Wang Zejia

MEASUREMENT OF SPANNING TREE PERFORMANCE BETWEEN DIFFERENT PROTOCOLS

Bachelor’s Thesis
Networking

May 2014
Network is becoming more and more important in daily life, the performance of the network is most critical issue. In this article, we will talk about the spanning tree protocol which is used to prevent bridge loops, broadcast radiation and provide the protection of convergence in order to provide the nice performance of the network. You can see from this article about what it is the spanning tree, how it works, and what kind of enhanced protocols are used. I will test and measure the original protocol and enhanced protocols, and show the results of the performance of convergence time. We will see which protocol have nice performance. After that we can decide which protocol is suit for our network and provide the best performance.
CONTENTS

1 INTRODUCTION .. 1

2 ORIGINAL SPANNING TREE PROTOCOL .. 2
 2.1 STP Basic Components ... 2
 2.2 Spanning Tree Algorithm .. 2
 2.3 STP Port ... 2
 2.3.1 Port Roles .. 3
 2.3.2 Port States ... 4
 2.4 The Root Bridge and BID .. 6
 2.4.1 BID Fields .. 6
 2.4.2 Extend System ID ... 7
 2.4.3 Bridge Priority .. 8
 2.4.4 MAC Address ... 8
 2.5 BPDU .. 9
 2.5.1 BPDU Fields .. 9
 2.5.2 BPDU Timers ... 10

3 EHANCED STP .. 11
 3.1 Per VLAN Spanning Tree .. 12
 3.2 Per VLAN Spanning Tree Plus ... 13
 3.3 Rapid Spanning Tree Protocol .. 15
 3.4 Multiple Spanning Tree Protocol .. 18
 3.4.1 Instance and Region .. 18
 3.4.2 CIST Root and Region Root .. 20
 3.4.3 Path Cost and Ports .. 20

4 MEASUREMENT DESIGN ... 21

5 DESIGN IMPLEMENTATION AND MEASUREMENT .. 22
 5.1 Performance Measurement of PVST+ ... 22
 5.1.1 Implementing PVST+ ... 23
 5.1.2 Test and Result .. 24
 5.2 Performance Measurement of RSTP .. 26
 5.2.1 Implementing RSTP .. 27
 5.2.2 Test and Result .. 27
 5.3 Performance Measurement of MSTP .. 29
5.3.1 Implementing MSTP ...30
5.3.2 Test and Result ..31
6 CONCLUSION ..32
BIBLIOGRAPHY ..33
APPENDIX ...34
1 INTRODUCTION

In local area networks we want to have redundant paths. This way we can in the cases of a link failure redirect the traffic to the alternative path. However for technical reasons we cannot have loops in a LAN topology. Therefore we have introduced a Spanning Tree Protocol (STP). The STP generates the spanning tree to ensure that Ethernet local area network works with loop-free topology.

STP has two main functions: one is in the use of spanning tree algorithm to prevent bridge loops and the broadcast radiation. The second is in the Ethernet network topology change, through the spanning tree protocol to achieve the purpose of protection of convergence (ZhangCun, 13). Bridges exchange BPDU data to monitoring loops, and then close the selected bridge interfaces cancel the loop. STP is standardized as IEEE802.1D.

STP has one limitation and it is the time required to do topology changes. In current media rich networks a faster solution is needed. The aim of the study is to get familiar with original and more advanced spanning tree protocols. In the practical part of my thesis I will implement original STP, Rapid Spanning Tree Protocols and Multiple Spanning Tree Protocol in a network. I will identify the operation principle for each protocol, the performance for different configuration. I will also analyze which protocol is suitable choice for different environments.

The structure of the study is as follow. In Chapter 2, the original STP is explained. The theoretical and the working principle are introduced there. Chapter 3 is the theoretical part of the enhanced STPs and their working principle. We talk about more advanced functions of enhanced STPs. In Chapter 4 the measurement design is described for original STP and enhanced STPs. Chapter 5 is the configuration and measurement part for the test. The details of configurations and measurement result will be shown in the chapter. Chapter 6 dedicates to give a conclusion and summary of my thesis.
2 ORIGINAL SPANNING TREE PROTOCOL

2.1 STP Basic Components

Like other protocols, STP is constantly upgrading with the continuous development of the network. STP is invented by the famous engineer Radia Perlman from Sun Microsystems Inc (Radia Perlman, 2014). By this method, the bridge can achieve the ideal of layer 2 routing with redundant and loop free operation. We can imagine an STP as a bridge device in mind for the process of optimization and fault tolerance to send data. STP is defined in the IEEE 802.1D (ZhangCun, 13). It is a link management protocol for network to provide path redundancy while preventing undesirable loops. To make Ethernet work better, it can only have one active path between two workstations. Network loops occur for variety of reasons, the most common one is intentionally generated redundancy that in case of a link or switch fails, and there will be another link or switch to replace it.

Now we firstly get familiar with the original STP. The basic components of STP are the STP algorithm, a bridge ID, a bridge protocol data unit, BPDU timers, path cost and port states. I will explain all of them in more details below.

2.2 Spanning Tree Algorithm

In order to guarantee the continuous network traffic, the network is designed with redundant links and devices. The purpose of this design is to prevent a failure to lead to loss of functionality of the entire network. Although the redundant design can eliminate single point of failure problems, but also it leads loops to occur, broadcast storms, multiple copies of the same frame and unstable MAC address tables in the network topology. When implementing the STP that there is only one logical path on the network. STP uses the Spanning Tree Algorithm (STA) to determine which ports in a switch need to be blocked in order to prevent loops. Therefore, a switched network needs to have a mechanism to prevent the loops (SPANNING TREE, 2014).

2.3 STP Port
2.3.1 Port Roles

There are four port roles in STP. They are described below in more details.

Root ports: The root port exists on the non-root bridge. The port has the best path to the root bridge. Root port forwards traffic to the root bridge. The root port uses received frame source MAC address to populate the MAC table. One bridge can have only one root port. In Figure 1, the root port is F0/1 on switch S2 with configured for the trunk link between switch S2 and switch S1 (Cisco, LAN Redundancy, 2013).

Designated ports: The designated port exists on the root bridge and non-root bridges. All ports of the root bridge are designated ports. For non-root bridge, designated port is needed to receive frames of forward frames towards the root bridge. In Figure 1, switch ports F0/1 and F0/2 on switch S1 are designated ports (Cisco, LAN Redundancy, 2013).
Alternate port and backup ports: All ports configured to be in a blocking state to prevent loops. The port does not forward the frames, it will not use the source address populate to the MAC address table. In Figure 1, the STP configured port F0/2 on switch S3 in the alternate role (Cisco, LAN Redundancy, 2013).

Disabled port: The disabled port is administratively shut down. The disable port does not participate in the spanning tree process. In Figure 1, there is no disabled port (Cisco, LAN Redundancy, 2013).

2.3.2 Port States

After the startup of the switches, the spanning tree algorithm immediately determines the states of the ports. If a switch port goes directly from blocking to forwarding state, the switches do not understand the topology of the network and a port may cause temporary data loops. Therefore, STP has introduced five port states (Hurgh.org, 2014). The working principle is shown in Figure 2.
As shown in Figure 2, when a switch is powered up, by default, STP is enabled, and every interface in the switch, VLAN or network goes through the blocking, listening and learning states. After that each interface stabilizes at the forwarding state or blocking state. The details of each state is described below.

