

Mohammad Abdullah Atik

Applying Software Design Pattern on iOS
Application

A case study Finnkino

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

3 November 2014

 Abstract

Author(s)
Title

Number of Pages
Date

Mohammad Abdullah Atik
Applying Software Design Pattern on iOS Application

31 pages
3 November 2014

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s)

Peter Hjort, Senior Lecturer

Software developers practice software design patterns and principles to solve commonly
occurring problems while ensuring extensible robust and maintainable system. The thesis
aimed to study a subset of software patterns and principles. The practical goal of the thesis
was to develop an iOS application with proper patterns applied. The main focus was to
recognize which pattern would suit for an application’s various design challenges and what
benefits would be harnessed by it.

The study aimed to answer two questions: how a pattern needed to solve the problem was
recognized and what were the consequences of applying the pattern. An action research
method was followed for this project. It involved design, analysis and implementation
phase for developing the application.

Xcode IDE was used as the development environment to implement the practical task.
Application usability testing and profiling were done with Instrument tools which are part of
the IDE. Debugging and compiling were done with Apple’s new tool LLVM (Low Level
Virtual Machine).

The result of the practical task is an iOS application named Finnkino which allows
searching and viewing movie information in nearby theatres within Finland. In addition it
also shows current, upcoming and top movies around the globe. The application lets the
user bookmark a movie for later view. A movie trailer editing and saving feature is also
available.

Based on the final result, it can be concluded that software design patterns help to
recognize the applicability of design principles to software development. Thereby applying
design patterns produces robust, long lasting and maintainable software.

Keywords SDK, MVC, OCP, PLK, LLVM

Contents

1 Introduction 1

2 Theoretical Background 2

2.1 Object-Oriented Design Pattern 2

2.1.1 Model-View-Controller (MVC) 2

2.1.2 Façade Pattern 3

2.1.3 Observer Pattern 3

2.1.4 Decorator Pattern 5

2.1.5 Command Pattern 6

2.2 Object-Oriented Design Principle 7

2.2.1 Open-Closed Principle (OCP) 7

2.2.2 Principle of Least Knowledge (PLK) 7

3 Method and Material 8

3.1 RESTful Web Services 8

3.2 iOS Software Development Kit 9

3.3 Development Tools 10

4 General Structure of the Application 11

4.1 Application Features 11

4.2 Application Implementation 12

5 Model-View-Controller 14

5.1 Model Object Tree 14

5.2 Tying up the Model, View and Controllers 14

6 Façade Design Pattern 16

6.1 Motivation 16

6.2 Applying Façade Pattern in Finnkino Application 16

7 Observer Design Pattern 18

7.1 Motivation 18

7.2 Observer Pattern (KVO) in Finnkino Application 19

8 Decorator Design Pattern 20

8.1 Motivation 20

8.2 Realization 21

8.3 Design Challenge in the Finnkino Application 21

8.4 Solution 22

9 Command Design Pattern 23

9.1 Design Challenge in the Finnkino Application 23

9.2 Solving Design Challenge 24

10 Multithreading and Responsiveness 25

10.1 Responsive UI in Downloading and Parsing Data 26

10.2 Choosing Callback Pattern 27

10.3 Multithreading in FKMovieViewController 28

10.4 Caching in FKMovieViewController 29

10.5 Responsiveness in RTMovieViewController 30

11 Conclusion 30

References 31

1

1 Introduction

To solve programming challenges, the object-oriented programming (OOP) concept

has been introduced. OOP gives us a concept of abstraction, inheritance, encapsula-

tion and polymorphism to build a system by using reusable objects and hence reducing

system maintenance costs. There might be multiple approaches to solve a certain

problem. It is important to identify the correct solution and model the design of the sys-

tem before beginning actual programming. This will allow us to build a flexible design,

and hence be able to adapt with future requirement changes. Reusable objects are not

of much use if our solution does not allow flexibility.

Simply having the OOP tools at our disposal is not enough to build a flexible solution.

Design principles give us guidance on how to use OOP concepts in a proper manner to

build flexible and maintainable systems. By following the design principles many design

patterns were developed to provide reusable solutions to common problems.

My motivation to study design pattern is: knowing the patterns opens our eyes to mod-

el and apply a design to solve a certain programming challenge in a way which pro-

duces more reusable and flexible solution along with other advantages. It educates us

to formulate and solve programming challenges in a more generic way, such as without

knowing the details about specific platform and programming language. Knowing de-

sign principles and patterns allow us to apply programming experiences achieved in

one platform to another. Programming languages are merely tools to solve program-

ming challenges. If design principles and patterns are practiced, we will not need to

throw away our previous experiences achieved during many years in a specific plat-

form when shifting to a new platform. Instead we can use the old experience in a new

platform to solve a problem even in a more sophisticated way and thereby enhance our

programming career.

In the first section the principles and patterns are studied and in the following section

they are applied to solve practical problems in a real-life iOS application. Design pat-

terns are a broad topic. Each design pattern has diverse applications. In this thesis the

scope of studying the patterns is only confined to the aspect of solving different chal-

lenges of the Finnkino application. The parts or discussion that are not concerned with

solving the design challenges has been left out. The goal of this project is two fold. The

2

main goal is to analyse and study the software-related design patterns, loosely coupled

software. It will be helpful for any developer working on any mobile platform to apply

the techniques studied in the thesis. The secondary goal is to build a mobile application

for users/customers who would use the application to check information about current,

upcoming and top movies in a theatre in Finland.

2 Theoretical Background

2.1 Object-Oriented Design Pattern

Design patterns are reusable solutions to common problems in software design. They

are templates designed to help writing code that is easy to understand and reuse. They

also help one to create loosely coupled code so that it can be changed or replaced by

alternative components in the code easily.

