

Bachelor's thesis

Information Technology

Internet Technology

2014

Ezio Melotti

THE NETWORKING
SUB-SYSTEM OF THE
VIRTUAL EUROPEAN MARS
ANALOG STATION

BACHELOR´S THESIS | ABSTRACT
TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology | Internet Technology

2014-10-24 | 63 pages

Patric Granholm

Ezio Melotti

THE NETWORKING SUB-SYSTEM OF THE
VIRTUAL EUROPEAN MARS ANALOG STATION

In the latest years, Mars colonization has been a topic of interest and active research for several
organizations such as the Mars Society. The Italian branch of the Mars Society started working
on a virtual reality simulation of Mars (called V-ERAS) that can be used to experience life on
Mars, train astronauts, and for several other purposes.

The goal of this thesis is to design a networking sub-system that can be used to connect
different devices and stations used for the simulation. The design needs to consider several
different aspects, including the architecture of the system, the software and frameworks used,
and how these devices and stations communicate with each other.

In order to determine the best solution, a number of different approaches have been identified,
and the most promising ones have been tested with simplified scenarios to verify that they can
indeed be implemented within the system.

The tests revealed that the Tango framework was the most effective solution, since it had all the
required features and demonstrated to be stable and reliable. The MORSE framework also
proved to be a good candidate, but it still had issues that need to be resolved before it can be
considered again.

The final design described in the thesis will be adopted by the V-ERAS project and tested with a
complete setup. If necessary, the design will be adapted to correct any problems that might
arise. If the project proves to be successful, other organizations will also be able to benefit from
it.

KEYWORDS:

networking, Mars, virtual reality, simulation, Tango, Blender, MORSE, sockets, ERAS, V-ERAS

CONTENTS

LIST OF TERMS AND ABBREVIATIONS 6

1 INTRODUCTION 6

1.1 Background information 6

1.2 Purpose of the thesis 7

1.3 Research method 8

1.4 Structure of the thesis 9

2 THE V-ERAS PROJECT 10

2.1 Objectives 10

2.2 Architecture 12

3 THE NETWORKING SUB-SYSTEM 17

3.1 Architecture 18

3.2 Implementations 23

3.3 Ensuring coherence 33

2.1.1 Design validation and improvement 10

2.1.2 Crew training 11

2.1.3 Test key-enabling technologies 12

2.1.4 Maximizing scientific productivity 12

2.1.5 Transfer of results to the scientific community 12

2.1.6 Ensure effective outreach 12

2.2.1 3D simulation sub-system 14

2.2.2 VR headset sub-system 15

2.2.3 Body-tracking sub-system 15

2.2.4 Health monitoring sub-system 15

2.2.5 Networking sub-system 16

3.1.1 Server-client 18

3.1.2 Peer-to-peer 21

3.2.1 Sockets 23

3.2.2 Tango 26

3.2.3 Blender plugins 31

3.2.4 MORSE multi-node simulation 31

3.3.1 Pre-emptive approach 33

3.3.2 Corrective approach 33

4 IMPLEMENTATIONS TESTING 34

4.1 Reasons for using automated tests 34

4.2 Tests organization 35

5 CONCLUSION 49

5.1 Final system design 50

5.2 Open issues 51

5.3 Further additions 53

5.4 Future plans 54

6 REFERENCES 56

FIGURES

Figure 1. A prototype of the ERAS habitat. 11
Figure 2. A representation of four V-ERAS stations. 13
Figure 3. The habitat and an astronaut in the simulation. 14
Figure 4. A server-client architecture using a physical server 19
Figure 5. A server-client architecture with one of the machines acting as a server 20
Figure 6. A peer-to-peer architecture 22
Figure 7. Implementation diagram of a server-client architecture with the Blender
instance the PC of the V-ERAS station 2 acting as a server. The Blender instance of
station 2 reads data from the Tango bus and sends instructions to the other instances
via sockets. 24
Figure 8. Implementation diagram of a peer-to-peer architecture. All the Blender
instances read data from the Tango bus and communicate with each other using
sockets. 25
Figure 9. Implementation diagram of a peer-to-peer architecture where the Tango bus
is the only communication channel. 26

4.2.1 Patch scripts 35

4.2.2 Blender files 36

4.2.3 MORSE files 36

4.2.4 Utils scripts 36

4.2.5 Test files 37

5.2.1 Oculus Rift communication 52

5.2.2 Ensuring coherence 52

5.2.3 Polling versus events 52

5.2.4 MORSE adoption 53

5.3.1 Voice recognition server 53

5.3.2 Blender synchronization server 54

5.3.3 Mission control display 54

Figure 10. An event interaction diagram of the communication between and hardware
device and a PC that uses polling to retrieve data from the Tango bus. 28
Figure 11. An event interaction diagram of the communication between and hardware
device and a PC that uses events to retrieve data from the Tango bus. 30
Figure 12. Implementation diagram of a server-client architecture with a MORSE
synchronization server running on the PC of the V-ERAS station 2 and all the MORSE
instances connected to it. 32
Figure 13. The test_tango.py process starts the Tango server and uses PyTango to
communicate with it. 38
Figure 14. The test_blender.py process starts the utest process that creates a JSON
file with the positions of the objects. test_blender.py then reads the content of the file
and checks the positions. 40
Figure 15. The test_blender.py process starts three utest processes that create three
JSON files with the positions of the objects. test_blender.py then reads the content of
the files and checks the positions. 41
Figure 16. The test_blender.py process starts the utest process and the Tango server,
and then instructs Tango to move the objects in the utest scene. The final positions of
the objects are then written in a JSON file that gets read and checked by
test_blender.py. 42
Figure 17. The test_blender.py process starts three utest processes and the Tango
server, and then instructs Tango to move the objects in the utest scenes. The final
positions of the objects are then written in three JSON files that gets read and checked
by test_blender.py. 43
Figure 18. The test_morse.py process starts the MORSE process and uses pymorse to
communicate with it. 44
Figure 19. The test_morse.py process starts the morse_notifier.py and the MORSE
processes and uses the morse_notifier to communicate with MORSE. 45
Figure 20. The test_morse.py process starts the morse_notifier.py and the MORSE
processes and the Tango server and uses Tango to communicate with MORSE via the
morse_notifier. 46
Figure 21. The test_morse.py process starts three morse_notifier.py and three MORSE
processes and the Tango server and uses Tango to communicate with all the MORSE
instances via their respective morse_notifiers. 47
Figure 22. The final design of the networking sub-system, using the Tango bus as the
only communication channel. 50

LIST OF TERMS AND ABBREVIATIONS

Avatar A virtual 3D representation of a human, used within the
V-ERAS simulation to represent a crew member.

Blender Blender is an open-source 3D animation suite developed by
the Blender Foundation (Blender Foundation, 2014). In
addition to the 3D modeling, Blender also includes a game
engine and a physics engine that can be used to animate
realistically the avatar. Blender also supports Python
scripting, allowing the interaction with other Python libraries
and frameworks, such as PyTango.

Blender standalone runtime An executable file created by exporting a
Blender scene. Unlike the embedded runtime — that runs
the simulation within Blender — the standalone runtime does
not include the Blender interface and does not allow the
editing of the scene, but only presents a (possibly full-screen)
window with the simulation.

callback A callback is a function that is passed to another function
that is then expected to call the callback at a later moment.
In case of event-driven programming, a callback might be
associated with a specific event, and whenever the event is
triggered the callback will be executed.

C3 The Command, Control, and Communication system being
developed by the Italian Mars Society. See the Background
information section for more information.

CORBA Common Object Request Broker Architecture, a standard
defined by the Object Management Group (OMG). It is
designed to facilitate the communication of systems that are
deployed on diverse platforms.

ERAS The European maRs Analog Station for advanced
technologies integration project, developed by the IMS.

ERAS station The term “ERAS station” refers to the Mars analog station
(i.e. the habitat) that the Italian Mars Society is planning to
build. Not to be confused with V-ERAS station.

