
 

 

 

 

 

 

 

 

 

 

 

JunJie Chen 

PORTABLE SALES WEB APPLICATION 
 

 

 

 

 

 

 

 

 

 

Technology and Communication 

2014 



Keywords  Software engineering, web application, software developm- 
   ent methodology 
 

VAASAN AMMATTIKORKEAKOULU 
UNIVERSITY OF APPLIED SCIENCES 
Information Technology 
  
 
ABSTRACT 

Author   JunJie Chen 
Title   Portable Sales Web Application 
Year   2014 
Language  English 
Pages   70 
Name of Supervisor Ghodrat Moghadampour 
 
The purpose of the thesis was to implement a portable sales web application, 
which is capable of running on a tablet, laptop or desktop computer, working as a 
financial sales tool. 

The application request was from FA Solutions Oy, a Finnish software company 
located in Helsinki, which helps their customers by providing financial IT solution, 
as they planned to expand their current product set with this application. The 
name of the application was later defined as FA Sables Mobile. 

The application was designed to be used by salesmen from financial firms, who 
promote financial related products. With the help of the application, they will be 
able to follow the sales activities and to work with customer oriented sales. In 
specific, the core functionalities of the application were customer resource man-
agement (CRM) features and the ability to start and close a financial proposal or 
contract on a portable device. Other functionalities include report of salesmen ac-
tivity, managing documents and configuring new sales processes. 

All features of the application mentioned above were achieved; the application has 
been demonstrated and reviewed by different customers. The result indicated that 
all planned objective were completed and all requirements met. So far there are 
several customer deployments and the continuous development is still ongoing as 
more requirements are raised up by the customers.  



1 

 

ACKNOWLEDGEMENTS 

The FA Mobile Sales project was started in October 2013, and by March 2014, it 

has been mostly finished. 

Firstly, I would like to give my greatest appreciation to my supervisor Dr. Gho-

drat Moghadampour for his support, assistance and suggestions I have been given. 

He has always been a mentor through my studies in VAMK, teaching us with val-

uable knowledge and massive passion. 

Besides my supervisor, I would like to thank Juha Lehtonen and all my colleges in 

FA Solutions Oy, for the 2 years I worked with them, I had learnt a lot skills and 

gained experience that I would not have a chance to get from school. 

My sincerely thanks also goes to all the people helped me with my thesis and my 

school life, I would not be who I am today without all the support. 

  



2 

 

CONTENTS 

ABSTRACT 

ACKNOWLEDGEMENTS .................................................................................... 1 

1. INTRODUCTION ............................................................................................ 7 

2. RELEVANT TECHNOLOGIES ...................................................................... 9 

2.1 MySQL Database ...................................................................................... 9 

2.2 Spring Framework .................................................................................. 10 

2.3 Vaadin ..................................................................................................... 12 

2.4 Activiti .................................................................................................... 15 

2.5 Hibernate ................................................................................................. 16 

2.6 Tomcat .................................................................................................... 17 

2.7 Liferay ..................................................................................................... 18 

3. APPLICATION DESCRIPTION ................................................................... 20 

3.1 Functional Definition .............................................................................. 20 

3.2 Application Class View .......................................................................... 25 

3.3 Event Sequence ....................................................................................... 27 

3.1.1 Start a process ............................................................................. 27 

3.1.2 Schedule a task ............................................................................ 29 

3.1.3 Search customer .......................................................................... 29 

3.1.4 Schedule calendar........................................................................ 31 

3.2 Application Components ........................................................................ 31 

4. GRAHPIC USER INTERFACE DESIGN ..................................................... 33 

4.1 Overview Page ........................................................................................ 33 

4.2 Calendar Page ......................................................................................... 35 

4.3 Customer Page ........................................................................................ 36 

4.4 Customer Search Page ............................................................................ 37 

4.5 Report Page ............................................................................................. 39 

4.6 Task Editor Page ..................................................................................... 40 

5. IMPLEMENTATION AND DEPLOYMENT ............................................... 41 

5.1 Implementation of Different Parts .......................................................... 41 

5.1.1 Task list ....................................................................................... 41 



3 

 

5.1.2 Loading all customers from database .......................................... 42 

5.1.3 Start a process ............................................................................. 45 

5.1.4 Process definitions ...................................................................... 46 

5.1.5 Sales report .................................................................................. 48 

5.2 Deployment ............................................................................................. 51 

5.2.1 Deployment descriptor file .......................................................... 51 

5.2.2 Portlet descriptor file ................................................................... 57 

5.2.3 Data source definition ................................................................. 58 

5.2.4 Spring JPA and Hibernate configuration .................................... 60 

6. TESTING ....................................................................................................... 63 

6.1 Unit Test Cases ....................................................................................... 63 

6.2 General Test Session ............................................................................... 64 

7. CONCLUSION .............................................................................................. 66 

8. REFERENCES ............................................................................................... 68 

 

  



4 

 

LIST OF FIGURES AND TABLES  

Figure 1. Spring Framework modules     p. 11 

Figure 2. Vaadin architecture hierarchy     p. 14 

Figure 3. Hibernate basic architecture     p. 17 

Figure 4. Liferay logical architecture     p. 19 

Figure 5. QFD diagram       p. 22 

Figure 6. Use case diagram      p. 23 

Figure 7. Class diagram       p. 26 

Figure 8. Sequence diagram of starting a process   p. 28 

Figure 9. Sequence diagram of scheduling a task   p. 29 

Figure 10. Sequence diagram of showing customer search  p. 30 

Figure 11. Sequence diagram of showing event calendar  p. 31 

Figure 12. Component diagram      p. 32 

Figure 13. Overview page      p. 33 

Figure 14. Start process menu      p. 34 

Figure 15. Calendar page       p. 35 

Figure 16. Customer page      p. 36 

Figure 17. Customer search page      p. 37 

Figure 18. Customer advanced search     p. 38 

Figure 19. Report page       p. 39 



5 

 

Figure 20. Task editor page      p. 40 

Figure 21. Sample sales activity report generated in the report view p. 51 

Table 1. List of Fixed bugs      p. 65 

  



6 

 

LIST OF APPENDICES 

APPENDIX 1. Book of Vaadin, Marko Grˆ nroos (2011) 

APPENDIX 2. Activiti in Action, TijsRademakers (2012) 

APPENDIX 3. UML in Practice,Petre, Marian (2013) 

APPENDIX 4. Liferay in Action, Rich Sezov (2013) 

  



7 

 

1. INTRODUCTION 

The rapid development of the internet in recent decades has brought a huge impact 

on the world. Like nothing else, the internet as a media speeds up the information 

flow to almost immediate, and that results in a major improvement to the 

efficiency of almost all aspect of peopleís lives. 

Nowadays the internet becomes more easily accessible, especially people are free 

to connect to the internet on the go. Wi-Fi connections can be found from many 

public places such as cafeterias, convenient shops, airports and railway stations. 

Mobile networks such as 3G and more advanced LTE also cover the most 

populated areas. This phenomenon contributes to the bloomy growth of active 

mobile devices connected to the internet. People are getting used to use mobile 

devices surfing the internet, checking maps and reading news while they are not at 

home, and with technologies like mobile payment, the way of doing business has 

been changed.  

To take the advantage of the internet and utilize it to help the financial sales 

process, FA Solutions decided to implement browser-based software that is going 

to be used by salesmen from financial firms to work with their sales workflow. 

The software was designed to compound with CRM utilities, business process 

handling and data analyzing features, and it was to be capable of running on a 

tablet, laptop or desktop computer. The software was named as FA Sales Mobile. 

The main objective of this project was to develop a functional, scalable and user-

friendly mobile sales tool which is comfortable to use on a portable device, in 

order to replace the legacy way of doing the sales where paper document is on a 

voluntary basis.  

The customizability and scalability of the software was considered as the key 

feature since the targeted users of the software are recognized as small to medium 

size firms in the private banking and asset management field, and each of them 

would run different processes for their own interest. Deep customization to the 

software for every customer could become a problem when customer number 



8 

 

grows up, so the configuration for each customer's business process must reside 

outside the box.  

To meet the requirement including making variety financial proposals and 

contracts, setting reminder for an event and tracking the activities with customers, 

advanced techniques like Business Process Model Notion and Apache Camel 

were used to externalize detailed business flow settings out of the standardized 

software.  

  



9 

 

2. RELEVANT TECHNOLOGIES 

FA Mobile Sales is fundamentally a web application following JSR-286 

specification (a Java portlet standard specification) and deploys to an enterprise 

portal as a portlet. Basically it was developed with Java programming language, 

involving technologies including Vaadin, Spring Framework, Hibernate, MySQL, 

Liferay Portal, Activiti, etc.The technologies involved to the software will be 

discussed briefly in the following subheadings.  