2.1.1 Model-View-Controller (MVC)

The Model-View-Controller (MVC) consists of three types of object as shown in figure

1. This pattern assigns objects in an application to one of these three roles: model,

view, and controller. [1]

a) Model: Model objects maintain an application’s data by encapsulating it. They

are reusable in a similar problem domain because they represent knowledge

that is applicable to a specific problem domain. Model objects do not interact

with view objects directly. They provide logic to manipulate the date they en-

capsulate. [1]

b) View: The view displays information contained in the model. In other words, the

view is the presentation of model that user can interact with. The view object

has knowledge about how to draw itself and respond to user actions. Since

view objects can work with many different model objects, they tend to be reusa-

ble across different applications. [1]

c) Controller: A controller class acts as a bridge a between the model and view

class. The model and view class interaction is done through the controller and

hence reusability of the view and model is possible. Besides it also perform set-

up and coordinate tasks for an application. [1]

3

Figure 1. MVC Design Pattern. Reprinted from Apple Inc. [1]

Figure 1 shows user interaction with the view monitored by the controller and com-

municating any changes to the model.

2.1.2 Façade Pattern

The Façade design pattern is used to create a layer to abstract and unify a set of

different interfaces in a subsystem. The higher level interfaces exposed to the user

make it easier to use the subsystem by hiding lower level complexity. [2, 137]

2.1.3 Observer Pattern

The participants in the observer pattern are explained below:

a) Subject: Provides a gateway for observers to tie and untie with it. When the cli-

ent class creates observers, it registers with the subject as shown in figure 2.

Thus the subject knows who its observers are and it can have many observers.

When the subject’s property state is changed, it will call the “notify” method,

which in turn calls the update method on all registered observers stored in an

internal list. [3]

b) ConcreteSubject: Only notifying the observer is not enough. The Observer

needs to know the current state of the subject. The task of the ConcreteSubject

is to manage the internal state. [3]

c) Observer: Provides an update interface to receive a signal from the subject. [3]

d) ConcreteObserver: The subject notifies about its changed state but does not re-

lay the information that was changed. The job of ConcreteSubject is to maintain

a reference to ConcreteSubject. When the subject dispatches the notification,

observers will make a call to the subject to obtain new data. [3]

4

Figure 2. Observer design pattern class diagram [2, 166]

Three important aspects are shown in listing 1. First, observers are registered with the

subject, which indicates the subject tracks observers. Second, observers keep a refer-

ence to the Subject, so that they can later retrieve the status after notified by Subject.

Third, the client triggers the state changes by calling the setState method, which caus-

es the notify and update method to be called in turn.

clientClass{

void main() {

Subject subject = new Subject();

Observer observer1 = new Observer();

Observer observer2 = new Observer ();

subject.registerObserver(observer1);

subject.registerObserver(observer2);

 // assign subject to observer

observer1.setSubject(subject);

observer2.setSubject(subject);

 // set the state

subject.setState(_state)

}

}

Listing 1. Pseudo-code

5

2.1.4 Decorator Pattern

The Decorator Pattern attaches additional responsibilities to an object dynamically.

Decorators provide a flexible alternative to subclassing for extending functionality. [4,

199] Participant classes in the decorator pattern are:

a) Concrete component: Is the object where new behaviours will be added dynam-

ically. [4, 199]

b) Component: It is an interface for objects that can have responsibilities added to

them dynamically. [4, 199]

c) Concrete Decorators: Extend the functionality of the component by adding state

or adding behaviour. [4, 199]

d) Abstract decorator: Maintains a reference to the component object and main-

tains an interface conforming to the component’s interface. [4, 199]

The participant classes relationship is shown graphically in figure 3 and figure 4.

Figure 3 shows that the abstract decorator class is unnecessary here since there is

only one concrete decorator.

Figure 3. Class diagram without abstract decorator [2, 234]

It is shown in figure 4 that the abstract decorator class is forwarding a request to the

concrete decorator class. It is only needed when one wants to add more than one re-

sponsibility. Its purpose is to forward the message to the concrete decorator.

6

Figure 4. Class diagram with abstract decorator [2, 234]

Since there are multiple ConcreteDecorator class, the decorator class is necessary to

forward the request to the appropriate ConcreteDecorator class.

2.1.5 Command Pattern

The participating classes in this pattern are the following:

a) Command: Is a generic interface for an operation to be executed. The invoker

class only knows it. [4, 266-267]

b) ConcreteCommand: Extends the command class and implements the generic

interface. It acts as an intermediary class between the Receiver and its action.

[4, 266-267]

c) Receiver: Knows the details of how an action is to be performed. [4, 266-267]

d) Client: Creates different ConcreteCommand classes and sets the correspond-

ing receiver. [4, 266-267]

e) Invoker: Asks the generic interface of the command class to perform the action.

[4, 266-267]

Figure 5. Restated from Pro Objective-C Design Pattern for iOS [2, 294]

7

As shown in figure 5, the client class creates every ConcreteCommand and hooks

them with an invoker. Thereby each Command is encapsulated and saved in a queue

for a later execution by the invoker class. This saving mechanism gives a chance to

perform some pre action if needed, before actually carrying out the request. The Con-

creteCommand responsible for the requested command performs an action on the re-

ceiver when invoker invokes the encapsulated commands that were saved in a queue.

2.2 Object-Oriented Design Principle

2.2.1 Open-Closed Principle (OCP)

Open-Closed principle states: “Classes should be open for extension but closed for

modification” [5, 18].