EVA An Extra-Vehicular Activity performed by an astronaut
outside a spacecraft or habitat. This includes both
spacewalks and activities on the surface of another celestial
body, such as Mars or the Moon.

FMARS The Flashline Mars Arctic Research Station, a Mars
exploration analog research facility established in 2000 in the
Canadian Arctic by the Mars Society.

HLA HLA (High-Level Architecture) is a specification for software
architectures that defines the management and deployment

of a global simulation made of distributed simulators. Each
simulator (called a federate) is connected to other simulators
through the Run-Time Infrastructure (RTI) — a fundamental
component of HLA that provides a set of software services
that are necessary to support federates to coordinate their
operations and data exchange during a runtime execution.

HUD HUD stands for Head-Up Display, and it is a term used to
indicate any display used to show information to the user
without requiring him to look away from his usual viewpoint.
On a space suit, information might be displayed on the inside
of the visor.

IMS Italian Mars Society, the Italian chapter of the Mars Society.

Jive Jive is a tool used with Tango to browse the database of the
devices and to test them. Every Tango server needs to be
registered on Jive before it can be used.

JSON JavaScript Object Notation, a standardized and
human-readable serialization format.

Kinect The Kinect is a motion sensing device developed by
Microsoft that uses range cameras to provide full-body 3D
motion capture. See the Body-tracking sub-system section
for more information.

The Mars Society The Mars Society is a non-profit organization. Its purpose is
to further the exploration and settlement of Mars.

MARS The Mars Analog Research Station program, developed by
The Mars Society. Its goal is to provide prototype habitats
that can be used by scientists and engineers to simulate
living on Mars.

MDRS The Mars Desert Research Station, a Mars exploration
analog research facility established in 2000 in Utah by the
Mars Society.

Middleware A middleware is a software component that allows or
facilitates the interaction and communication between other
components that would otherwise be incompatible.

Mock In testing, the term “mock” refers to a software component
that replaces and imitates the behavior of a different
component (such as a function, a class, or even a server or
a device). Mocks are particularly useful when they are used
to replace parts of a systems that would be difficult to test
directly: for example, a component that reads data from a
specific hardware device can be replaced by a mock that
reads recorded data.

MORSE MORSE is a generic simulator for academic robotics. It
focuses on realistic 3D simulation of small to large

environments, indoor or outdoor, with one to tenths of
autonomous robots (Anon., 2014a). MORSE is based on
Blender, and can be configured and controlled with Python.

Motivity The Motivity is an omnidirectional treadmill designed and
developed specifically for the V-ERAS project. See the
Body-tracking sub-system section for more information.

multiprocessing A Python module available in the standard library that can be
used to spawn and interact with multiple processes. It also
offers some high-level facilities such as pipes and queues
that can be used to exchange data between the processes.

Oculus Rift The Oculus Rift is a virtual reality headset, being developed
by Oculus VR. It is capable of producing stereoscopic 3D
images and also includes sensors used to track the head
position so that the images can be updated accordingly to
the head movements. At the time of writing, the final version
of the headset had not been released yet, but prototypes are
available.

patch The term “patch” can indicate both a type of file that can be
used to modify part of a source code, or the act of applying a
patch, or, more generically, the act of altering or fixing a
program by changing its source code.

POE Post Occupancy Evaluation is “the process of evaluating
buildings in a systematic and rigorous manner after they
have been built and occupied for some time” (Preiser, et al.,
1988).

pymorse A Python library used to interact with MORSE. pymorse uses
sockets to establish a connection with a running MORSE
simulation and to communicate with it, and can be used to
update and retrieve the position, rotation, or other data about
the objects in the scene.

PyTango A Python library used to interact with Tango. PyTango can
be used to access the Tango bus and communicate with all
the Tango servers that are connected to it. It also provides
all the basic building blocks that are used to develop new
Tango servers.

Raspberry Pi The Raspberry Pi is a small (about the size of a credit card)
single-board computer (Anon., 2014b). It features a 700 MHz
CPU, 256 MB of memory, USB and HDMI ports, and it is
able to run Linux distributions. Different extensions and
peripherals (such as monitors, keyboards, microphones, etc.)
can also be connected to it. The low size, energy
consumption, and cost make it particularly suitable to be
used in a space suit.

Regression test A test whose objective is to ensure that an error that has
been previously fixed is not reintroduced.

SCADA SCADA stands for Supervisory Control And Data Acquisition.
A SCADA system uses coded signals over communication
channels to control remote equipments and acquire data
from them.

Scene In Blender, the term “scene” is used to refer to a specific
environment and the set of 3D objects within it.

Smoke test A smoke test is a very basic form of test that only verifies the
most basic behavior of a component. For example, a smoke
test can be used to verify if a component can be started
without errors, without checking for anything else.

stdout stdout stands for “standard output” and is one of the three
standard streams (together with stdin and stderr) that are
automatically associated with a process. Everything that is
printed by a process is written on stdout. By default, stdout is
connected to the text terminal used to start the process and
all the text written on stdout is printed on the terminal, but the
output can also be redirected or read by another process.

Sub-process A process spawned by another process (usually called the
parent process) is called sub-process (or child process). The
parent process can control, interact, and terminate the child
process.

subprocess A Python module available in the standard library that can be
used to create sub-processes and interact with them.

Tango bus The Tango bus is a software bus used by Tango as a
communication channel between all the Tango servers.
Every information written on the Tango bus can be accessed
and read by all the other servers.

Tango server Tango servers are one of the most important components of
Tango. A Tango server is responsible to exchange data
between a device (e.g., the Oculus Rift or the Kinect) and the
Tango bus. They can also be used to export data originating
from a software — rather than hardware — component on
the Tango bus.

Test suite A collection of test cases used to verify to correct functioning
of a software. A test suite can include different kind of tests,
including unit tests and integration tests.

Unit tests A test used to verify the correct functioning of a single unit of
source code, such as a function or a class. Several unit tests
can be collected in a test case.

Integration tests An integration test is responsible to verify the functioning of a
group of units that have already been tested independently
and how they interact with each other.

V-ERAS The Virtual ERAS project, developed by the IMS. See The
V-ERAS project chapter for more information.

V-ERAS station The term “V-ERAS station” refers to the combination of a
computer, a Motivity omnidirectional treadmill, an Oculus Rift,
a Kinect, a Raspberry Pi, and possibly additional devices.
The station can be used by a single crew member, and three
stations are planned to be used during the simulation. Not to
be confused with ERAS station.

VR VR stands for Virtual Reality, a computer-simulated
environment that can either be real (e.g. a specific location
on Earth or on another planet) or imaginary. The user can
interact with the environment using one or more senses,
depending on the level of immersion provided by the
simulation.

ZeroMQ An open source, multi-platform, multi-language,
high-performance asynchronous messaging library (iMatix
Corporation and Contributors, 2014).

6

1 INTRODUCTION

This chapter introduces the objectives of this work and the necessary

background required to understand its context. It also describes the research

method used to reach the results and the structure of the thesis.

1.1 Background information

The work described in this thesis is part of the ERAS and V-ERAS projects,

which in turn are part of the MARS program.

The Mars Analog Research Station (MARS) program is an international effort

spearheaded by The Mars Society (The Mars Society, 2014a), and its main goal

is to provide habitat prototypes on Earth similar to the ones that might be used

on Mars. These habitats are used to test supply requirements, mission

hardware, and the ability of crew members to work together under Mars-like

settings (The Mars Society, 2014b).

