

Maria-Corina Sibinescu

SOPHISTICATED ORDERING TOOL FOR
WRM PRODUCTS

Technology and Communication
2014

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Degree Programme of Information Technology

ABSTRACT

Author Maria-Corina Sibinescu

Title Sophisticated Ordering Tool for WRM Products

Year 2014

Languages English

Pages 51

Name of Supervisor Timo Kankaanpää

The process of ordering a product should be convenient for both the customer and the
seller. As a means to simplify the ordering of a highly customizable product with a
large number of possible features, it is useful to have an efficient and interactive
ordering tool that can guide the customer through placing a correct and complete
order. The aim of this thesis is to develop a user interface for a web-based ordering
tool, which allows easily customizing the order and saving the data into a designated
database.

The user interface is implemented using HTML, CSS and the AngularJS framework.
Furthermore, choosing the desired features of the ordered product makes use of the
REST API of an existing order configurator tool. The user interface communicates
with the REST API using the CORS technology, constantly exchanging JSON data to
customize the order. Lastly, when the order is fully configured, the data is processed
using PHP, being sent to the concerned sales personnel within the company, as well as
saved in an OpenERP database for further use.

The ordering tool is a useful method of simplifying the sales process and ensuring
that a placed order is valid and fully configured.

Keywords Ordering Tool, Order Configurator, AngularJS, Dynamic User

Interface

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Degree Programme of Information Technology

TIIVISTELMÄ

Tekijä Maria-Corina Sibinescu

Opinnäytetyön nimi Sophisticated Ordering Tool for WRM Products

Vuosi 2014

Kieli englanti

Sivumäärä 51

Ohjaaja Timo Kankaanpää

Tilausprosessi on parhaimmillaan joustava sekä asiakkaalle että myyjälle.
Monimutkainen ja hyvin modulaarinen tuote, jossa on suuri määrä mahdollisia
valintoja voi helposti olla sekä asiakkaalle vaikea ostaa että myyjälle vaikea myydä.
Asian helpottamiseksi tarvitaan tehokas ja interaktiivinen tilaustyökalu, joka ohjaa
asiakasta luomaan oikean ja täydellisen tilauksen. Tämän opinnäytetyön
tarkoituksena oli toteuttaa käyttöliittymä selainpohjaiselle tilaustyökalulle, joka
mahdollistaisi monimutkaisen tuotteen tilaamisen helposti ja tiedon tallettamisen sille
tarkoitettuun tietokantaan.

Käyttoliittymän ohjelmointi toteutettiin HTML:llä, CSS:llä ja AngularJS:llä. Lisäksi
tilattavien tuotteiden toiminnallisuuksien näyttämisessä ja valitsemisessa
tilaustyökalu kommunikoi Summium myynticonfigurattorin REST API:a vasten
CORS-teknologia käyttäen välittäen JSON-muotoista tietoa. Lopuksi kun tuotteen
valinnat on tehty, tieto prosessoidaan PHP:tä käyttäen ja lähetetään tarvittaville
myyntihenkilöille sekä talletetaan OpenERP:n tietokantaan jatkokäsittelyä varten.

Opinnäytetyössä toteutettu tilaustyökalu helpottaa tilausprosessia ja varmistaa
asiakkaiden tekemien tilausten oikeellisuuden.