Developers spent a long time and careful investigation implementing code. This par-

ticular piece of code is well tested and known to be working harmoniously with other

pieces of code in the application. Allowing it to be changed will make it fragile by affect-

ing existing functionality. Thus sometimes it is crucial to make sure that a class is not

altered. This is ensured by the first part of the OCP. The second part of the principle

states that classes should be open for modification. As we know sooner or later behav-

iour needs to be changed to support extension and/or modification as part of the ever-

changing software requirements.

 One of the many advantages of object-oriented design is the ability to extend function-

ality without requiring us to modify existing code. There are several ways to achieve

this. While inheritance and composition are simple instances of OCP, we may need an

extra layer of abstraction to make it possible to adhere to this principle. The decorator

design pattern is an example that achieves this principle.

2.2.2 Principle of Least Knowledge (PLK)

The principle of the least knowledge known as the law of Demeter, states: “Talk only to

your immediate friends”. Concept of PLK is achieved in code if the following guidelines

are followed. From Method (M) of any taken object (O) should invoke other methods

that has following scope. [6]

8

- Object itself

- Object received as a parameter to methods but not objects returned from calling

other methods.

- Any objects created within the method

- Direct component object.

3 Method and Material

The Finnkino application used contemporary tools and frameworks at the time of de-

velopment. The focus of development was on the client side. For the backend I used

the popular RESTful web services available online. This section overviews the tools

and resources used to develop the application.

3.1 RESTful Web Services

Any kind of bulk information that has business values are stored and maintained by

backend servers. They have uniform business interfaces to communicate with. Such

interfaces offer the consumers CRUD services through which they are capable of inter-

acting with the information. [7]

Considering the present application’s scope it was not possible to implement backend

services to provide data for users. Rather I utilized the RESTful services offered by a

popular website Rotten Tomatoes and Finland’s largest film distributor Finnkino Oy.

Table 1. RESTful resources used in Finnkino Application

Resource URI Path HTTP Methods Distributor

Gets a list of currently showing
events (e.g. Movies) in
Finnkino theater

/Events GET

Finnkino Retrieves list of news /News GET

Retrieves list of news category /NewsCategories GET

Retrieves schedule for a date /Schedule GET

Movies listed in box office /box_office.json GET
Rotten
Tomatoes

Gets a list of upcoming movies /upcoming.json GET

9

Table 1 lists all the RESTful resources used by Finnkino Application. The first four re-

sources are from Finnkino web service and the last two are from Rotten Tomatoes

website. Since they were third-party web services, the choice was only limited to what

they offered. As seen in table 1, they only offered GET interfaces to obtain information.

Other web services such as POST, PUT or DELETE were not allowed.

3.2 iOS Software Development Kit

iOS Software Development Kit provides tools and resources to develop native iOS ap-

plications. iOS architecture is multi-layered, as shown in figure 6. It acts as an interme-

diary between hardware and the applications that run on top of it. Although it is possi-

ble to use interfaces from any layer of the architecture to write the code, the recom-

mended way is to use a higher-level framework whenever possible. [8]

Figure 6. Multilayered iOS architecture

The system interfaces used to write iOS apps are called frameworks by Apple. The

system libraries and functions used by Finnkino are listed in table 2. The following list

overviews only the latest addition of the frameworks to iOS SDK that were utilized.

a. Storyboard: First introduced in iOS 5 SDK, storyboard holds the entire UI in a

single file. It allows designing each screen and mapping transitions between the

screens for user interactions. [9, 208]

b. Multi-threading: iOS SDK offers a multithreading programming environment.

Multithreading capabilities are exposed via GCD (Grand Central Dispath) inter-

faces and NSOperationQueue. The latter is implemented on top of GCD. [10,

143]

c. Auto layout: First primered in iOS 6. It brings the capability to flexibly add and

define view layouts. [15]

10

Table 2. List of all iOS frameworks utilized in Finnkino Application

Name Description

AVFoundation.framework Contains Objective-C interfaces for playing and record-
ing audio and video.

AssetsLibrary.framework Contains classes for accessing the user’s photos and
videos.

CoreData.framework Contains interfaces for managing application’s data
model.

CoreGraphics.framework Contains interfaces for Quartz 2D

CoreMedia.framework Contains low-level routines for manipulating audio and
video.

CFNetwork.framework Contains interfaces for accessing the network via Wi-Fi
and cellular radios.

Foundation.framework Contains interfaces for managing strings, collections,
and other low-level data types.

MobileCoreServices.framework Defines the uniform type identifiers (UTIs) supported by
the system.

QuartzCore.framework Contains the Core Animation interfaces.

SystemConfiguration.framework Contains interfaces for determining the network config-
uration of a device.

UIKit.framework Contains classes and methods for the iOS application
user interface layer.

Table 2 holds synopsis about the functionalities of the Frameworks. The detail infor-

mation can be found in the iOS SDK.

3.3 Development Tools

Xcode is an Integrated Development Environment provided by Apple. Like any other

IDE it contains an array of tools to facilitate application development [11]. The following

section overviews a subset of Xcode tools that were used to develop Finnkino Applica-

tion.

a) Compiler: Xcode 5 uses LLVM (Low Level Virtual Machine) as a default compil-

er and debugger. LLVM compiler is a major improvement over the old genera-

tion GCC (GNU C Compiler).

b) Interface Builder (IB): Previously Interface Builder used to be shipped as a sep-

arate application [13, 21]. The latest version of Xcode IDE has IB integrated. IB

helps a developer to design the user interface by simply dragging and dropping

the widgets on a design canvas. [13] It also allows designing the navigation and

interaction of the UI.

c) Simulator: iOS simulators are used to run an iOS application and simulate the

behaviour on a real device. In the Initial stage of development, developers do

not need to run the application on a real device. Instead the simulator gives a

11

quick way to run and simulate the application, which makes the development

easier.

d) Instrument: Instrument has a wide variety of performance analysis tools. For

profileing Finnkino Application performance a subset of those tools were used.