There are currently two habitats:

 the Flashline Mars Arctic Research Station (FMARS), located on Devon

Island in the Canadian Arctic (The Mars Society, 2014c);

 the Mars Desert Research Station (MDRS), located near the southern

Utah town of Hanksville (The Mars Society, 2014d);

The European maRs Analog Station for advanced technologies integration

(ERAS) project (The Italian Mars Society, 2014b) is an extension of

the MARS program and it is being developed by the Italian Mars Society (IMS)

(The Italian Mars Society, 2014a). The goal of the project is to address the “Five

Show-stoppers for Mars” (Cohen, 2011) identified by the scientific community

as:

http://wolfprojects.altervista.org/thesis/thesis.html#term-fmars
http://wolfprojects.altervista.org/thesis/thesis.html#term-mdrs
http://wolfprojects.altervista.org/thesis/thesis.html#term-mars
http://wolfprojects.altervista.org/thesis/thesis.html#term-ims

7

 hypogravity;

 radiation;

 need for regenerative and bioregenerative life support;

 martian dust;

 planetary protection (forward- and back-contamination);

The Virtual ERAS (V-ERAS) project is part of the ERAS project and its goal is to

provide a simulated — rather than real — habitat that can be accessed through

the use of virtual reality.

In addition, both ERAS and V-ERAS will take advantage of the C3 (Command,

Control, and Communication) system that is being developed by the Italian

Mars Society. The C3 system goals are to:

 Monitor and control the environment and subsystems of the planetary

habitat.

 Monitor and maintain crew health and safety.

 Communicate with mission support, robots, and EVA crew members.

 Support data processing related to the mission objectives.

 Host the core part of the crew operations planning and scheduling

support system.

1.2 Purpose of the thesis

The goal of this project is to develop the networking sub-system of the V-ERAS

project. The networking sub-system has three main tasks:

 To enable network communication among the PC and the hardware

devices used within a single V-ERAS station.

 To enable network communication among the V-ERAS stations used

during the simulation.

 To ensure that the simulation is coherent among all the instances.

Several crew members must be able to simultaneously access the simulation

from different V-ERAS stations (located in the same room), see each other, and

http://wolfprojects.altervista.org/thesis/thesis.html#term-c3
http://wolfprojects.altervista.org/thesis/thesis.html#term-v-eras-station

8

interact. It is also important that the environment, the positions of the avatars,

and all the other elements of the simulation are updated in real time, and that

they are always consistent and do not diverge over time.

1.3 Research method

In order to determine the best approach to implement the networking

sub-system, the following steps have been followed:

1. Determining the goals and main issues that might arise.

2. Enumerating all the sensible approaches.

3. Filtering and determining the approaches that are likely to work best.

4. Verifying that it is possible to adopt them and test how well they work.

5. Determining and using the approach that proved to work best.

Most of the available and existing approaches are well known. However, given

the magnitude and complexity of the project, considerable research is still

necessary. The V-ERAS project uses several different frameworks and

software, and some of them already provide networking components that can

be used instead of the more traditional and low-level approaches. These

components, nevertheless, have different features and performances, and their

interactions might cause unforeseen problems.

In addition, for some of these, there is very little documentation available so

testing and experimenting is often the only way to determine the feasibility of a

possible solution. The integration of all these technologies and frameworks is

also something that has not been implemented before, and the project itself is

pushing the limit of current technologies.

http://wolfprojects.altervista.org/thesis/thesis.html#term-avatar

9

1.4 Structure of the thesis

This thesis is organized in five chapters:

1. Introduction: provides a general overview and background information

about the thesis.

2. The V-ERAS project: describes more in detail the V-ERAS project.

3. The networking sub-system: describes the possible designs of the

sub-system, its goals, and the main issues and possible solutions that

can be adopted, including their advantages and disadvantages.

4. Implementations testing: describes in detail how the different

implementations have been tested and how they performed.

5. Conclusion: describes the final design of the networking sub-system,

based on the results collected during the tests.

10

2 THE V-ERAS PROJECT

Virtual ERAS (V-ERAS) is the latest project of the Italian Mars Society.

Launched in early 2014, it is meant to provide an immersive virtual reality (VR)

simulation of an ERAS station.

The project has several different objectives. The two main objectives are to

provide a relatively cheap and effective way to test the habitat design and the

technologies involved, and train a crew of scientists and engineers.

The project also comprises several sub-systems that interact together. While

this work focuses mostly on the networking sub-system, it is also important to

understand where it fits in the project and how it interacts with the other

sub-systems.

This chapter provides more information about V-ERAS.

2.1 Objectives

There are six macro-objectives identified by the IMS for the V-ERAS project:

1. To validate and improve the design of ERAS and other analogue or real

mission habitats.

2. To provide effective planetary exploration crew training.

3. To provide an effective test bed for key-enabling technologies.

4. To provide an environment able to maximize scientific productivity of

researchers.

5. To ensure effective transfer of results to the scientific community.

6. To ensure effective outreach.

2.1.1 Design validation and improvement

One of the most important objectives of V-ERAS is to validate the design of the

ERAS habitat. This includes the number, placement, and dimensions of the

different sections of the habitat and any furniture or hardware (such as tables,

chairs, working desks, monitors, doors, greenhouse, toilets, etc.).

11

Figure 1. A prototype of the ERAS habitat.

During the simulation the crew members will be able to determine whether the

design of the habitat is ideal, or if there are any problems that can be

addressed.

The virtual environment will provide an easy way to edit and experiment with

different design, and could also be used by similar projects to test the design of

their habitats.

2.1.2 Crew training

Another major objective of the project is to train crew members.

All the crew members need to be familiar with the station and with the location

of any hardware that might be needed. In addition, they need to learn and

practise different procedures,such as compression and decompression while

entering or leaving the habitat.

During the simulation, they will be able to practice EVAs (Extra Vehicular

Activities), learn how to use the space suit, and even interact with rovers.

12

2.1.3 Test key-enabling technologies

There are several technologies used and designed specifically for the project.

The simulation will allow to test most of the software that will be used on the

real station, including the C3 (Command, Control, and Communication) system.

In addition, other type of technologies, such as man-machine interaction and

device interfaces, can also be tested.

2.1.4 Maximizing scientific productivity

In order to run the station effectively, a series of procedures and protocols need

to be defined and followed. These include communication between the

engineering support crew and mission crew, before, during, and after the

simulation.

A common and effective research platform involving different potential users

also needs to be defined and tested.

2.1.5 Transfer of results to the scientific community

Another important objective is to collect and share with the scientific community

the results and lessons learned during the simulation. This includes mission

reports, Post Occupancy Evaluations (POE), key design information, and

articles on scientific journals.

2.1.6 Ensure effective outreach

Finally, V-ERAS will be used to increase awareness about the work being done

to colonize Mars, and educational events that include both observation and

participations to the simulation will also be organized.

2.2 Architecture

The simulation requires specific hardware and software. These include both

preexisting and custom-made hardware and software.

13

Each station comprises:

 a PC;

 a Motivity omnidirectional treadmill;

 an Oculus Rift VR headset;

 a Kinect sensor;

 a Raspberry Pi with a mounted E-Health sensors platform;

Figure 2 shows a rendition of four V-ERAS stations:

Figure 2. A representation of four V-ERAS stations.

In addition, all the stations used during the simulation are connected through a

LAN network.

14

The software sub-systems include:

 3D simulation;

 VR headset integration using the Oculus Rift;

 full body and hand gesture tracking using the Kinect and the Motivity;

 crew health monitoring using the Raspberry Pi;

 the networking sub-system;

2.2.1 3D simulation sub-system

The 3D simulation sub-system is at the core of the VR simulation. It is based on

the open-source 3D graphics and animation software Blender.

This sub-system is responsible for creating the 3D environment. This includes

all the models (the habitat, avatars, rovers, objects, etc.), the animations and

interactions between the actors (avatars and rovers), and the physics simulation

(handled by the Blender physics engine).

Figure 3. The habitat and an astronaut in the simulation.

Tests are also being performed using the MORSE simulator but its adoption has

not been confirmed yet. MORSE already provides several of the features

required by V-ERAS, including basic models of avatars and rovers, and a

15

convenient API that can be used to control them. Being based on Blender, it is

also easy to extend MORSE with already existing models.