Avainsanat tilaustyökalu, myynticonfigurattorin, AngularJS

CONTENTS

LIST OF FIGURES AND TABLES..7

LIST OF ABBREVIATIONS..9

1.INTRODUCTION..10

1.1. Client Organization (Wapice Oy)...10

1.1.1 WRM(Wapice Remote Management)..10

1.1.2. Summium...11

1.2. Current Situation..11

1.3. Project Objectives and Outcome..11

2.USED TECHNOLOGIES...12

2.1. HTML..13

2.2. CSS...13

2.3. JavaScript...14

2.3.1. jQuery..14

2.3.2. AngularJS and the MVC development model.....................................15

2.4. JSON (JavaScript Object Notation) and JSON parsers...................................15

2.4.1. JSON data..15

2.4.2. Choosing an appropriate JSON parser...16

2.5. REST..16

2.6. CORS...17

2.7. CMS...17

2.8. OpenERP..18

2.9. Used Software Tools..19

3.SYSTEM DESCRIPTION..19

3.1. Use Cases...20

3.1.1. Use Case Diagram...20

3.1.2. Register..21

3.1.3. Login..22

3.1.4. Place an Order...22

3.1.5. Modify user details..23

3.1.6. View Order Status..23

3.1.7.View Order History..24

3.2. Software requirements specification..24

3.3. Functional specification...25

3.3.1. Application Flow...26

3.3.2. Sequence Diagrams...28

3.4. Technical Specification..31

3.4.1. Application architecture...31

3.4.2. Detailed design..33

3.5. Deployment Diagram...36

3.6. Testing Specification..36

3.6.1. Invalid login credentials..36

3.6.2. Invalid data format in registration...37

3.6.3. Non-numerical values in quantity and cable length fields..................37

3.6.4. Changes to Summium model...37

3.6.5. XML-RPC connection broken...38

3.6.6. Connection to REST API broken...38

4.IMPLEMENTATION AND DEPLOYMENT..39

4.1. AngularJS Application Structure..39

4.2. GUI Design and Implementation...40

4.2.1. AngularJS implementation – used concepts and syntax......................41

4.2.2. Login View..44

4.2.3 Registration View...45

4.2.4. Product Selection View...47

4.2.5. Product Configuration View..47

4.2.6. Order Confirmation View..52

4.2.7. Order Placement View...53

4.3. Communicating with the REST Services...54

4.4. Registering the Order...54

4.4.1. Registering the order through an email...54

4.4.2. Inserting Data into OpenERP..55

4.5. Application Deployment..56

5.TESTS, RESULTS AND ANALYSIS..57

5.1. Application Testing..57

5.1.1. Invalid Login Credentials..57

5.1.2. Invalid Data Format in Registration..57

5.1.3. Non-numerical values in quantity and cable length fields..................58

5.1.4. Changes to Summium model...58

5.1.5. XML-RPC connection broken...59

5.1.6. Connection to REST API broken...59

5.2. Implementation Results and Analysis..60

5.2.1. Implementation limitations..60

5.2.2. Future work and usage...61

6.CONCLUSIONS..62

7.REFERENCES...63

LIST OF FIGURES AND TABLES

Figure 1. Use case diagram for the WRM Ordering Tool p21

Figure 2. WRM Ordering Tool mock-ups p27

Figure 4. Registration process sequence diagram p29

Figure 5. Login process sequence diagram p29

Figure 6. Product selection process sequence diagram p30

Figure 7. Product configuration process sequence diagram p30

Figure 7. Order registration process sequence diagram p31

Figure 8. Ordering Tool Package diagram p33

Figure 9. Controllers detail implementation p35

Figure 10. Deployment diagram p36

Figure 11. Structure of the “js” directory p39

Figure 12. Structure of the root directory of the ordering tool p40

Figure 13. Using the “ng-app directive” p41

Figure 14. Example of AngularJS routing p41

Figure 15. Example of a view implementation in AngularJS p42

Figure 16. Declaration of an AngularJS module p43

Figure 17. Syntax of an AngularJS controller p43

Figure 18. Screenshot of the login view p44

Figure 19. Login view with wrong credentials p45

Figure 20. Registration view screenshot p46

Figure 21. Product selection view screenshot p47

Figure 22. Configuring a WRM247 with 3 connectors product p49

Figure 23. Configuring a WRM247 with 5 connectors product p50

Figure 24. Configuring a WRM247+ product p51

Figure 25. Configuring a WRM365 product p52

Figure 26. Order confirmation view example p53

Figure 27. Order placement view example p53

Figure 28. OpenERP GUI screenshot p56

Figure 29. Required field empty error p56

Figure 30. Incorrect format error p58

Figure 31. Non-numerical value error p58

Figure 32. Valid number p58

Figure 33. Error registering the order p59

Figure 34. Connection to REST API broken error p59

Table 1. Use case “Register” p22

Table 2. Use case “Login” p22

Table 3. Use case “Place an order” p22

Table 4. Use case “Modify user details” p23

Table 5. Use case “View order status” p23

Table 6. Use case “View order history” p24

Table 7. Ordering tool requirements p25

LIST OF ABBREVIATIONS

AJAX Asychronuous JavaScript And XML

API Application Programming Interface

CMS Content Management System

CORS Cross Origin Resource Sharing

CSS Cascading Style Sheets

ERP Enterprise Resource Planning

HTML HyperText Markup Language

JSON JavaScript Object Notation

MVC Model View Controller

PHP Hypertext Preprocessor

REST Representational State Transfer

RPC Remote Procedure Call

SPA Single Page Application

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

WRM Wapice Remote Management

XAMPP X(Cross) Apache MySQL PHP Perl

XML Extensible Markup Language

1. INTRODUCTION

The application implemented in this thesis was developed as a project for the Finnish

company Wapice Oy, to aid in the selling of their WRM products.

1.1. Client Organization (Wapice Oy)

Wapice Oy is a Finnish company established in 1999 in Vaasa. The company provides

expertise in both software and electronics, as a subcontractor and through their own

products, WRM(a remote management solution) and Summium(a sales configurator).

A large number of clients of the company come from the energy sector including

large, well-known companies such as ABB and Wärtsilä.

Wapice Oy currently employs over 260 IT experts and the number is constantly

growing. The company is present in 6 locations around Finland(Vaasa, Tampere,

Seinäjoki, Oulu, Hyvinkää and Jyväskylä). The headquarters are located in Vaasa.

1.1.1 WRM(Wapice Remote Management)

WRM(Wapice Remote Management) is a complete remote management solution,
suited for a wide range of features, including remote control, location tracking and
diagnostics.

WRM electronics are small devices that can be programmed and can communicate
with the WRM server. Currently, 4 types of devices are available:

 WRM247 with 3 connectors

 WRM247 with 5 connectors

 WRM247+ (this device has 8 connectors)

 WRM365 (two types of device are available)

An order of a WRM device requires choosing the following characteristics:

 Possible cable lengths and end connectors for each cable in the case of
WRM247 (each connector on a product can support one such cable)

 Type of device in case of WRM365

 Accessories to be shipped with the product

 The possibility of choosing a template, when the ordering company is a
previous customer and existing templates have been assigned to it. Since the
WRM product templates do not currently exist, choosing a template will not
be part of this thesis implementation.

1.1.2. Summium

Summium is a sales configurator product developed by Wapice Oy. In this project,
Summium is used to configure a product, as well as manage the users of the ordering
tool.

Summium allows for rules and dependencies to be added to the product. Therefore,
when configuring an order through Summium, each choice of the client triggers the
display of new, appropriate data.

The ordering tool communicates to Summium constantly for managing the user
information and configuring the ordered product.

1.2. Current Situation

Currently, placing an order for a WRM product is done by sending an order email

from the customer to the relevant persons inside the company. However, this method

is not the most convenient and efficient for both the customers and the company's

employees involved in the sales of the WRM products.

1.3. Project Objectives and Outcome

The company is looking to develop a sales tool to be used by their clients for placing

orders for the WRM products. The tool will provide a clear and easy to use interface

for the clients, allowing them to place and customize an order in a more efficient way.

Furthermore, the tool will be based on the company's Summium product, and will use

Summium's Representational State Transfer (REST) services to provide the

functionality. At the end of the ordering process, the order will be placed by sending

an email with the data configured through the user interface, as well as inserting the

data to OpenERP.

The scope of this thesis is to develop the user interface of the ordering tool. The

REST services will not be implemented as part of this final project.

2. USED TECHNOLOGIES

The ordering tool's user interface will be built as a part of the WRM's website, on top

of a content management system. The user interface (UI) will be implemented using

HTML and CSS.

The functionality will be implemented using JavaScript and the UI will communicate

with the Summium REST services through JSON data.

After the order confirmation by the customer, an email will be sent to the concerned

personnel and the data will be inserted to OpenERP. This action will be performed

using PHP.

2.1. HTML

HyperText Markup Language(HTML) is the language in use for publishing web

documents. The current most commonly used version is HTML 4.01, along with

HTML5, which is in use, but not fully defined.

HTML defines the elements that make up a document, such as paragraphs, links,

tables, titles, embedded objects etc. Furthermore, HTML uses stylesheets for

presentation purposes (although certain HTML attributes can be used for the same

purpose) and scripts for creating dynamic, interactive web documents. /12/

2.2. CSS

Cascading Style Sheets(CSS) is a system of rules which allows the styling, spacing

and positioning of the content on a web page. /12/

A CSS rule contains a selector, which defines to what elements the rule is applied,

and a set of pairs of properties and their assigned values, enclosed in braces ({}).

Each property-value pair is followed by a semicolon.

CSS can be used to format a web document in three different ways:

 Inline style sheets (used directly inside an HTML tag through the “style”

attribute)

 Internal style sheets (used in the head of the web document inside the tag

<style>)

 External style sheets (separated documents imported through the tag <link>)

The main advantage of using CSS is separating the structure of the document from

their presentation (layout, positioning and custom look). External CSS files will be

used in the implementation of this thesis, as they offer more possibilities to customize

a document by simply linking a different file.