2.1 MySQL Database 

MySQL is the most popular Open Source SQL database management system; it is 

developed, distributed, and supported by Oracle Corporation. /1/ 

MySQL is a relational database management system (RDMS), written in C and 

C++, it is accessible from multiple programming languages with language-

specific APIs and libraries, including the driver for Java called JDBC. Different 

features are available from query caching, complex SQL query (sub-selects), 

cursors and triggers to SSL support and Unicode support makes it a common 

choice of RDMS for small to medium sized singer-server deployments. 

 MySQL does not comply with the full SQL standard currently for some of the 

implemented functionalities, including foreign key references when using some 

storage engines other than the InnoDB (or third-party engines which supports 

foreign keys). Triggers are currently limited to one per action / timing. /1/ 

Just like most other transactional relational databases, MySQL is also strongly 

limited by hard disk performance. This is especially true in terms of write latency. 

/2/ 

MySQL was used as the database management system of FA Sales Mobile, for the 

reason it is open source and cost free, with good compatibility to different 

platforms and the stability when operating, and its capability fits to the scale of 

our usage. 



10 

 

2.2 Spring Framework 

The Spring Framework is a Java platform providing a comprehensive 

infrastructure support for developing Java applications. It enables developers to 

build applications from ì plain old Java objectsî  (POJOs) and to apply enterprise 

services non-invasively to POJOs. This capability applies to the Java SE 

programming model and to full and partial Java EE. /3/ 

The Spring Framework is an open source application framework and inversion of 

control container, the Spring container provides a consistent mechanism to 

configure the application and integrates with most of Java environments, from 

small to large. It is composed of several modules that provide a range of services. 

1. Inversion of Control 

The Inversion of Control (IoC) container manages Java beans from instantiation 

to destruction through its BeanFactory. The IoC container enforces the 

dependency injection, leaving the components loosely coupled and allows 

abstractions of code. So when a Spring managed bean is instantiated, it is injected 

with the beans defined in the configuration file, hence decoupling the relationship 

between the bean and its dependency beans to improve the reusability. 

2. Aspect-oriented framework 

The Spring Framework implements its own AOP framework. AOP terminology is 

a programming paradigm aiming to increase modularity by separating cross-

cutting concerns. For example, an spect is used in FA Sales Mobile to separate the 

code of logging in the transactional management. 

3. Data access 

Spring supports all popular data access frameworks in Java, including Hibernate 

and JPA, and provides a list of features includes: Resource management, 

Exception handling, Transaction participation, Resource unwrapping and 

Abstraction. The Spring Framework does not offer a common data access API, 



11 

 

instead, full power keeping the supported API intact, which makes it flexible and 

configurable. 

4. Transaction Management 

Springís transaction management framework works on the Java platform with an 

abstractive mechanism. Together with Springís data access framework, one can 

set up a transactional system without relying on JTA or EJB.  

5. Model-view-controller 

The Spring Framework features its own MVC framework. Much like Struts and 

Struts2, Springís MVC is designed around DispatcherServlet, which is 

responsible for dispatching request to an identified handler, and through 

configurable handler mapping, view resolution, locale and theme resolution, the 

request is handled and redirected to the result view. 

Other Springís features include Remote access framework, Conversion over 

configuration, Authentication and authorization, Remote management and 

Configurable Messaging. Figure 1 shows how Spring is composed of modueles 

and the layer structure. 

Figure 1. Spring Framework modules. /4/ 

Spring was used as the framework and bean container in FAMobile Sales, 

integrated with JPA, AspectJ and c3p0. 



12 

 

2.3  Vaadin 

Vaadin Framework is a Java web application development framework that is 

designed for making the creation and maintenance of high quality web-based user 

interfaces easy.  

It supports two different programming models: server-side and client-side. The 

powerful server-driven programming model allows developer programs user 

interfaces much like programming a desktop application with conventional Java 

toolkits such as AWT, Swing, or SWT. It is also allowed to develop application 

solely on the server-side, by utilizing an AJAX-based Vaadin Client-Side Engine 

that renders the user interface in the browser. The client-side model allows 

developing widgets and applications in Java, which are compiled to JavaScript 

and executed in the browser. The two models can share their UI widgets, themes, 

and back-end code and services, and can be mixed together easily. /5/ 

The list of features Vaadin has are: 

1. Comprehensive component framework 

Vaadin has a large set of user interface components, controls and widgets, build in 

with lazy loading. It supports Data binding using MVC (model-view-controller) 

or MVP (model-view-presenter). 

2. Customizable look and feel 

Vaadin features a set of good looking predefined themes and styles, it also 

supports CSS and SASS based component styling, in a configurable fashion. 

3. Secure Web Application Architecture 

Vaadin runs application codes, validations and business logic runs in the server, 

with the server-side UI state management and secure parameter and request 

validation, putting together a strong and secure architecture. 

4. Various IDE Tools 



13 

 

Vaadin features a list of IDE plugins and runs perfectly with maven and JUnit. 

5. Web Compatibility 

This is most important feature to Vaadin, the client-side is based on Google Web 

Toolkit (GWT) and no browser plugins is needed. Vaadin also supports all major 

web browsers, and comes with a browser window and tab support, back button 

support, deep-linking support and URL parameter and fragment handling. It also 

supports HTML5 Audio support. 

6. Java Web Development 

Vaadin uses Java as the programming language, so it features all the advantages 

come along with Java: type-safe, object-oriented web development. It is also 

compatible with any other JVM language like Groovy, which is useful for 

different purposes. 

7. Extensible widgets based on Google Web Toolkit (GWT) 

Vaadin enables the user to create their own implementation of component other 

than standard ones, the created extensible widgets are based on Google Web 

Toolkit (GWT). The Vaadin market is the place where user uploads their 

components and downloadable for other users which can be used as a plugin or 

ìVaadin Add-onsî. 

8. Deployment 

Vaadin supports deployment ways as a servlet and a JSR-286 portlet. In our 

application, we run Vaadin as a portlet in Liferay Portal. 

Figure 2 shows the Vaadin architecture and its main components, it also describes 

how the requests and responses are forwarded and received. 



 

Figur

A conventional way to 

programming, communic

well as HTML and CSS p

Programming based on V

enables the developer to 

logic), and it results a hig

we found Vaadin to be fl

re 2. Vaadin architecture hierarchy. /5/ 

develop a rich web application involves the

cation with Ajax, server-client RPC commu

programming.  

Vaadin reduces the work on the client (browse

focus on the server side implementations (e.

gher output/cost ratio in development. During t

awless and stable. 

14 

e JavaScript 

unication as 

er) side and 

.g. business 

the practice, 



15 

 

Because of the features Vaadin has and its good performance, Vaadin was 

recognized as a suitable tool to be utilized as the rich internet application (RIA) 

framework for FA Sales Mobile. 

Vaadin add-on ìTouchKitî was also used to build a mobile like web application. 

Vaadin TouchKit powers up Vaadin for creating mobile user interfaces that 

complement the regular web user interfaces of the applications. Just like the 

purpose of the Vaadin Framework is to make desktop-like web applications, the 

purpose of TouchKit is to allow creation of web applications that give the look 

and feel of native mobile applications. /5/ 

2.4 Activiti 

Activiti is a light-weight workflow and Business Process Management (BPM) 

Platform targeted at business people, developers and system admins. Its core is a 

super-fast and rock-solid BPMN 2 process engine for Java. It is open-source and 

distributed under the Apache license. Activiti runs on any Java application, on a 

server, on a cluster or in the cloud. It integrates perfectly with Spring, it is 

extremely lightweight and based on simple concepts. /6/ 

Business process management (BPM) is a concept of aligning an organizationís 

business process with the needs of the clients; it uses a systematic approach in an 

attempt to continuously improve business efficiency and striving for innovation, 

flexibility and technology involvement. Activiti is one of the most open source 

implementation of BPMN2.0, providing an easy API managing the workflow. 

Activiti was used in FA Mobile Sales for multiple purposes. For most, it was used 

to manage sales activities. We used it to track a business process and its 

underlying tasks, monitoring different attributes on the task such as assignee of 

the task, task due date and the state of the task, and since Activiti kept the history 

of tasks and processes in different states, e.g. finished tasks and processes, this 

was used to generate reports on sales menís sales activities. 



16 

 

2.5 Hibernate 

Hibernate is an open-source ORM solution for Java applications. Hibernate 

provides data query and retrieval facilities that significantly reduce development 

time. Hibernate lets you develop persistent classes following an object-oriented 

idiom - including association, inheritance, polymorphism, composition, and 

collections. Hibernate allows you to express queries in its own portable SQL 

extension (HQL), as well as in native SQL, or with an object-oriented Criteria and 

Example API. /7/ 

Hibernateís primary feature is mapping from Java classes to database tables, and it 

also provides data query and retrieval utilities. It provides support for all major 

relational database systems and can be integrated with Spring Framework. It it can 

also be included as a feature in other programming languages than Java. 

Features of Hibernate icludes: 

1. Connections Management 

Hibernate Connection management service provides an efficient management of 

the database connections. The database connection is the most expensive part of 

interacting with the database as it requires a lot of resources of opening and 

closing the database connection.  