2.2.2 VR headset sub-system

The 3D simulation sub-system is connected to an Oculus Rift headset that is

used to display an immersive 3D virtual reality environment to the user. The

Oculus Rift also uses sensors to determine the head position and sends it to 3D

simulation sub-system, in order to have the head camera within the simulation

following the head movements of the user in real-time.

2.2.3 Body-tracking sub-system

The body-tracking sub-system uses two different hardware devices —

the Kinect and the Motivity — to track the position and movements of each crew

member. This includes both full-body movements (walking, running, turning,

crouching, etc.) and hand gestures (waving, grabbing, pushing, etc.).

The Kinect is a motion-sensing device that uses range cameras to provide

full-body 3D motion capture. The data collected by the Kinect are processed

and sent to the 3D simulation sub-system that is then responsible to reproduce

the same positions and movements done by the crew member within the

simulation.

The Motivity is an omnidirectional treadmill designed and developed specifically

for the V-ERAS project. The Motivity allows crew members to move freely in

every direction while standing in the same place, thus avoiding the need of

spacious rooms and facilitating the body tracking. The Motivity is a passive

component — it does not communicate with other sub-systems, and its only role

is to physically support the user.

2.2.4 Health monitoring sub-system

The goal of the health monitoring sub-system is to collect and analyze data

relative to the health status of the crew member through a number of different

16

sensors. These include electrocardiogram, body temperature, blood pressure,

galvanic skin response, airflow, oxygen in blood and possibly other sensors.

The sensors are connected to the E-Health sensor platform (Libelium

Comunicaciones Distribuidas S.L., 2014) that is mounted on a Raspberry Pi but

they can also be integrated in a space suit that could be used during the

simulation.

The data are then used to determine the conditions of the user, and can also be

used to predict the trend and warn beforehand about potentially dangerous

situations. This information can also be displayed to the users using a head-up

display (HUD) or a virtual screen within the simulation, and also outside the

simulation on a regular screen.

2.2.5 Networking sub-system

The networking sub-system is based on the Tango framework, it enables the

communication among the devices and among the V-ERAS stations, and

ensures that all the user see a consistent simulation.

Tango is an object-oriented distributed control system based on CORBA and

ZeroMQ the can be used to develop SCADA (Supervisory Control And Data

Acquisition) systems.

In the V-ERAS project, the main role of Tango is to handle the interaction with

the different hardware devices used, but it is also being considered for the

communication among the V-ERAS stations.

The networking sub-system, and in particular the communication among the

stations is the focus of this work, and its functioning is described in detail in the

following chapter.

http://wolfprojects.altervista.org/thesis/thesis.html#term-raspberry-pi

17

3 THE NETWORKING SUB-SYSTEM

The networking sub-system covers two distinct — but related — areas:

1. Communication among the different stations.

2. Communication among the different hardware devices within a single

station.

While the second area is already partly covered by the use of Tango, the first

area is open to different possible solutions. In addition, the architecture and

interaction of both, and the technologies used need to be chosen in a way that

guarantees optimal interoperability.

Another main goal of the networking sub-system is to ensure that the simulation

is coherent among all the instances. Since many factors are involved during

networking communication, it is difficult to guarantee that all the stations receive

the same network packets at the same time — some packets might get lost or

they might be received at different times or in a different order. Even if most of

these problems are minor, they might add up while running the simulation for

extended periods of time, causing inconsistencies that might even compromise

the whole simulation.

Finally, the following factors also need to be taken into account to determine the

best solution:

 compatibility and interoperability with the other technologies used;

 features provided;

 latency;

 stability.

This chapter starts by analyzing the possible architectures and implementations

and further discusses which solutions can be employed to maintain coherence

within the simulations.

18

3.1 Architecture

Different architectures can be used to enable communication among several

machines, but the two most common ones are:

1. server-client;

2. peer-to-peer;

3.1.1 Server-client

The advantages of a server-client architecture are:

 Ease of maintaining coherence (the servers tell all the clients what to do).

 Ease of solving conflicts (the server takes the decisions in case of

conflict).

However, there are disadvantages as well:

 One of the machines has to act as a server and adding an additional

computer will result in additional costs and network overhead. Re-using

an existing machine will avoid this, but it will cause overhead for that

machine.

 Additional network overhead and possibly lag.

 Different software required for the server and the clients.

19

The following figures show two possible ways that can be used to implement a

server-client architecture.

1. A classical server-client architecture using an additional machine as a

server.

Figure 4. A server-client architecture using a physical server

20

2. An architecture that re-uses one of the machines as a server.

Figure 5. A server-client architecture with one of the machines acting as
a server

In both cases Tango only interacts with the server, and the server redirects the

messages to the clients. Figure 5 also helps understand how the additional

network overhead is caused. With a physical server, both communications

between Tango and the clients and from client to client have to go through at

least two nodes (one of which is the server). When one of the station is re-used

as a server (this only happens for the client stations, as mentioned above), it

creates additional overhead on the machine.

http://wolfprojects.altervista.org/thesis/_images/architecture-client-server-3pcs.png

21

3.1.2 Peer-to-peer

The advantages of a peer-to-peer network are:

 less network overhead, less lag;

 same software and configuration running on all the machines;

The disadvantages are:

 more difficulties to solve conflicts (the peers have to reach the same

decision independently or have to communicate before proceeding);

Depending on how the communication happen, maintaining coherence might be

more or less difficult. On one hand, divergence among the simulation might

seem more likely without a central server; on the other hand, a simple

architecture may reduce lag and result in higher coherence.

Figure 6 shows how three different stations can communicate among them

directly. In addition, the Tango bus connected to all the three stations is

depicted at the center of the figure.

22

Figure 6. A peer-to-peer architecture

It should be noted that while this might resemble a server-client architecture, the

Tango bus is not an actual server and the data that are circulating on the Tango

bus are available to all the peers at the same time. This also means that Tango

can also be used to handle peer-to-peer connections among the stations, thus

avoiding the need of additional direct connections.

It is clear from Figure 6 that any station can communicate directly with any other

station and Tango.

23

3.2 Implementations

The possible implementations being considered are:

1. sockets;

2. Tango;

a. using polling;

b. using events;

3. Blender plugins;

4. MORSE multi-node simulation;

3.2.1 Sockets

Using sockets is the most basic approach and it is widely used in a number of

software. This is, however, a low-level solution, and requires the

reimplementation of several components, such as a protocol used by the

machines to understand each other.

Sockets can be used to exchange data between the machines directly from the

Blender instances. However, Blender still needs to access the data on the

Tango bus.

If a server-client architecture is used, the server could be the only machine

reading data from Tango. The server will then process the data and send

instructions to the other clients.

Figure 7 shows three V-ERAS stations. Every station includes a PC and several

hardware devices (Oculus Rift, Kinect, and Raspberry Pi) that share their data

on the Tango bus. Here the Blender instance of the V-ERAS station 2 is acting

as a server and using sockets (indicated with dashed lines) to send data to the

other two Blender instances. Also note how this is the only instance that reads

data from the Tango bus.

24

Figure 7. Implementation diagram of a server-client architecture with the
Blender instance the PC of the V-ERAS station 2 acting as a server. The
Blender instance of station 2 reads data from the Tango bus and sends
instructions to the other instances via sockets.

This approach can also be implemented with a separate server machine that

reads data from the Tango bus and then uses sockets to redirect the data to all

the Blender instances.

If, instead, a peer-to-peer architecture is used, a hybrid approach can be

considered. In this hybrid approach, all the peers read data from the Tango bus

and sockets are used to ensure the consistency of the simulation by having the

peer exchanging information about the objects in the simulation and verifying

their correctness. This approach is shown in following Figure 8:

25

Figure 8. Implementation diagram of a peer-to-peer architecture. All the Blender
instances read data from the Tango bus and communicate with each other
using sockets.

