are two types of presentation

layer supported by IBM WebSphere Commerce. The first of it is Web

presentation layer, the display is rendered using JSP files. The second type is

rich client, for this type presentation is rendered using Eclipse views and

editors implemented with SWT components. (ibid.)

Business processes

Business processes show the processes available in WebSphere Commerce.

They are divided, according to the business model, into three areas:

Administrative processes, starter stores, solutions. (ibid.)

Business models

Business models describe the situation in which WebSphere Commerce

products can be used to reach the goals. There are five business models

provided by WebSphere Commerce: B2B (Business to business) direct,

Consumer direct, Demand chain, Hosting, Supply chain. The sample starter

26

stores are created based on these business models, and can be developed

for users’ own needs. (WebSphere Commerce application layers 2014)

3.3 WebSphere Commerce presentation layer

The view layer of the Model-View-Controller (MVC) design pattern is

implemented using the JSP. The view layer uses data beans to retrieve and

format data from the database. It also decides if the request should be sent to

a browser or streamed out as XML. JSP files separate data content from

presentation. (WebSphere Commerce presentation layer 2014)

Figure 13 shows how the presentation layer works when the user uses

WebSphere Commerce store pages.

1. The user is browsing store pages

2. The servlet is getting the store data from servers using Java beans

3. JSP uses the data to display the information on the store pages

4. JSP interacts with store data via Java beans

Figure 13. Working of the presentation layer

27

3.4 Feature Pack 7

In March 2014 Feature Pack 7 was released by IBM. One of the most

important enhancements from the User Interface point of view was providing

Responsive Web Design for Aurora Starter Store, which is achieved by using

fluid layouts and media queries instead of designing pages for each of the

screen resolutions. (Highlights of Version 7 Feature Pack 7, 2014)

3.5 IBM Management Center

Management Center framework is used for managing tools that can be used

by business users to manage the business and web store. Management

Center is created as the graphical Web-based tool. IBM Management Center

is a set of the tools that a business user can use to manage the web store.

Examples of the business users are Sellers, Marketing and Product Managers.

Management Center consists of different components, each of the component

is responsible for a different functionality. The following task can be performed

using Management Center (Table 1). Site administrator can decide about the

Management center roles for the business users. Depending on the role

users can use a specified tool. (IBM Management Center for WebSphere

Commerce 2014)

28

Table 1. Usage of the Management Center Tools

Task Management Center Tool Examples of actions

Managing catalogs

and merchandise

Catalogs Tool Generating and maintaining

master and sales catalog

Managing

promotions

Promotions Tool Generating and maintaining

promotions, importing

exporting code for the

promotions

Managing stores Store Management Tool Changing store profile

information, like contact

information, location

Managing layouts

for store pages

Page Layout Tool Add layout to the page

Creating pages

and layouts

Commerce Composer Tool Creating pages for store,

creating layout for pages

based on the layout templates

Inside Management Center a new tool can be created by developers for the

business user. If the modification is to be done inside any of the tools,

Management Center framework needs to communicate with the WebSphere

Commerce Server. Different types of services can be used for this

communication depending on the need. There are three types of services:

configuration (returns configuration data), data (returns business objects) and

transaction (create, update and delete business objects).

3.6 Commerce Composer Tool

Commerce Composer Tool is a new tool inside management center. It was

introduced in Feature pack 7. Commerce Composer Tool gives more control

over the web store and a possibility of creating pages and the layouts to the

business users without using IT. Commerce Composer tool holds the library

of the layout templates and widgets that can be used as started points in

process of creating a new layout for the page. All of the layout template and

widgets in Commerce Composer follow a responsive web design pattern. IT

developers can prepare and load data to the database, new layout templates

29

and widgets that later can be used in commerce composer. (Commerce

Composer Tool 2014)

Sample use of the Commerce Composer Tool for assigning a new layout to

the existing or new page can look as is illustrated in Figure 14.

Figure 14. Assigning a new layout to the existing or new page

30

3.6.1 Pages

In commerce composer the pages are considered as just a URL, without any

specific content inside. There are two types of pages: catalog pages (created

automatically when new catalog entries are added to master and sales

catalogs) and content pages (every other page inside site for example:

Contact Us, those pages can be created in commerce composer). (Pages and

page creation 2014)

Content page can be created by setting URL keyword. Other data can also

be adjusted such as page title or Meta description. The URL should be unique,

a simple name without any parameters. Those pages can be viewed by every

customer of the web store.

