
 

 
 

 

 

 

 

Website development project with Joomla 3 

Content Management System 

 
Jesper Ruuth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  

 

 

 

 

 

 

 

 

 
Bachelor’s Thesis 
Business Information Technology 
October 2014 

 



 
Abstract 
 

31.10.2014 

 

 

 
 

Author 

Jesper Ruuth 
 
 

Degree programme 

Business Information Technology 
 
 

Thesis title 

Website development project with Joomla 3  – Content 
Management System 
 

 

Number of pages  
and appendix pages 
41 + 2 

 

Thesis advisor 

Sauli Isonikkilä 
 
 

Content management systems (CMS) are probably the most popular frameworks to build 

content rich websites that require extensive editorial tools. Joomla is currently the second 

most popular CMS and over the years it has become an extremely robust and secure 

platform thanks to its active and thriving developer community. 

This thesis describes re-development process of a website called “Freedom for Sale”. 

The website was built with Joomla and the implementation included the entire 

development life-cycle including some special activities such as data cleansing and data 

migration. The project was commissioned by Art Films production Oy and it was carried 

out between September 2013 and April 2014. 

The goal of Freedom for Sale is to promote human rights and freedom of speech by 

highlighting grievances and monitoring governments and multinational corporations, 

whose actions support or ignore violations of human rights and free speech. By providing 

videos, articles and reports the website provides a medium for the mistreated to get their 

voices heard and by so help the world’s development. 

The website has a troublesome past. It was initially launched in 2007, but it was shut 

down after becoming a victim of harmful cyber-attacks, which corrupted majority of data 

and content in the process. Valid backups were not available to be used.  

Besides describing the development process, this report describes the core concepts of 

CMSs, Joomla, information architecture and data cleansing. The thesis will also suggest 

a method how data cleansing and migration could be applied to Joomla with Excel or 

similar spreadsheet application.  
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1 Introduction 

1.1 Background 

Freedom for Sale is a non-profit private organization and a website implementation project 

commissioned by a Finnish film production company, Art Films production Oy. Freedom 

for Sale’s purpose is to focus attention on human rights and freedom of speech abuses by 

highlighting grievances and monitoring governments and multinational corporations, 

whose actions support or ignore these violations. The intention is to raise awareness and 

encourage open discussion, in an effort to have an impact on broad issues of common 

interest and ultimately the world's development. Freedom for Sale website provides 

hundreds of eye opening articles and other media content, which have been produced by 

numerous human rights activists and Art Films production itself. 

The project’s roots originate from 2007 when it was initially launched along with 

documentary film, Shadow of the Holy Book. Soon after being released, the website was 

forced to be put offline after becoming victim of regular and harmful cyber-attacks. 

According to previous developers, this was due to unstable and insecure commenting and 

community modules that allowed malicious scripts to bypass website’s information 

security measures. It was also assessed, that the controversial content on the website 

made it more intriguing target for these attacks. 

1.2 Objectives and tasks 

The purpose of this thesis was to re-design, re-implement and re-launch Freedom for Sale 

website for the commissioning party. The main objective was to produce a dynamic and 

content rich website that would be easy to use and been built on top of secure and robust 

content management system. In addition, it was requested that new website should 

include all the previously produced content, which meant that the old content needed to 

be gathered and prepared for this implementation as well. 

The tasks included in this thesis implementation were: 

 Analyzing and specifying website’s functional and non-functional requirements 

 Installing and configuring the development environment and software 

 Implementing data cleansing for the legacy data 

 Designing website’s information architecture and layout mock-ups 

 Implementing data migration into Joomla CMS 

 Building the website with Joomla CMS 
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 Testing the usability and functionality of components and layout 

 Deploying website to a web server 

1.3 Research topics 

In addition to describing the website’s implementation process, this report includes a short 

theory part, which covers the topics that were required during the implementation. These 

topics have been divided into separate chapters and they are: 

 Content management systems (CMS) – What they are and how they function? 

 Joomla CMS – Which are its core features and components? 

 Information architecture – What it means, why it is required and how it is done? 

 Data cleansing – What it means, why it is required and how it is done? 

Moreover, some technical terms and topics that were relevant during the implementation 

(such as data migration) are covered in chapter 6. 