Blocking state: The port is alternate port. In blocking state, the interface does not participate in any frame forwarding. The port receives BPDU frames to determine root bridge switch location and root ID (Hurgh.org, 2014).

Listening state: According to received BPDU frames, STP determines if the port can participate in frame forwarding. At this point, the port not only receives the BPDU frames, but also forwards its own BPDU frames, and notifies the adjacent switches that this switch port is preparing to participate in the activities topology (Hurgh.org, 2014).
Learning state: The port is ready to participate in frame forwarding and begin to populate the MAC address table (Hurgh.org, 2014).

Forwarding state: The port is part of the active topology. It will forward frames and sends and receives BPDU frames (Hurgh.org, 2014).

Disabled state: The layer 2 port does not participate in spanning tree and does not forward frames. When administrator closes the port, the port is the disabled state (Hurgh.org, 2014).

2.4 The Root Bridge and BID

In STP, the root bridge is a bridge that exchanges topology information with the designated bridge. When need to change the network topology, the designated bridge notify all the other network bridges in the execution of a spanning tree. The root bridge election is based on the bridge ID (BID) the bridge priority (can be modified) and the MAC address (cannot be modified by user) (Cisco, LAN Redundancy, 2013).

When the switches start for the first time, each switch assumes to be the root bridge, and forward their Bridge Protocol Data Unit (BPDU) frames. Each switch analyzes the BPDU frames. Both the BID and MAC address are used to elect the root bridge. They first compare the BID, if the BID are the same, then compare the MAC address. After a period of time, spanning tree convergence, all switches agree to a particular bridge which has the highest priority to be the root bridge. If a new switch with a higher priority joins the network, it first announces itself as the root bridge. After communication with other switches, it will be recorded as a new root bridge (Cisco, LAN Redundancy, 2013).

2.4.1 BID Fields

The first type of BID is without the extended system ID. The structure is shown in Figure 3, and it consists of Bridge Priority (2 bytes) + MAC Address (6 bytes). In early STP implementations there were no virtual LANs (VLANs) in use. There was a single original spanning tree across all switches (Chapter 5 - Spanning Tree Protocol, 2011).
The second type of BID is with the extended system ID. The structure is also shown in Figure 3, with Bridge Priority (4 bytes) + Extended System ID (12 bytes) + MAC Address (48 bytes). When VLANs became common for network infrastructure segmentation, the additional function was added into the STP to support the VLANs. Thus, extended system ID field includes the ID of VLAN with that the BPDU is related (Chapter 5 - Spanning Tree Protocol, 2011).

![Figure 3 BID Fields](image)

2.4.2 Extend System ID

As shown in Figure 3, when use the extended system ID, the bridge priority value has been changed by the number of the bits, so the bridge priority value changes increase from 1 to 4096. Bridge priority values can only multiply by 4096 (Chapter 5 - Spanning Tree Protocol, 2011).
2.4.3 Bridge Priority

The priority of the bridge is a variable value and the range is from 1 to 65535. 1 is the highest bridge priority. You can change the value and determine which switch could become the root bridge. Election mechanism is based on the lowest priority value which means the highest priority. The switch with the lowest priority value could become the root bridge (Cisco, LAN Redundancy, 2013).

As shown in Figure 4, switch 1 is configured with the different priority compared to switch 2 and switch 3. Based on this situation, the switches elect the root bridge with the lowest bridge priority. The switch 1 has the lowest bridge priority (value is 24577). It is elected to be the root bridge.

![Figure 4 Priority-based Decision](Chapter 5 - Spanning Tree Protocol, 2011)

2.4.4 MAC Address
It is possible that all the switches are configured with the same bridge priority, and also they have the same extended system ID. As shown in Figure 5, based on this situation, the switches elect the root bridge by MAC address which has the lowest hexadecimal value. Switch 2 has the lowest MAC address value which is 000A0011111, so switch 2 is elected to be the root bridge (Cisco, LAN Redundancy, 2013).

Figure 5 MAC Address-based Decision (Cisco, LAN Redundancy, 2013)

2.5 BPDU

2.5.1 BPDU Fields

BPDU frame contains 12 distinct fields as Figure 6 shows. BPDU is the frame that the STP switches use to exchange the messages. BPDU contains the path and priority information for
STP. STP uses this information to determine the root bridge and the path to the root bridge (Chapter 5 - Spanning Tree Protocol, 2011).

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Bytes</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>2</td>
<td>Protocol ID</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Version</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Message type</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Flags</td>
</tr>
<tr>
<td>5-8</td>
<td>8</td>
<td>Root ID</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Cost of path</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Bridge ID</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Port ID</td>
</tr>
<tr>
<td>9-12</td>
<td>2</td>
<td>Message age</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Max age</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Hello time</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Forward delay</td>
</tr>
</tbody>
</table>

Figure 6 BPDU Fields (Chapter 5 - Spanning Tree Protocol, 2011)

Configuration BPDU (CBPDU) is used when each of the bridges send initial BPDU, assuming itself as the root bridge. After convergence, BPDU are only send out from the root bridge. Other bridges have trunk downward after the root port receives BPDU (Chapter 5 - Spanning Tree Protocol, 2011).

Topology Change Notification (TCN) BPDU is when the topology has changed. The other bridges send the BPDU from the root port to the root bridge.

2.5.2 BPDU Timers

BPDU timers contain Hello time, forward delay and Maximum age. The port stays keep time depends on the BPDU timers. Only the root bridge switch can adjust the timers by send information through the tree.
As shown in Figure 7, when the STP is enabled, after the blocking state of each port in switch in the network, they will go through temporarily states at power up. These are listening and learning states. The port state change to the forwarding or blocking state. When the network topology changes, a port implement the listening and learning states for a specified period is forward delay interval.

HELLO TIME: It is the time between every BPDU frame send on a port. This is equal to 2 seconds by default. The range is 1 to 10 seconds.

FORWARD DELAY: Listening and learning time, this is equal to 15 seconds by default. The range can be 4 to 30 seconds.

MAXIMUM AGE: Configuration BPDU retention time, this is 20 seconds by default. The range can be 6 to 40 seconds (Chapter 5 - Spanning Tree Protocol, 2011).

3 ENHANCED STP

STP has bring new life to the transparent bridge. However, with the deepening of the application and development of network technology, its shortcoming in the application has also been
exposed (ZhangCun, 13) The STP defects mainly in the convergence speed. Figure 8 shows the STP variants.

![STP Variants](image)

Figure 8 STP Variants for Cisco Proprietary and IEEE Standard (House of Technology, 2013)

Now let us get familiar with each of the enhanced STP and the working principle.

3.1 Per VLAN Spanning Tree

Per VLAN Spanning Tree (PVST) is Cisco solution to solve the spanning tree in VLAN processing. PVST runs separate spanning tree instance for each VLAN. Under normal circumstances, PVST requirement in running on Cisco switches between trunk links of Interior Switching Link (ISL). PVST maintains a spanning tree instance for each configured VLAN. It uses ISL trunk and allows a VLAN trunk when the other VLANs blocking some forwarding. Since PVST treats each VLAN as a separate network, it has the ability (at layer 2) load balancing communication in the trunk and other VLANs in spanning tree loop does not cause another trunk VLANs (Baidubaike, 2013).
In IEEE 802.1D STP topology, as shown in Figure 9, A-D1 is active link. The A-D2 link is blocked. The entire switched network has been seen as a spanning tree instance, it is not allowed the loop in the instance. In Figure 10, each VLAN as a separate network in PVST topology, in A-D1 trunk link forward VLAN 501-1000 information and block VLAN 1-500. In A-D2 trunk link forward VLAN 1-500 information and block VLAN 501-1000. So the PVST topology keep load balancing communication in the trunk (Da, 2011).