3.6.2 Layout

Layout is responsible for defining and presenting the content of the page.

Layout consists of the widgets that have the store content. To use a layout it

need to be assigned to the store page. (Layouts, layout template, and default

layouts 2014)

A layout template is a base for creating a new layout. It is constructed by a

specific setup of the slots (See Figure 15).

Figure 15. Example of the layout template, numbers present the slot

where the widgets can be added.

31

To create a new layout business user needs to choose the layout template

and then place the widgets in to suitable slots. There are three types of the

layout template: Desktop layout templates for pages viewed on desktop

devices, Mobile layout templates for pages viewed on mobile devices,

Responsive layout templates for pages viewed on any devices.

3.6.3 Widgets

A widget is a construction to show store content. Widgets define and retrieve

their content in different ways, it can take place automatically or it needs to be

set by business user. It is possible to set the properties of the some widgets

such as orientation (vertical, horizontal) or initial view (grid, list). (Widgets for

Commerce Composer 2014)

Some of the widgets can be used only on the concrete pages and when it is

used on a different page an error or empty widget can occur. An example of

the page-dependent widget is Full Image widget which can be placed only on

catalog entry pages and will retrieve an image of the catalog entry.

An example of a widget that can be used on every page is Breadcrumb Trail

widget (Figure 16), which displays the present location of the page in the site

hierarchy.

Figure 16. Breadcrumb Trail widget

3.7 Aurora Starter Store

Aurora Starter Store is a sample online store provided by IBM. The usage of

the Starter Store makes the process of the creation of an online store faster

and easier. The Store can be used as a base for a new customized store. The

32

Store includes all of the most needed functionalities, which allows proceeding

from an ordering process through a buying process. (Starter stores 2014)

3.8 Breakpoints

By default there are three page range breakpoints in Aurora (Table 2). Those

breakpoints are based on the common screen size. Of course it is impossible

to set the common screen size for each of the devices. The RWD-B range is

used as a primary throughout all pages at a web store. If a special style needs

to be set for other ranges, the media queries are used. (Page range

breakpoints in the Aurora starter store 2014)

Table 2. Aurora default page range breakpoints

Device Range breakpoint Page range

Desktop RWD-C 1281 CSS pixels and above

Tablet RWD-B 601 – 1280 CSS pixels

Mobile RWD-A 600 CSS pixels and below

3.9 Store Pages

There are two types of store pages in Aurora Starter Store. The first type of

them are responsive store pages; those can rearrange the content according

to the size of the screen device. The second type consists of device-specific

pages. Device detection framework is used to enable transition between both

of these types. Using this framework the devices are identified based on their

user agent string. Examples of the device-specific pages are My Account

pages and Shopping Cart pages; it means that to show the view of the page,

different JSP files will be used, according to the size of the device

(Responsive and device-specific store pages 2014)

33

4 CASE STUDY KOTIPIZZA

The following chapter shows some of the changes that have been made to

customize Aurora starter Store to become Kotipizza Store. Across all of the

pages minor changes have been made, e.g. changing padding and margins of

the pages, also all of the content show on the pages has been modified.

Additionally, some major changes have been done to ensure that the pages

will be working responsively for the content of the Kotipizza.

The main modification that has been made was making device-specific pages

to work as responsive pages. It was accomplished by changing the path to the

JSP file defining the layout to always use the same file, even if the pages are

used on smaller devices and making this file working responsive.

4.1 Header and Footer

Header and footer are the fields that are separated from the main content of

the page. There are the same fields on each of the pages in the store. The

header consists of the logo of the web store, catalog browsing menu, category

navigation menu and mini shopping cart, links to account and store locator

pages. The footer consists of the logo of the web store and the links to the

other pages existing in the web store. Both, header and footer change

responsively according to the page size. (Header and Footer 2014)

The example below shows the snippet of the JSP file with the main containers

of the page.

<div id="page">

<div id="headerWrapper"><!-- Content --></div>

<div id="rowContainer"><!-- Content --></div>

<div id="footerWrapper"><!-- Content --></div>

</div>

34

Header

In the following part the header will be analyzed comprehensively. It consists

of two rows. The elements located in these rows are shown or hidden

depending on the media queries and breakpoints. Figure 17 and Figure 18

show how the header looks with the page width bigger and smaller than 750px.

Figure 17. Header of the page with the width of the page 1200px.

In the desktop version of the header in the first row there is the logo of the

store and the links and buttons to other pages in the store.