1.4 Timing and scheduling 

The development tasks described in this report were carried out between September 2013 

and April 2014 and were implemented along with other studies and work. This report was 

written along with the development tasks and it was finished in October 2014. 
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2 Content Management Systems (CMS) 

This chapter describes web based content management systems and their core features 

and components. The content is based on literature and online sources as well as 

author’s personal experience with them. 

According to US registered patent (US 6356903 B1), content management system (CMS) 

is an information delivery system for web based implementations that organize content of 

the information separately from the appearance of the presented information and by so 

allowing content creation and management to be done in a native format with familiar 

software tools (Baxter & Vogt 2002). 

Simply put, CMSs are installable web applications that include a database and extensive 

set of tools dedicated for content creation, management and publication on internet. Their 

main purpose is to ease content management and publishing tasks on the web by 

providing tools that do not require extensive knowledge of the web markup languages or 

its protocols. (Shreves 2010, 3–4; TechTarget 2011a.) 

Originally, CMSs were designed as tools for organizations to dispose static HTML 

websites and to simplify web publishing that required knowledge of HTML and other web 

standards. The traditional method was found impractical and expensive as publishing 

content required constant co-operation between the content contributors and web 

developers. A solution was achieved by developing a system that integrated all the 

elements of web publishing under single implementation. This innovation breached the 

barriers that had existed in traditional web publishing allowing it to become less technical 

and more streamlined. (Shereves 2010, 3–4.) 

2.1 Key features and components 

In software engineering, one will eventually come across with the terms front end and 

back end. Front end and back end are terms’ which main purpose is to distinguishing the 

tasks related to presentation layers and data access layers. The front end is more 

concerned about the presentation logics while the back end is more concerned about the 

data access and business logics. Technically speaking, front end development involves 

mostly client-side coding, while the back end development involves mostly server-side 

coding. 

When talked about CMSs, the terms front end and back end may refer to separate 

application areas as the CMS distributions basically contain two different applications. In 
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this case, the front end refers to the publicly visible website that serves as the medium for 

regular users while the back end refers to the administration application that is used for 

managing content and application’s preferences by the system admins and editors. 

Nevertheless, both the public and administrator application contain front-end and back-

end components as they both contain presentation and data access layers. 

For the sake of clarity, this and the next chapters use the following naming conventions to 

distinguish these terms: 

 Front end component refers to the presentation layer (Client-side code) 

 Back end component refers to the data access layer (Server-side code) 

 Administrator application refers to the back end application of CMSs 

(Administrative view) 

 Public application refers to the front end application of CMSs (Public view) 

2.1.1 Content Management Application (CMA) 

Content Management Application (CMA) is the front end component of the administrator 

application. CMA is basically an administrative control panel with a graphical user-

interface (GUI) that is used for managing content and assets, users, access rights, 

templates, extensions and other system preferences of websites. Back-end application is 

typically equipped with efficient and user-friendly tools such as WYSIWYG text editors that 

allow editing and publishing task to be done without having extensive technical knowledge 

of web standards and its protocols. Access to the CMA and its features are usually 

controlled with login and access control to ensure the integrity of content and security of 

the entire system. (TechTarget 2011b; Goodrich 2013.) 

2.1.2 Content Delivery Application (CDA) 

Content Delivery Application (CDA) is the back-end component of the administrator 

application. CDA is basically the component that handles all background operations while 

transacting data between the content repository and view by compiling user inputs made 

via CMA. (TechTarget 2011a; Goodrich 2013). 

2.1.3 Template engine 

Template engine is the CMS component dedicated for presenting information to users by 

attaching the content from data repository to a pre-defined layout template in order to 

generate the output for users. Basically, templates are layout definers and user-interface 
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element placeholders that do not hold actual content, but rather provide framework for 

presenting it. With the help of CMA, editors with minimal technical knowledge are able to 

edit and manage templates to some extent but more advanced editing or building one 

from scratch requires advanced knowledge from HTML, CSS and various other web 

standards. (Shreves 2010. 497–498.) 

 

Diagram 1: Illustration of template engine’s functionality (Wikipedia 2006). 
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3 Joomla 

This chapter introduces Joomla CMS and its core features and components. The chapter 

does not describe Joomla’s technical implementation in high-detail or compare Joomla to 

other CMSs. The content is based on the official Joomla documentation and other online 

sources as well as author’s personal experience. 