Figure 9 IEEE 802.1D STP Unbalanced Load Topology (Da, 2011)

Figure 10 Cisco PVST Load Balancing Topology (Da, 2011)

3.2 Per VLAN Spanning Tree Plus

Per VLAN Spanning Tree Plus (PVST+) is another program to solve the processing spanning tree problem in VLAN of Cisco. The original IEEE 802.1D standard defines the Common Spanning Tree (CST) assumes one spanning tree instance for the entire bridge network, one link if active and must block for all VLANs, regardless of the number of VLANs (Cisco,
PVST+ allows the CST information send to PVST, in order to operate with other vendors. PVST+ can use 802.1Q encapsulation and it in Catalyst 802.1Q trunk is automatically activated. PVST+ also can achieve the load balancing in layer 2. PVST+ is not supported on non-Cisco devices. PVST+ divided into three types of regions: PVST region, PVST+ region and single spanning tree region (Cisco, LAN Redundancy, 2013).

As shown in Figure 11, in the PVST+ environment, the half of VLANs also can work to forward to each uplink trunk which spanning tree parameters can be tuned. On S2, the F0/2 port is the forwarding port for VLAN 10 and blocking port for VLAN 20, the F0/3 port is the forwarding port for VLAN 20 and blocking port for VLAN 10. This can be done by configure one switch to be elected the half of the VLANs of the root bridge in the network. The second switch to be elected the other half of the VLANs of the root bridge. So the result is S1 is the root bridge for VLAN 10, S3 is the root bridge for VLAN 20.

PVST+ includes the PortFast enhancement that called BPDU guard and root guard. In PVST+ environment, the extend system ID can ensure that each VLAN has a unique BID in each switch. For instance, the VLAN 20 default BID is 32770, so that means the priority is 32768 and plus the extended system ID of 2. If VLAN has been not configured by priority, each

![Figure 11 The PVST+ Topology](Cisco, LAN Redundancy, 2013)
VLAN have the same default priority and elected the root is based on the MAC address for switch (Cisco, LAN Redundancy, 2013).

The weakness of PVST+ is when there are many VLANs in topology, the computation and resource footprint will increase dramatically when maintaining multiple spanning trees. Especially the port state changes when a VLAN has amount of trunk links, all of the spanning tree states must be recalculated, and the CPU will be overwhelmed. Therefore, Cisco switches to limit the use number of VLANs, at the same time in a port is not recommended to created many VLAN trunks (Cisco, LAN Redundancy, 2013).

3.3 Rapid Spanning Tree Protocol

In 2001, the IEEE introduced Rapid Spanning Tree Protocol (RSTP) as 802.1W. RSTP is an evolution from the 802.1D standard. The RSTP use the primarily terminology of the original IEEE 802.1D STP. Most parameters are same as STP, so user can easily configure the RSTP with the knowledge of STP (Cisco, Understanding Rapid Spanning Tree Protocol (802.1w), 2006).

As shown in Figure 12, the topology of the RSTP. S1 is the root bridge and the F0/4 and F0/2 are designated ports in forwarding state. On S2, F0/3 is an alternate port in discarding state which is the new port type. In Figure 13, it is the comparison of STP and RSTP Port State. There is no blocking port exist in RSTP port state. In 802.1W, the disable port, listening port, and blocking port from 802.1D are unified into discarding port state.
As shown in Figure 14, RSTP BPDU is type 2, version 2. The original 802.1D BPDU is type 0, version 0. In 802.1D BPDU only defines the Topology Change and Topology Change Acknowledgment two flags bits. The RSTP uses all six bits of the flag byte to achieve encode the role and state of the port that originates the BPDU and manage the proposal and agreement mechanism. For the legacy will drop this RSTP BPDU, so this property can easily to detect the legacy bridge to connected of RSTP bridge (Cisco, Understanding Rapid Spanning Tree Protocol (802.1w), 2006).
There are four edge ports as shown in Figure 15 and the rest of ports on switches are non-edge ports. The RSTP edge port also is a switch port that is will never connected to another switch. It directly connected to the end stations, so that it cannot occurs the bridge loops in the networks. The edge port immediately transitions to the forwarding state, the advantage is skip the listening and learning port states, the functions is similarly to the PortFast in PVST+ (Cisco, LAN Redundancy, 2013).
RSTP is still the single spanning tree structure, it cannot do load balancing, and cannot carrying any traffic after the link has been blocked that caused the wasted of bandwidth. For the large network, the convergence speed is still not enough to cope with it.

3.4 Multiple Spanning Tree Protocol

Mentioned STP, RSTP protocols and Cisco proprietary protocol PVST, PVST + belong to a single spanning tree (SST) protocol, which is the support for multi-VLANs devices can only run a single spanning tree. Multiple Spanning Tree Protocol (MSTP) is new agreement that defines in IEEE 802.1S standard which proposed combination STP and VLAN, it inherits the advantages of rapid migration of RSTP port, and also solve the problem that different VLANs must run on the same spanning tree of RSTP, to avoid the VLAN load balancing cannot be achieved and waste of link bandwidth (ZhangCun, 13).

3.4.1 Instance and Region

To put it simply, STP and RSTP are based on the port, PVST+ is based on VLAN, and MSTP is based on the instance. Compared with STP, RSTP and PVST+, MSTP introduced “instance” and “region” concept (ZhangCun, 13).
The instance is a collection of multiple VLANs, this through multiple VLANs bundle into an instance method can save the communication overhead and resource utilization. In MSTP, each instance topology calculating is independent, it can be realized the load balancing in these instances. The same VLANs topologies can be mapped to a particular instance, these VLANs port forwarding state will depend on corresponding instance forwarding state of MSTP (MSTP--H3C, 2009).

The region consist by Configuration Name, Revision Level, Configuration Identifier Format Selector, mapping of VLAN ID (VID) to spanning trees. In which the configuration name, revision level, configuration identifier format selector in the BPDU packets have an associated field.

Mapping of VIDs to spanning trees in BPDU performance as Configuration Digest. According to Mapping of VIDs to spanning trees, the configuration digest calculated a 16-byte signature. These four parameters are same and with the interconnected switches to be treats as in the same region (MSTP--H3C, 2009).

MSTP instance 0 has a special role, and called the Common Internal Spanning Tree (CIST), the other instance 2 called Multiple Spanning Tree Instance (MSTI). CIST consist of calculate the single spanning tree by STP and RSTP and region calculation of MSTP, it is to ensure that all bridged LANs are simple and full connectivity. CST is STP and RSTP, it also is a single spanning tree which calculates by MSTP for connecting the Multiple Spanning Tree (MST) region. Internal Spanning Tree (IST) in a given MST region provided by the CIST connectivity. In Figure 16 MSTP basic concepts shown, assume each MST region as a "switch", CST is a spanning tree which through these “switches” generated by STP and RSTP or MSTP. IST is a fragment of CIST in an MST region, it is a special Multiple Spanning Tree Instance (MSTI) (MSTP--H3C, 2009).
3.4.2 CIST Root and Region Root

Compared with STP and RSTP, MSTP introduced the concept of CIST root and region root. The CIST root is a global concept, all interconnected for running STP, RSTP and MSTP switches only have one CIST root. While the region root is a local concept is relative to a certain instance of region. As shown in Figure 16, all connected devices only have one CIST root which is switch A in region 1, and the number of region root for each region associated with the number of instances.