2.3. JavaScript

JavaScript is a scripting language that can be executed by all modern browsers.
JavaScript is inserted into a web document using the <script> tag.

Scripts can be placed in the head or body of a web document, as well as linked from
an external file with the extension .js.

JavaScript uses a type of object-oriented programming, called prototype-based
programming. Prototype based programming does not contain classes, as defined in
standard object-oriented programming. Instead, the role of a class is filled in by
functions. A function can be instantiated to create an object using the keyword “new”.
Furthermore, the function itself serves as the constructor, and does not need any
method explicitly defined for this purpose. Other methods can be added using the
“prototype” keyword, while properties(variables) are added using the “this” keyword.

Prototype-based programming makes classic object-oriented programming, such as
inheritance, encapsulation and polymorphism, available in JavaScript. /4, 6/

JavaScript presents as an advantage an increased speed and reduces the load on the
server, being run in the client's browser. While security issues arises because of
JavaScript being run on the client computer, modern web standards reduce the threat
significantly. Several libraries, as well as add-ons are available, making the
development process easier and more customizable. /5/

2.3.1. jQuery

“jQuery is a fast, small, and feature-rich JavaScript library” /7/.

jQuery is a popular and powerful JavaScript library that may be used extensively to
provide the functionality of the user interface. Firstly, jQuery can be used in this
project to provide animations, as well as layout changes in response to user's actions.

In addition, jQuery can be used for making AJAX calls to the REST API of the sales
configurator and process the received data, as well as send data modified by the
customer through the user interface.

2.3.2. AngularJS and the MVC development model

AngularJS is a powerful JavaScript framework developed by Google. It extends

HTML, allowing easy retrieval of data and a fast, responsive interface. AngularJS is

particularly suitable for Single Page Applications (SPAs), where the content of the

page changes dynamically based on user interactions. /1/

Furthermore, AngularJS allows the use of the MVC (Model-View-Controller)

development model. The MVC development model easily separates an application

into 3 functional parts:

 Model: a representation of the data structure manipulated by the application

 View: defines the page that is presented to the user

 Controller: connects the view and the model and provides necessary

functionality

The possibility of using the MVC allows for clarity of the implementation and ease of

maintenance.

Overall, AngularJS appears to be a suitable solution for the implementation of the

application and its main alternative is the use of the jQuery library.

2.4. JSON (JavaScript Object Notation) and JSON parsers

Data exchange throughout the application is done using the JSON data format.

2.4.1. JSON data

JSON is a light-weight format meant for data exchange, based on a subset of
JavaScript. JSON permits quick and simple data exchange, is completely language
independent and easy to read/generate by both humans and computers.

JSON construction is based on two main features:

 An object as a collection of 0 or more pairs of name and value. Objects are
enclosed in braces ({}). A colon (:) is used between the name and the
corresponding value, while the name-value pairs are separated by comma (,).

 An array as a collection of ordered values(0 or more). Arrays are enclosed
between square brackets ([]) and separated by commas (,).

A value can be:

 A primitive data type(string, Boolean, number, null)

 A structured data type(object, array)

A name can only be a string and names must be unique in an object.

Clear advantages of JSON include data simplicity, human readability and less need
for a specialized software for data exchange. /3, 10/

2.4.2. Choosing an appropriate JSON parser

Modern browsers incorporate a JSON parser, and if the native parser exists, it will be
automatically preferred to any external parser.

For older browsers, which include browsers currently in use, such as IE7, a fall-back
parser must be used. This also appears as a priority since mobile browsers have
relatively recently started to implement native JSON parsers.

During this project, JSON will be parsed as a JavaScript object, since having
knowledge of the structure of the JSON data allows relatively easy access to any
value by use of the key associated with it.

For example, when using the JSON object named “object1”, whose value is “{'name':
'name1', 'value': 'value1' }”, the value 'name1' can be accessed by using the key
'name' in the following way: object1.name.

In this situation, no specific JSON parser needs to be used.

2.5. REST

REST (Representational State Transfer) is an architectural style designed for Web
services. REST services are stateless, use HTTP methods, show URI (Uniform
resource identifier) structure and transfer XML and/or JSON./12/

The ordering tool's REST services implementation is beyond the scope of this thesis,
but the user interface communicates with the services, transferring data constantly.

In order to be able to send and receive JSON data from a REST service, it is sufficient
that the service's URI is known. The necessary URIs for data retrieval have been
described in the REST services' specification.

2.6. CORS

CORS(Cross-Origin Resource Sharing) allows an API to make cross-origin requests
on the client-side, a behaviour that is normally disabled because of security issues. In
order to allow cross-origin data transfer, a number of headers must be set accordingly
in the request of the client and the response of the service on the server.

CORS allows the resource to be shared if the “Origin” header of the request is present
and it specifies a case-sensitive match of any of the locations that are enabled to
access the resource. In this case, the “Allow-Control-Allow-Origin” header will be set
to the value of the “Origin” header of the request and, if credentials are used, the
header “Access-Control-Allow-Credentials” is set to “true”. If no credentials are
used, the “Allow-Control-Allow-Origin” header can be set to “*” as well, which
indicates that all origins are allowed to access the resource. /2, 11/

2.7. CMS

A CMS(Content Management System) is an application that allows users to create

and manage content without the need of programming languages./9/

Due to the convenient way of adding, connecting and editing data, CMSs are a

popular solution for web pages that are constantly being updated. CMSs are based on

a webpage template, dynamically generating content using PHP and storing data in a

database (MySQL).

Using a CMS, creating a new page for a website or updating a menu can be done

without any web development knowledge, through a graphical user interface.

A CMS is usually comprised of a front-end (the website available to the public) and a

back-end (used for website administration and accessible through a valid username

and password combination).

Popular CMS solutions include Wordpress, Joomla! and Drupal.

2.8. OpenERP

OpenERP is an open-source ERP (Enterprise Resource Planning).

An ERP is a type of software that combines the functionalities of applications

designed for each major department in a company and allows for close collaboration

and data sharing between the departments.

As a final step in the development of this project, data will have to be inserted

through JavaScript to OpenERP. OpenERP allows data to be inserted into one of its

databases from a client application by use of XML-RPC services.

An XML-RPC service resides at a specific URL address and can be easily accessed if

the URL is known. Access to XML-RPC services in OpenERP is granted through the

URL openerpservername/xmlrpc. Several methods are accessible at this URL in order

to cover a large range of functionality. /8/

XML-RPC clients can be implemented in a large number of programming languages.