Joomla is a user-friendly open-source and community driven CMS that is built on top 

robust model-view-controller (MVC) framework. It is developed and maintained by The 

Joomla Project Team, a global developer community with contributors all over the world. 

(Joomla 2014a; Joomla 2014b.) 

It is considered one of the best and most sophisticated CMS’s available and according to 

a survey of W3Techs (2014), it is currently ranked as the second most popular CMS 

platform in the world. 

3.1 Framework & Extensions 

As mentioned, Joomla has been built on top of MVC framework which can be used to 

build stand-alone applications.  Besides the framework, Joomla CMS is composed from a 

set of extensions which each have differing functions. Some of the extensions are part of 

the CMS core and are essential for proper functionality and stability of the system and 

thus come along with the default installation. Moreover, the core can be extended with 

various other extensions which can be purchased or downloaded for free via Joomla 

Extension Directory which is a centralized distribution channel for all types of Joomla 

extensions. (Joomla! Docs 2013a.) 

Extensions are software packages that extend the default Joomla installation in some 

way. It is relevant to understand that extension term is generic and that it means all types 

of extensions such as components, modules, plugins and templates which each are 

meant for different purposes. (Joomla! Docs 2014a.) 
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Picture 1: Joomla web page visualizing the different extension types (Joomla 2013d). 

3.1.1 Components 

Components are the most sophisticated extensions that provide the main functionality to 

Joomla system. They can be referred as mini-applications that generate output for 

different parts such as the main content section of each web page. (Joomla! Docs 2014b; 

Shreves 2010, 547.) 

Components are triggered by HTTP requests and they execute series of operations within 

the framework which ultimately leads to generating the output. For example, an article 

view component, com_content, performs all the actions required from fetching the data 

from database to rendering article’s HTML document. The framework provides abstract 

classes for model (JModel), view (JView) and controller (JController) which the 

components extends to in order to have standardized architecture. (Joomla! Docs 2014b; 

Shreves 2010, 547–548.) 

Joomla components are composed from site part (front-end application) and administrator 

part (back-end application). The site part is used for rendering page content for the front-

end application while the administrator part provides a user-interface for the back-end 
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application for configuring components’ preferences. (Joomla! Docs 2014b; Shreves 2010, 

547) 

3.1.2 Modules 

Modules are customizable page rendering blocks that are used for displaying specific 

information in a specific area. Modules can be associated to components when they 

inherit their functionality or they can be independent blocks that render content the way 

specified within the module. (Joomla! Docs 2014c.) 

Modules are assigned to pages via navigation menu items so they can be shown or 

hidden depending on the page in question. The positioning of the module is entirely 

dependent on the used template’s module placeholders but it is possible to position a 

module into any placeholder that template in question provides. Modules are also divided 

into front end and back end parts where the back-end part provides an user-interface via 

Module Manager where they can be freely configured. (Joomla! Docs 2014c.) 

 

3.1.3 Plugins 

Plugins are extensions that serve as event handlers and helper applications. They are 

triggered by certain events and they respond to it with procedures that can be visible or 

esoteric. Plugins are mainly used for extending the functionality of components and they 

are built with observer design pattern where the dispatcher notifies all the associated 

plugins allowing them to be executed in sequence. (Joomla! Docs 2014d; Joomla! Docs 

2013b; Shreves 2010, 543, 569.) 

3.1.4 Templates 

Templates are extensions that control the overall layout and visual presentation of 

content. They define how various page elements should be structured and how the 

content should be rendered within them although some components and modules may 

contain their own styling rules. The purpose is to separate the visual presentation from the 

actual content allowing more efficient website maintenance with possibility to apply 

consistent layout throughout the website. (Joomla! Docs 2013c; Shreves 2010, 497) 

Joomla provides separate templates for both front-end and back-end applications. 

Templates can be installed or built from scratch and they can also be configured via back-
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end application using the Template Manager. (Joomla! Docs 2014e; Joomla! Docs 

2013c.) 

3.2 Security 

Joomla is considered to be a very secure CMS. Nevertheless, as being an open-source 

platform it is also a common target for various cyber-attacks and breaching attempts. 

(Joomla Security Info 2014; SiteGround 2014.) 