3.4.3 Path Cost and Ports

MSTP introduced the concept of external and internal path cost. External path cost is relative to the CIST, the same region external path costs are the same. Internal path cost is relative to an instance in a region, the same port for different instances correspond to different internal path cost (MSTP--H3C, 2009).
MSTP introduced the concept of Boundary port and Master port. Boundary port is connected to a different of the MST regions, MST region to STP operation area, and MST region to port of RSTP area which located at the edge of the MST region. In a region that does not contain the CIST root, master port is all the boundary ports which reach the CIST root port with minimal cost, and it is connected the MST region to the CIST root port. Alternate port is the backup port for master port, if master port is blocked, alternate port will become the new master port. In Figure 16, the CIST root in region 1. In region 2 and region 3, the port on device C is the boundary port. In region 2, the port on device A which is connected to region 1 is the master port. In region 3, the port on device A which is connected to region 1 is the alternate port. The device A contains master port is called the master device in region 2 (MSTP--H3C, 2009).

4 MEASUREMENT DESIGN

After discussing the theory of the STP, in this chapter, we will discuss the testing environment which I use in my performance measurement. I will test convergence performance of the default STP which is PVST+ implement on Cisco Catalyst 2960 series. After that I will test the RSTP and MSTP.

Before the configuration of the switches, I need to check does Cisco Catalyst 2960 series support all three protocols which I want to implement and test. This is the quite important work need to be done. The result is Cisco Catalyst 2960 series support all three protocols.

The topology diagram is shown in Figure 17. This is basic the topology for my PVST+, RSTP and MSTP tests.
The purpose of the measurement is to measure the convergence performance, so I choose to send the continuous ping from one PC to another PC. Then I will shut down one interface of the switch, and start to calculate the time by my mobile phone. The ping test will show “Request timed out.”, now the topology will choose a new link to send the information. When the new line is set up, the ping test will show like “Replay from 172.31.10.22: bytes =32 time<1ms TTL =128”, and now, I will stop the clock and check the time. This time is the convergence time for the spanning tree, because I measure the result by hand, so I will measure five times to reduce errors compared with just test one time.

5 DESIGN IMPLEMENTATION AND MEASUREMENT

In this chapter, I will show the process of the implementation of three protocols. Explain the method and process of test. Give the summary for each test result.

5.1 Performance Measurement of PVST+

The topology diagram is shown in Figure 18, this is basic the topology for the PVST+. I will add more PCs on each VLAN, not like shown in Figure that just have one PC in each VLAN.
5.1.1 Implementing PVST+

I create the network as shown in Figure 18, and implement the PVST+ on this topology. The physical work is to connect all the devices, so I need to take care of all the wires and all devices.

The implement action steps of PVST+ are shown below.

Step 1: Create VLANs on all switches. I created VLANs 10, 20, 30, 40, 50, 60, 70, 80 and 99. The VLAN 99 is the native VLAN. Configure VLAN 99 with the IP address and subnet mask.

Step 2: Enable the user ports on S1, S2 and S3 in access mode and enabled them. Assign each VLAN on right port in all switches. Configure ports Fa0/1 to Fa0/4 as trunk ports and assign them to the native VLAN 99.

Step 3: Configure the IP addresses, subnet masks and default gateways on all PCs.

Step 4: Configure the STP mode which is PVST on all switches.

Step 5: Configure spanning tree PVST+ load balancing on all switches. Configure S1 as the primary root for VLAN 1, 10, 30, 50 and 70. Configure S3 as the primary root for VLAN 20, 40, 60, 80 and 99. S2 is set as the secondary root for all VLANs.
Step 6: Configure PortFast and BPDU guard on all switches which the port connected to the PC.

5.1.2 Test and Result

Now I test the devices in VLAN 10, the S1 is the root for VLAN 10. I added a new PC4 on S2 which IP address is 172.31.10.22 and it belongs to VLAN 10. This PC was not shown in Figure 18, so I explain it here.

I use the CMD from PC1 to send continuous ping to PC4. The link should go through from S3 to S1 to S2 and arrived at PC4. The ping test is shown in Figure 19, and the link is up based on first part of result which is shown as “Replay from 172.31.10.22: bytes =32 time<1ms TTL =128”.

After that, I disconnect the links between S1 to S2, the original path stops the work in the network of VLAN 10. At the same time, I start to measure the time by my clock. The changes are shown in CMD. We can find the second part which indicates “Request timed out.” During this period, the link states between PC1 to PC4 is disconnected, the devices in the topology will find the new path transmit the message. We also can find the message from the Command-Line Interface (CLI) as shown in Figure 20. It is shows on S1, the interface fa0/1 and fa0/2 states changed to down.

On third part as shown in Figure 19, the new link now is set up. When the first line of the third part come out, I stop the clock and check the time. This time as shown in Figure 21 which 31.4 seconds is the convergence time for the network.

On fourth and fifth parts as shown in Figure 20, I reconnected the links between S1 to S2 and start to calculate the time, the switches communicate with others and decide S1 to be the root bridge again. The link between PC1 to PC4 change down and after election of the root bridge finished, the link state changes to up. When the first line of the fifth part comes out, I stop the clock to write down the time. This time also is the convergence time for the network topology.
Figure 19 CMD Result

Figure 20 CLI Result
The test result as shown in Table 1, we can find that the convergence time of PVST+ is around 30 seconds but no less than 30 seconds. It is the lowest protocol compare with the RSTP and MSTP of convergence time.

Table 1 PVST+ Convergence Time Result

<table>
<thead>
<tr>
<th>Times of Test</th>
<th>Convergence Time(s)</th>
<th>Reconnected Convergence Time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31.4</td>
<td>33.4</td>
</tr>
<tr>
<td>2</td>
<td>30.8</td>
<td>34.1</td>
</tr>
<tr>
<td>3</td>
<td>30.6</td>
<td>32.9</td>
</tr>
<tr>
<td>4</td>
<td>31.6</td>
<td>32.7</td>
</tr>
<tr>
<td>5</td>
<td>30.9</td>
<td>34.1</td>
</tr>
<tr>
<td>Average Time</td>
<td>31.06</td>
<td>33.44</td>
</tr>
</tbody>
</table>

5.2 Performance Measurement of RSTP

The topology diagram for RSTP is shown in Figure 22, there are three switches I will use and two PCs in the same VLAN. With this topology, we can test the performance of convergence time of the network which uses the RSTP.
5.2.1 Implementing RSTP

After the first measurement of PVST+, the implement action of RSTP is easy. I use the short and clean commands to let RSTP work. The implement action steps of the RSTP are shown below.

Step 1: Connected all the devices following the topology in Figure 22.

Step 2: Enable the user port Fa0/10 on each switch in access mode and PortFast. I use the VLAN 1, so by default, all ports can access VLAN 1.

Step 3: Configure the IP addresses, subnet masks and default gateways on all PCs.

Step 4: Configure the STP mode which is RSTP on all switches.

Step 5: Configure the S3 as the primary root for VLAN 1, S2 as the secondary root for VLAN 1.