Here all the Blender instances read data directly from the Tango bus, and use

sockets (indicated with dashed lines) to check for consistency.

http://wolfprojects.altervista.org/thesis/_images/implementation-socket-p2p.png

26

3.2.2 Tango

Tango provides higher-level facilities, and is a better choice for several reasons:

 It is already deeply integrated in V-ERAS.

 It already provides many facilities.

 It does not require writing/using a separate system.

In Figure 9 it is possible to see how Tango is the only communication channel

between the stations. Here all the hardware devices share their data on the

Tango bus, and the Blender instances access them directly, thus creating a

peer-to-peer network.

Figure 9. Implementation diagram of a peer-to-peer architecture where the
Tango bus is the only communication channel.

Tango provides two communication methods: polling and events.

http://wolfprojects.altervista.org/thesis/_images/implementation-tango-p2p.png

27

3.2.2.1 Polling

When polling is used, the server continuously reads the data from the device at

a fixed interval (e.g., every 100 ms), and updates the device attributes on the

Tango bus accordingly. The clients also access the data from the Tango bus in

a similar fashion.

This means that if data are written on the Tango bus faster than the clients are

requesting them or if a client is busy and delays the reading, some data might

go missing as they are overwritten by most recent data. If instead the client is

requesting data faster than the server is writing them, the same value might be

read more than once by the clients. Due to hardware limitations, the polling

interval is also inaccurate, so for an interval of 100 ms there is no guarantee

that the requests will be executed exactly every 100 ms — a difference of a few

milliseconds might occur.

This leads to two main issues:

1. If the data are relative (e.g., they are offsets that should be based on the

previous value), missing values will cause errors and the simulation will

start diverging.

2. If the data are absolute (e.g., they are the absolute position of an object

in the simulation) the simulation will maintain coherence. However, the

animations might be less fluid when data go missing or they are read

more than once.

28

Figure 10 illustrates these issues:

Figure 10. An event interaction diagram of the communication between and
hardware device and a PC that uses polling to retrieve data from the Tango bus.

On the left, we have one (or more) hardware device writing data on the Tango

bus at irregular intervals (e.g. whenever the user moves). On the right, we have

one of the PCs, requesting data from Tango with a fixed interval of 100 ms. This

is what happens:

1. The hardware device sends Message 1 to the Tango bus.

2. The PC sends the Polling Request 1 to the Tango bus, and Tango

replies with the value received in Message 1.

3. The hardware device sends Message 2 to the Tango bus.

4. After 100 ms, the PC sends the Polling Request 2 to the Tango bus, and

Tango replies with the value received in Message 2.

29

5. After 100 ms, the PC sends the Polling Request 3 to the Tango bus, and

Tango replies again with the value received in Message 2, since no new

values have been received from the hardware device.

6. The hardware device sends Message 3 to the Tango bus.

7. The hardware device sends Message 4 to the Tango bus.

8. After 100 ms, the PC sends the Polling Request 4 to the Tango bus, and

Tango replies with the value received in Message 4. Here the value of

Message 3 has been replaced by the one from Message 4 before the PC

could request it, thus getting lost.

9. The hardware device sends Message 5 to the Tango bus.

10. After 100 ms, the PC sends the Polling Request 5 to the Tango bus, and

Tango replies with the value received in Message 5.

The first problem happens at step 5, where the same message is received

twice. If the message contains relative data such as “move forward one meter”,

then it might result in the avatar moving forward two meters if the PC does not

check for duplicate messages. Similarly, at step 8 one of the two values gets

lost, and this might result in the avatar moving forward one meter instead of

two. As mentioned above, both of these issues might be solved by using

absolute values from the hardware device.

A possible advantage of using polling is that it might be easier to implement

than the event-driven alternative. Using polling might also be more effective

when the hardware devices write large amounts of data, since it limits the

maximum number of requests and avoids bandwidth saturation.

3.2.2.2 Events

Unlike polling, where the clients have to request data from the Tango server,

with events the Tango server broadcasts data to all the clients as soon as it

reads them from the device. This ensures that all the data are sent to the

clients, and also reduces the delay and avoids missing and duplicating data,

thus making it a preferable approach.

30

Figure 11. An event interaction diagram of the communication between and
hardware device and a PC that uses events to retrieve data from the Tango bus.

In Figure 11 we can see that, unlike the polling approach, the events are sent

every time a message is received without any delay.

Unfortunately the documentation for the Tango event system is very limited, and

the whole event system has been recently rewritten to use ZeroMQ instead of

the CORBA Notification Service. This resulted in issues (TANGO Control

System, 2014a) (TANGO Control System, 2014b) and subsequent compatibility

problems between the Tango version used for the project and the default

ZeroMQ implementation provided by the Linux distribution.

Another issue with this approach is that an event-driven approach might be

more difficult to implement and integrate with the other frameworks and

software.

Despite this, using Tango and events seems to be a promising approach,

especially once all the issues have been ironed out.

31

3.2.3 Blender plugins

There are several different plugins and scripts for Blender that can be used to

implement a networking sub-system. However there does not seem to be any

de facto standard.

Most of these plugins seem to use sockets to enable communication among the

different Blender instances, thus using an architecture similar to the ones shown

in the Sockets section, but different architectures are also available.

Given the complexity of the project, it is likely that these plugins would need to

be adapted and integrated with the data read by the Tango bus. Depending on

architecture of the plugin, this might eventually turn out to be more

time-consuming than developing an ad hoc system.

Due to these reasons it was decided that, for the time being, it was not worth

spending further time investigating Blender-based solutions, even though some

of them might potentially be useful.

3.2.4 MORSE multi-node simulation

MORSE includes support for multi-node simulations, using a server-client

architecture. In addition to the MORSE nodes (the clients), there is a separate

synchronization server whose task is to synchronize the events happening in

the client nodes, as shown in Figure 12:

32

Figure 12. Implementation diagram of a server-client architecture with a
MORSE synchronization server running on the PC of the V-ERAS station 2 and
all the MORSE instances connected to it.

From the documentation (Anon., 2014c), it appears that running the server on

the same machine of one of the clients (as depicted in Figure 12) is possible, so

an additional machine might not be required — this could, however, cause

overhead on the machine running the server. The multi-node component of

MORSE can also use either sockets (Anon., 2014d) or HLA (High-Level

Architecture) (Anon., 2014e).

Using the multi-node component of MORSE would avoid the need for rewriting

a synchronization system from scratch, but it also requires MORSE as a

dependency. At the time of writing, it is not yet clear if MORSE is a suitable

framework for the simulation sub-system, even though it appears to be

featureful and preliminary tests seem promising. If MORSE is adopted, then the

multi-node component might be used, but the other approaches could be

considered as well.

33

Whether this is a feasible approach or not will be determined by future tests,

along with further tests that will have to determine if the server can indeed be

run on one of the existing machines (where one of the clients is) and if this

affects performances in any way.

3.3 Ensuring coherence

This problem can be addressed in two ways:

1. Pre-emptive;

2. corrective;

3.3.1 Pre-emptive approach

A pre-emptive approach aims at ensuring that no incoherences are introduced

in the simulation. This can be done by ensuring that all the Blender instances

start from the same state and that they all receive exactly the same inputs.

While this could in theory be done, it is not possible to ensure that the same

inputs are received at the same time, due to external factors (e.g., network

latency, machine performance). The simulation could, however, be designed so

that delays in the inputs do not cause inconsistencies.

3.3.2 Corrective approach

A corrective approach aims at correcting, rather than preventing, incoherences.

A way to correct incoherences is to broadcast at regular intervals the absolute

positions of the objects, so that the clients can update their positions in case

they are not correct.

34

4 IMPLEMENTATIONS TESTING

In order to verify the correct functioning of the selected approaches, it was

decided to create an extensive and automated test suite. This is achieved by

setting up a test environment with one or more instances of the simulation,

executing different kind of commands, and checking if the observed results

match the expected ones.

This chapter provides a detailed explanation of the tests that have been

conducted and why this was deemed necessary.