“Keeping your site patched and up to date is one of the keys to maintaining your site’s 

integrity and protecting it against hackers” (Shreves 2010, 685). 

Joomla documentation (Joomla! Docs 2014f; Joomla! Docs 2012) suggests few general 

guidelines on how to improve the security of Joomla installation. These guidelines include 

the following procedures:  

 Back up early and often 

 Install Joomla updates when they are released 

 Use a trustworthy and secure hosting provider 

 Use strong usernames and passwords for login 

 Do not trust third party extensions 

 Use an offline environment to test extensions before applying them to live site 

 Do not use the default security settings 

 Use the community to get help in security matters 

In addition to above mentioned, it is considered as a good practice to use the SEF 

(Search Engine Friendly) component to rewrite URLs, to use proper file permissions and 

ownerships on server side and to use some safe third party security extensions that 

protect the site from different types of attacks. (SiteGround 2014; Joomla! Docs 2014f.) 

3.3 Technical requirements 

By the time of writing this report, the latest stable release of Joomla is 3.3 and it requires 

PHP version 5.3 or higher, MySQL, SQL Server or Postgre SQL database and Apache 

2.0, Nginx 1.0 or Microsoft IIS 7 as the webserver (Joomla.org 2014c).
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4 Information Architecture 

This chapter describes what is meant with an information architecture and what kind of 

methods can be applied at its design process. The content is based on online sources. 

According to Morville and Rosenfeld (2006, 4), information architecture is:  

 A structural design of shared information environments. 

 The combination of organization, labeling, search, and navigation systems within 

web sites and intranets. 

 The art and science of shaping information products and experiences to support 

usability and findability. 

 An emerging discipline and community of practice focused on bringing principles of 

design and architecture to the digital landscape. 

Basically, information architecture (IA) is information system’s structural solution for 

structuring, organizing and categorizing content in effective and sustainable way. The aim 

of it is to establish logical, clear and consistent structures and paths towards content so 

that the information can be found easily by any user. (Usability.gov 2014a.) 

Information architecture is a broad concept including multiple aspects, tasks and 

purposes. In order to fully understand it, it is crucial to realize the overall structure in a big 

picture and how the pieces of information are connected to form a network of information 

and how they are related to each other. Designing information architecture is a constant 

balancing between the needs of independent users, diversity of content and context. In 

addition to users’ needs, the content should also be structured for search engines and 

web crawlers making the task even more challenging. (Usability.gov 2014a & Morville 

2012.) 
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Diagram 2. The three circles of information architecture according to Rosenfeld and 

Morville (Usability.gov 2014a). 

4.1 Methods and techniques 

Information architecture contains elements from various specialty areas. It involves many 

activities that are more or less related to topics such as usability, user experience (UX), 

layout and user-interface design. To be successful it requires a good understanding of 

industry and organizational standards as well as recognizing how users navigate and use 

information systems in general. (Usability.gov 2014a.) 

Morville and Rosenfeld state that information architecture is composed from organization 

systems, navigation systems, search systems and labeling systems (Morville & Rosenfeld 

2006. 43). 

Organization systems describe how the content is organized and categorized. 

Usability.gov suggests that organization systems can be further divided into schemes and 

structures where schemes are used for categorizing content and structures for forming 

relationships and hierarchies between them. (Usability.gov 2014b.) 

4.1.1 Organization Schemes 

Organization schemes can be exact or subjective depending on the approach. Exact 

schemes mean organizing content objectively in a way that it is commonly known and can 

be easily sorted. Such means include alphabetical and chronological ordering. Subjective 

schemes mean the opposite as it focus on organizing content into subjective categories 

defined by organizations. These categories can be for example a certain topic, a tag word 

or audience. The advantage of subjective mean is that the user is more likely to find 

related content of the subject while the exact schemes on the other hand are more 

predictable and so the user is likely to understand the logic of organization scheme more 

quickly. (Usability.gov 2014c .) 

4.1.2 Organization Structures 

Organization structures is a about defining relationships between contents and schemes. 

Well implemented structures are predictable and help users to clearly understand the 

overall structuring and categorization and so make navigation a lot easier. The 

organizational structures can be hierarchical, sequential or in a form of matrix. 

(Usability.gov 2014d.) 
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The purpose of hierarchical structures is to establish a clear hierarchy among content. 