Due to simplicity and large-scale support, PHP was chosen to implement the XML-

RPC client in this application. Furthermore, PHP was a natural choice considering

that the other part of the order registration(sending an email to the interested

personnel within the company) will be implemented using this programming

language.

In order to use PHP to call XML-RPC services, an XML-RPC library should be

added to the server and imported into the application. In this application, as per

OpenERP's official documentation's recommendation, the library named “XML-RPC

for PHP” was used. /8, 13/

2.9. Used Software Tools

For writing HTML/CSS/JavaScript, any basic text editor can be used. Due to its
simplicity and familiarity to the tool, Notepad++ was chosen for this purpose.

Testing the user interface can be done easily in any browser. However, it is a known
fact that CSS might work differently depending on the browser. Therefore, in order to
ensure that the application looks identical for all (or an extremely high percentage of)
the users, it must be tested at least in the following browsers:

 Chrome 32.0 and higher

 Mozilla Firefox 19.0 and higher

 Safari 6.0 and higher

 Internet Explorer 10 and higher (Internet Explorer < 10 do not fully support
CORS and are therefore not suitable for this application)

 Opera 20.0 and higher

In order to run PHP files, a PHP-enabled server must be available. For the purpose of
implementing the application, a XAMPP server has been configured locally. A
XAMPP server offers a wide range of features, including an Apache server with PHP
support necessary for the development of this project. Upon completion of the
implementation, the application will be deployed on a publicly available Apache
server with PHP support belonging to Wapice Oy.

3. SYSTEM DESCRIPTION

Before starting the implementation of a software project, the requirements of the

project must be gathered and analysed. This process results in the project

specification, which gives the client and the developers a clear understanding of the

project to be developed, the methods to be used and the results to be expected.

The current chapter describes the system to be developed, as resulted from the

requirements gathering and analysis process.

3.1. Use Cases

Since a user interface is mainly based on the interaction between a machine and a
human, identifying the use cases allows getting a clear picture of the functionality the
interface must provide.

Each use case describes an action that can be performed by a user of the application.
All use cases are gathered in a use case diagram of the application.

The use case diagram, as well as details about each specific use case, can be found
below.

3.1.1. Use Case Diagram

In Figure 1, the use case diagram of the WRM Ordering Tool user interface is
presented.

The actor in the use case is the customer(or application user), that performs all the
actions that trigger an event in the user interface.

3.1.2. Register

In Table 1, the main characteristics of the use case “Register” are described. The

customer performs a registration to gain a valid combination of username and

password for using the ordering tool. Furthermore, the customer provides during the

registration process all the necessary data for the sales process.

Figure 1: Use case diagram for the WRM Ordering Tool.

Table 1: Use case "Register".

Preconditions -

Input All the necessary user data: username, password, name,
phone number, email, shipping address and invoicing
address

Description User registers to be able to use the ordering tool

Exceptions and errors Registration cannot be completed; missing information

Result and outputs Login page is loaded; user can now login with previously
registered username and password

3.1.3. Login

In Table 2, the main characteristics of the use case “Login” are described.

A user can only log in if valid credentials have previously been obtained through the

registration process.

Table 2: Use case "Login".

Preconditions User must be registered

Input Username and password

Description User logs in to use the ordering tool

Exceptions and errors Username and/or password not valid

Result and outputs Access to the ordering tool's functionality

3.1.4. Place an Order

In Table 3, the main characteristics of the use case “Place an order” are described.

Table 3: Use case "Place an order".

Preconditions User must be logged in

Input All the necessary data for order configuration; button lick
for confirming the order

Description User places an order by completing three steps:
configuring the order in detail according to their needs,
reviewing the order and as a final step, confirming that
the order is correct and can be placed

Exceptions and errors Invalid or missing data; problems in communicating with
the order configurator

Result and outputs An order is placed: an email is sent to the concerned
personnel and order data is inserted into OpenERP

3.1.5. Modify user details

In Table 4, the main characteristics of the use case “Modify user details” are

described.

Table 4: Use case "Modify user details".

Preconditions User logged in

Input All the data that needs to be modified (contact
information, shipping and invoicing addresses, password)

Description User can modify his or her own data

Exceptions and errors Information cannot be updated

Result and outputs Information updated and confirmation message; error
message

3.1.6. View Order Status

In Table 5, the main characteristics of the use case “View order status” are described.

Table 5: Use case "View Order Status".

Preconditions User logged in; order previously placed

Input Order code

Description User views the status of his/her order

Exceptions and errors Cannot retrieve data

Result and outputs Information about the order status is displayed

3.1.7.View Order History

In Table 6, the main characteristics of the use case “View order history” are

described.

Table 6: Use case "View Order History".

Preconditions User logged in

Input -

Description User view his/her order history

Exceptions and errors Cannot retrieve data

Result and outputs Information about the order history is displayed

3.2. Software requirements specification

The ordering tool's UI must fulfil the requirements described in Table 7.

The requirements are divided into three groups based on their priority level:

 Must-have requirements, numbered “1”, are the most basic features the

application must implement

 Should-have requirements, numbered “2”, are important features that should

be present for the user experience to be complete

 Nice-to-have requirements, numbered “3”, are extra features and the success

of the project does not depend on their implementation

Table 7: Ordering Tool requirements

No. Description Priority

1 User is able to register to use the ordering tool 2

2 User is able to log in to use the ordering tool 1

3 User is able to place an order by configuring, reviewing and

confirming it

1

4 The ordering tool communicates with the order configurator's
REST API

1

5 An email of the order is sent to the concerned personnel within
the company

1

6 Order data is inserted to OpenERP 3

7 User can modify their personal details 2

8 User can view the status of their order 3

9 User can view their order history 3

3.3. Functional specification

In regard to the functionality of the user interface, the following options are available

to the user:

 Registering option through filling in a detailed form

 Login option by using a username and a password. Login succeeds only if the

user has previously registered and the username/password combination is

correct

 Modifying own user details. A user can modify their own details, including

the password, phone number, shipping and invoicing addresses

 Viewing the status of an existing order. A user can view the status of an order

he/she has previously placed

 Viewing the order history. A user can view his/her own previous order history

 Placing an order. The order placement option is available to a user after a

successful log in and it requires a number of steps to complete, as detailed

below:

◦ User can choose the product to be ordered from a list of available products

◦ User can choose the desired features of the product (in the case of a WRM

product, these are cables and connectors, accessories and, in the future,

templates). The configuration of the product is done through an intuitive

interface, that comprises of checkboxes, textboxes and drop-down lists.

The user receives feedback when the selection is invalid or an error

occurs.