2. Transaction management 

Transaction management service provides the ability to the user to execute more 

than one database statements at a time. 

3. Object relational mapping 

Object relational mapping is a technique of mapping the data representation from 

an object model to a relational data model. This part of the Hibernate is used to 

select, insert, update and delete the records form the underlying table. When we 

pass an object to a Session.save() method, Hibernate reads the state of the 

variables of that object and executes the necessary query. 



 

Figure 3 describes the arc

Figu

To make data access mo

framework. It was capab

mapping relationship betw

of its capability of man

operation. 

2.6 Tomcat 

Apache Tomcat is an ope

the Java Servlet and Jav

server for Java code to ru

Apache Tomcat is a wide

which has been develop

Foundation since 1999, w

Microsystems. 

chitecture of Hibernate in a simple form. 

 
ure 3. Hibernate basic architecture. /8/ 

ore abstract and portable, we used Hibernate a

ble of writing vendor-specific SQL, and main

ween Java class and database tables. It was als

naging the connection pool and good perfo

en source web server and servlet container, it i

va Server Pages specifications, and provide a 

un in. 

ely used implementation of the Java Servlet Sp

ped as an open-source project by the Apach

when the project source was donated to the A

17 

as the ORM 

ntaining the 

so a credit 

ormance in 

implements 

HTTP web 

pecification, 

he Software 

ASF by Sun 



18 

 

Tomcat is actually composed of a number of components, including a Tomcat JSP 

engine and a variety of different connectors, but its core component is called 

Catalina. Catalina provides Tomcat's actual implementation of the servlet 

specification. /8/ 

As a widely-used free solution for hosting HTML and Java based web 

applications, Tomcat fits the FA mobile Sales in terms of performance, stability 

and security. The production servers were running on Apache Tomcat 7. 

2.7 Liferay 

The Liferay Portal is an open source enterprise portal project with features 

commonly required for the development of websites and portals. It builds in with 

the CMS system that enables the user to put together a website or portal by 

assembling themes, pages, portlets / gadgets and a common navigation. It also 

provides support for plugins that extend into multiple programming languages, 

including support for PHP and Ruby portlets. 

Liferay supports different operating system with JRE installed to host the JVM 

and an application server is required to contain the Liferay instance. Officially, a 

range of web servers are supported including Apache Tomcat, Glassfish and 

JBoss.  

The server provides connectivity and interoperability using an Enterprise Service 

Bus (ESB), and there are multiple services offered by the servers which are 

leveraged by Liferay. /9/ 

Applications and extension can be deployed on the server. Liferay uses a number 

of technologies including EJB, Spring and Hibernate at its core to offer the 

various services. 

Liferay implements Lucene Search Engine by default and can be configured to 

extend the SOLR Search Engine which is built on Lucene to extend capabilities to 

provide clustering, faceted search, filtering with additional enhancements and 

scalability. /9/ 



19 

 

A Portlet Bridge is provided to deploy JSR 168/286 portlets and supports RIA 

applications.  Liferay contains Language adaptors such as for Python, Ruby and 

PHP which allows easy integration. /9/ 

The logical architecture of Liferay Portal framework is described in Figure 4. 

Figure 4. Liferay logical architecture. /9/ 

As a mature platform for websites and portals, Liferay was used for managing the 

web content and containing the portlets of the FA Mobile Sales. Though during 

the practice we recognized the merging process between different Liferay versions 

can be trick to tackle, but it was still a fully capable solution of portal for our 

application. 

  



20 

 

 

3. APPLICATION DESCRIPTION 

A detailed description of the application is given below covering requirement 

analyzing, function recognizing, architecture designing and function 

implementations. 

3.1 Functional Definition 

The requirement of the application from the customer and technical point of view 

and its designed functions will be explained in this section. 

The required features from the customers are recognized as: 

1. Mobile browser friendly: The appearance and usability of the software when 

running on a tablet is important. It needs to be properly designed to offer a 

good user experience. 

2. Fewer bugs: The software needs to be a stable running application even 

considering different data scale, it should not have fatal flaw when it is 

released. 

3. Shared customer data with other FA software: Since FA Solutions Oy 

provides other financial software on their service; this software needs to work 

together with the others, e.g. sharing the same customer data source. 

4. Customer customized business process: Customers need to have the ability to 

create and configure their own business processes against the software. This 

feature is important for the software to work on different needs from the 

customer. 

5. Easy maintenance and easy deployment: The releasing process and 

deployment process need to be fast and convenient. The bug fix deployment 

should be straight forward. 

6. Delivery time of the software: Keeping a tight schedule with the customers 

and be punctual on each step during the development. 



21 

 

To address these issues and to meet the requirements, there are special technical 

requirements: 

1. Use Vaadin TouchKit Add-on: By using the powerful features Vaadin 

TouchKit Add-on provides, it would be easier and less work to implement a 

mobile user interface web application with good functionality. 

2. Keep an open mind set for mobile devices: An important thing to keep in mind 

is how the application would be running on a tablet. 

3. Intensive testing during development: Testing of the application should reduce 

the chance of the existence of bugs after the software has been delivered to 

customers. There are different test phases to go through, including unit test, 

black box test, white box test and customer acceptance test. 

4. Implementation based on Activiti engine: To implement the software based on 

Activiti engine, we can take advantage of the services that Activiti provides 

which allows business processes to be defined in .xml files externally. 

5. Deploy as a portlet to Liferay Portal: Liferay Portal is a mature enterprise 

portal which contains and manages portlets very well, to deploy the software 

as a portlet to Liferay Portal is a big plus from the maintenance and 

deployment point of view. 

6. Maven as a build tool: Maven helps in many ways during the development 

and deployment of the software, different features of Maven can be used to 

improve the implementation process. 

7. Working with Spring Framework and Hibernate: Both Spring Framework and 

Hibernate are mature and stable open source framework, while Spring 

manages the application context and beans, Hibernate controls the data source 

connections and queries.The two technologies are used for easing the 

development. 

8. Share the data source with other FA software: A key factor that affects the 

functionality of the software and how it should be working with other FA 

software. 

The relationship between the customer requirements and the technical 

requirements are further described in the Figure 5 below. 



 

As seen in Figure 5, usin

sharing the database wit

requirements contributing

to be achieved. 

Figure 6 shows the use 

actions may act by a u

accounts and user group,

Figure 5. QFD diagram. 

ng Vaadin Touchkit Add-on, applying Activiti 

th other FA software are the most importan

g to satisfying customersí request, they are in 

case definition of FA Sales Mobile, it inclu

user, user management features like update/

, privileges settings and permission settings ar

22 

engine and 

nt technical 

the priority 

udes all the 

/delete user 

re provided 



 

by Liferay Portal which

server. 

1. Log, update an ac

seminar.Name an

activity will be ap

ordered by date. 

2. Log, update an ac

an activity, this fu

can be something

emailed John2 da

3. Schedule, update 

thing that is to be

due date of the 

appeared in the ta

overdue task is m

h contains the application mounted in the d

Figure 6. Use case diagram. 

ctivity: Logs an activity that happened in the 

nd date of the activity are mandatory fields. T

ppeared in the activity list in the overview tab, 

ctivity relative to a customer: In addition to L

function asks for a selected customer, a custom

g that happened with a particular customer in th

ays ago about reassessing the asset. 

a task: Similar to log an activity, but a task

e done, e.g. attend a lunch meeting tomorrow

task are mandatory fields, the scheduled ta

ask list in the overview tab, descending order 

marked as red and appeared at the top. 

23 

deployment 

past, e.g. a 

The logged 

descending 

Log / update 

mer activity 

he past, e.g. 

k is a future 

w.Name and 

ask will be 

by date, an 



24 

 

4. Schedule, update a task relative to a customer: In addition to Schedule / 

update a task, this function asks for a selected customer, a customer task is 

a future thing to be done with a particular customer, e.g. text message 

Mary tomorrow afternoon about the result of the assessment. 

5. Finish a task: A task can be marked finished once finished; it will transfer 

the finished task to be an activity and got recorded. 

6. Start, continue a general process: A general process can be a sales process 

that does not require a customer to be started, e.g. a process that starts a 

seminar and monitoring the agenda of the seminar. The user can start a 

general type process from the overview tab. 

7. Start, continue a customer process: A customer process differs from a 

general process because it needs a selected customer to boost, e.g. start a 

financial proposal for a customer. The customer process can be started 

from the customer tab with a custom selected.   

8. Terminate a general process: A general process can be terminated in the 

task view, once a process is terminated; all relevant tasks are to be deleted. 

9. Terminate a customer process: A customer process can be terminated 

similar to a general process. 

10. Schedule calendar: Schedule calendar is a calendar containing all 

scheduled tasks assigned to the current user; the tasks showing in the 

calendar can be accessed to continue or modify. 

11. Show a salesman report: This function enables the user to request for 

a salesmanís report, typically shows activities of a salesman or multiple 

salesmen by a specified time period. 