The essence of hierarchical structure is in parent-child relationships where parents cover 

broader sections while the children provide more detailed and targeted content. The 

hierarchical structure is often visualized with a tree chart involving a root and numerous 

branches. (Usability.gov 2014d.) 

Sequential structures are line like structures that include continuity of procedures until 

reaching the end. Sequential structures are typically used when providing step-by-step 

guidance such as filling registration form or conducting online shopping. Sequential 

structure assume that the next piece of content is somehow dependent on the previous 

content and so there is clear ordering among them. (Usability.gov 2014d.) 

When designing organization structures, it is important to design them flexible. Information 

architecture is usually established with a long term perspective so it is likely that the 

amount of content will grow or the organizational needs change. The structures should 

neither be too broad nor confined as the content might get lost if there are too few or too 

many levels between the user and content. (Usability.gov 2014d.) 

4.1.3 Content inventory 

Content inventory is an inventory of all content that is included within the information 

system. Content inventories are tools for designers and information architects to 

understand the content in a larger scale and by so provide insights whether all relevant 

content is gathered and properly organized. In addition, content inventories give insights 

whether the essential metadata has been assigned to each content item. (Usability.gov 

2014e.) 

4.1.4 Wireframing 

Wireframing is technique that can be used for layout design as well as for information 

architecture. Wireframe is a two-dimensional mock-up of the layout and by so it visualizes 

the final implementation. The benefits of wireframing are that it demonstrates early on how 

the users will see the content and how the used information architecture fits in. It basically 

gives insights whether it is functional or not. Wireframe also demonstrates the space 

allocation and how the content can be positioned within the limits of displays providing 

valuable information for making the final design decisions. (Usability.gov 2014f.) 
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5 Data Cleansing 

This chapter defines what is meant with data cleansing, why it is required and what 

procedures are involved in it. The content is based on the source material and personal 

experience. 

Data cleansing is a multi-stage process where inaccurate, inconsistent or irrelevant data 

records, also known as dirty data, are corrected, sanitized or removed from data storage 

to improve consistency and overall quality of data. It is required when dirty data affects the 

functionality, performance or usability of the system or degrades user experience in any 

way. It is procedure that should not be neglected and it is considered as an important 

aspect of any system maintenance and its results benefit both system administrators and 

end users. (Chapman 2005. 1–2.) 

Dirty data is common and expected. It is cause from human mistakes such as typos or 

application errors existing in the source code and so can never be avoided. Clean data is 

essential since data that is not correct, representative or presentable for its purpose is 

practically meaningless. (Chapman 2005 & Dongre 2004.) 

5.1 Methods and techniques 

Data cleansing can be an independent process or part of a larger implementation such as 

data conversion and integration project. It usually involves several stages in which data is 

profiled, evaluated and cleansed with various routines and procedures. The 

implementation of these stages varies as they are affected by the quality and quantity of 

the data in question as well as the requirements specified by an organization or system. 

(Dongre 2004). 

Data cleansing can rarely be a fully automated process and manual cleansing is 

practically always required to some extent. This is due to fact that all error types and 

inconsistencies cannot be solved with computational means. Finding and fixing these 

problems can make data cleansing an extremely tedious and time consuming process 

which nevertheless should not be ignored. (Dongre 2004.) 
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Diagram 3. An example of workflow of automated cleansing process (left) and manual 

cleansing process (right) (Dongre 2004). 

According to Dongre, the quality of data can be measured objectively or subjectively and it 

pertains to issues such as accuracy, integrity, cleanliness, correctness, completeness and 

consistency (Dongre 2004). 

Before actual cleansing activities are started, it is important to define certain quality 

standards for the clean data to help in future evaluation. In case of new system 

implementation, it is also important to consider the requirements of the target system 

while establishing these standards. Especially, the target system’s database solution and 

data modeling practices should be thoroughly analyzed before defining any standards. 

(Dongre 2004.) 

5.1.1 Staging 

After the data quality requirements have been specified, a good practice is to implement 

so called data staging area for the subsequent cleansing process. This done in order to 

avoid irreversible, accidental, incorrect changes that could not be rolled back .The staging 

area can be a separate database or spreadsheet file where all data is centralized, isolated 
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and organized into easily manageable form for further analysis and processing. (Dongre 

2004.) 