The Time Profiler tool was used to check time consumption of each method

calls. It helped finding out the slowing bottleneck and thus indicating where to

rewrite code to have faster excution. The memory allocation tool was used to

analyze the application heap memory allocated by different objects. It was most

effective to find out which part of the application consumes more memory and

hence finding out a risky spot. The Leaks tool was particularly useful when find-

ing out the object graph relationship and thereby preventing retain cycles.

4 General Structure of the Application

4.1 Application Features

Finnkino Application offers users various services to get information regarding films

and events. It also allows the user to edit and save relevant information on the phone

itself. This section will describe and document all the features available to the user. The

following use case diagram defines interaction with the user. It represents a higher-

level abstraction of available features.

 Figure 7. Use Case Diagram for Finnkino Application

12

The services shown in the use case diagram of figure 7 are described below:

a) Browse current movies in a Finnkino theater: This is the initial view a user sees

on the application. It lists all the current movies and events in a Finnkino thea-

ter. Each block/entity in the view list represents single movie information, which

holds: movie thumbnail image and title of the movie. This view also has a

search field, which allows the user search for movie names with two different

criteria: “Begin With” and “Contains”.

b) Get Finnkino movie details: From the list view mode when a user selects one

movie it enters the detail view mode, where user can find the link to other views:

watch trailer, read synopsis, add to favorites and get show time.

c) Get show time of a selected movie in a Finnkino theater: This view shows de-

tails about the movie theater name, location and time.

d) Watch and edit movie trailer: This view allows the user to watch the trailer of the

user-selected movie and allows editing. The edit functions are trim, rotate, crop,

add text and add song. After the editing is completed, the file will be saved in

the phone video library.

e) Browse Rotten Tomato box office and top movies list shows box office movies

and top movies list respectively from Rotten Tomatoes website. This infor-

mation is international.

f) Get Rotten Tomato movie detail: This view shows critic information, audience

score, genre, length, release date, title, starring characters and poster image.

g) Browse bookmark: This view allows the user to watch movie information that

was previously bookmarked from other views. It also lets the bookmark list to be

edited such as remove and undo remove.

h) Browse news: This view allows the user to browse different kind of news from

the Finnkino website. The news are sorted and presented categorically.

4.2 Application Implementation

Figure 8 shows the high level abstraction of view controllers in Finnkino application.

The main coordinating view controller is a UITabBarController, which holds four Navi-

gation Controller. Four UIBarButtonItem on the UITabBarController allows navigation to

each Navigation Controller. This Navigation Controller in turn holds the corresponding

view controller of the views that the application user directly interacts with.

13

Figure 8. Coordinating view controllers in Finnkino Application

The following section shortly describes the view controller of the views that the user

directly interacts with. The description includes the function and responsibilities of

these controllers.

FinnkinoMovieViewController is a subclass of UITableViewController. It has a

UISearchBar with index and UITableView to present data to the user. UIRottenToma-

toViewController is also a subclass of UITableViewController. TrailerEditViewController

has a player view to show the video trailer. It has play, pause button to control the

playback and a menu, which holds export, trim, rotation and crop button. Finnki-

noNewsViewController is a customized UITableViewController. Each of its cell holds

another horizontally scorllable UITableView. The enclosing table views cell contains

thumbnail images of the news.

14

5 Model-View-Controller

5.1 Model Object Tree

To make it easier to track the state of the XML tree I have separated the parsing logic

in three different classes: FinnkinoEvent, FKOneMovieEvent and FKMovieCon-

tentDescriptor. Each of them implements the NSXMLParserDelegate protocol. Only

one class can be a delegate of the parser at a time. So the delegate of NSXMLParser

class needs to be changed when an appropriate starting tag is found and set back to

the parent parser delegate class when a closing tag is found. Figure 9 shows the model

object tree.

Figure 9. Model object tree for Finnkino Application

The model object tree encapsulates the parsed XML documents child elements

information hierachially in object form.

5.2 Tying up the Model, View and Controllers

Figure 10 shows the MVC architecture followed in the Finnkino Application. It shows

the boundary between each participant. By following MVC maximum the reusability has

15

been ensured. For example, view controllers can reuse the model object tree shown in

figure 9 without rewriting it.

Figure 10. Finnkino object diagram

The role of the model, view and controller classes in the Finnkino object diagram

shown in figure 10 are described below:

a) Model: FinnkinoEvent and FKNews map XML data payload downloaded from

Finnkino web services as a model object tree. JSONEvent maps and holds

JSON data payload from Rotten Tomato web service. They do not have any di-

rect association with the user interface for presenting or editing it.

b) View: Generic views offered by framework such as UITableview and UICollec-

tionView are reused by any application. This also holds true for custom views

created in this application.

c) Controller: Acts as a middleman between view and model objects.

By following the MVC pattern, a clear separation between model, view and controllers

has been achieved. The whole structure of the application is more reusable and easily

extensible.

16

6 Façade Design Pattern

6.1 Motivation

There are three common situations when this pattern is useful.

a) Decoupling subsystem from clients: When one needs to modularize a system to

subsystem components to reduce complexity. For better maintenance of those

subsystems we need to minimize communication and interdependencies

amongst them. The Façade design pattern helps to decouple the subsystem.

b) Simple interface for subsystem: Subsystems often gets more complex when dif-

ferent design patterns are applied to them. As the subsystems are evolved

more subclasses are introduced to the system to handle underlying complexi-

ties. The façade design pattern provides a simpler interface to the subsystem

classes.

c) Divide the subsystem into layers to reduce coplexities: A system may devide a

subsystem into multiple layers. A façade class should define an entry point to

each subsystem level. If the subsystems are dependent on each other, the fa-

çade simplifies the dependencies by communicating only through the façade

entry points.