Figure 18. Header of the page with the width of the page 689px.

In the mobile version, the logo of the store is placed in the middle of the page.

Only the shopping cart button is shown in the right part of the page. The rest

of the buttons are hidden and instead of them their functionality is moved to

the list that is shown when the button on the left of the page is pressed (See

Figure 19).

35

Figure 19. Header of the page, the width of the page being 689px. The

button on the left site of the header is pressed.

The snippet of the HTML code, responsible for creating the header is

illustrated below:

<div id="headerRow1">

<div class="headerRow1-left">

<div class="headerRow1-left-mobileContent"><!-- Content --></div>

<div class="headerRow1-left-desktopContent"><!-- Content --></div>

</div>

<div class="headerRow1-middle">

<div class="headerRow1-middle-mobileContent"><!-- Content --></div>

</div>

<div class="headerRow1-right">

<%out.flush();%>

<c:import url="${env_jspStoreDir}

Widgets/MiniShopCartDisplay/MiniShopCartDisplayRefresh.jsp"/>

<%out.flush();%>

<div class="headerRow1-right-desktopOnlyContent"><!-- Content --></div>

</div>

36

</div>

<div id="headerRow2">

<!-- Content -->

</div>

The snippet of the CSS file, which sets the style to the HTML page, is shown

below. When the width of the screen is smaller than 750px .headerRow1-left-

mobileContent, .headerRow1-middle-mobileContent will have style display:

block that means they will be shown and the .headerRow1-left-

desktopContent, .headerRow1-right-desktopOnlyContent will have style

display: none that means they will be hidden. As the result of the usage of

both styles: display-none and display-block the header changes from the

desktop version to the mobile version according to the breakpoints set in the

media query.

.headerRow1-left-mobileContent { display: none; }

@media (max-width: 750px) {

.headerRow1-left-mobileContent { display: block; }

}

.headerRow1-left-desktopContent { display: block; }

@media (max-width: 750px) {

.headerRow1-left-desktopContent { display: none; }

}

.headerRow1-middle-mobileContent { display: none; }

@media (max-width: 750px) {

.headerRow1-middle-mobileContent { display: block; }

}

.headerRow1-right-desktopOnlyContent { display: block; }

@media (max-width: 750px) {

.headerRow1-right-desktopOnlyContent { display: none; }

}

37

The mechanisms used to show and hide elements in the second row are the

same as the ones used in first row.

4.2 Page Template

The following snippet of the CSS file demonstrates the rules that apply to all of

the page elements from web pages. The pages will work responsively (resize

the width) only for the width of the screen device smaller than 984px. Used

media queries provide that the content of the page will not become too wide.

div#page {

width: 100%;

height: 100%;

position: relative;

background: #FFFFFF;

}

@media only screen and (min-width: 984px) {

div#page {

width: 960px;

margin-left: auto;

margin-right: auto;

}

}

@media only screen and (min-width: 1281px) {

div#page {

width: 1200px;

margin-left: auto;

margin-right: auto;

}

}

38

4.3 Category Page – New layout template

The new layout template was created for the needs of the category page.

Snippets below show container JSP file which defines this layout template. It

consists of three rows; each of these rows has the width of 100%. The

columns inside rows represent the configurable slots. The line

<wcpgl:widgetImport slotId="1" /> is responsible for importing widgets to

the defined slots. The id of the slot must be valid with those which are set in

the layout template in Commerce Composer.

<div class="rowContainer" id="container_${pageDesign.layoutID}">

<%-- First row --%>

<div class="row margin-true" id="breadcrumb">

<%-- First column --%>

<div class="col12 acol12" data-slot-id="1">

<wcpgl:widgetImport slotId="1" />

</div>

</div>

<%-- Second row --%>

<div class="row">

<%-- First column --%>

<div class="col12 acol12" data-slot-id="2">

<wcpgl:widgetImport slotId="2" />

</div>

</div>

<%-- Third row --%>

<div class="row">

<%-- First column --%>

<div class="col12 acol12" data-slot-id="3">

<wcpgl:widgetImport slotId="3" />

</div>

</div>

</div>

39

Before layout template can be used in Commerce Composer, it needs to be

register in Commerce Composer framework and the store needs to be

subscribed to this layout template, in order to do this data load utility is used.