3.3.1. Application Flow

In order to better understand the flow of the application, the application mock-ups in

Figure 2 can be used. The mock-ups provide a basic outline of the user interface.

Figure 2: WRM Ordering Tool mock-ups.

As it can be seen from the image above, several pages are presented to the user:

 A specific WRM website page from where the ordering process starts

 Login page

 Register page

 Product selection page(accessible only to logged in users)

 Product configuration page(loaded after the user chooses a product on the

product selection page)

 Order confirmation page(presented to the user after the customization process

is complete)

The division of functionality into these pages ensures that the user is guided through

the ordering process in a natural manner, each page corresponding to one use case

and therefore one user action.

3.3.2. Sequence Diagrams

Sequence diagrams are used to describe the sequence of events taking place in the

application.

The figures below detail the sequence of the ordering process, from the user login

until the registration of the order after confirmation. It can be seen how each user

interaction affects the behaviour of the application, as well as when and how the

requests to the REST API are made. 4

Figure 3 details the actions involved in the user registration process. It can be seen

that a Summium administrator must approve the registration. This significantly

lowers the risk of spam accounts being created.

Figure

Figure 4 presents the login sequence diagram of the ordering tool. It can be seen that
the username and password are validated through Summium REST API.

Figure 3: Registration process sequence diagram.

Figure 4: Login process sequence diagram.

Figure 5 presents the sequence through which a use makes a product selection, the
first step in placing an order.

F

Figure 6 presents the product configuration sequence diagram.

Figure 5: Product selection process sequence diagram.

Figure 6: Product configuration process sequence diagram.

Figure 7 presents the order registration sequence. The order registration includes the
processing of the order through PHP (email sending and OpenERP data insertion).

F

3.4. Technical Specification

This chapter describes the technical details of the ordering tool development,
presenting the general view of the application's architecture, as well as the details of
the design and planned implementation.

3.4.1. Application architecture

The general architecture of the ordering tool is divided into three packages, as

described below:

 User interface – implemented in AngularJS and following the MVC model

and thus divisible into three parts:

◦ Model: in AngularJS, the model is stored in a context called “$scope”,

from where it is accessible to both the view and the controller. Each

controller automatically creates a “$scope” object for itself and the

Figure 7: Order registration process sequence diagram.

associated view. An object named “$rootScope” is the parent of all

“$scope” objects and is accessible from anywhere in the application.

However, the usage of “$rootScope” is not recommended.

◦ View: represented by HTML files also containing AngularJS directives for

loops, conditional display of data and data binding

◦ Controller: updates its associated “$scope” object, communicates to the

REST API and provides the behaviour of the application

 REST API – permits the use of the Summium configuration. The

implementation of the REST API is outside the scope of this thesis.

 PHP order processing files – provides a way of registering an order through

email sending functionality and ERP data insertion

The controllers handle the communication to both the REST API and the PHP order

processing packages.

The package diagram in Figure 8 shows the packages needed in the ordering tool

application.

F

3.4.2. Detailed design

In AngularJS, a controller is defined as a JavaScript constructor function.

A controller automatically creates a “$scope” object for handling the model. The

controller sets up and modifies the $scope object. The $scope object itself can have

attached properties(any kind of object) and behaviour(methods). If a property or

method is attached to the $scope object, it is accessible in both the view and the

Figure 8: Ordering Tool Package diagram.

controller. Therefore, the methods handling user interactions will be attached to the

$scope object.

Furthermore, the REST API specification requires a client to locally store a copy of

the previously fetched JSON data and merge it with any newly fetched data from the

configurator. For that purpose, each controller dealing with order placement

(choosing a product, configuring a product, order confirmation) will contain a

variable to handle the configurator JSON data.

In addition, a variable to handle user credentials is necessary in all controllers that

manage users or configure the order using the Summium REST API.

Figure 9 details the methods and properties of each controller, as well as the methods

and properties attached to the $scope object associated with the controller.

Figure 9: Controllers detail implementation.

3.5. Deployment Diagram

The application will be deployed as a part of the WRM product's website. The REST

API will be available on a Summium server, in a different domain. The situation is

described by the deployment diagram in Figure 10.

Figure

3.6. Testing Specification

Several aspects of the user interface will be tested thoroughly to ensure the quality of

the implementation. The tests will be performed regularly during the implementation

phase, as well as in the final stage of the development.

The following test cases will be used:

3.6.1. Invalid login credentials

In order to ensure that only authorized users have access to placing an order, the

application will be tested with the following combinations:

Figure 10: Deployment diagram.

 Invalid username and/or password

 Missing username and/or password

3.6.2. Invalid data format in registration

Certain input fields in the registration form require a specific data format. Tests will

be run so that the application does not proceed with the user registration in the

following situations:

 Data is missing

 Data added to email field is not a valid email

 Data added to phone filed is not a valid phone number format

 Data added to the two password fields is not the same

3.6.3. Non-numerical values in quantity and cable length fields

On the product configuration page, the quantity and cable length fields should only

accept numerical values.

3.6.4. Changes to Summium model

As long as the data retrieved from the Summium API follows the agreed format, the

application should work within the normal parameters after the following changes are

made to the Summium model, considering the JSON data structure remains as

previously defined in the REST API specification:

 Adding a parameter

 Removing a non-essential parameter

 Changes to the values in the JSON object, as long as the keys remain as

previously defined

3.6.5. XML-RPC connection broken

Upon breaking the XML-RPC connection to OpenERP, the data cannot not be

inserted to the database. The application should be able to handle this situation.

3.6.6. Connection to REST API broken

Upon breaking the connection to the REST API, the user management and order

configuration cannot be handled. The application should be able to register the

situation and inform the user accordingly.

4. IMPLEMENTATION AND DEPLOYMENT

The implementation of the user interface uses the AngularJS JavaScript framework,

while the order registration is implemented in PHP.

4.1. AngularJS Application Structure

Due to using AngularJS for implementing the user interface, a specific directory

structure was created, consistent with the requirements of the framework and

providing the base structure of the application.

AngularJS requires only one HTML file to be downloaded to the user's browser. This

file is commonly named “index.html”. Naming the file “index.html” also ensures it

will be the first file to be run in the application. The “index.html” file should be

placed in the root directory of the application.

Since the user interface is JavaScript-based, a specific directory was created to hold

the necessary JavaScript files, also located in the root directory of the application.

The directory has been denoted “js”. The “js” directory contains the “app.js” file,

which initializes the application, as well as directories holding various types of

JavaScript files, such as controllers or libraries. The contents of the “js” directory in

this application can be seen in Figure 11.

Figure 11: Structure of the "js" directory.