5.1.2 Auditing 

Next work phase is data evaluation and error inspection or so called data audit. The 

purpose of data audit is to evaluate the overall quality of data against previously specified 

quality requirements and to find any errors or inconsistencies among the data set. All 

errors and error types should be documented so that they can be traced independently 

later on. (Dongre 2004.) 

After all data has been profiled and evaluated, the data can be rearranged according to 

found errors and inconsistencies. With this method the dirty data can be isolated from 

other clean data to avoid the risk of accidentally processing already cleansed data. 

(Dongre 2004.) 

Data audit can be conducted by using computational methods such as using search 

functions to find certain condition within data and counting its volume or by simply 

reviewing them manually. There are also various software suites and solutions designed 

for data auditing and cleansing but their applicability was not tested in this thesis. In 

addition, data auditing requires certain logical thinking, deep understanding of the data in 

question and skills of creative problem solving. 

5.1.3 Cleansing 

The actual data cleansing is done by executing series of automated and manual routines 

and procedures to clean as many data inconsistences as possible. The computational 

routines applied for data auditing can also be utilized in data cleansing using them 

reversely. Data may often require several cleansing procedures and iterations before it 

fulfills the quality standards defined for it. For this reason, it is a good practice to split the 

cleansing process into several phases, making it more efficient and manageable. When 

the cleansing process is completed, it is recommended to re-evaluate and audit the data 

in case further processing is required. (Dongre 2004.) 
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6 Project Implementation 

This chapter describes the implementation process of the Freedom for Sale website by 

describing the work phases, used methods and their appliance. In addition, the outcomes 

of each phase are analyzed and reviewed in regard of their successfulness and impact for 

this project. 

6.1 Requirements analysis and specification 

The project was started with requirements analysis and specification. The purpose of this 

work phase was to define website’s functional and non-functional requirements and to 

decide the most essential guidelines that should be used in subsequent design and 

development work phases.  

Requirements analysis was conducted by having discussions with the commissioning 

party about project’s origins, goals and future plans, as well as analyzing the 

shortcomings of previous implementation. The analysis also contained a short research, 

where websites of similar topic were reviewed and analyzed in order to discover 

commonly applied design practices and to spark inspiration. 

Because the commissioning party did not have any specific requests for the technical or 

aesthetical implementation, the requirements were specified mainly independently without 

commissioning party’s active participation or contribution. 

In the beginning, the requirements were specified in high-level, because the knowledge 

about the project and its content was too narrow at the time. Because of this, 

requirements were kept under ongoing inspection throughout the project implementation 

and were updated whenever they required changing. 

6.2 Preparing the development environment 

6.2.1 Why Joomla was chosen? 

While specifying the requirements, it was agreed that the website should be built with a 

CMS. This was due to fact that the website would ultimately require various content 

management and publishing tools which usage should not require extensive technical 

knowhow. Joomla CMS in particular was chosen among other potential candidates simply 

because the commissioning party’s previous websites had been built with it. This meant 
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that the commissioning party’s staff was already familiar with Joomla’s features and 

functionality and by so, did not require further consultation. 

6.2.2 Installing XAMPP for Windows 

Since Joomla requires a web server that supports PHP and MySQL, one was required to 

be configured in order to start the development tasks. During the development phase, 

Joomla website and database was hosted on local computer that was integrated with a 

WAMP (Windows, Apache, MySQL and PHP) development stack. 

This environment was prepared by installing XAMPP, a cross-platform Apache distribution 

that contains all the components (Apache, MySQL, PHP and PERL) that are required to 

run a Joomla website. XAMPP was chosen, because it was suggested by the Joomla 

documentation and it was considered the fastest way to set up the environment for a 

Windows operating system. (Joomla! Docs 2013e) 

The installation of XAMPP was rather easy and straight-forward process as it was done 

with a step-by-step installer wizard. After the installation, Apache’s configuration took 

some effort, since the default port number required changing. By default XAMPP 

installation for Windows assigns Apache’s port number to 80, which in this case was 

already reserved by some other application. The port number was changed to 81 via 

Apache’s httpd.conf file that was residing beneath the “xampp/apache/conf/” directory 

path. Finally, the functionality of XAMPP installation was tested by accessing localhost via 

web browser. 