12. Show a salesman report relative to a customer: Like showing a salesman 

report, this function shows a report of activities related to a particular 

customer. 



25 

 

13. Search customer: The user is able to search and filter from a list of 

customers, the customer list comes from the shared database which is 

accessible by other FA applications. 

14. Review customer details: Customer details are shown once the customer 

has been selected, details like name, address, representatives, etc., are 

listed in the page. 

15. Manage customer documents: Documents are files uploaded to the server 

per customer, for example introduction documents and signed proposals. 

The entry to upload documents is available from the customer tab, on 

tablets it will bring up the camera to take a photo. Other maneuvers that 

can be performed are delete and rename the uploaded files. 

3.2 Application Class View 

In the following section the class hierarchy structure and the responsibility of 

classes are discussed.  

Figure 7 is the class diagram of FA Mobile Sales. There are 10 entity classes in 

the diagram. 

  



 

1. Contact class: Contac

There are multiple ty

but it can be a differe

The attributes of Con

2. Portfolio class: Portf

The portfolio object 

current market valu

relationship is represe

class. But the portfo

custody and asset man

3. Classification class: 

contact may belong to

Figure 7. Class diagram. 

ct class is the entity class that represents a cont

ypes a contact could be, most common one is a

ent type for example customer representative 

ntact class includes name, id, country, etc. 

folio class is the entity class that represents 

contains the information, such as its comp

ues etc. A portfolio is owned by a cust

ented as a 1-n link between the contact and th

olio could also link to other types of conta

nager; these relationships are all marked in the

Classification class represents the classif

o, linked to Contact class in a 1-n relationship.

26 

tact person. 

a customer, 

or custody. 

a portfolio. 

osition and 

tomer, that 

he portfolio 

act, such as 

e figure. 

fication the 

 



27 

 

4. Country class:Linked to Contact class in a 1-n relationship, represents the 

country. 

5. Address class: It is the entity class of address, contains mainly contact 

information of the contact. It is linked to the Contact class in an n-1 

relationship, since multiple addresses can be added to a contact person. 

6. Identity class: Represents the identity attribute of the contact person. Linked to 

Contact in a 1-n relationship. 

7. ContactExchange class: Represents the exchange attribute the contact person 

may have. Linked to Contact in an n-1 relationship. 

8. Reporting class: The reporting templates to be used when generating report to 

the contact. Linked to Contact in an n-1 relationship. 

9. Language class: Entity class for a language, linked to Contact in a n-1 

relationship, contact person may be eligible of more than 1 languages. 

10. Juridical class: Represents the juridical information that is linked to contact, 

with a 1-n relationship. 

11. TagSupport class: The class that is extended by Contact and Portfolio class. 

Containing only one field ì tagsî , it extends the child class entity with tagging 

features. 

3.3 Event Sequence 

The sequence diagrams describe the operation of the process and how the message 

has been passed in a time sequence.  

3.1.1 Start a process 

Figure 8 describes the event sequence for staring a process. 



 

Figure 8

1. The user interrupt

the user interface.

2. When the request

created. 

3. The request mes

parameters, reque

4. The Task Manage

by calling method

5. The TaskMana

RunTimeService.

6. A ProcessInstan

representing the s

object and looks

contained method

7. Once the next tas

task form view. 

8. The task form is p

8. Sequence diagram of starting a process. 

ts with the software by clicking the new proce

. 

t to start a process is established, a TaskVie

ssage is send to the TaskManager with t

esting to start the given process with the param

er assigns the initiator of the process to be  c

d  IdentityService.setAuthenticatedUserId(). 

ager starts the process by calling

startProcessByKey(). 

ce object is returned after the process 

started process instance.The TaskManager han

 for the next task from the process by call

d getNextTask(). 

sk is received, it is passed to TaskView, to co

presented on the user interface. 

28 

ss button in 

w object is 

the starting 

meters. 

current user 

g method 

is started, 

nds over the 

ling a self-

onstruct the 



 

3.1.2 Schedule a task 

Figure 9 shows the event

Figure 9

Figure 9 describes the e

pattern is applied to loggi

1. The user starts to 

2. A TaskVO 

TaskVO.createTa

3. The TaskVO obje

the task can be mo

4. When editing the 

to save the task. 

5. After saving succ

3.1.3 Search customer

 sequence to schedule a task. 

9. Sequence diagram of scheduling a task. 

event sequence of scheduling a task, the sam

ing an activity as well. 

schedule a new task from use interface. 

object in instantiated by calling 

askVO() 

ect is passed to TaskEditorView for editing, a

odified from the user interface. 

task is finished, TaskService.saveTask() meth

essfully, a notification is returned and displaye

r 

29 

me sequence 

method  

attributes of 

hod is called 

ed. 



 

Figure 10 describes the 

makes up the customer se

Figure 10. Se

1. When Customer

component for the

2. To load custom

ContactService.fe

3. ContactService ca

the customers. 

4. ContactService c

addresses for each

5. ContactService 

contactís represen

6. The customer li

containing all cus

event sequence of fetching the list of cust

earch component. 

equence diagram of showing customer search. 

rSearchView is instantiated, it asks Us

e customer list. 

mers from database, UserInterface compo

etchAllContactInfos(). 

alls ContactDAO.findAllContacts() to get the

calls AddressDAO.findAddressesByContactI

h contact and assign it to the contactís attribute

calls ContactDAO.findRepresentatives() to

ntatives and assign back the value. 

st is returned to CustomerSearchView, wh

stomers is constructed. 

30 

tomers that 

serInterface 

onent calls 

e list of all 

d() to get 

e. 

o get the 

herea table 



 

3.1.4 Schedule calenda

Figure 11describes the ev

Figure 11. Seq

1. When EventCalen

fill the calendar w

2. TaskService.creat

fetch all running t

3. HistoryService.cr

is called to fetch  

4. The lists of tasks 

filled into the cale

3.2 Application Compo

The applicationís compon

ar 

vent sequence of showing the schedule calenda

quence diagram of showing schedule calendar

ndar is instantiated, it creates a CalendarEvent

with content. 

teTaskQuery().taskAssignee(userId).list() is 

tasks corresponding to the current user. 

reateHistoryQuery().taskAssignee(userId).finis

all finished tasks corresponding to the current 

are merged and returned to CalendarEventPro

endar in the Calendar View. 

onents 

nents structure will be discussed in this section

31 

ar. 

. 

tProvider to 

called to 

shed().list() 

user. 

ovider, tobe 

n. 



 

Figure 12 is the compone

diagram, the application i

module and Data access m

the application.  

The user interacts with th

according to the type of t

server end for further pro

information from the user

request is sent by Spring 

different purposes. Hiber

 

Figure 12. Component diagram. 

ent diagram of FA Sales Mobile, As it is stated

is based on 3 major components: UI module, s

module. Each module is in charge of a specifie

he  application directly through a web browser,

the command given by the user, the request is s

ocessing. The Vaadin portlet is at the first place

r interface end, after some simple manipulation

Framework to different parts of the application

rnate is used for managing database I/O.  

 

32 

d in the 

server 

ed duty in 

, and 

sent to the 

e receiving 

n, the 

n for 



33 

 

4. GRAHPIC USER INTERFACE DESIGN 

The user interface design had been one of the biggest challenges in the project. To 

design a user interface that is not only clean and neat but also directly shows to 

users the entry of each function with consideration on portable devices, we turned 

to use Vaadin with TouchKit addon. It was not difficult to make the choice, firstly, 

Vaadin had been proved to be a functional and efficient framework in building 

dynamic web applications; secondly, as FA Solutions Oy had been developing its 

software using Vaadin, there is a common experience and reusable code snippet 

that might help the development; and most importantly, the TouchKit provides a 

decent mobile app feeling user interface. 

4.1 Overview Page 

The over view page is where the user landed initially when logging in, it has a 2 

column layout with a top bar. Both columns contain a button and a list.  

Figure 13. Overall page. 

On the left column, clicking the ì Schedule a taskî  button will navigate the current 

page to a new task editor page, which allows the user to modify the task details 

and to save the task. The list under the schedule task button shows all tasks that 



34 

 

are assigned to the current user, ordering by the due date in a descending order; 

overdue tasks are marked in red. Every cell in the list represents a task; the name 

of the task is shown as the header, with the description shows below. The taskís 

due date and assignee are shown on the right corner of the cell. The text box 

between the button and list is used for filtering the list by keywords. 

The left column has a similar layout as the left, and basically does the same thing 

as the components in the left as well, except for it is showing the list for activities 

and the button ì Log an activityî  will allow the user to create and to save an 

activity. 

Figure 14. Start process menu. 

On the right corner of the top bar there are two buttons. ì Refreshî  button is used 

to reload the content of task list and activity list. ì Newî  button is the entry for 

starting new general processes, clicking the ì Newî  button will bring up a pop up 

showing all available processes to be started. 



35 

 

4.2 Calendar Page 

Figure 15. Calendar page. 