6.2 Applying Façade Pattern in Finnkino Application

The Finnkino application with and without façade looks like figure 11 and figure 12 re-

spectively. In the previous MVC section, web service call and parsing logic was placed

in view controller classes. View controllers are responsible for managing and updating

their view. They should not be bothered with the details of dealing with external

sources such as database, web service and file system as shown in figure 12.

17

Figure 11. Implementation with Façade pattern

The client class (view controllers) should make a request to Façade class (Finnki-

noFeedStore). Once the call has been made Façade class will call methods on the

subsystem that handle communication with external sources. After processing it returns

the control to the client class with the object it was interested in. The number of view

controllers increased in the future would have caused havoc without Façade class

since there would be redundant code, complexity of understanding the logic external

source handling, strong coupling of client and subcomponents and hence less reusabil-

ity.

Figure 12. Implementation without Façade pattern

The sequence diagram shown in figure 13 shows the flow interaction from Finnki-

noMovieViewController to the underlying classes via façade class FinnkinoFeedStore.

The façade class hides the complex process by exposing a simple interface

fetchRSSFeedWithCompletion: to the client classes.

Figure 13: Flow of Finnkino Application via FinnkinoFeedStore from FinnkinoMov-
ieViewController.

18

The consequences of applying façade patterns are the following. First, weak coupling

is achieved by applying the façade pattern: underlying subcomponents can be replaced

without affecting the client. For example, one will not need to change client code if the

backend service is changed. Second, application programmers need to deal with fewer

classes: reduces the number of objects the client deals with. Third, façade pattern also

reduces dependencies of the external code on the inner working of the libraries.

Fourth, façade pattern helps to reduce code redundancy.

7 Observer Design Pattern

7.1 Motivation

Object-Oriented programming is about objects and their interaction. This inherently

requires one object to be informed about the changed status of another object. Interac-

tions between objects are done via callback patterns such as delegate, blocks and tar-

get-action. In these callback patterns interacting objects need to have information

about each other. The following describes the level of interdependencies between ob-

jects for different callback patterns.

a) Target-action pattern: Has exactly one action to be performed (this limitation is

solved by using delegate pattern). One-to-one object relationship. Target object

on which the action has to be performed needs to be known beforehand.

b) Delegate pattern: The concept of delegate pattern

 A is delegate of delegating object B

 B will have a reference of A

 A will implement the delegate methods of B

 B will notify A through delegate methods. Calling method selectors, which

are declared in protocol, does this.

The limitation of this pattern is that thedelegating object keeps a reference to

other object. Communication is limited within the methods declared within the

protocol, not just any method selector. Only one object can be a delegate at a

time. As a result it is only good for one-to-one object relationship.[16]

c) Blocks: A method is passed around as a parameter to objects. It also lacks the

one-to-many object relationship.

19

The discussion shows every interaction method has its own advantages. However if

the design target is to design a one-to-many object relationship then observer pattern

will be the right choice. The original observer pattern described in section 2.1.3 is not

loose coupled. This issue is solved by NSInvocation and KVO mechanisms, which are

the Cocoa adaptions of observer pattern. The Cocoa adaption (KVO) of the original

observer pattern achieves the targeted goal.

7.2 Observer Pattern (KVO) in Finnkino Application

The goal to achieve in the FKTrailerEditViewController class is to be notified from dif-

ferent notifying classes: AVPlayer and AVPlayerLayerStatus, which requires a one-to-

many relationship. Figure 14 shows how the observer pattern is applied to achieve the

goal.

Figure 14. Observer Pattern applied in FKTrailerEditViewController

The following describes the mechanism of the class diagram in figure 14. The observer

pattern is a publish-subscribe model. The observer subscribes to notifications from the

subject. Once the subject needs to notify observers for any changes, it will start broad-

casting the predefined notifications. KVO provides the similar publish and subscribe

types of service offered by the original observer pattern and it offers additional benefits

such as loose coupling amongst objects and flexibility of observing properties. There is

20

no extra overhead work in order to observe a property. We just have to conform to the

NSKeyValueObserving informal protocol, which requires us to update the key matching

properties through its accessor method. The framework will do rest automatically. With

the help of auto synthesize we will not even need to write the accessor by hand.

In the Finnkino application the observer (FKTrailerEditViewController) class overrides

observeValueForKeyPath:ofObject:change:context: to receive any callback changes in

the subject (AVPlayerLayer). When AVPlayerLayer gets the property “readyToDisplay”

changed, it will broadcast an update. There is no need to broadcast manually since

Apple’s default KVO mechanism handles it. WillChangeValueForKey: and didChange-

ValueForKey: methods correspond to the “notify” method in the original observer pat-

tern.

This loose-coupled pattern has some side effects. They are the following: First, it is not

possible for the broadcaster to control who would be able to listen to the brodcast, in

other words anyone can listen to the broadcast. Second, strict naming conventions

must be followed by the methods for the automatic message broadcasting to work.

Third, listeners need to be stopped observing manually before they are deleted. Other-

wise the broadcasting message will cause the program to crash due to not being han-

dled by the registered observers. [14]

8 Decorator Design Pattern

8.1 Motivation

To add responsibilities to an object we normally tend to think about inheritance or

subclassing a base class. However there will be cases when subclassing is not an

option. As an alternative Decorator pattern will help us out. Subclassing allows us two

types of modification.

1. Method overriding: Allows child class to provide its own implementation of a

method that is already provided in the superclass.

2. Adding new methods in subclasses.

When we use Decorator Pattern in Objective C as an alternative to subclassing there

are two corresponding ways.