5.2.2 Test and Result

I ping from PC0 to PC1. The S3 is the root switch for VLAN 1, so the process of the ping is from S2 to S3 to S1 and arrive at PC1. From Figure 23, we can find the link is up.
After that, I disconnect the Fa0/2 and start to record the time by clock. However, there is nothing change from the CMD ping test as shown in Figure 23. And I check the interface state, I find the change already happened as shown in Figure 24. The Fa0/1 port role change to root port and the state change to forwarding. This means the network choose a new link to transmit the information that is from S2 to S1 and reach the PC1.

![Figure 23 Ping Test](image)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Role</th>
<th>Sts</th>
<th>Cost</th>
<th>Prio.Nbr</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa0/1</td>
<td>AltM</td>
<td>BLK</td>
<td>19</td>
<td>128.1</td>
<td>P2p</td>
</tr>
<tr>
<td>Fa0/2</td>
<td>Root</td>
<td>FWD</td>
<td>19</td>
<td>128.2</td>
<td>P2p</td>
</tr>
<tr>
<td>Fa0/10</td>
<td>Desg</td>
<td>FWD</td>
<td>19</td>
<td>128.10</td>
<td>P2p</td>
</tr>
</tbody>
</table>

![Figure 24 S1 Port](image)

Because I need to measure the convergence time, the basic on measurement method for PVST+ is not working now. So I use the “debug spanning-tree event”. When the topology is changed, the change record is shown on CLI. But the drawback is by this method I just can test when reconnect the link between S1 and S3. I cannot test the convergence time when disconnect the link between S1 and S3. As shown in Figure 25, these commands are recorded in the communication process. When I reconnect the link, we can find based on the communication results, that the interface Fa0/2 changed from designated port to root port, and
Fa0/1 change to alternate port. The convergence time is from the moment I reconnect the interface Fa0/2 physically to the last command displayed in CLI which shows line protocol on Fa0/2 changed state to up to stop the clock.

![Figure 25 S1 Debug Events](image)

Table 2 RSTP Convergence Time Result

<table>
<thead>
<tr>
<th>Times of Test</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Average Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convergence</td>
<td>4.3</td>
<td>3.4</td>
<td>4.1</td>
<td>4.3</td>
<td>3.9</td>
<td>4.0</td>
</tr>
</tbody>
</table>

From Table 2, we can find the convergence time of RSTP is around the 4 seconds in my lab environment. It is the fastest protocol compare with PVST+ and MSTP of convergence time.

5.3 Performance Measurement of MSTP

The topology diagram for MSTP is shown in Figure 22. There are three switches and four PCs. Two PCs are in the same VLAN. With this topology, we can test the performance of convergence time of the network which implement the MSTP.
5.3.1 Implementing MSTP

I connect the devices following the topology as shown in Figure 26. The implement action steps of the MSTP are shown below.

Step 1: Create VLAN 10, 20, 40 on all switches. Enable the user port on S1 and S2 in access mode. Assign PC0 and PC1 to VLAN 10, PC2 to VLAN 40, PC3 to VLAN 20.

Step 2: Configure the IP addresses, subnet masks and default gateways on all PCs.

Step 3: Configure S3 as root for VLAN 10, S2 as the secondary root for VLAN 10.

Step 4: Configure Fa0/1 and Fa0/2 on all switches as trunk link. Enable all user ports with PortFast.

Step 5: Configure the STP mode as “mst”. Create an instance, set the name and revision number on all switches. Let PC0 and PC2 in instance1, PC1 and PC3 in instance2.
5.3.2 Test and Result

Now I test the devices in VLAN 10 in two instances. The S3 is the root for VLAN 10. Continuous ping from PC0 to s PC1 id done again. I test the link between them and the link is up. I shutdown the interface Fa0/2 in S1, so the topology will change to set up a new link. But the result from the CMD shows like nothing has changed. The situation is similar to the test of RSTP. As shown in Figure 27, I reconnect the Fa0/2 on S1, the Fa0/1 changes back to the alternate port role and state change to blocking. The difference between RSTP and MSTP is that MSTP has a higher cost.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Role</th>
<th>Sts</th>
<th>Cost</th>
<th>Prio.Nbr</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa0/1</td>
<td>Root</td>
<td>FWD</td>
<td>200000</td>
<td>128.1</td>
<td>P2p</td>
</tr>
<tr>
<td>Fa0/10</td>
<td>Desg</td>
<td>FWD</td>
<td>200000</td>
<td>128.10</td>
<td>P2p Edge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th>Role</th>
<th>Sts</th>
<th>Cost</th>
<th>Prio.Nbr</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa0/1</td>
<td>Altn</td>
<td>BLK</td>
<td>200000</td>
<td>128.1</td>
<td>P2p</td>
</tr>
<tr>
<td>Fa0/2</td>
<td>Root</td>
<td>FWD</td>
<td>200000</td>
<td>128.2</td>
<td>P2p</td>
</tr>
<tr>
<td>Fa0/10</td>
<td>Desg</td>
<td>FWD</td>
<td>200000</td>
<td>128.10</td>
<td>P2p Edge</td>
</tr>
</tbody>
</table>

Figure 27 S1 Port

So I have to use the method I used with RSTP which use debug command to track the process. I start to record the time when I reconnect the Fa0/2 on S1 and pay attention on debug events, until the line protocol on Fa0/2 change state to up as shown in Figure 28. Then I stop the clock. This time is the convergence time for MSTP.
From Table 3, we can find the convergence time of MSTP is around the 6 seconds in my lab environment. It is slower compare with the RSTP.

6 CONCLUSION

Through the theoretical part, I deeply learn the knowledge of the STP and enhanced STPs. I have mastered more details about how they operate and what are the difference between them. Enhanced STP protocols such as the RSTP and MSTP were new knowledge for me. After my new experiences I can say that they are more useful and better than the traditional STP.

After theoretical part, we know the basic concepts of the STP and enhanced STPs, and then I test the performance of original STP which is PVST+ as default on Cisco Catalyst 2960 series. After that I test the enhanced STPs of RSTP and MSTP. The testing process is divided into two part, one part is configuration of the protocols in network environment and another part is test and results. The implementation part performed relatively smooth, just some small

Figure 28 S1 Debug Events

<table>
<thead>
<tr>
<th>Times of Test</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Average Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convergence Time(s)</td>
<td>6.2</td>
<td>5.7</td>
<td>5.8</td>
<td>6.1</td>
<td>6.1</td>
<td>5.98</td>
</tr>
</tbody>
</table>
problems were met during the RSTP. I spent more time on research how to configure these protocols, check so many versions of configuration and choose a better and clearer one to implement in my test network. I used the Packet Tracer to test the configuration at home, and implemented it then in the real machines, because the test should in the real machines. The virtual environment is always idealized. I can met more unexpected problems and get more experience to solve them with the real switches and computers. The test and result part is more interesting, I need to know how to test, and what to test. There was very little information on internet about how to test the convergence time. Also when testing PVST+, I use one kind of method, but this method did not work in RSTP and MSTP environment. So I found another method to deal with the RSTP and MSTP. The test results are similar to theoretical part. The PVST+ is quite slow which the average time is more than 30 seconds compare with the RSTP and MSTP on the convergence time. The RSTP is the fastest one in these three protocols which the average time is 4 seconds, but the most suitable solution is use the MSTP in the real work situation. It has the rapid convergent performance which the average time is 5.98 seconds and compatibility.

The development of any technology will not stop because of the emergence of an "ideal" technology. STP development process itself illustrates this point. With the application of in-depth, there will be new demands of STP for users and service providers. Perhaps in the near future, the new protocols will appear in our networks.