The calendar page is the second tab from the tabs on the bottom, opening the 

calendar tab will navigate the current page to a calendar filled with tasks and 

activities according to the due date. Tasks which do not have due date specified 

are not shown in the calendar.  

The two arrows aligned with the month name navigates between different months. 

Clicking on the tasks or activities in the calendar will navigate the current page to 

the task page or task editor page. 



36 

 

4.3 Customer Page 

Figure 16. Customer page. 

The customer page is the third tab in the application. The first box in the content 

shows the customer details e.g. names, contact information, representatives, etc. 

Clicking the ì Search customerî  button on top will clear the current customer 

selection and open a customer search page. 

The document box in the left middle of the page is the entry for documents 

management. Clicking the upload button allows the user to upload a file from the 

local file system (or on mobile device, taking a picture), the uploaded documents 

are listed in the list below, and clicking the name will download the document. 

Clicking the wrench icon on the right of each document allows the user to delete 

or rename the document. 

The reports box in the right middle of the page shows a list of available reports to 

be generated to the current customer. 

The functionality of the customer task lists is similar to that of overview page, but 

all tasks and activity listed and created on the customer page are linked to the 

customer. 



37 

 

On the right top corner there are two buttons ì Refreshî  and ì Newî , for reloading 

the current customer and starting a new customer process. 

4.4 Customer Search Page 

Figure 17. Customer search page. 

The customer search page is shown when the user visits the customer tab with no 

customer pre-selected or when the user is about to re-search a customer. The page 

consists of a text box and a list, where the list displays all the customersí name 

with details such as id, addresses, mobile number and email address. Typing text 

into the text box will activate the filter, resulting in the list to be filtered according 

to the given keyword.  

Clicking the reading glass icon on the right will display / hide a box for advance 

searches, currently only searching by tags is supported in the advanced search box.  



38 

 

Figure 18. Customer advanced search. 

There is a ì Reportî  button on the right top corner, clicking the button will show a 

pop up containing available reports to be started. Clicking the report button will 

generate the report based on the current customer search result. 



39 

 

4.5 Report Page 

Figure 19. Report page. 

The report page is the last tab on the bottom; it has a simple flow layout showing 

all available reports as a list. Clicking on the list item will navigate the current 

view to the generated graphical report. 



40 

 

4.6 Task Editor Page 

Figure 20. Task editor page. 

The task editor page is shown when the user is trying to create / modify a task / 

activity. It basically shows a form for the attributes of task / activity. Changing the 

value of the ì Doneî  switch will change the task to be done / change the activity to 

be undone. The save button is at the right top corner and the delete button is at the 

bottom. 

  



41 

 

5. IMPLEMENTATION AND DEPLOYMENT 

5.1 Implementation of Different Parts 

The implementation on different parts of the software will be discussed in the 

following sub headings. 

5.1.1 Task list 

The task list component is a user interface component that has been used on the 

overview page and customer page, showing the list of actives or tasks. Clicking 

the items allows the user to modify the task / activity or continue the process.  

The code below is a snippet from TaskList class; it initializes the layout of the 

task list component with a text box and a table. The text field named ì filterFieldî  

filters items in the table based on the text user input. The table named ì taskTableî  

is the main component where the list of tasks and activities resides. The class 

argument BeanItemContainer<TaskVO> container is used as the tableís data 

source, each TaskVO object in container will be passed to a ColumnGenerator, 

where a table cell contains the task name and description, assignee and due date is 

generated. A click listener has been added to every table cell monitoring the click 

event,the implementation of clicked event fired is in layoutClick(). 

public class TaskList extends VerticalLayout implements 

LayoutEvents.LayoutClickListener { 

 

// Constructuer of TaskList class 

Public TaskList(BeanItemContainer<TaskVO> container, 

booleansortDateDesc) { 

        // A new text fied is initilized 

        filterField = new TextField(); 

        // Givin style name, that is used by css 

        filterField.addStyleName(STYLENAME + "-filter"); 

... 



42 

 

        // A new table is initilized 

        taskTable = new Table(); 

        taskTable.setSizeFull(); 

        // Set the table’s data 

        taskTable.setContainerDataSource(beanItemContainer); 

        taskTable.setImmediate(true); 

        taskTable.setMultiSelect(false); 

 

... 

 

// define a click listener, listening click events on table items. 

@Override 

public void layoutClick(LayoutEvents.LayoutClickEventlayoutClickEvent) { 

        TaskButtonbtn = (TaskButton) layoutClickEvent.getSource(); 

    } 

// define a text filter, applied on the text filed, used for reacting to the text 

user type in to the filter text box. 

private class TaskTextFilter implements Container.Filter{ 

        String filterPattern; 

        @Override 

        public boolean passesFilter(Object itemId, Item item) throws 

UnsupportedOperationException { 

            TaskVOTaskVO = (TaskVO)itemId; 

    } 

Snippet 1. Task list instantiation. 

5.1.2 Loading all customers from database 

All customer information is needed when the customer search page is visited, to 

fill the customer list. The code snippet below shows the implementation of 



43 

 

loading all customers from the database with address and representative 

information attached. 

@Transactional(propagation = Propagation.SUPPORTS, readOnly = true) 

    // method is defined as fetchAllContactInfos 

    public List<Contact>fetchAllContactInfos() { 

        List<Contact>retVal = new ArrayList<Contact>(); 

        try { 

            // Here a DAO method is called to get all contacts object from 

database. 

            for(Contact contact : contactDAO.findAllContacts()) { 

                // Since all contacts object loaded by contactDAO.findAllContacts 

are lazy loaded, we initialize address and representatives information 

manually. 

                contact.setAddresses(addressDAO.findAddressesByContactId(con

tact.getContactId())); 

                contact.setRepresentatives(contactDAO.findRepresentativesByCo

ntact(contact.getId())); 

                retVal.add(contact); 

            } 

        } catch (Exception e) { 

            // Exception control 

            LOG.error("Error in eagerFetchAllContacts", e); 

        } 

 

        returnretVal; 

    } 

Snippet 2. Service method to request for all customer with address and 

representative information. 



44 

 

The service method fetchAllContactInfos() in ContactService class in called 

initially by the request to load all customers, the transactional features of the 

method is defined in the annotation: the propagation attribute defines the 

transaction propagation behaviors, Propagation.SUPPORTS means this method 

call supports a current transaction, if there is no transaction exists, execute non-

transactional; setting readOnly=true avoids data been manipulated by the method 

unintentionally. 

The method first calls contactDAO.findAllContacts(), getting the list of all 

contacts, then iterates through the list looking for the address information and 

representatives linked to the customer. 

public List<Contact>findAllContacts() { 

        LOG.debug("Find all contacts"); 

        List<Contact>retVal = new ArrayList<Contact>(); 

        // create a JPA query asking for rows from contact table 

        retVal = entityManager.createQuery("from Contact").getResultList(); 

        returnretVal; 

    } 

Snippet 3. DAO method to load all contacts. 

ContactDAO.findAllContacts() method executes a JPA query to select all contact 

objects from the database.  

public List<Address>findAddressesByContactId(String contactId) { 

        LOG.debug("find address by contact id {}", contactId); 

        // create a JPA query asking for rows from address table with given 

condition 

        return entityManager.createQuery( 

                "FROM Address a WHERE a.contact.contactId= :contactId ORDER 

BY a.id ASC" 

        ).setParameter("contactId", contactId).getResultList(); 

    } 



45 

 

Snippet 4. DAO method to load addresses for contact. 

AddressDAO.findAddressesByContactId(contactId) method takes contactId as 

the argument and makes up a JPA query to get a list of addresses by contactId. 

Public List<Contact>findRepresentativesByContact(Long id) { 

        LOG.debug("find representatives by contact " + id); 

        List<Contact>retVal = new ArrayList<Contact>(); 

 

        retVal = entityManager.createQuery("select c.representatives from 

Contact c where c.id = :id").setParameter("id", id).getResultList(); 

        returnretVal; 

    } 

Snippet 5. DAO method to load representatives for contact. 

ContactDAO.findRepresentativesByContact(id) method takes id of the contact as 

the  argument and makes up a JPA query to get representatives by id. 

5.1.3 Start a process 

Starting a process will create a new row in the Activiti process instance table, 

below is the code snippet that starts a process. 

public ProcessInstance startProcess(Map formValues) { 

       // call process service method to set the starter user id 

        processEngine.getIdentityService().setAuthenticatedUserId(userId); 

        // check start parameters 

        if(formValues != null ) { 

            if( variables != null ) { 

                variables.putAll(formValues); 

            } else { 

                variables = formValues; 

            } 



46 

 

        } 

        // start the process by key 

        ProcessInstanceprocessInstance =  processEn-

gine.getRuntimeService().startProcessInstanceByKey(processDefinition.getKey

(),variables); 

        // reset starter user id 

        processEngine.getIdentityService().setAuthenticatedUserId(null); 

        this.processInstance = processInstance; 

        returnprocessInstance; 

    } 

Snippet 6. Start a process. 