4.1 Reasons for using automated tests

There are several reasons that led to the decision of using automated tests:

1. Automated tests are a fundamental part of every non-trivial piece of

software, as they provide a way to identify problems and bugs early in

the development.

2. The V-ERAS code, the code of the frameworks and libraries we are

using, and even the operating system keep evolving and changing, and

tests allow us to make sure that changing or updating any of these

components does not introduce failures.

3. The project requires setting up different components (such as Tango and

its database), the availability of certain packages with specific versions,

and specific permissions. The developers of the team use different

hardware and run different operating systems and different software

versions. Tests allow us to quickly verify the correct functioning of the

project while installing it on a new or different machine, and to easily

identify the missing components in case of failures.

4. Different hardware components are used as part of the project (e.g., the

Oculus Rift and the Kinect) and requiring every member to have them

available, configured, and connected would be expensive and

impractical. Tests allow us to use recorded or fabricated data that

eliminate the requirement of the hardware.

35

5. Using fabricated data enables us to include a wide range of different

scenarios and situations, including cases that are very difficult or even

impossible to reproduce manually (e.g., sending three conflicting

commands from three different stations at the exact same time).

6. Whenever a bug is found, a regression test test is written, not only for

aiding the debugging and ensuring that the fix works properly, but also

for verifying that the bug does not present itself again in the future or on

other machines.

4.2 Tests organization

Different kinds of files have been created to test the behavior and functionality

of the single components (unit tests) and their interaction (integration tests).

All the automated tests are designed to be run on a single machine, even

though they run different clients and simulate the behavior that would occur in a

multi-machine environment. Additional tests have been executed manually on

multiple machines to ensure that they indeed work on a multi-machine

environment.

4.2.1 Patch scripts

In order to work around bugs in the software and libraries we are using, it was

necessary to patch some of them. To simplify the task, additional scripts have

been created.

In the repository (Melotti, 2014), there are three scripts used to patch PyTango,

Blender, and ZeroMQ. These scripts are meant to be executed once and only if

necessary (i.e., only if the installed versions require patching):

 patch_pytango3.py: used to patch PyTango and make it work with

Python 3.

 patch_blender.py: used to patch the Blender plugin used to export

the Blender standalone runtime.

36

 patch_zmq.py: used to install a version of ZeroMQ that is compatible with

Tango.

4.2.2 Blender files

The directory contains a sample Blender file used by the tests:

 utest.blend: a simple Blender file used by test_blender.py that contains

an empty scene with a single cube.

 utest.py: Python script used by utest.blend to move the cube and retrieve

its position.

4.2.3 MORSE files

The directory also contains two files used by test_morse.py:

 morsetest.py: a simulation scenario script used to create a test scene

within MORSE. This scenario includes an empty environment and a

single robot that will be remotely controlled by the test.

 morse_notifier.py: a middleware script necessary to work around a

shortcoming of pymorse. Even though it is possible to run several

MORSE instances on the same machine without conflicts, pymorse can

only handle a single connection with one of them. This problem is solved

by running several morse_notifier scripts, each with its own separate

pymorse connection. This script also accepts several parameters in order

to support several different input and output methods (e.g., pipes,

queues, Tango).

4.2.4 Utils scripts

Two utils scripts have been created to automate some tasks and can be

invoked either manually or imported and used directly from the tests:

37

 create_blender_runtime.py: used to create the standalone runtime used

by test_blender.py. This should be used whenever utest.blend is

changed to create an updated runtime.

 register_test_server.py: this adds the testtango server to Jive. The tests

already use it automatically to add/remove the test Tango server, but it

can also be used on its own to register the test server while running

manual tests.

4.2.5 Test files

There are four test files:

 testtango: a test Tango server, used by test_tango.py, test_blender.py,

and test_morse.py.

 test_tango.py: tests for Tango.

 test_blender.py: tests for Blender and Tango-Blender integration.

 test_morse.py: tests for MORSE and Tango-MORSE integration.

4.2.5.1 testtango

testtango is an executable script that implements a mock Tango server. The

server defines and exports two attributes:

 loop0to9: a read-only and polled integer attribute. Every 200 ms its

value is updated with the consecutive value in range 0 to 9, and restarts

from 0 once 9 is reached.

 writablecmd: a read-write and non-polled string attribute. When the

server is started its value is 'INITIAL VALUE'. The value will then be

updated by the clients connected to the server.

4.2.5.2 test_tango.py

The main goal of this test file is to ensure that Tango and its main features work

properly.

38

All the tests have a similar and simple structure: they spawn testtango in a

sub-process and use different techniques (direct attribute access, polling, and

events) to communicate with it:

Figure 13. The test_tango.py process starts the Tango server and uses
PyTango to communicate with it.

The test file includes seven different tests:

 test_tango_server: a simple smoke test that checks if starting and

stopping the testtango server works.

 test_read_attribute: checks if reading from the loop0to9 attribute works.

 test_read_write_attribute: checks if it is possible to write on the

writablecmd attribute and if subsequent readings return the updated

value.

 test_read_polled_attribute_with_events_stateful: this test is similar to

test_read_attribute, but instead of reading the attribute directly, it

registers a callback that is invoked whenever the value of the attribute

changes. Since this test reads from the loop0to9 attribute, the events are

generated automatically every 200 ms, and the test terminates when all

the numbers in range 0 to 9 are received.

 test_read_polled_attribute_with_events_stateless: as above, but using

stateless event subscription.

 test_unpolled_attribute_with_events_stateful: this is similar to

test_read_polled_attribute_with_events_stateful, but instead of

accessing a polled attribute (loop0to9), it access an unpolled attribute

(writablecmd). In this test the value of the attribute is updated, and it is

39

verified that an event is triggered for every update. The updated value of

the attribute received in the event is also verified.

 test_unpolled_attribute_with_events_stateless: as above, but using

stateless event subscription.

After several attempts, all the tests passed, proving that using Tango (either

with or without events) is a viable solution. While testing the reading of polled

attributes with events, it was observed that some of the values were missing,

thus making this approach less preferable.

4.2.5.3 test_blender.py

The main goals of this test file are to:

 Test that the standalone Blender runtime can be started and stopped.

 Test that it is possible to get and set the positions of the objects.

 Test the integration with Tango.

It comprises five tests:

 test_objects_dump_one_instance: a simple test that starts the Blender

standalone runtime and instructs it to serialize the position of the objects

in the scene in a JSON file. The test then reads the content of the JSON

file and checks that the serialization was successful.

40

Figure 14. The test_blender.py process starts the utest process that
creates a JSON file with the positions of the objects. test_blender.py then
reads the content of the file and checks the positions.

 test_objects_dump_multiple_instances: as above, but it runs three

separate instances of the Blender standalone runtime. The instances

generate three JSON files that are read by the test in order to verify that

all of them can serialize and dump the objects positions without conflicts.

41

Figure 15. The test_blender.py process starts three utest processes that
create three JSON files with the positions of the objects. test_blender.py
then reads the content of the files and checks the positions.

 test_tango_server: a smoke test identical to the one in test_tango.py to

ensure that Tango works properly before proceeding with the

Tango-Blender integration tests.

 test_tango_blender_one_instance: this tests starts the Tango server and

the Blender standalone runtime and waits until they are both operational.

During this test, Blender is instructed to subscribe to Tango events for

the writablecmd attribute. The test then writes on the Tango server

triggering events that are received by Blender. The events contain

messages that instruct Blender to move a cube in different position and

to terminate the simulation. Before terminating the simulation, Blender

serializes the objects positions on a JSON file so that the test can verify

that the final position of the cube is correct.

42

Figure 16. The test_blender.py process starts the utest process and the
Tango server, and then instructs Tango to move the objects in the utest
scene. The final positions of the objects are then written in a JSON file
that gets read and checked by test_blender.py.

 test_tango_blender_multiple_instances: this is similar to the previous test

but it runs three Blender instances instead of one. All the instances

subscribe to Tango events for the writablecmd attribute, so that every

time its value is updated, the event is triggered and sent to all the

instances. Eventually the instances serialize the objects positions and

43

quit, and the test verifies the all the positions are consistent and that they

match the expected results.