BIBLIOGRAPHY

(2013, 8 13). Retrieved from House of Technology :
http://mars.tekkom.dk/mediawiki/index.php/CCNA_Explorer_3_STP

(2013, 12 27). Retrieved from Baidubaike:
http://baike.baidu.com/link?url=2LJa_pGW_rCSMD8SG9eL3HmT-uIXQ56qAJ4EVEPIFBnXk7PURcB-Ha6KMivB-5cH

http://cna.upc.edu.cn/rs/03/course/module2/2.2.2.2/2.2.2.2.html

APPENDIX

Chapter 5.1 PVST+ configuration:

S1 configuration:

Current configuration : 3890 bytes

! Last configuration change at 00:34:47 UTC Mon Mar 1 1993

! version 15.0
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
hostname S1

boot-start-marker
boot-end-marker

enable secret 5 1Vps3$QejY1tgIfhGavMYFaj5cy.

no aaa new-model

system mtu routing 1500

no ip domain-lookup

crypto pki trustpoint TP-self-signed-2205612288
 enrollment selfsigned
 subject-name cn=IOS-Self-Signed-Certificate-2205612288
 revocation-check none
 rsakeypair TP-self-signed-2205612288

crypto pki certificate chain TP-self-signed-2205612288
 certificate self-signed 01
 3082023A 308201A3 A0030201 02020101 300D0609 2A864886 F70D0101 04050030
 31312F30 2D060355 04031326 494F532D 53656C66 2D536967 6E65642D 43657274
 69666963 6174652D 32332305 36332323 3838301E 170D3933 30333031 30303030
 35355A17 0323030 31303130 30303030 305A3031 312F302D 06035504 03132649
 4F532D53 656C662D 5369676E 65642D43 65727469 66696361 74652D32 32303536
 31323238 3830819F 300D0609 2A864886 F70D0101 01050003 818D0030 81890281
 8100B632 56444F7E 87DA1186 8FCCD780 36D54FC8 F46666F8 72E05D4B 2981EBC6
 549DFC22 2A7ACF8A 9D33802E A05E8A51 E61D72A4 C41A2FC7 C901E97F
 12488FB5
spanning-tree mode pvst
spanning-tree extend system-id
spanning-tree vlan 1,10,30,50,70 priority 24576

vlan internal allocation policy ascending

interface FastEthernet0/1
 switchport trunk native vlan 99
 switchport mode trunk
interface FastEthernet0/2
 switchport trunk native vlan 99
 switchport mode trunk

interface FastEthernet0/3
 switchport trunk native vlan 99
 switchport mode trunk

interface FastEthernet0/4
 switchport trunk native vlan 99
 switchport mode trunk

interface FastEthernet0/5
 shutdown

interface FastEthernet0/6
 switchport access vlan 30
 switchport mode access
 spanning-tree portfast
 spanning-tree bpduguard enable

interface FastEthernet0/7
 switchport access vlan 10
 switchport mode access
 spanning-tree portfast
 spanning-tree bpduguard enable

interface FastEthernet0/8
 shutdown

interface FastEthernet0/9
 shutdown
interface FastEthernet0/10
 shutdown
!
interface FastEthernet0/11
 shutdown
!
interface FastEthernet0/12
 shutdown
!
interface FastEthernet0/13
 shutdown
!
interface FastEthernet0/14
 shutdown
!
interface FastEthernet0/15
 shutdown
!
interface FastEthernet0/16
 shutdown
!
interface FastEthernet0/17
 shutdown
!
interface FastEthernet0/18
 shutdown
!
interface FastEthernet0/19
 shutdown
!
interface FastEthernet0/20
 shutdown
!
interface FastEthernet0/21
shutdown
!
interface FastEthernet0/22
 shutdown
!
interface FastEthernet0/23
 switchport access vlan 20
 switchport mode access
 spanning-tree portfast
 spanning-tree bpduguard enable
!
interface FastEthernet0/24
 shutdown
!
interface GigabitEthernet0/1
 shutdown
!
interface GigabitEthernet0/2
 shutdown
!
interface Vlan1
 no ip address
 shutdown
!
interface Vlan99
 ip address 172.31.99.1 255.255.255.0
!
ip http server
ip http secure-server
logging eSM config
banner motd ^C
Final Thesis
^C
!
line con 0
line vty 0 4
 login
line vty 5 15
 login
!
end

S2 configuration:

Current configuration : 3832 bytes
!
! Last configuration change at 00:53:48 UTC Mon Mar 1 1993
!
version 15.0
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
!
hostname S2
!
boot-start-marker
boot-end-marker
!
enable secret 5 1xvDw$HQaGbaUOhSPM/4z2cEy5D0
!
no aaa new-model
system mtu routing 1500
!
!
no ip domain-lookup
!
!
crypto pki trustpoint TP-self-signed-2205612544
enrollment selfsigned
subject-name cn=IOS-Self-Signed-Certificate-2205612544
revocation-check none
rsakeypair TP-self-signed-2205612544
!
!
crypto pki certificate chain TP-self-signed-2205612544
certificate self-signed 01
3082023A 308201A3 A0030201 02020101 300D0609 2A864886 F70D0101 04050030
31312F30 2D060355 04031326 494F532D 53656C66 2D536967 6E65642D 43657274
69666963 6174652D 32323232 36313235 34343001 170D3933 30333031 30303030
35333517 0D323030 31303130 30303030 305A3031 312F302D 06035504 03132649
4F532566 656C626D 5369676E 65642D49 66696361 74652D32 32303536
31323534 3430819F 300D0609 2A864886 F70D0101 01050003 818D0030 81890281
8100A49F 15E8D510 F0A1A1E0 DDB8CC02 C268B9BB A305067E 7D86E555
ABB19CFC
7BCE0A20 EBFA577D B6D1C979 7D1E2ACE D8A87AD8 1007D8BE 31FD267C
AEBB8775
9D0C4C00 3073135F FD065AE5 3543F71D A44BC42E FBF5DA88 397496EA
BF37FB17
18E7E1E9 71CC70DB 37FCC505 D1622EFF 7174F756 9A36D647 F718E9E5 93708FAE
AA8B0203 010001A3 62360630 0F060355 1D130101 FF040530 030101FF 300D0603
551D1104 06300042 02533230 1F060355 1D230418 30168014 F7079B E21EE91C
D6E008DE C9A2539A FE5723DA 301D0603 551D0E04 160414FF F7079BE2
1EE91CD6
E008DEC9 A2539AFE 5723DA30 0D06092A 864886F7 0D010104 05000381 81006AEB
EC8E181A 74EB1151 F0D7792F 0F2EF349 2BF1FCE9 A05C4313 132750B1 2CC76B93
B6AE5970 C7F9045E 9C1E61E4 28D5CA62C F87B3079 CCA5E768 DE3CE499
F1A150E0
39B2678C 70505852 849CE44D 83ABE6A7 AD3B01C2 2E81423A A5F61B55
BF0DF6CC
5E3C5FE5 62C9AE7C 772A9B20 D98E0622 2947C2ED 5967AB3F F7FF5A9A A7BE
quit
spanning-tree mode pvst
spanning-tree extend system-id
spanning-tree vlan 1,10,20,30,40,50,60,70,80,99 priority 28672
!
vlan internal allocation policy ascending
!
!
!
!
!
!
!
!
!
!
!
!
!
!
interface FastEthernet0/1
 switchport trunk native vlan 99
 switchport mode trunk
!
interface FastEthernet0/2
 switchport trunk native vlan 99
 switchport mode trunk
!
interface FastEthernet0/3
 switchport trunk native vlan 99
 switchport mode trunk
!
interface FastEthernet0/4
 switchport trunk native vlan 99
 switchport mode trunk
!
interface FastEthernet0/5
 shutdown
!