The argument formValues of type java.util.Map is passed as the starting 

parameter of the process. Setting the authenticated user id before starting the 

process is a necessary step, as it set the initiator of the process. Method 

processEngine.getRuntimeService().startProcessInstanceByKey(processDefinition

.getKey(),variables) is called to start the process, using the definition key and 

staring parameters. 

5.1.4 Process definitions 

The Process definition is defined in .bpmn20.xml files and deployed to Activiti 

tables in the database.It describes a closed business flow using task as nodes. 

There are different types of tasks that are supported, the user task is the most 

common one that usually along with a form defined, waits for user to finish. Other 

possible tasks include service task, script task, asynchronous task, etc. 

<definitions id="definitions" targetNamespace="customer"> 

<!—- start of process definition --> 

<process id="MOBILE_SAMPLE_SALES" name="Create new proposal" ac-

tiviti:candidateStarterGroups="User"> 

<!—- start event is the first event occur once process is started --> 

        <startEvent id="start" activiti:initiator="initiator"/> 



47 

 

<!—- sequence flow is the element to connect tasks and events --> 

        <sequenceFlowsourceRef='start' targetRef='product_select_generate' />    

<!—- script task includes a piece of groovy script for different purposes -->     

        <scriptTask id='product_select_generate' name='generate product selection 

ui' scriptFormat='groovy'> 

            <script> 

                import groovy.xml.*; 

                importfi.fasolutions.mod.portfoliomanagement.domain.*; 

                importjava.util.*;     

 

... 

 

                execution.setVariable('product_selection',IOUtils.toByteArray(new 

StringReader(xml.toString()),'UTF-8')) 

                execution.setVariable('total_product_number',i) 

            </script> 

        </scriptTask> 

        <sequenceFlow id='flow_13' sourceRef='product_select_generate' targe-

tRef='product_select_form' /> 

<!—- user task usually involves a form shown to user --> 

        <userTask id="product_select_form" name="Product selection" activi-

ti:assignee="${initiator}" activiti:formKey="product_selection" /> 

        <sequenceFlow id='flow_14' sourceRef='product_select_form' targe-

tRef='theEnd' /> 

        <endEvent id="theEnd" /> 

     </process> 

</definitions> 

Snippet 7. Process definition on simple sales process 

Above is an example of a sales process for demonstration purposes. The process 

starts with a start event, and has two tasks followed. The start event, end event and 



48 

 

tasks are connected logically by ì sequenceFlowî  elements. The first task with id 

ì product_select_generateî  is a script task using Groovy scripting language, the 

script inside the task body creates a UI component, which is a list showing 

different financial products and the fee percentage corresponding to the product, 

the information of the product is fetched from the database. The second task, with 

the name ì product_select_formî , is a user task with a form key. It is interpreted 

by the software and renders a form that contains the component created before. 

The form is presented to the user and waiting for command to continue. 

5.1.5 Sales report 

A sales report is a process that produces a graphical component illustrating sales 

activities with different criteria. Below is the process definition of a simple sales 

report. 

<!—- a report is a process generates a visual component (graphic) --> 

<definitions id="definitions"> 

    <process id="Mobile_sales_report" name="Sales report" activi-

ti:candidateStarterGroups="User"> 

        <startEvent id="start" activiti:initiator="initiator" /> 

        <sequenceFlow id='flow' sourceRef='start' targetRef='plot' /> 

<!—- using groovy script to produce a visual component by querying data from 

database --> 

        <scriptTask id='plot' name='plot a graph' scriptFormat='groovy'> 

            <script> 

                importgroovy.sql.Sql; 

                importcom.vaadin.ui.*; 

    // define visual component 

                def root = new CssLayout() 

                Chart chart = new Chart(ChartType.BAR) 

                Configuration conf = chart.getConfiguration() 

                conf.setTitle("Sales acitvity report") 



49 

 

                XAxis x = new XAxis() 

                x.setCategories(users.toArray(new String[users.size()])) 

                conf.addxAxis(x) 

                YAxis y = new YAxis() 

                y.setMin(0) 

                y.setTitle("Activities") 

                conf.addyAxis(y) 

                Legend legend = new Legend() 

                legend.setBackgroundColor("#FFFFFF") 

                legend.setReversed(true) 

                PlotOptionsSeries plot = new PlotOptionsSeries() 

                plot.setStacking(Stacking.NORMAL) 

                conf.setPlotOptions(plot) 

// set up database connection and get the query result 

                defsql = Sql.newInstance('jdbc:mysql://37.233.89.79:3306/test-

salk-

ku?rewriteBatchedStatements=true&amp;useUnicode=true&amp;characterEnc

oding=UTF-8&amp;autoReconnect=true&amp;jdbcCompliantTruncation=false', 

'test-mysql', 'ddPALQK5NfVsPMb5', 'com.mysql.jdbc.Driver') 

                def query = 'select count(*) as count_, ACT_HI_VARINST.TEXT_ as 

type_, ACT_HI_TASKINST.ASSIGNEE_ as assignee_ from ACT_HI_TASKINST 

left join ACT_HI_VARINST on ACT_HI_VARINST.TASK_ID_ = 

ACT_HI_TASKINST.ID_ and ACT_HI_VARINST.NAME_ = "type" left join 

ACT_HI_VARINST as ACT_HI_VARINST_2 on ACT_HI_VARINST_2.TASK_ID_ = 

ACT_HI_TASKINST.ID_ and ACT_HI_VARINST_2.NAME_ = "contactId" where 

PROC_DEF_ID_ is null and END_TIME_ is not null ' + searchCriteria + ' group by 

type_, assignee_ order by type_, assignee_' 

 

               ...                 

 



50 

 

                // draw the chart and set as a variable to the process 

                chart.drawChart(conf); 

                root.addComponent(chart) 

                execution.setVariable("vaadin",root) 

                } 

            </script> 

        </scriptTask> 

        <sequenceFlow id='flow2' sourceRef='plot' targetRef='theEnd' /> 

        <endEvent id="theEnd" /> 

    </process> 

</definitions> 

Snippet 8. Sample sales report process 

To distinguish the report process with other processes, the report process has a 

target name space ì reportî . The sample sales report process only has one script 

task, where a bar chart is created by collecting information from the database 

using SQL query directly. Before the process ends, it assigns the created 

component to process variable ì vaadinî , it triggers the application to open a page 

containing the component. The start form definition asks the user for the reporting 

time period before the report is generated. 



51 

 

Figure 21. Sample sales activity report generated in the report view. 

5.2 Deployment 

The application is deployed as a portlet to the Liferay Portal, in the following 

section, the deployment configurations will be explained. 

5.2.1 Deployment descriptor file 

The deployment descriptor file describes how the web application is deployed in a 

container; it directs a deployment tool to deploy a module or an application with 

specific container options, security settings and describes specific configuration 

requirements. /10 / 

<web-app id="WebApp_ID" version="2.4"> 

<!—- define the web applications name and description --> 

    <display-name>fa_app_gui</display-name> 

    <context-param> 

        <description>Vaadin production mode</description> 

    <!—- start parameters --> 

        <param-name>productionMode</param-name> 

        <param-value>true</param-value> 



52 

 

    </context-param> 

<context-param> 

        <param-name>contextConfigLocation</param-name> 

        <param-value>/WEB-INF/applicationContext.xml</param-value> 

    </context-param> 

Snippet 9. Context parameters of the deployment descriptor file 

The ì context-paramî  element contains the declaration of the applications 

initialization parameters. The Vaadin productionMode is enabled to disengage 

debug tools and improve the performance. The ì contextConfigLocationî  

parameter is set as the path of applicationContext.xml, the file defines Spring 

beans.  