1. Subclassing an abstract interface, if the intended target is method overriding.

21

2. Category, if our intended target is to add new methods. However, the category

approach is not suitable if our intended modification type is overriding since Ap-

ple documentation discourages it.

8.2 Realization

The following explains how to recognize when the command design pattern is the right

choice to solve a design goal.

1. Class definition/implementation might not be available, for instance a framework

class. Therefore, it simply may not be possible to make changes in the super-

classes to support the subclass implementation.

2. Even if a class implementation/definition is available, a good design principle is

that a class should be open for extension but closed for modification. [5, 18]

3. Superclasses are not available for subclassing. For instance in Java one can

make a class Final to avoid extension. However, in objective C it is not a prob-

lem.

4. Too many subclass to support combination of extended features.

5. When features are optional or we want to add it dynamically at runtime.

These above mentioned reasons are justified in the next section by solving the

Finnkino aplication specific design challenge.

8.3 Design Challenge in the Finnkino Application

The UIImage class has limited attributes such as size, scale and orientation. The goal

is to extend its capabilities such as adding shadow at the edge and transformation to it.

If one wants to support more features in the future, the number of subclasses will grow

greatly to support all combinations. For instance 5 features would result in 15 sub-

classes. Moreover subclasses are instantiated statically, which means it will not be

possible to choose the feature at runtime dynamically. So subclassing is not a flexible

solution since client classes cannot control how and when to decorate the component. I

wanted to add or change the properties dynamically at runtime rather than instantiating

subclasses statically.

22

8.4 Solution

The target will be fulfilled if ImageComponent is able to handle all draw* methods. For

that a common interface to share between the concrete component and decorator

class is needed. We want to decorate the draw* methods since we are interested in the

draw* methods of the UIImage class to decorate.

The concrete component UIImage and the concrete decorator classes such as Im-

ageTransform filter and ImageShadow filter are subclasses of the abstract interface

ImageComponent. So they have the same object type ImageComponent. Now the

decorator class holds the reference to the component.

Figure 15. Decorator pattern applied to Finnkino Application

Descriptions of each participant class shown in figure 15 are given below:

a) UIImage (Concrete Component): Is an object to which additional responsibilities

can be added. It returns the original image.

b) ImageComponent (Component): Abstract Interface for UIImage. It contains all

draw* methods from UIImage, since these are the methods we want to decorate

to.

c) ImageFilter (Decorator): Maintains a reference to an ImageComponent object. It

simply forwards draw requests to its component, and decorator subclasses can

extend this operation. The important characteristics of dynamically adding be-

haviour with the class is made possible by this composition and simple forward-

ing /delegating the object to the next desired decorator object.

23

d) ImageShadowFilter (Concrete Decorator): Handling drawInRect: message. Re-

turns the original image with the shadow filter applied.

e) ImageTransformFilter (Concrete Decorator): Another concrete decorator han-

dling drawInRect: message. Returns the orginal image rotated.

// Returns the original image

UIImage id <ImageComponent> *image = [UIImage

imageNamed: @"Image.png"];

 [image drawInRect:rect];

// Returns the original image decorated with shadow

 id <ImageComponent> *decoratedImage2 = [[ImageShadow-

Filter alloc] init];

[image drawInRect:rect];

// Returns the original image decorated with trnasfor-

mation

id <ImageComponent> *decoratedImage1 = [[ImageTrans-

formFilter alloc] init];

[image drawInRect:rect];

Listing 2. iOS code snippet showing usage of Concrete Component and decorator

As shown in listing 2, the same old draw* messages are called in order to instantiate

both the original image and decorated images.

9 Command Design Pattern

9.1 Design Challenge in the Finnkino Application

Pseudo code shown in listing 3 is the logic of a menu action. Firstly it becomes difficult

to read the code as the menu item increases. Secondly the logic to perform each menu

action might be complex and the code might extend to a few hundred lines. Using the

command pattern solves this problem.

- (IBAction) getAction:(id) sender

{

 int tag = [sender tag];

 switch (tag)

 {

24

 case kTrimIndex:

 // Trim the video asset

 break;

 case kRotateIndex:

 // Rotate the video asset

 break;

 case kCropIndex:

 // Crop the video asset

 break;

 case kAddMusicIndex:

 // Add Music to asset

 break;

 case kAddWatermarkIndex:

 // Add Text to asset

 break;

 }

}

Listing 3. iOS pseudo code

In listing 3, the 5 switch-case corresponds to the 5 menu actions in the Trail-

erEditViewController of the Finnkino application.

9.2 Solving Design Challenge

Instead of writing the complex logic in the client class we will move the required action

to the object through encapsulation. Thus we will need to create object/class for each

command. All these classes will inherit from the command interface to abstract the

child action. After that an invoker class is needed to map the action to corresponding

command objects.

25

Figure 16. Command design pattern applied in Finnkino

The mechanism of communication among related classes in the class diagram shown

in figure 16 are explained below:

a) Define command interface FKTCommand with a method signature

-performWithAsset:.

b) From the command interface FKTCommand creates four derived classes,

FKTTrimCommand, FKTRotateCommand, FKTCropCommand, FKTAdd-

MusicCommand. These classes encapsulate the receiver class AVAsset. Each

of them calls the receiver class’s specific action method inside the

-performWithAsset: method and knows what argument to pass to the receiver.

By having that we have successfully encapsulated the receiver class, methods

to invoke and arguments to pass in the concrete command objects.

c) Instantiate each concrete command object in the client class for deferred exe-

cution request.

d) The client instantiates the receiver object (AVAsset) and concrete command ob-

jects. After that it hooks up the invoker (in our case it is the UIBarButton items

created in the storyboard) to call the command.

e) The invoker and in turn the user of the application decides when to call – per-

formWithAsset: command.