Figure 17. The test_blender.py process starts three utest processes and
the Tango server, and then instructs Tango to move the objects in the
utest scenes. The final positions of the objects are then written in three
JSON files that gets read and checked by test_blender.py.

Using the Blender standalone runtime and subscribing to events generated by a

Tango server also proved to be a viable solution. Even though the focus of

these tests was on the use of events, it has been verified by other members of

the team that direct access of polled attributes is possible. However, events

might be preferable for the reasons listed in the Events section.

44

4.2.5.4 test_morse.py

This test file is similar to test_blender.py but checks the functioning of MORSE.

Its main goals are to:

 Test that the MORSE simulation can be started and stopped.

 Test that it is possible to get and set the positions of the robot.

 Test how pymorse interacts with MORSE.

 Test the integration with Tango.

It comprises six tests:

 test_morse: a smoke test that ensures that MORSE can be started in

a sub-process and stopped without errors.

 test_morse_one_instance: a simple test that loads the MORSE test

scene in a sub-process, and uses pymorse to directly move the robot

and verify that its final position is correct.

Figure 18. The test_morse.py process starts the MORSE process and
uses pymorse to communicate with it.

 test_morse_one_instance_with_morse_notifier: this test is similar to the

previous one, but instead of using pymorse directly, it launches MORSE

and the morse_notifier in two sub-processes and uses the latter to

control the MORSE simulation. The morse_notifier moves the robot

according to a list of directions passed to the sub-process via command

http://wolfprojects.altervista.org/thesis/thesis.html#term-sub-process

45

line, and reports back the final position of the robot via stdout. The

position is finally checked by the test.

Figure 19. The test_morse.py process starts the morse_notifier.py and
the MORSE processes and uses the morse_notifier to communicate with
MORSE.

 test_morse_one_instance_with_morse_notifier_and_multiprocessing:

this test is also similar to the one above, but instead of using subprocess,

passing the directions to it and reading the results from stdout, it

uses multiprocessing and communicates with the process using a queue.

This approach is to be considered an experiment and it has not been

explored further, even though it did not show any major downsides.

 test_tango_server: a smoke test identical to the one in test_tango.py to

ensure that Tango works properly before proceeding with the

Tango-MORSE integration tests.

 test_morse_one_instance_with_morse_notifier_and_tango: this test

builds on top of test_morse_one_instance_with_morse_notifier and adds

a third sub-process for Tango. Instead of passing the direction via

46

command line to the notifier, the test writes them to the Tango bus using

PyTango, and the notifier (instructed by the test to subscribe to Tango

events) receives and forwards them to MORSE. The final position is then

read by the notifier through pymorse and returned to the test via a pipe

on stdout.

Figure 20. The test_morse.py process starts the morse_notifier.py and
the MORSE processes and the Tango server and uses Tango to
communicate with MORSE via the morse_notifier.

 test_morse_three_instance_with_morse_notifier_and_tango: the final

test is also similar to the previous one, but instead of having only a

notifier and a MORSE instance running, it has three for each. All the

MORSE instances are controlled by their respective notifiers that,

similarly to the previous test, receive commands from a single Tango

instance.

47

Figure 21. The test_morse.py process starts three morse_notifier.py and
three MORSE processes and the Tango server and uses Tango to
communicate with all the MORSE instances via their respective
morse_notifiers.

The test writes the direction of the robot on the Tango bus and this triggers an

event that is received by the three notifiers and the command is then forwarded

to their respective MORSE instances. The notifiers then access the robot

position through pymorse and report it back to the test via pipes on stdout.

Finally, the test checks that all the positions are correct and coherent.

These tests proved to be extremely difficult to implement properly, and even if

the final implementations can be considered stable, there are still sporadic

failures and errors, mostly during the startup and shutdown phases and while

trying to establish connections between the sub-processes.

The implementation of pymorse has some limitations and issues, most notably

the fact that it cannot handle connections to multiple MORSE instances, thus

requiring the use of morse_notifier.py and further increasing the number of

processes involved in the tests and consequently the complexity and fragility of

the tests.

48

Another major problem is the lack of an effective way to determine if the

MORSE simulation is fully loaded and ready to accept commands; the notifier is

also affected by similar problems. Without an adequate way to ascertain the

status of the sub-processes the only viable solution is to use timeouts and wait

for a fixed amount of time before attempting communication. However this has

two downsides. First, if the timeout is too short, the sub-process might still not

be ready when the time has elapsed and this might cause errors and failures.

Second, if the timeout is too long, the tests will needlessly wait and thus require

more time to run, and this might affect the workflow negatively, especially when

a large number of tests is required.

Fortunately, these issues (including problems during the process shutdown)

should not affect negatively the final simulation, because eventually all the

processes will have to be started only once. Since this is done manually, it is

possible to wait long enough and even restart the processes in case of failure.

Once all the processes are up and running and all the connections have been

successfully established, the simulation can start without further problems.

49

5 CONCLUSION

Thanks to the tests, it was possible to determine the strengths and weaknesses

of the different implementations and to decide what would be more suitable

solution.

Eventually, Tango proved to be the best solution due to its extensive adoption

within the project, stability, and to the availability of all the required features.

The decision was taken despite some minor issues, also because the Tango

development team has been responsive at responding to the bug reports.

As mentioned above, Tango supports two communication methods: polling and

events. Both methods turned out to be useful in different contexts, and since

they can both be used together, the more apt can be adopted where needed.

This last chapter describes the final system design and discusses open issues

and future plans.

50

5.1 Final system design

The following image shows in detail the final design of the system:

Figure 22. The final design of the networking sub-system, using the Tango bus
as the only communication channel.

Every V-ERAS station comprises:

 an Oculus Rift;

 a Kinect;

 a PC;

 a Raspberry Pi;

 an E-Health sensor platform mounted on the Raspberry Pi;

 a Motivity (not depicted in Figure 22, since it’s a passive component);

The PC runs Blender, the Oculus Tango server, and the Kinect Tango server,

while the Raspberry Pi runs the E-Health Tango server.

51

The Oculus Tango Server reads sensors data relative to the head position from

the Oculus Rift and writes them on the Tango bus, so that the other Blender

instances can read them and update the position of the avatar’s head

accordingly during the simulation.

Similarly, the Kinect Tango Server reads data relative to the body position from

the Kinect and writes them on the Tango bus. These data will then be used by

the Blender instances to update the positions of the avatars and also to

calculate movements relative to the environment.

The Raspberry Pi runs the E-Health Tango Server that gathers data from the

mounted E-Health platform and its numerous sensors. Note that this and the PC

are the only two components able to run Tango servers.

Blender is responsible for running the simulation and sending the generated

images to the Oculus Rift. It also reads the position of the users and their heads

from the Tango bus, and uses it to update the avatars in the simulation. In order

to minimize the latency of the images sent to the user whenever he moves the

head, Blender can also read sensors data directly from the Oculus Rift. In

addition, the data received from the E-Health platform can be displayed to the

avatars within the simulation both on a virtual HUD or on screen located inside

the virtual station.

The V-ERAS project is expected to use up to four V-ERAS stations, even

though it is theoretically possible to connect more stations. If necessary,

external machines can easily access the Tango bus without affecting the

architecture or the functioning of the stations.

5.2 Open issues

While certainly useful, the test suite is not able to easily check how the final

system will behave when three or more stations are connected. The final design

takes this into account by making the support of alternative and fallback

methods easy to implement in case problems with the current design arise.

52

If necessary, the system design will be updated based on the feedback received

by doing manual tests with the complete setup.

5.2.1 Oculus Rift communication

In the final design, the Blender instance reads data directly from the Oculus Rift

rather than accessing the data from the Tango bus in an effort to minimize

latency. This decision has been taken because higher latency has been linked

to motion sickness symptoms in the user, especially after prolonged sessions.