<!—- filter definitions --> 

<filter> 

        <filter-name>Invoker Filter - ERROR</filter-name> 

<!—- filter class --> 

        <filter-

class>com.liferay.portal.kernel.servlet.filters.invoker.InvokerFilter</filter-

class> 

<!—- start parameters of the filter --> 

        <init-param> 

            <param-name>dispatcher</param-name> 

            <param-value>ERROR</param-value> 

        </init-param> 

    </filter> 

    <filter> 

        <filter-name>Invoker Filter - FORWARD</filter-name> 

        <filter-

class>com.liferay.portal.kernel.servlet.filters.invoker.InvokerFilter</filter-

class> 



53 

 

        <init-param> 

            <param-name>dispatcher</param-name> 

            <param-value>FORWARD</param-value> 

        </init-param> 

    </filter> 

    <filter> 

        <filter-name>Invoker Filter - INCLUDE</filter-name> 

        <filter-

class>com.liferay.portal.kernel.servlet.filters.invoker.InvokerFilter</filter-

class> 

        <init-param> 

            <param-name>dispatcher</param-name> 

            <param-value>INCLUDE</param-value> 

        </init-param> 

    </filter> 

    <filter> 

        <filter-name>Invoker Filter - REQUEST</filter-name> 

        <filter-

class>com.liferay.portal.kernel.servlet.filters.invoker.InvokerFilter</filter-

class> 

        <init-param> 

            <param-name>dispatcher</param-name> 

            <param-value>REQUEST</param-value> 

        </init-param> 

    </filter> 

    <filter-mapping> 

        <filter-name>Invoker Filter - ERROR</filter-name> 

<!—- the url pattern indicates how the filter works on special request--> 

        <url-pattern>/*</url-pattern> 

        <dispatcher>ERROR</dispatcher> 



54 

 

    </filter-mapping> 

    <filter-mapping> 

        <filter-name>Invoker Filter - FORWARD</filter-name> 

        <url-pattern>/*</url-pattern> 

        <dispatcher>FORWARD</dispatcher> 

    </filter-mapping> 

    <filter-mapping> 

        <filter-name>Invoker Filter - INCLUDE</filter-name> 

        <url-pattern>/*</url-pattern> 

        <dispatcher>INCLUDE</dispatcher> 

    </filter-mapping> 

    <filter-mapping> 

        <filter-name>Invoker Filter - REQUEST</filter-name> 

        <url-pattern>/*</url-pattern> 

        <dispatcher>REQUEST</dispatcher> 

    </filter-mapping> 

Snippet 10. Filters and filter mappings in the deployment descriptor file 

The filter and fitter mapping elements defines the filter classes and its url 

mapping. The servlet filters are used for preprocessing requests and post 

processing responses. The four filters used by Liferay portal are defined in this 

section. 

<listener> 

        <listener-

class>com.liferay.portal.kernel.servlet.PluginContextListener</listener-

class> 

    </listener> 

    <listener> 



55 

 

        <listener-

class>com.liferay.portal.kernel.servlet.SerializableSessionAttributeListen

er</listener-class> 

    </listener> 

    <listener> 

        <listener-

class>org.springframework.web.context.ContextLoaderListener</listener-

class> 

    </listener> 

    <listener> 

        <listener-

class>com.liferay.portal.kernel.servlet.PortletContextListener</listener-

class> 

    </listener> 

Snippet 11. Listeners in the deployment descriptor file 

The listener element defines event listeners for the web application. The listeners 

are capable of tracking key events in the application. There are four listeners 

defined in the section: PluginContextListener, 

SerializableSessionAttributeListener and PortletContextListener are required for 

Liferay portal to be started, ContextLoaderListener is used to initialize 

Springapplication context. 

<!—- servlet deployment descriptor file --> 

<servlet> 

        <servlet-name>Vaadin2Application</servlet-name> 

        <display-name>Vaadin2Application</display-name> 

        <servlet-

class>com.liferay.portal.kernel.servlet.PortletServlet</servlet-class> 

<!—- init param element defines different attributes e.g. port-

let class and vaadin class to be started--> 

        <init-param> 



56 

 

            <param-name>portlet-class</param-name> 

            <param-value>com.vaadin.server.VaadinPortlet</param-value> 

        </init-param> 

        <init-param> 

            <description>Vaadin application class to start</description> 

            <param-name>application</param-name> 

            <param-value>fi.fasolutions.fa.ui.GUIServlet</param-value> 

        </init-param> 

<!—- widgetset need to be specified as google web tool kit use 

it to render the web page--> 

        <init-param> 

            <description>Application widgetset</description> 

            <param-name>widgetset</param-name> 

            <param-value>fi.fasolutions.fa.gwt.MobileAppWidgetSet</param-

value> 

        </init-param> 

    </servlet> 

<servlet-mapping> 

        <servlet-name>Vaadin2Application</servlet-name> 

        <url-pattern>/Vaadin2Application/*</url-pattern> 

    </servlet-mapping> 

Snippet 11.Servlet and servlet mapping in the deployment descriptor file 

The servlet element declares a servlet, including the servlet name, display name, 

the class to use and initial parameters. As we are running Vaadin as a portlet, the 

start class of the application is set to be PortletServlet, and we configured the 

application parameter as an initial parameter to clarify the actual servlet class to 

be started. 

 

 



57 

 

 <session-config> 

        <session-timeout>600</session-timeout> 

 </session-config> 

Snippet 12. Session configurations in the deployment descriptor file 

The ì session-configî  element defines the session attributes for the application. 

The session time-out is set to be 600 seconds, to avoid the session to be timeouted 

in case of long waiting calls. 

5.2.2 Portlet descriptor file 

The portlet descriptor file is used to describe the attribute of the application when 

it is deployed as a portlet. 

<!—- portlet deployment descriptor file --> 

<portlet-name>Vaadin2Application</portlet-name> 

          <display-name>Vaadin2Application</display-name> 

          <portlet-class>com.vaadin.server.VaadinPortlet</portlet-class> 

          <init-param> 

               <name>UI</name> 

               <value>fi.fasolutions.fa.apps.MobileUserInterface</value> 

          </init-param> 

          <init-param> 

               <name>widgetset</name> 

               <value>fi.fasolutions.fa.gwt.MobileAppWidgetSet</value> 

          </init-param> 

        <init-param> 

            <name>style</name>            

            <value>height:100%</value> 

        </init-param> 

          <supports> 

               <mime-type>text/html</mime-type> 



58 

 

               <portlet-mode>view</portlet-mode> 

               <portlet-mode>edit</portlet-mode> 

               <portlet-mode>help</portlet-mode> 

          </supports> 

          <portlet-info> 

               <title>FA-app-gui Portfolio</title> 

               <short-title>FA-app-gui Portfolio</short-title> 

          </portlet-info>           

Snippet 13. Portlet deployment descriptor file 

Similarly to the deployment descriptor file,the display name, portlet class and 

initial  parameters are defined in the portlet.xml, other attributes defined are style, 

supported portlet modes and content type and information of the portlet. 

5.2.3 Data source definition 

The datasource used by the application is defined as the ì dateSourceî  bean in the 

application context. 

<!—- spring config file defines data source --> 

<!—- c3p0 connection pool--> 

<bean id="dataSource" 

          class="com.mchange.v2.c3p0.ComboPooledDataSource" 

          destroy-method="close"> 

<!—- driver class --> 

        <property 

name="driverClass"><value>${jdbc.driverClassName}</value></property> 

<!—- jdbc url --> 

        <property name="jdbcUrl"><value>${jdbc.url}</value></property> 

<!—- login confidents--> 

        <property name="user"><value>${jdbc.username}</value></property> 



59 

 

        <property 

name="password"><value>${jdbc.password}</value></property> 

<!—- connection pool settings --> 

        <property name="initialPoolSize"><value>3</value></property> 

        <property name="minPoolSize"><value>3</value></property> 

        <property name="maxPoolSize"><value>100</value></property> 

        <property 

name="autoCommitOnClose"><value>true</value></property> 

        <property 

name="unreturnedConnectionTimeout"><value>30000000</value></prop

erty> 

        <property 

name="idleConnectionTestPeriod"><value>120</value></property> 

        <property name="acquireIncrement"><value>1</value></property> 

        <property name="maxStatements"><value>0</value></property>  <!-- 

0 means: statement caching is turned off.  --> 

        <property 

name="numHelperThreads"><value>3</value></property>  <!-- 3 is default 

--> 

        <property 

name="automaticTestTable"><value>test_salkku</value></property> 

    </bean> 

Snippet 14. Data source declarations in applicationContext.xml 

The "dataSource" bean is required by Spring to establish the database connection, 

we used c3p0 library to manage the datasource. 

In particular, c3p0 provides several useful services: 

1. Classes which adapt traditional DriverManager-based JDBC drivers to the 

newer javax.sql.DataSource scheme for acquiring database Connections. 



60 

 

2. Transparent pooling of Connection and PreparedStatements behind 

DataSources which can "wrap" around traditional drivers or arbitrary 

unpooledDataSources. /11/ 

The property list of "dataSource" bean describes the parameters used to establish 

to connection to the data source. We used "initialPoolSize", "minPoolSize" and 

"maxPoolSize" parameters to define a connection pool no less than 3 connections 

and no more than 100 connections.The connection pool helps the application with 

the performance and eliminates situations such as overflow on connections. 

5.2.4 Spring JPA and Hibernate configuration 

Spring JPA offers a comprehensive support for JAVA Persistence API, in FA 

Sales Mobile we used Spring JPA for abstraction and crud operations while 

having Hibernate as the object mapper layered on the database. 