The benefits achieved by applying the command pattern are the following. Firstly, it

helped decoupling the client class and receiver class by means of encapsulation of

commands into objects/classes and hence the client class does not have to worry

about details of how to perform actions on the receiver. Secondly, this pattern enables

extensibility since we can add new commands without altering the existing code.

Finally, a more readable client class is achieved.

10 Multithreading and Responsiveness

The ultimate goal is to achieve the best possible and responsive user interface

experience by utilizing the functions offered by the application development framework

and hardware capabilities of the device. To reach this goal I had to make several

choices. These are explained in the following sections.

26

10.1 Responsive UI in Downloading and Parsing Data

The task of the view controllers is to update the data to their corresponding views. It

comprises two tasks: downloading the data payload (XML or JSON) and parsing them

to hold in memory for later processing by the application. Downloading and parsing is a

time-consuming task especially in a slow network and if the data payload is large. To

keep the user interface responsive while data is being downloaded and parsed they

need to be performed asynchronously. Implementing delegate protocols provided by

the framework class NSURLConnection and NSXMLParser solves this.

As shown in figure 17, the FinnkinoConnection class is set as a delegate of

NSURLConnection. When the connection initiates, the protocol methods implemented

in the delegate class will be called to handle the downloaded data.

Figure 17. Data downloaded asyncronously

Once the data downloading is finished NSXMLParser is initiated and parsing is kicked

off. As shown in figure 18, the parser class calls the protocol methods implemented on

the class that are set as its delegate (FinnkinoEvent).

Figure 18. Data parsed asynchronously

27

The benefit achieved of this asynchronous nature shown in figure 17 and figure 18 is,

the UI will not freeze while the data payload is being downloaded and parsed. The user

can still navigate away to another tab. Other UI elements such as buttons and a search

bar are responsive to user touch.

10.2 Choosing Callback Pattern

Since I had applied the façade design pattern in our application the downloading and

parsing were handled in a separate class. The data just downloaded and parsed must

be handed off to the consuming view controller. I had four choices for solving the

callback problem. They are delegation, target-actions, notification and block.

a) Delegation: By analysing Delegation pattern as a solution of our callback prob-

lem I had found that it is more suitable when the interested class requires to be

notified of multiple events and only one class can be a delegate at a time. First-

ly, our view controllers are only interested in receiving already downloaded and

parsed data. We do not need to be informed of multiple events. So it is an over-

kill to write protocols just for one event. Secondly, our façade class required to

be created as a singleton. We know multiple classes might make a request to

the singleton at the same time. So we cannot use the delegation pattern here

as a callback.

b) NSNotification: Although NSNotification decouples the receiver and sender it is

more suitable when multiple classes need to be informed of the same message.

It is like broadcasting rather than straight communication between two objects.

It is an overkill setting up and removing observers when our intention is to send

the message to only one class.

c) Target-action: It is more suitable when we have a close relationship of two ob-

jects such as view controllers and one of their views, since we will have to know

the method selector name to make a callback, which requires us to know the

details of another class. Our callback is from a different class and so it would

not be a good design practice to have such interdependencies.

d) Blocks: I chose block to solve my callback problem. The reasons are the fol-

lowing:

 The callback is only going to be called once.

 Handing off downloaded and parsed data to the client is a quick pro-

cess.

28

10.3 Multithreading in FKMovieViewController

Now having the processed data handed off to the view controllers, they need to update

their views with the data. The table view is updated with title, duration, genre and an

Image. The title, duration and genre information were sent as string from the server.

However the image was sent as an URL address instead of raw data, which meant we

need to further download the image from the received URL address. If the image is

downloaded in the main thread, the view will be stalling while the user scrolls of the

table view. This is where multithreading offers a solution. Figure 19 shows how we

make use of Multithreading to solve our problem. The figure only demonstrates the

fundamental concept of threading in iOS application. For Finnkino Applications thread

management I used NSOperation and NSOperationQueue. It is possible to use

NSThread to implement multithreading, but it is harder to manage multiple threads.

NSOperation is a higher-level class, which simplifies thread management.

Figure 19. Multithreading concept, Copied from Danton Chin [15, 23]

How multithread functioning in the table view:

As the user scrolls the table view the image will be downloaded for the corresponding

table view cell and the view will be updated with the image. If we download the image

29

on the main thread the UI will be blocking while image downloads. As a result the user

will experience that table view is not scrolling smoothly.

10.4 Caching in FKMovieViewController

Data are cached in two steps. First the whole XML data payload is cached when

FKMovieViewController’s table view requests for data as shown in figure 20.

Figure 20. Caching mechanisms in Finnkino Application

The whole XML payload was cached, but the data did not include the image data. In-

stead it had the location URL of the image. The code is set up in a way that each table

view cell makes a request to the image URL to load it inside of it. Now it is a perfor-

mance penalty if each cell initiates the download request every time it is reloaded

Figure 21. Image chaching in Finnkino Application

30

It is shown in figure 21 the solution to perfomance penalty is to cache the downloaded

image in the file system and only initiate the download if it is not already in the cache.

10.5 Responsiveness in RTMovieViewController

Although RTMovieViewController does not request to cache the data, it has

sophisticated functionalities comparing to FKViewController. The features are following:

a) The image is downloaded in the background thread.

b) The image will be filtered after downloading in the background thread.

c) The table view cell is only updated if the view has stopped decelerating and the

user has taken the fingers off the screen. As the user scrolls away from the ta-

ble view the off screen cells will not download or filter images for them. Cancel-

ling the request to the download image of the already scrolled off-screen cells

does this. In that way it stops making unnecessary network request to the serv-

er to download images and hence saves battery life.

d) Once the image has been downloaded the view is updated. It is updated again

when the filtering has finished. In that way the user will have to wait less time to

see the image.