Motion sickness is caused by a mismatch between the position perceived by the

vestibular system and the one seen by the eyes, so reducing or eliminating the

mismatch by lowering the latency is of crucial importance.

The Blender instance could easily read data from the Tango bus, if this proves

to have other advantages and if the changes in latency do not cause motion

sickness in the users.

5.2.2 Ensuring coherence

The goal of ensuring coherence among the simulation is met by making sure

that all the simulations read the same data from the Tango bus and update the

simulation accordingly. Events are used to guarantee that all the data are

received by the Blender instances, and where this is not essential (as is the

case with absolute data) polling is also used.

In theory, this should be enough to guarantee that all the simulations are

coherent, but this has only been verified in simplified test scenarios that are run

for a limited amount of time. In a long-running simulation and more complex

scenes, divergences might still arise.

5.2.3 Polling versus events

Since most of the data written on the Tango bus are absolute, losing some of

the values while reading is a lesser concern. This makes both polling and

53

events viable solutions and thus the best approach can be determined while

running a full simulation with three or more V-ERAS stations.

Since some of the Tango servers produce a great amount ofdata (for example,

the body tracking server writes on the Tango bus a set of three-dimensional

Cartesian coordinates for each tracked joint), using events might turn out to be

too expensive for both performances and bandwidth. If this proves to be true,

falling back on polling is not difficult, even if this might result in some values

being lost and cause slightly less fluid avatar movements.

5.2.4 MORSE adoption

MORSE initially looked promising, and extensive tests have been done with it.

However, it turned out that the project is still not mature enough and that

integrating it with the rest of the project is not an easy task. The pymorse

module also has issues and limitations that might affect the stability of the

system.

Despite this, MORSE still provides several useful features, and will probably be

reconsidered in the future. Since it is based on Blender, it should not be too

difficult to replace Blender with MORSE, and adapt the rest of the system to

work with it.

5.3 Further additions

The final design also takes into account the possibility of further additions, such

as additional machines or Tango servers. This section outlines some possible

additions that have been discussed.

5.3.1 Voice recognition server

The IMS has been active in researching and developing a voice recognition

software used to interact with the environment (for example, to open and close

doors in the virtual station or to request status information) and with rovers and

other devices. An additional Tango server used to listen to the user and convert

54

the voice inputs in commands, can be run on the Raspberry Pi of each user

(that will eventually be integrated in the space suit).

5.3.2 Blender synchronization server

As mentioned in the Open Issues section, the current design might not be able

to ensure coherence in case of long-running simulations and complex

environments. The use of additional Tango servers used by the Blender

instances have been discussed, and they will be implemented if necessary.

Each V-ERAS station will run a Tango server used by the Blender instance to

write data on the Tango bus. Each Blender instance will be responsible for one

of the avatar, and will periodically broadcast its position to the other instances,

so that they can verify if any divergence occurred and correct it by using the

position provided.

5.3.3 Mission control display

During the simulation, a mission control crew will also be present. This crew will

observe and possibly interact with the users of the simulation, so it will be

necessary for them to access the simulation data.

This can be implemented with an additional machine connected to the Tango

bus that will retrieve and display detailed information about the status of the

users and also show on a screen or projector a third-person view of the

simulation. This machine will not participate actively to the simulation and only

read data from the bus, so its impact on the system will be minimal.

5.4 Future plans

The Italian Mars Society is planning to keep expanding and improving the

project and testing and researching the best technologies available.

The first V-ERAS mission has been scheduled for December 2014, during week

50, at the Dolomites Astronomical Observatory / Carlo Magno Hotel in Madonna

di Campiglio, Trento (Italy). An international team of eight members has already

55

been selected, including three crew members, three mission control members,

and an outreach communication team of two members.

This first mission will allow the IMS to perform a real test of V-ERAS and lay the

foundation for all the future V-ERAS missions, and eventually the construction

of a real ERAS station. Collaborations with other organizations are also being

planned.

If these efforts prove to be successful, they will be a big step towards the

colonization of the red planet.

56

6 REFERENCES

Anon., 2014a. What is MORSE? -- The MORSE Simulator Documentation.

[Online]

Available at: http://www.openrobots.org/morse/doc/latest/what_is_morse.html

[Accessed 23 10 2014].

Anon., 2014b. Raspberry Pi. [Online]

Available at: http://www.raspberrypi.org/

[Accessed 23 10 2014].

Anon., 2014c. Multi-node simulation -- The MORSE Simulator Documentation.

[Online]

Available at: http://www.openrobots.org/morse/doc/1.2/multinode.html

[Accessed 23 10 2014].

Anon., 2014d. Multi-node Simulation using sockets -- The MORSE Simulator

Documentation. [Online]

Available at:

http://www.openrobots.org/morse/doc/1.2/user/multinode/socket.html

[Accessed 23 10 2014].

Anon., 2014e. Multi-node Simulation using HLA -- The MORSE Simulator

Documentation. [Online]

Available at: http://www.openrobots.org/morse/doc/1.2/user/multinode/hla.html

[Accessed 23 10 2014].

Blender Foundation, 2014. About - blender.org - Home of the Blender project -

Free and Open 3D Creation Software. [Online]

Available at: http://www.blender.org/about/

[Accessed 23 10 2014].

Cohen, M. M., 2011. Is NASA Ready for Deep-Space Human Spaceflight?

[Online]

Available at: http://spirit.as.utexas.edu/~fiso/telecon/Cohen_5-11-11/Cohen_5-

57

11-11.pdf

[Accessed 23 10 2014].

iMatix Corporation and Contributors, 2014. Code Connected - zeromq. [Online]

Available at: http://zeromq.org/

[Accessed 23 10 2014].

Libelium Comunicaciones Distribuidas S.L., 2014. e-Health Sensor Platform

V2.0 for Arduino and Raspberry Pi [Biometric / Medical Applications]. [Online]

Available at: http://www.cooking-hacks.com/documentation/tutorials/ehealth-

biometric-sensor-platform-arduino-raspberry-pi-medical

[Accessed 23 10 2014].

Melotti, E., 2014. italianmarssociety / V-ERAS Blender / source / test --

BitBucket. [Online]

Available at: https://bitbucket.org/italianmarssociety/v-eras-

blender/src/default/test/

[Accessed 23 10 2014].

Preiser, W., Rabinowitz, H. & White, E., 1988. Post-Occupancy Evaluation. New

York: Van Nostrand Reinhold.

TANGO Control System, 2014a. TANGO Control System / Bugs / #662 ZMQ 4

compatibility. [Online]

Available at: http://sourceforge.net/p/tango-cs/bugs/662/

[Accessed 23 10 2014].

TANGO Control System, 2014b. TANGO Control System / Bugs / #689

Problems while getting events on a remote machine. [Online]

Available at: http://sourceforge.net/p/tango-cs/bugs/689/

[Accessed 23 10 2014].

The Italian Mars Society, 2014a. The Italian Mars Society. [Online]

Available at: http://www.marssociety.it/

[Accessed 23 10 2014].

58

The Italian Mars Society, 2014b. Home. [Online]

Available at: http://erasproject.org/

[Accessed 23 10 2014].

The Mars Society, 2014a. The Mars Society. [Online]

Available at: http://www.marssociety.org/

[Accessed 23 10 2014].

The Mars Society, 2014b. Society FAQ - The Mars Society. [Online]

Available at: http://www.marssociety.org/home/about/faq#TOC-Q:-What-is-the-

Mars-Society-doing-to-prepare-for-humans-to-Mars-missions-

[Accessed 23 10 2014].

The Mars Society, 2014c. Flashline Mars Arctic Research Station. [Online]

Available at: http://fmars.marssociety.org/

[Accessed 23 10 2014].

The Mars Society, 2014d. Mars Desert Research Station. [Online]

Available at: http://mdrs.marssociety.org/

[Accessed 23 10 2014].