The “app.js” file declares the paths used to navigate through the user interface, as

well as link each path to a view and a controller.

Located in the root directory as well, a directory named “partials” holds HTML files

corresponding to each view of the application, while a directory named “styles” holds

all data referring to the look and design of the user interface. Figure 12 presents the

content of the root directory of the AngularJS ordering tool application.

In the case of this application, a directory named “php” has also been added to the
root folder of the application, to hold the files necessary for order registration.

4.2. GUI Design and Implementation

In the early stages of the implementation, the styling applied to the user interface is

minimal and very little CSS declarations have been used. However, as the

implementation continues, the look of the webpages will be improved and refined to

match the design of the WRM products.

The user interface follows the elements described in the mock-ups presented in the

system analysis.

Figure 12: Structure of the root directory of the ordering tool.

4.2.1. AngularJS implementation – used concepts and syntax

According to AngularJS requirements, the “index.html” file serves to link the external

CSS and JavaScript files, as well as provide a container for the views presented to the

user. Each view represents one page presented to the user and is described in the

respective HTML file located in the “partials” directory. The views are loaded inside

an HTML tag containing the directive “ng-view” as an attribute.

The “index.html” file contains the “ng-app” directive as well, to specify that the

ordering tool user interface is an AngularJS application. For this purpose, the “ng-

app” directive is attached to the “html” tag, as in Figure 13.

Each view receives data from the model through the use of a controller. The

controller is also responsible for sending and receiving data from the REST API, and

updating the model accordingly.

Views are mapped to an URL in the “app.js” file, using AngularJS's routing

functionality. Figure 14 shows an example of a mapping: when the URL is

“applicationURL/login”, the view in use is “login.html” and the controller associated

with it is “LoginCtrl”.

Figure 13: Using the "ng-app" directive.

Figure 14: Example of AngularJS routing.

In the views, AngularJS directives have been used for creating loops and conditional

display of data, extending the HTML functionality.

The example in Figure 15 shows the implementation of the product selection view.

F

An AngularJS directive is inserted as an attribute into an HTML element. Each

directive provides a certain functionality. In the example above, the directive “ng-

repeat” has the functionality of a “foreach” loop: in each iteration, the current element

in the “allProducts” array is denoted by “productValue” and a link HTML element is

created containing the image and name associated with the element. In addition, the

error text will appear only if the “communicationBroken” variable is set to true in the

controller.

In AngularJS, an element of the view can also be mapped directly to an element of the

model, which simplifies the passing of user events from the view to the controller.

For this purpose, the “ng-model” directive is used.

In addition, the ordering tool user interface implementation makes extensive use of

the following directives:

 ng-click (assigns an on-click listener)

 ng-change (assigns an on-change listener)

Figure 15: Example of a view implementation in AngularJS.

 ng-show (shows or hides an element of the view based on a condition)

 ng-if (includes an element of the view conditionally)

 ng-checked (selects a checkbox conditionally)

 ng-disabled (disables a view element conditionally)

In AngularJS, controllers belong to a module. A module gathers related functionality

in an application. Larger application declare multiple modules, but a small-scale

application such as the ordering tool UI may only use one. Figure 16 illustrates the

declaration of a module:

In addition, figure 17 serves as an example of the syntax to be used in implementing a

controller.

F

A controller implementation provides the following:

 The name by which the controller will be identified in the application

 Dependencies (for example, AngularJS services, such as $http)

 Properties and methods associated to the $scope object and accessible from

the view

Figure 16: Declaration of an AngularJS module.

Figure 17: Syntax of an AngularJS controller.

 Methods and properties not linked to the $scope object

4.2.2. Login View

The login view is the first view presented to the user, upon starting the ordering

process. It contains fields for username and password, a button for submitting the

credentials, as well as a link to the registration page.

In case of the user submitting incorrect credentials, the login view displays an error

message.

In case of the user submitting correct credentials, the product selection page will be

loaded.

A screenshot of the login view can be seen in Figure 18.

Figure

A screenshot of the login view after wrong credentials have been used can be seen in

Figure 19.

Figure 18: Screenshot of the login view.

Figure

4.2.3 Registration View

The registration view is loaded when a user follows the “Register” hyperlink in the

login view. The registration view consists of a form for user data and a button to

submit the registration.

The form fields require valuable information for the ordering process:

 Username (a valid email address)

 Password (having two fields for the password minimizes the risk of user

misspellings and errors)

 Personal data of the user (name and personal contact information)

 Shipping address (company name and address)

 Invoicing address (can be the same as the shipping address)

Upon clicking the “Register” button, the user information will be send to the REST

API, in order for a new user to be created in Summium, if the information is

confirmed as valid by an admin.

Figure 19: Login view with wrong credentials error.

A screenshot of the registration view can be seen in Figure 20.

Figure 20: Registration view screenshot.

4.2.4. Product Selection View

The product selection view allows the customer to choose between the four available

WRM products, each of them being represented by an image and a name. Clicking

each product will load the product configuration view corresponding to the product.

A screenshot of the product selection view can be seen in Figure 21.

Figure

The product selection view is built based on the data retrieved from the Summium

REST API through a POST request. The POST request creates a new configurator

instance to be used for customizing the order and returns detailed data for creating the

user interface. Upon selection of a product, a PUT request will be sent to the REST

API, signalling the selection and retrieving the data concerning the necessary changes

in the interface.

4.2.5. Product Configuration View

When loading the product configuration view, the user interface will display all the

necessary fields for customizing the previously selected product, as defined by the

JSON data retrieved from the REST API.

Figure 21: Product selection view screenshot.

The product configuration view will always contain a field for the quantity of the

ordered product, as well as choices for the accessories to be shipped with the product,

if any fit the current selection. Furthermore, the product configuration view will offer

the option of choosing the type of WRM365 products and the cables (cable length

and end connectors) for the WRM247 series.

The number of cables and the possible end connectors are defined in the JSON data

received from the REST API. Mandatory and mutually exclusive end connectors may

exist. Default values for the customization fields can also be found from the JSON

data.

Any user event in the product configuration view triggers a PUT request to the REST

API, which responds with the changes to be made to the model in JSON format. The

response is merged with the previously stored JSON data and the user interface is

updated automatically.

The product configuration view is designed to ease the customization process,

through the use of text fields, checkboxes and radio boxes. For a cleaner and more

attractive user interface, an accordion is used for displaying the customizable cables

for each connector. This is particularly useful in case of products with a large number

of connectors, reducing the size of the page displayed in the browser.

A set of default values is received from the initial state of the configuration and

displayed upon page load. Mandatory end connector values (for example, the power

input) are displayed as disabled checked checkboxes.