Data load input file needs to be modified. There are four of them (Registering

a Commerce Composer layout template 2014):

 registationWidgetDef.csv – specifies the information for registering a

layout template container, such as widget vendor or path to the JSP file

 subscribeWidgetDef.csv – subscribes a store to a layout template

container

 template.csv – sets information about template, like layout template

name and description, that will be shown in commerce composer

 slotdefinition.csv – loads the slot definition information, this file is

responsible for a view of the layout the template shows in the

commerce composer

When all files are adjusted and the data load utility has been run, it is possible

to use the new layout template within the commerce composer.

Figure 20 shows the layout template created for the Kotipizza category page.

There are three widgets placed in the slots. Breadcrumb Trail Widget,

Heading Widgets (display the name of the category) and Catalog entry list

Widget (display the list of the catalog entries).

40

Figure 20. Layout template for Kotipizza Category Page

4.4 Checkout Process – new breakpoints

The shopping cart page is the example of the page for which the default

Aurora starter store breakpoints do not work very well (Figure 21).

That is why the new class col6-descom was created. It has the word col6

included the same naming conventions as in fluid grid. Col6-descom has, as

col6, width set to 50%. The difference is that the other breakpoints will be

used for the class col6-descom. If the width of the page is smaller than 780px,

the new width will be assigned to the col6-descom. The shopping cart page

will no longer consist of the two columns like it was with the width bigger than

780 (Figure 22). Instead of it, the columns are placed one below the other

(Figure 23).

41

Figure 21. Shopping Cart Page with default break points. The page

width is 600px.

The following snippet of the CSS file demonstrates how class col6-descom

and media query are defined. The new breakpoint is set to the value of 780px

.col6-descom {

width: 50%;

padding: 0;

}

@media (max-width: 780px) {

.col6-descom {

width: 100%;

}

}

42

Figure 22. Shopping Cart Page with custom break points. The page

width is 600px.

Figure 23. Shopping Cart Page with custom break points. Width of the

page is 600px.

43

5 CONCLUSION

The purpose of the thesis was to create responsive UI for a web store. It was

accomplished by using fluid grids, fluid images and media queries. The

breakpoints for each of the pages were investigated separately. They were set

depending on the contents of the page. Good practice of showing and hiding

elements on devices with different resolution was used to provide the best

usefulness of the web store. All of those rules ensure that the web site looks

as good in mobile devices as in the desktop ones without duplicating the code.

Design of the web store was created to make the functionality of the store

easy and logical for all of the users.

IBM WebSphere Commerce framework was used to create the web store.

Use case that it is shown in thesis was created based on the Aurora Starter

Store. Almost all of the pages needed for the store were already implemented.

There were used as foundation for the store.

From the web designing point of view changing the user interface to act

responsively was not hard. The challenge was to get to know IBM WebSphere

Commerce framework and Aurora Starter Store. The file structure of the store

is complicated. Sometimes it was hard to know which JSP file is responsive

for which view. Also, inside JSP files widgets and new JSPF (JSP Fragments)

files were imported, which makes it even more complicated.

Working with IBM WebSphere Commerce was a new useful experience. The

project gives opportunity to extend web developing skills. Another profitable

aspect of this project was working in the team, where everyone needs to be

able to communicate to everyone else. Finally, all of the goals of the thesis

were achieved.

44

REFERENCES

Commerce Composer Tool. 2014. Page on IBM Info Center - WebSphere
Commerce Version 7.0.0.7 Accessed 9 May 2014. Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.management-center.doc/concepts/cpzpagecomptool.htm

Header and Footer. 2014. Page on IBM Info Center - WebSphere Commerce
Version 7.0.0.7 Accessed 5 May 2014. Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.aurora-starterstore.doc/refs/rsmaurorasa_atoverall.htm

Highlights of Version 7 Feature Pack 7. 2014. Page on IBM Info Center -
WebSphere Commerce Version 7.0.0.7 Accessed 27 April 2014. Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.admin.doc/concepts/cwnFEP7summary.htm

IBM Management Center for WebSphere Commerce. 2014. Page on IBM Info
Center - WebSphere Commerce Version 7.0.0.7 Accessed 9 May 2014.
Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.management-center.doc/concepts/ctfcmc.htm

JavaScript Introduction. Page on w3schools, Accessed 4 May 2014. Retrieved
from http://www.w3schools.com/js/js_intro.asp

Knight, K. 2009. Fixed vs. Fluid vs. Elastic Layout: What’s The Right One For
You? Accessed on 27 April 2014. Retrieved
from http://www.smashingmagazine.com/2009/06/02/fixed-vs-fluid-vs-elastic-
layout-whats-the-right-one-for-you/