interface FastEthernet0/6
shutdown
!
interface FastEthernet0/7
shutdown
!
interface FastEthernet0/8
shutdown
!
interface FastEthernet0/9
shutdown
!
interface FastEthernet0/10
shutdown
!
interface FastEthernet0/11
shutdown
!
interface FastEthernet0/12
shutdown
!
interface FastEthernet0/13
shutdown
!
interface FastEthernet0/14
shutdown
!
interface FastEthernet0/15
shutdown
!
interface FastEthernet0/16
shutdown
!
interface FastEthernet0/17
shutdown
!
interface FastEthernet0/18
 switchport access vlan 20
 switchport mode access
 spanning-tree portfast
 spanning-tree bpduguard enable
!
interface FastEthernet0/19
 shutdown
!
interface FastEthernet0/20
 switchport access vlan 10
 switchport mode access
 spanning-tree portfast
 spanning-tree bpduguard enable
!
interface FastEthernet0/21
 shutdown
!
interface FastEthernet0/22
 shutdown
!
interface FastEthernet0/23
 shutdown
!
interface FastEthernet0/24
 shutdown
!
interface GigabitEthernet0/1
 shutdown
!
interface GigabitEthernet0/2
 shutdown
! interface Vlan1
 no ip address
!
interface Vlan20
 no ip address
!
interface Vlan99
 ip address 172.31.99.2 255.255.255.0
!
ip http server
ip http secure-server
logging esm config
banner motd ^C
Final Thesis
^C
!
line con 0
line vty 0 4
 login
line vty 5 15
 login
!
end

S3 configuration:

Current configuration : 3794 bytes
!
! Last configuration change at 00:40:00 UTC Mon Mar 1 1993
!
version 15.0
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
!
hostname S3
!
boot-start-marker
boot-end-marker
!
enable secret 5 1ClYT$xNeKA6yKBwxJ.zrAjOlIS.
!
no aaa new-model
system mtu routing 1500
!
!
noc ip domain-lookup
!
!
crypto pki trustpoint TP-self-signed-2206785920
 enrollment selfsigned
 subject-name cn=IOS-Self-Signed-Certificate-2206785920
 revocation-check none
 rsa keypair TP-self-signed-2206785920
!
!
crypto pki certificate chain TP-self-signed-2206785920
 certificate self-signed 01
 3082023A 308201A3 A0030201 02020101 300D0609 2A864886 F70D0101 04050030
 31312F30 2D060355 04031326 494F532D 53656C66 2D536967 6E65642D 43657274
 69666963 6174652D 32323036 37383539 3230301E 170D3933 30333031 30303030
 35355A17 0D323030 31303130 30303030 305A3031 312F302D 06035504 03132649
 4F532D53 656C662D 5369676E 65642D43 65727469 66696661 74652D32 32303637
 38353932 3030819F 300D0609 2A864886 F70D0101 01050003 818D0030 81890281
 81009A14 E25D6373 BD9113EB 05A03EAE E3857A65 1E8C8C8D C0021DCD
 2ABBBCA7
3194B6B2 09ED07BB E1BEC202 9380D5D8 3F56B78F 1A6704FE 2000ECE5
C4EBE5CB
F2B569E8 FA928411 2F128D8E D052C235 64282C94 A32D24E3 498FC765 30D6C23D
4383A328 070BA0F3 5807A2C4 6B8B6B44 D73B141C C21552DC 54275C23
2828CBBC
75FD0203 010001A3 62306030 0F060355 1D130101 FF040530 030101FF 300D0630
551D1104 06300482 02533330 1F060355 1D230418 30168014 03140BB9 6C740F7D
5E014D68 9A4BE94A AF392651 301D0603 551D0E04 16041403 140BB96C 740F7D5E
014D689A 4BE94AAF 39265130 0D06092A 864886F7 0D010104 05000381 81009991
724AE15C C9CC10B7 19B1F4F0 1DE7935A 154AFA5E 05DCDDE2 40DCEA82
D606C71F
B07699A5 D3A27FC7 CCF49C47 E3D7DD4B 795D92E9 C9FC2A8C 43CCFD84
E92BFAE4
D3B428AB 536DEDCE B0892B10 2BFD8866 A0F4DC74 08407FE6 51256DAB
3BDA5369
9C7AE5DB 07560CE7 8D3C4CA6 DCDE7946 C8172E6D DB011704 C960564A 4DC4
quit
!
!
!
!
spanning-tree mode pvst
spanning-tree extend system-id
spanning-tree vlan 20,40,60,80,99 priority 24576
!
vlan internal allocation policy ascending
!
!
!
!
!
interface FastEthernet0/1
switchport trunk native vlan 99
switchport mode trunk
!
interface FastEthernet0/2
 switchport trunk native vlan 99
 switchport mode trunk
!
interface FastEthernet0/3
 switchport trunk native vlan 99
 switchport mode trunk
!
interface FastEthernet0/4
 switchport trunk native vlan 99
 switchport mode trunk
!
interface FastEthernet0/5
 shutdown
!
interface FastEthernet0/6
 shutdown
!
interface FastEthernet0/7
 shutdown
!
interface FastEthernet0/8
 shutdown
!
interface FastEthernet0/9
 shutdown
!
interface FastEthernet0/10
 shutdown
!
interface FastEthernet0/11
 switchport access vlan 10
switchport mode access
spanning-tree portfast
spanning-tree bpduguard enable
!
interface FastEthernet0/12
 shutdown
!
interface FastEthernet0/13
 switchport access vlan 30
 switchport mode access
 spanning-tree portfast
 spanning-tree bpduguard enable
!
interface FastEthernet0/14
 shutdown
!
interface FastEthernet0/15
 shutdown
!
interface FastEthernet0/16
 shutdown
!
interface FastEthernet0/17
 shutdown
!
interface FastEthernet0/18
 shutdown
!
interface FastEthernet0/19
 shutdown
!
interface FastEthernet0/20
 shutdown
!
interface FastEthernet0/21
 shutdown
!
interface FastEthernet0/22
 shutdown
!
interface FastEthernet0/23
 shutdown
!
interface FastEthernet0/24
 shutdown
!
interface GigabitEthernet0/1
 shutdown
!
interface GigabitEthernet0/2
 shutdown
!
interface Vlan1
 no ip address
 shutdown
!
interface Vlan99
 ip address 172.31.99.3 255.255.255.0
!
ip http server
ip http secure-server
logging esm config
banner motd ^C
Final Thesis
^C
!
line con 0
line vty 0 4
login
line vty 5 15
 login
!
end

Chapter 5.2 RSTP configuration

S1 configuration:

Current configuration : 1348 bytes
!
! Last configuration change at 00:12:47 UTC Mon Mar 1 1993
!
version 15.0
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname S1
!
boot-start-marker
boot-end-marker
!
!
no aaa new-model
system mtu routing 1500
!
!
!
!
spanning-tree mode rapid-pvst
spanning-tree extend system-id

vlan internal allocation policy ascending

interface FastEthernet0/1

interface FastEthernet0/2

interface FastEthernet0/3

interface FastEthernet0/4

interface FastEthernet0/5

interface FastEthernet0/6

interface FastEthernet0/7

interface FastEthernet0/8

interface FastEthernet0/9

interface FastEthernet0/10
 switchport mode access
 spanning-tree portfast
no ip address
!

ip http server
ip http secure-server
logging esm config
!

line con 0
line vty 5 15
!
end

S2 configuration:

Current configuration : 1384 bytes
!
!
! Last configuration change at 00:07:34 UTC Mon Mar 1 1993
!
version 15.0
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname S2
!

boot-start-marker
boot-end-marker
!