The images below represent the product configuration view for each of the available

products. The name of the product can be seen at top of the page.

In Figure 22, the configuration of a WRM247 with 3 connectors is presented.

In Figure 23, the configuration of a WRM247 with 5 connectors is presented.

Figure 22: Configuring a WRM247 with 3 connectors product.

Figure 23: Configuring a WRM247 with 5 connectors product

 Figure 24 presents the configuration page for a WRM247+ (8 connectors available).

Figure 24: Configuring a WRM247+ product.

Figure 25 presents the product configuration view for a WRM365 product. The type

option appears instead of the customizable cables for each connector.

Once the customization is complete, the customer can choose to proceed by using the

“Submit” button. This action will load the order confirmation view.

4.2.6. Order Confirmation View

The order confirmation view allows the user to review the customized order and

confirm it with the press of a button present on the page. The complete details of the

order will be displayed on the page.

Upon confirmation, the customer will be redirected to another view displaying a

feedback message, while the application will process the order by sending an email to

interested personnel and inserting the data into OpenERP.

Figure 25: Configuring a WRM365 product.

An example of the contents of the order confirmation view is displayed in Figure 26.

Figure

4.2.7. Order Placement View

The order placement view is loaded upon confirmation of an order by a customer and

informs that the order has been placed and is being processed. The order placement

view contains a way for the customer to return to the start of the ordering process.

An example of the order placement view can be seen in Figure 27. The example

presents a situation where the order registration (email and OpenERP data insertion)

has been successful.

Figure 26: Order confirmation view example.

Figure 27: Order placement view example.

4.3. Communicating with the REST Services

The user interface communicates with the REST API by sending POST and PUT

HTTP requests.

In the application, the communication is handled by the controllers, though

AngularJS's $http service. The $http service requires the method of the HTTP request,

as well as the URL of the server being used.

When connecting to the REST API, basic HTTP authentication is used. Each request

contains the username and password in its header.

Data is passed and received in JSON format. Received data is merged with a local

copy of previously received data to define the contents of the application model.

4.4. Registering the Order

After the order has been confirmed, it must be registered within the company and to

OpenERP. Order registration is a two-step process: an email is sent to the concerned

personnel and the order data is inserted to OpenERP for further use.

The order registering process is triggered by a call from within the user interface to

the PHP file that handles the process. Similarly to the other parts of the application,

the call uses AngularJS's $http service and sends a POST request, passing and

receiving JSON data. The response received specifies whether the order registration

was completed correctly and based on the result, the customer will receive feedback

on the order processing page.

4.4.1. Registering the order through an email

As the first step in the order registration sequence, data representing the fully-

configured order is gathered from the application. The data is inserted in the body of

an email in human-readable format.

The email is sent using the mail function of PHP. The sender's email address and the

email title are chosen to reflect the origin: the WRM ordering tool. The addressees are

Wapice personnel involved in the sales of WRM products.

4.4.2. Inserting Data into OpenERP

The final step of the order registration is inserting the data into OpenERP, in a table

specifically created for storing WRM order data.

For this step, OpenERP must be installed on a server at a known location. A valid

username and password combination to the OpenERP installation must be available

for the application to use.

Inserting the data into OpenERP is done using the “XML-RPC for PHP” library.

Through the methods available in that library, a “create” request is sent to OpenERP.

The database and table name, username and password, as well as the data to be

inserted are passed as parameters. The connection is made to the URL

“http://openERPservername/xmlrpc/object”.

As a result, data is stored into the designated OpenERP table and will be available

through the graphical user interface.

In Figure 28, the designated table for WRM orders can be seen in the OpenERP

graphical user interface, containing a small number of orders created during

application implementation and testing.

4.5. Application Deployment

The ordering tool will be deployed as a part of the WRM product website. The WRM

website is built on top of the Joomla! CMS. A menu item will guide a potential

customer to the ordering tool's page, where they can start the ordering process by

logging in or registering.

The REST API is available from a Summium server.

Figure 28: OpenERP GUI screenshot.

5. TESTS, RESULTS AND ANALYSIS

Testing is a major part of the software development process, to ensure the correct

look and functionality of an application.

Furthermore, the developed process has provided, in addition to a product necessary

to the company, useful information about a number of technologies to be used in this

type of application. The following chapter details the findings.

5.1. Application Testing

The application has been extensively tested during all the stages of the development,

according to the testing specification. Tests have been performed for each functional

module of ordering tool, as well as the application as a whole.

Below the test results for each test case defined in the specification can be found.

5.1.1. Invalid Login Credentials

It has been found that in case of inputting invalid login credentials (missing data or

wrong username and password combination), the application will not proceed to the

product selection view. Instead, the application will display an error message,

informing the user the used credentials are not valid.

5.1.2. Invalid Data Format in Registration

Form validation is implemented using AngularJS. Data will not be sent to the REST

API for user creation unless the data format is correct.

If data is missing in a required field, an error message will appear beside it, as

illustrated by Figure 29.

Figure 29: Required field empty error.

If data inserted into a form field is not in the correct format, a message will appear

beside it, as illustrated by Figure 30.

5.1.3. Non-numerical values in quantity and cable length fields

If a non-numerical value is inserted into the quantity or cable length field on the

product configuration page, an error message will appear beside it, as illustrated by

Figure 31.

Figure 32 illustrates the situation where a valid number is added to the form field.

5.1.4. Changes to Summium model

The application functions normally if the Summium model is modified, as long as the

essential data (for example, product selection options) continues to exist and the

JSON data retrieved from the REST API keeps its predefined structure.

Figure 31: Non-numerical value error.

Figure 32: Valid number.

Figure 30: Incorrect format error.

5.1.5. XML-RPC connection broken

In the early stages of the development, if the XML-RPC connection is broken, or in

the case of any other error while registering the order through PHP, the application

will continue displaying the order confirmation page, while a feedback message is

displayed for the user. The feedback informs that the order could not be placed and

advises the user to try again in a short time. Figure 33 illustrates the situation.

A useful improvement to this situation would be to develop a way through which the

order data will be saved for a specific amount of time during which the application

will automatically attempt OpenERP data insertion. In this case, a temporary break in

connection would be solve automatically.

5.1.6. Connection to REST API broken

If the connection to the REST API is broken, the user will be informed of the

situation and advised to try again later, as illustrated by Figure 34.

Figure 33: Error registering the order.

Figure 34: Connection to REST API broken error.

5.2. Implementation Results and Analysis

The implementation resulted in the creation of a Summium-based WRM ordering

tool, as well as a configurator implementation using the newly developed Summium

REST API.