Knight, K. 2011. Responsive Web Design: What It Is and How To Use It
Accessed on 4 May 2014. Retrieved
from http://www.smashingmagazine.com/2011/01/12/guidelines-for-
responsive-web-design/

Kyrnin, J. How to Use Multiple CSS Classes on a Single Element Accessed
on 27 April 2014. Retrieved
from http://webdesign.about.com/od/css/qt/tipcssmulticlas.htm

Layouts, layout template, and default layouts. 2014. Page on IBM Info Center
- WebSphere Commerce Version 7.0.0.7 Accessed 9 May 2014. Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.management-center.doc/concepts/cpztemplates.htm

Marcotte, E. 2011. Responsive Web Design. New York, New York: A Book
Apart

Media Queries. 2012, Page on W3C Recommendation, Accessed 27 April
2014. Retrieved from http://www.w3.org/TR/css3-mediaqueries/#media0.

Pages and page creation. 2014. Page on IBM Info Center - WebSphere
Commerce Version 7.0.0.7 Accessed 9 May 2014. Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.management-center.doc/concepts/cpzpages.htm

http://www.smashingmagazine.com/2009/06/02/fixed-vs-fluid-vs-elastic-layout-whats-the-right-one-for-you/
http://www.smashingmagazine.com/2009/06/02/fixed-vs-fluid-vs-elastic-layout-whats-the-right-one-for-you/
http://www.smashingmagazine.com/2009/06/02/fixed-vs-fluid-vs-elastic-layout-whats-the-right-one-for-you/

45

Page range breakpoints in the Aurora starter store. 2014. Page on IBM Info
Center - WebSphere Commerce Version 7.0.0.7 Accessed 27 April 2014.
Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.aurora-starterstore.doc/concepts/csmaurorarwdpagebounds.htm

Registering a Commerce Composer layout template. 2014. Page on IBM Info
Center - WebSphere Commerce Version 7.0.0.7 Accessed 27 April 2014.
Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.pagecomposerframework.doc/tasks/tpzlayouttemplatecreatereg.htm

Responsive and device-specific store pages. 2014. Page on IBM Info Center -
WebSphere Commerce Version 7.0.0.7 Accessed 27 April 2014. Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.aurora-starterstore.doc/concepts/csmaurorarwdtransitions.htm

Responsive Web Design (RWD). 2014. Page on IBM Info Center -
WebSphere Commerce Version 7.0.0.7 Accessed 27 April 2014. Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.aurora-starterstore.doc/concepts/csmaurorarwd.htm

Responsive Web Design (RWD) framework. 2014. Page on IBM Info Center -
WebSphere Commerce Version 7.0.0.7 Accessed 27 April 2014. Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.aurora-starterstore.doc/concepts/csmaurorarwdframework.htm

Starter stores. 2014. Page on IBM Info Center - WebSphere Commerce
Version 7.0.0.7 Accessed 27 April 2014. Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.starterstores.doc/concepts/csmStarterStores.htm

WebSphere Commerce application layers. 2014. Page on IBM Info Center -
WebSphere Commerce Version 7.0.0.7 Accessed 27 April 2014. Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.developer.doc/concepts/csdapplication.htm

WebSphere Commerce common architecture. 2014. Page on IBM Info Center
- WebSphere Commerce Version 7.0.0.7 Accessed 27 April 2014. Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.developer.doc/concepts/csdsoftwarecomp.htm

WebSphere Commerce presentation layer. 2014. Page on IBM Info Center -
WebSphere Commerce Version 7.0.0.7 Accessed 5 May 2014. Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.developer.doc/concepts/csdviewlayer.htm

WebSphere Commerce product overview. 2014. Page on IBM Info Center -
WebSphere Commerce Version 7.0.0.7 Accessed 9 May 2014. Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.admin.doc/concepts/covoverall.htm

Widgets for Commerce Composer. 2014. Page on IBM Info Center -
WebSphere Commerce Version 7.0.0.7 Accessed 9 May 2014. Retrieved
from http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc
e.management-center.doc/concepts/cpzwidgetcont.htm

46

Van Gemert, V. 2013. Logical Breakpoints For Your Responsive Design.
Accessed on 27 April 2014. Retrieved
from http://www.smashingmagazine.com/2013/03/01/logical-breakpoints-
responsive-design/

http://www.smashingmagazine.com/2013/03/01/logical-breakpoints-responsive-design/