!

no aaa new-model
system mtu routing 1500
!
!
!
![11]

spanning-tree mode rapid-pvst
spanning-tree extend system-id
spanning-tree vlan 1 priority 28672

vlan internal allocation policy ascending

interface FastEthernet0/1

interface FastEthernet0/2

interface FastEthernet0/3

interface FastEthernet0/4

interface FastEthernet0/5

interface FastEthernet0/6

interface FastEthernet0/7

interface FastEthernet0/8

interface FastEthernet0/9
interface FastEthernet0/10
switchport mode access
spanning-tree portfast
!
interface FastEthernet0/11
!
interface FastEthernet0/12
!
interface FastEthernet0/13
!
interface FastEthernet0/14
!
interface FastEthernet0/15
!
interface FastEthernet0/16
!
interface FastEthernet0/17
!
interface FastEthernet0/18
!
interface FastEthernet0/19
!
interface FastEthernet0/20
!
interface FastEthernet0/21
!
interface FastEthernet0/22
!
interface FastEthernet0/23
!
interface FastEthernet0/24
!
interface GigabitEthernet0/1
interface GigabitEthernet0/2

interface Vlan1
 no ip address

ip http server
ip http secure-server
logging esm config

line con 0
line vty 5 15

end

S3 configuration:

Current configuration : 1346 bytes

! Last configuration change at 00:08:44 UTC Mon Mar 1 1993

version 15.0
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption

hostname S3

boot-start-marker
boot-end-marker

no aaa new-model
system mtu routing 1500
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

spanning-tree mode rapid-pvst
spanning-tree extend system-id
spanning-tree vlan 1 priority 24576
!

vlan internal allocation policy ascending
!
!
!
!
!
!
!
!
interface FastEthernet0/1
!
interface FastEthernet0/2
!
interface FastEthernet0/3
!
interface FastEthernet0/4
!
interface FastEthernet0/5
!
interface FastEthernet0/6
!
interface FastEthernet0/7
interface FastEthernet0/8
interface FastEthernet0/9
interface FastEthernet0/10
interface FastEthernet0/11
interface FastEthernet0/12
interface FastEthernet0/13
interface FastEthernet0/14
interface FastEthernet0/15
interface FastEthernet0/16
interface FastEthernet0/17
interface FastEthernet0/18
interface FastEthernet0/19
interface FastEthernet0/20
interface FastEthernet0/21
interface FastEthernet0/22
interface FastEthernet0/23
interface FastEthernet0/24
Chapter 5.3 MSTP configuration

S1 configuration:

Current configuration : 1526 bytes
!
! Last configuration change at 02:50:22 UTC Mon Mar 1 1993
!
version 15.0
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname S1
!

! interface GigabitEthernet0/1
!
interface GigabitEthernet0/2
!
interface Vlan1
 no ip address
 shutdown
!
ip http server
ip http secure-server
logging esm config
!
line con 0
line vty 5 15
!
end
boot-start-marker

boot-end-marker
!
!

no aaa new-model

system mtu routing 1500
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! interface FastEthernet0/2
 switchport mode trunk
! interface FastEthernet0/3
! interface FastEthernet0/4
! interface FastEthernet0/5
! interface FastEthernet0/6
! interface FastEthernet0/7
! interface FastEthernet0/8
! interface FastEthernet0/9
! interface FastEthernet0/10
 switchport access vlan 10
 spanning-tree portfast
! interface FastEthernet0/11
! interface FastEthernet0/12
! interface FastEthernet0/13
! interface FastEthernet0/14
! interface FastEthernet0/15
 switchport access vlan 40
! interface FastEthernet0/16
interface FastEthernet0/17
!
interface FastEthernet0/18
!
interface FastEthernet0/19
!
interface FastEthernet0/20
!
interface FastEthernet0/21
!
interface FastEthernet0/22
!
interface FastEthernet0/23
!
interface FastEthernet0/24
!
interface GigabitEthernet0/1
!
interface GigabitEthernet0/2
!
interface Vlan1
 no ip address
!
ip http server
ip http secure-server

logging esm config
!
line con 0
line vty 5 15
!
end
S2 configuration:

Current configuration : 1571 bytes

! Last configuration change at 02:34:47 UTC Mon Mar 1 1993
!
version 15.0
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname S2
!
boot-start-marker
boot-end-marker
!
!
no aaa new-model
system mtu routing 1500
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

spanning-tree mode mst
spanning-tree extend system-id
!
spanning-tree mst configuration
name region1
revision 1
instance 1 vlan 1, 10
instance 2 vlan 20, 40
!
spanning-tree mst 1 priority 28672
!
vlan internal allocation policy ascending
!
!
!
!
!
!
!
!
interface FastEthernet0/1
 switchport mode trunk
!
interface FastEthernet0/2
 switchport mode trunk
!
interface FastEthernet0/3
!
interface FastEthernet0/4
!
interface FastEthernet0/5
!
interface FastEthernet0/6
!
interface FastEthernet0/7
!
interface FastEthernet0/8
!
interface FastEthernet0/9
!
interface FastEthernet0/10
switchport access vlan 10
spanning-tree portfast
!
interface FastEthernet0/11
!
interface FastEthernet0/12
!
interface FastEthernet0/13
!
interface FastEthernet0/14
!
interface FastEthernet0/15
 switchport access vlan 20
!
interface FastEthernet0/16
!
interface FastEthernet0/17
!
interface FastEthernet0/18
!
interface FastEthernet0/19
!
interface FastEthernet0/20
!
interface FastEthernet0/21
!
interface FastEthernet0/22
!
interface FastEthernet0/23
!
interface FastEthernet0/24
!
interface GigabitEthernet0/1
!
interface GigabitEthernet0/2
!
interface Vlan1
 no ip address
 shutdown
!
ip http server
ip http secure-server
logging esm config
!
line con 0
line vty 5 15
!
end

S3 configuration

Current configuration : 1492 bytes
!
! Last configuration change at 02:43:19 UTC Mon Mar 1 1993
!
version 15.0
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname S3
!
boot-start-marker
boot-end-marker
!
!
no aaa new-model
system mtu routing 1500
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
interface FastEthernet0/3
interface FastEthernet0/4
interface FastEthernet0/5
interface FastEthernet0/6
interface FastEthernet0/7
interface FastEthernet0/8
interface FastEthernet0/9
interface FastEthernet0/10
interface FastEthernet0/11
interface FastEthernet0/12
interface FastEthernet0/13
interface FastEthernet0/14
interface FastEthernet0/15
interface FastEthernet0/16
interface FastEthernet0/17
interface FastEthernet0/18
interface FastEthernet0/19
! interface FastEthernet0/20
! interface FastEthernet0/21
! interface FastEthernet0/22
! interface FastEthernet0/23
! interface FastEthernet0/24
! interface GigabitEthernet0/1
! interface GigabitEthernet0/2
! interface Vlan1
 no ip address
 shutdown
!
ip http server
ip http secure-server
logging esm config
!
line con 0
line vty 5 15
!
end