The initial version of the user interface was developed using the jQuery library and

was later changed to use the AngularJS framework.

While the jQuery library provided all the tools necessary for the correct display of

data and communication to the REST API, AngularJS was found to be a cleaner, more

appropriate implementation method. The change resulted in shorter, more compact

and more maintainable code.

With the development of the ordering tool, the ordering process is simplified for the

customer and reduced to simply making a number of selections, while the options are

presented in a straightforward manner. Previously, a customer would need to study

the specification of each product and collect the desired options to email to the WRM

sales personnel within Wapice.

In addition, WRM sales personnel is now provided with an improved way of

managing the orders, through the use of the OpenERP software.

5.2.1. Implementation limitations

Due to the fact that the WRM templates have yet to be fully defined, the

implementation of the ordering tool was limited. The possibility to choose between

predefined WRM templates will be added as a product configuration feature in the

future.

Furthermore, due to limitations in the current version of the REST API, the user

management has yet to be implemented fully implemented.

5.2.2. Future work and usage

In addition to an ordering tool for WRM products, the application provides a base for

developing Summium-based ordering tools using the REST API.

For that purpose, it is important that the correct functionality of the ordering tool

depends as little as possible on the Summium model. In other words, the application

should work if the product family is changed, with minimum to no changes to the

implementation.

5. CONCLUSIONS

The creation of the WRM ordering tool provided benefits to the development of both

Wapice's Summium and WRM products.

The WRM product gained from having available an intuitive and easy to use ordering

tool to be used by its customers. The ordering tool allows for the quick placement of

complete and correct orders for the WRM products. As the product grows, more

configurable features can easily be added to the ordered products. Furthermore, the

order registration process ensures that the concerned personnel is aware that an order

has been placed and that the order data is stored safely and can be easily managed

through OpenERP.

The main benefit for the Summium product was the implementation of a configurator

using the newly developed REST API. The ordering tool serves as an example of

such an application and verifies that the REST API functions correctly.

The WRM ordering tool has the potential to grow into a more complex application, as

the WRM product is being developed and new features will be available for ordering.

Features such as managing user content, tracking order status and displaying product

availability can be added to improve the user's experience.

6. REFERENCES

/1/ AngularJS by Google. Last accessed 18.05.2014

https://angularjs.org/

/2/ Enable CORS. Last accessed 02.04.2014

http://enable-cors.org/

/3/ Introducing JSON. Accessed 21.02.2014

http://www.json.org/

/4/ Introduction to Object-Oriented JavaScript. Accessed 26.02.2014

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-

Oriented_JavaScript

/5/ JavaScript: Advantages and disadvantages. Accessed 26.02.2014

http://www.jscripters.com/javascript-advantages-and-disadvantages/

/6/ JavaScript Overview. Accessed 26.02.2014

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Guide/JavaScript_Overview

/7/ jQuery website. Last accessed 26.04.2014

http://jquery.com/

/8/ OpenERP Documentation v7.0. Last accessed 17.05.2014

https://doc.openerp.com/ (12)

/9/ Software development Resources. Accessed 28.02.2014

http://docforge.com/ (11)

http://docforge.com/
https://doc.openerp.com/
http://jquery.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/JavaScript_Overview
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/JavaScript_Overview
http://www.jscripters.com/javascript-advantages-and-disadvantages/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
http://www.json.org/
http://enable-cors.org/
https://angularjs.org/

/10/ The JavaScript Object Notation (JSON) data interchange format. Accessed
21.02.2014

http://tools.ietf.org/html/rfc7159

/11/ Using CORS. Last accessed 03.04.2014

http://www.html5rocks.com/en/tutorials/cors/

/12/ World Wide Web Consortium website. Last accessed 24.02.2014

http://www.w3.org/

/13/ XML-RPC for PHP. Last accessed 19.05.2014

http://gggeek.github.io/phpxmlrpc/

http://gggeek.github.io/phpxmlrpc/
http://www.w3.org/wiki/CSS_basics
http://www.html5rocks.com/en/tutorials/cors/
http://tools.ietf.org/html/rfc7159

	List of figures and tables
	List of abbreviations
	1. Introduction
	1.1. Client Organization (Wapice Oy)
	1.1.1 WRM(Wapice Remote Management)
	1.1.2. Summium

	1.2. Current Situation
	1.3. Project Objectives and Outcome

	2. Used technologies
	2.1. HTML
	2.2. CSS
	2.3. JavaScript
	2.3.1. jQuery
	2.3.2. AngularJS and the MVC development model

	2.4. JSON (JavaScript Object Notation) and JSON parsers
	2.4.1. JSON data
	2.4.2. Choosing an appropriate JSON parser

	2.5. REST
	2.6. CORS
	2.7. CMS
	2.8. OpenERP
	2.9. Used Software Tools

	3. system description
	3.1. Use Cases
	3.1.1. Use Case Diagram
	3.1.2. Register
	3.1.3. Login
	3.1.4. Place an Order
	3.1.5. Modify user details
	3.1.6. View Order Status
	3.1.7.View Order History

	3.2. Software requirements specification
	3.3. Functional specification
	3.3.1. Application Flow
	3.3.2. Sequence Diagrams

	3.4. Technical Specification
	3.4.1. Application architecture
	3.4.2. Detailed design

	3.5. Deployment Diagram
	3.6. Testing Specification
	3.6.1. Invalid login credentials
	3.6.2. Invalid data format in registration
	3.6.3. Non-numerical values in quantity and cable length fields
	3.6.4. Changes to Summium model
	3.6.5. XML-RPC connection broken
	3.6.6. Connection to REST API broken

	4. implementation and deployment
	4.1. AngularJS Application Structure
	4.2. GUI Design and Implementation
	4.2.1. AngularJS implementation – used concepts and syntax
	4.2.2. Login View
	4.2.3 Registration View
	4.2.4. Product Selection View
	4.2.5. Product Configuration View
	4.2.6. Order Confirmation View
	4.2.7. Order Placement View

	4.3. Communicating with the REST Services
	4.4. Registering the Order
	4.4.1. Registering the order through an email
	4.4.2. Inserting Data into OpenERP

	4.5. Application Deployment

	5. tests, results and analysis
	5.1. Application Testing
	5.1.1. Invalid Login Credentials
	5.1.2. Invalid Data Format in Registration
	5.1.3. Non-numerical values in quantity and cable length fields
	5.1.4. Changes to Summium model
	5.1.5. XML-RPC connection broken
	5.1.6. Connection to REST API broken

	5.2. Implementation Results and Analysis
	5.2.1. Implementation limitations
	5.2.2. Future work and usage

	5. Conclusions
	6. References