<bean 

class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean

" id="entityManagerFactory"> 

<!—- reference to datasource bean --> 

        <property name="dataSource" ref="dataSource"/> 

    <!—- parameter definitions --> 

        <property name="persistenceUnitName" value="persistenceUnit" /> 

        <property name="persistenceUnitManager" ref="pum"></property> 

        <property name="jpaVendorAdapter"> 

            <bean 

class="org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter"> 

            </bean> 

        </property> 

        <property name="jpaProperties"> 

            <props> 

                <prop key="hibernate.dialect">${jdbc.dialect}</prop> 

                <prop key="hibernate.hbm2ddl.auto">update</prop> 



61 

 

                <prop 

key="hibernate.ejb.naming_strategy">org.hibernate.cfg.ImprovedNamingStrat

egy</prop> 

                <prop key="hibernate.jdbc.batch_size">0</prop> 

                <prop key="hibernate.show_sql">false</prop> 

                <prop key="hibernate.jdbc.batch_versioned_data">true</prop> 

                <prop key="hibernate.cache.use_second_level_cache">true</prop> 

                <prop key="hibernate.cache.use_query_cache">true</prop> 

                <prop key="hibernate.order_updates">true</prop> 

                <prop key="hibernate.order_inserts">true</prop> 

                <prop key="hibernate.connection.autocommit">false</prop> 

                <prop key="hibernate.connection.isolation">3</prop> 

                <prop 

key="hibernate.transaction.factory_class">org.hibernate.transaction.JDBCTran

sactionFactory</prop> 

                <prop 

key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</

prop> 

                <prop 

key="hibernate.cache.region.factory_class" >org.hibernate.cache.ehcache.Singl

etonEhCacheRegionFactory</prop> 

                <prop key="hibernate.cache.use_second_level_cache">true</prop> 

                <prop key="hibernate.enable_lazy_load_no_trans">true</prop> 

            </props> 

        </property> 

    </bean> 

Snippet 15. JPA EntityManagerFactory declarations in applicationContext.xml 

The ì entityManagerFactoryî  bean defines an entity manager factory bean of type 

org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean, The 



62 

 

EntityManagerFactory interface is used by the application to obtain an 

application-managed entity manager.  

The LocalEntityManagerFactory Bean creates an instance of class type 

EntityManagerFactory suitable for environments which solely use JPA for data 

access. The factory bean will use the JPA PersistenceProvider autodetection 

mechanism (according to JPA's Java SE bootstrapping) and, in most cases, 

requires only the persistence unit name to be specified.The persistence unit name 

is defined in the ì persistenceUnitNameî  property. To link the entity manager 

factory bean to a JDBC datasource, the datasource bean is passed in as a property. 

Setting the property ì jpaVendorAdapterî  to HibernateJpaVendorAdapter exposes 

Hibernateís persistence provider and EntityManager extension interface. The 

Hibernate parameters and their attributes are set in the ì jpaPropertiesî  element. 

  



63 

 

6. TESTING 

A comprehensive testing procedure was never stopped during the lifecycle of FA 

Mobile Sales as bugs were raised up and new improvements were suggested. We 

used two testing approaches to ensure the quality of the software, as JUnit test 

case and general test session. 

6.1 Unit Test Cases 

A unit test is a piece of code that executes a specified functionality in the code to 

be tested; each unit test case usually tests one exact function, leaving little margin 

for other things interrupting the test unit. By using the unit test, the health of the 

code is protected and it is especially helpful when coming to some complex 

logical code pieces.If every bit is correct, the integrity is established. 

Unit tests were applied largely to FA Mobile Sales, to check the business logic 

implementations. Below is a JUnit test case testing the functionality to save a 

contact. 

@Test  

    @Transactional 

    public void testSavingAndLoadingContact() { 

        Contact contact = new Contact(); 

        contact.setName("NIMI"); 

        contact.setContactId("C1"); 

        Assert.assertNull(contact.getVersion()); 

        contactDAO.saveContact(contact); 

        Assert.assertNotNull(contact.getVersion()); 

 

        Contact contact2 = contactDAO.loadContactByContactId("C1"); 

        Assert.assertNotNull(contact2); 

    } 

Snippet 16. Unit test case to save a contact 



64 

 

6.2 General Test Session 

A test session was held on the important time point e.g. before a new 

release.During the test session we checked the new features implemented between 

versions to make sure they are not conflicting with or breaking existing 

functionalities and the completion of the software.  

On a daily basis, we received bug reports from the customers; these bugs were 

recorded and waiting to be handled, with a priority definition. 

The table below lists all the bugs that have been reported and fixed. 

  



65 

 

Table 1. List of Fixed bugs. 

Fixed date Abstract of the bug 

12/Nov/13 4:02 PM Fa mobile sales: search a customer and start a process 

14/Nov/2014 7:30 PM Issues of Fa mobile sales working with iPad 

5/Nov/2014 8:37 AM Deploy latest version of Fa mobile salesto server. 

06/Feb/14 7:38 PM Fa mobile sales:startable process according to user group 

24/Feb/14 12:57 PM In calendar, click a task should navigate to the task 

view.Implement filter the task list. Customer search style 

fix. Customer view show customer tagging info.  

Put uploader and uploading time in to document entry. 

10/Feb/14 8:46 PM Fa mobile sales: Refresh document list in customer view 

after add a document to document library in fasalkku 

25/Feb/14 10:35 AM Fa mobile sales: Historical tasks in calendar 

11/Feb/14 9:57 PM Support for adding attachments manually in process task 

windowFa mobile sales 

11/Feb/14 9:57 PM Support for adding attachments manually in process task 

window. 

23/Feb/14 2:46 PM Do not serialize entities into Activit tasks or processes 

20/Feb/14 8:16 PM Fa mobile sales:Customer sales process can not be started 

after jpa manager is applied to activiti engine 

08/Oct/12 10:50 AM can you check / test the IE, Fa mobile sales 

  



66 

 

7. CONCLUSION 

By the time the report is finished, the application is still involved in an extensive 

and continuously developing iteration. The initial goal though, which is to help 

our customers to manage customer resources and do sales processes has been 

completed. It has been reviewed by multiple customers of FA Solutions Oy for 

acceptance tests, and has several customer deployments. Positive altitudes are 

given in general to our work.  

Through the development of the software, it opened up a smooth learning curve of 

the software engineering subject for me, each phase of the has been carefully 

considered and implemented. Invaluable experiences are gained on customer 

requirement analyzing, software planning, developing and software testing. 

The biggest challenge comes from the planning phase of the development, when 

designing the architecture of the software according to the requirements from the 

customer. I worked with my experienced collegues for the goal. Every aspect of 

the needs and potential possibility extensions that we came up with was reviewed 

while there are some certain features we decided not to support for the reason that 

it broke the principle of implementing a "product" overî customized software". 

With other help from my friends and teachers, I was proud of myself building 

such an architecture strong and agile enough, and the implementation later had 

proved that. 

Our customers have risen up their wishes on the contemporary implementation 

during the acceptance test session, credited to our agile implementation.Most of 

the requirements can be achieved by flexible utilizing Activiti processes, other are 

in discussion and being analyzed. There have been good suggestion on the 

application e.g. that it should receive a copy of the email sent to a customer in the 

backend and automatically records the email activity to the database. It is believed 

the scenario will become reality in the near future. 

To conclude, an opportunity to work with FA Mobile Sales project helped me not 

only to practise on my skillsets, but also taught me on the way dealing with people 



67 

 

and doing things properly. It opened up a new window that I could look further on 

my career options and choices. The unforgettable experience will last. 

  



68 

 

8. REFERENCES  

/1/ What is MySQL. 2011. Accessed 12.3.2014. 

http://dev.mysql.com/doc/refman/5.1/en/what-is-mysql.html. 

/2/ MySQL Innodb ZFS Best Practices. 2009. Accessed 20.3.2014. 

https://blogs.oracle.com/realneel/entry/mysql_innodb_zfs_best_practices. 

/3/ Introduction to Spring Framework. 2014. Accessed 20.3.2014. 

http://docs.spring.io/spring/docs/3.0.x/reference/overview.html. 

/4/ Spring Framework: Chapter 2. Introduction. 2011. Accessed 22.3.2014. 

http://www.springframework.net/doc-latest/reference/html/introduction.html. 

/5/ Book of Vaadin. 2014. [WWW]. Accessed 20.3.2014. 

https://vaadin.com/book/. 

/6/ Activiti  2014. Accessed 12.3.2014. http://www.activiti.org. 

/7/ Tutorial: Introduction: Hibernate and Workshop. 2013. Accessed 

12.3.2014. 

http://docs.oracle.com/cd/E15051_01/wlw/docs103/guide/ormworkbench/hibernat

e-tutorial/tutHibernate1.html. 

/8/ HibernateArchitecture. 2012. Accessed 20.3.2014. 

http://docs.jboss.org/hibernate/core/3.2/reference/en/html/architecture.html. 

/9/ Liferay Logical Architecture. 2011. Accessed 22.3.2014. 

http://www.liferay.com/community/wiki/-/wiki/Main/Logical+Architecture. 

/10/ Java EE: XML Schemas for Java EE Deployment Descriptors. 2013. 

Accessed 13.3.2014. http://java.sun.com/xml/ns/javaee/index.html. 

/11/ c3p0 - JDBC3 Connection and Statement Pooling. 2013. 

Accessed 12.3.2014. http://www.mchange.com/projects/c3p0/> 