11 Conclusion

The goal of the project was to develop an iOS application for users in Finland to

browse different movie-related information, which was accomplished by successful

completion of the practical part of the project. The second goal was to study the soft-

ware design patterns on an iOS platform. The theoretical part of the project consisted

of applying proven design patterns to solve commonly occurring design challenges.

Simultaneously studying theory and applying it to the application helped gaining crucial

understanding of software design patterns. The benefits, drawbacks and side effects of

applying software design patterns are demonstrated in the thesis.

However, the application can be configured and functionalities can be extended for

more features. The possiblity for improvement is open for extension and thereby study

of various other software design patterns can be taken further. The study of these de-

sign patterns can be applied on many other development platforms.

31

References

1 Apple Inc. iOS Developer Library. Model-View-Controller [Online]. Septermber
2013.
URL: https://developer.apple.com/library/ios/documentation/general/
Conceptual/DevPedia-CocoaCore/MVC.html. Accessed 20 August 2014

2 Chung C. Pro Objective-C Design Patterns for iOS. New York, NY: Appress Me-
dia LLC; 2011.

3 Kulandai J. Observer Design Pattern [Online]. March 2013.
URL: http://javapapers.com/design-patterns/observer-design-pattern/. Accessed
25 August 2014.

4 Gamma E, Helm R, Ohnson R, Vlissides J. Design Patterns: Elements of Reusa-
ble Object-Oriented Software. Indianapolis, IN: Pearson Education Corporatre
Sales Division; 2009.

5 Knoernschild K. Java design objects uml and process. Bostom, MA: Pearson
Education; 2002.

6 Bock D. The Paperboy, The Wallet, and the Law of Demeter [Online].
URL: http://www.ccs.neu.edu/research/demeter/
demeter-method/LawOfDemeter/paper-boy/demeter.pdf. Accessed 25 August
2014.

7 Oracle Corporation. The JavaEE 6 Tutorial [Online]. 2013.
URL: http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html. Accessed 15 Sep-
tember 2014.

8 Apple Inc. iOS Developer Library. iOS Frameworks [Online]. Septermber 2014.
URL: https://developer.apple.com/library/ios/documentation/
miscellaneous/conceptual/iphoneostechoverview/iPhoneOSFrameworks/
iPhoneOSFrameworks.html. Accessed 12 September 2014.

9 Sadun E. The iOS 5 Developer's Cookbook: Core Concepts and Essential Reci-
pes for iOS. Bostom, MA: Pearson Education; 2012.

10 Napier R, Kumar M. iOS 7 Programming Pushing the Limits. Chichester, West
Sussex: John Wiley & Sons; 2014.

11 Knott M. Beginning Xcode. New York, NY: Appress Media LLC; 2014.

12 Napier R, Kumar M. iOS 6 Programming Pushing the Limits: Advanced Applica-
tion Development. Chichester, West Sussex: Josh Wiley & Sons; 2012.

13 Apple Inc. Xcode The complete toolset for building great apps [Online].
URL: https://developer.apple.com/xcode/interface-builder/. Accessed 26 February
2014.

14 Gallagher M. Five approaches to listening, observing and notifying in Cocoa.
[Online]. June 2008.
URL: http://www.cocoawithlove.com/2008/06/five-approaches-to-listening-
observing.html. Accessed April 23 2014.

32

15 Danton C, Höfele C, Kazez B, Mora S, Palm L, Penberthy S. More iPhone Cool
Projects. New York, NY: Appress Media LLC; 2010.

16 Galloway M. How best to use Delegates and Notifications in Objective-C.
[Online]. June 2013.
URL: http://www.informit.com/articles/article.aspx?p=2091958. Accessed F23 eb-
ruary 2014.

17 Echessa J. Getting Started with Auto Layout in Xcode 5. [Online]. June 2014.
URL: http://code.tutsplus.com/tutorials/getting-started-with-auto-layout-in-xcode-
5--cms-21016. Accessed 21 October 2014.

	1 Introduction
	2 Theoretical Background
	2.1 Object-Oriented Design Pattern
	2.1.1 Model-View-Controller (MVC)
	2.1.2 Façade Pattern
	2.1.3 Observer Pattern
	2.1.4 Decorator Pattern
	2.1.5 Command Pattern

	2.2 Object-Oriented Design Principle
	2.2.1 Open-Closed Principle (OCP)
	2.2.2 Principle of Least Knowledge (PLK)

	3 Method and Material
	3.1 RESTful Web Services
	3.2 iOS Software Development Kit
	3.3 Development Tools

	4 General Structure of the Application
	4.1 Application Features
	4.2 Application Implementation

	5 Model-View-Controller
	5.1 Model Object Tree
	5.2 Tying up the Model, View and Controllers

	6 Façade Design Pattern
	6.1 Motivation
	6.2 Applying Façade Pattern in Finnkino Application

	7 Observer Design Pattern
	7.1 Motivation
	7.2 Observer Pattern (KVO) in Finnkino Application

	8 Decorator Design Pattern
	8.1 Motivation
	8.2 Realization
	8.3 Design Challenge in the Finnkino Application
	8.4 Solution

	9 Command Design Pattern
	9.1 Design Challenge in the Finnkino Application
	9.2 Solving Design Challenge

	10 Multithreading and Responsiveness
	10.1 Responsive UI in Downloading and Parsing Data
	10.2 Choosing Callback Pattern
	10.3 Multithreading in FKMovieViewController
	10.4 Caching in FKMovieViewController
	10.5 Responsiveness in RTMovieViewController

	11 Conclusion
	References