In this implementation, XAMPP version 1.8.1 was used containing Apache 2.4.3, MySQL 

5.5.27 and PHP 5.4.7. All installations were done for Windows 8 operating system. 

6.2.3 Installing Joomla on localhost 

After the localhost had been configured, the installation of Joomla was started. The 

installation was done in two phases. In the first phase, Joomla’s installation package was 

downloaded via Joomla’s official website and the package’s contents were extracted into 

a new directory on localhost. In XAMPP setup, a proper directory path for websites is 

“xampp/htdocs/”, where each website should be assigned to separate directory. All 

websites residing under “htdocs” can then be accessed via browser by entering the URL 

address of the localhost or alternatively using the computer’s IP address. The localhost’s 

URL is formatted as “http://localhost:81/website/”, where “81” refers to Apache’s web 



 

 
 
18 

 

server’s port number and “website” to the namespace of website’s directory. A good 

convention is to use short and easy to remember namespaces, because it is just 

temporary and it is typed often during the development. 

In the next phase, the initialization of Joomla CMS was done with Joomla’s browser based 

installation application, which was launched, when the website was accessed for the very 

first time. The installation was a step-by-step process, where the website’s basic 

information and settings such as website’s name, description and database preferences 

where chosen and configured. After the installation process was completed, Joomla 

deleted the contents of the installation application automatically due to security reasons 

and after that, Joomla CMS was set up and ready to be used. 

In this implementation, the website was built for Joomla 3.2.1 CMS. 

6.2.4 Other software installations 

In addition to XAMPP and Joomla, also the following software was installed and/or used in 

order to be able to complete this project: 

 Microsoft Expression Design 4 – Graphics design software that was used for 

designing the layout mock-ups 

 Microsoft Word 2010 – Word processor software that was used for all 

documentation tasks 

 Microsoft Excel 2010 – Spreadsheet software that was used for data cleansing 

and data migration tasks 

 Microsoft Visio 2010 – Flowchart drawing software that was used for designing the 

information architecture and workflow documents 

 Microsoft Project 2010 – Project management software that was used for project 

management activities 

 MySQL Workbench 6.0 – MySQL database management system that was used for 

managing the Joomla’s MySQL database 

 NetBeans IDE 7.3 – Integrated development environment that was used for 

debugging Joomla and various PHP, HTML and CSS coding activities 

 Notepad++ 6.3 – Simple text editor that was used for small coding and editing 

tasks 

 FileZilla 3.7 – FTP client application that was used for deploying the website to 

web server 



 

 
 
19 

 

6.3 Data Cleansing with Excel 

Before the previous website was put offline, the developers had managed to export 

backup of the database as a dump file. This dump file included a structure of the articles 

table containing article texts and their metadata. By analyzing the contents of this dump 

file, it was discovered that majority of the data had been corrupted and contained 

irregularities and invalid HTML notation. These errors and inconsistencies were assumed 

to be cause from malicious SQL injections caused by the cyber-attacks, but this could not 

be confirmed from the developers. 

The specified data quality requirements included the following conditions: 

 All articles should be relevant for the website and present time 

 All articles should be properly formatted and have a consistent presentation 

structure 

 All articles should be associated with a relevant categories, tag words and other 

metadata 

 All articles should contain an acknowledgement paragraph to original source 

 All articles should contain a hyperlink directing to original source 

 All articles should have an accurate publication dates 

 All articles should include a proper and validated HTML notation 

 All articles should contain proper line breaks and paragraph spacing 

 All articles should not contain useless HTML markups such as excessive <br/> 

tags 

By validating the legacy data against these requirements, it was confirmed that extensive 

data cleansing procedures were required, in order to have accurate and solid data 

available for the new implementation.  

6.3.1 Choosing and preparing the data staging environment 

Data cleansing was started by creating an isolated data staging environment, where data 

could be freely manipulated without risking any other implementations or original dump 

file. The staging process was started by transforming the contents of the database dump 

file into more practical format. This was required because the dump file was a SQL script 

file, where the long article texts and metadata were embedded inside SQL insert 

statements, which caused them to be in impractical format for proper reading and 

analyzing. 
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At first, MySQL database and MySQL Workbench database manager was tested as a 

staging solution, since the contents of the dump file could be imported there easily. The 

importation was done by copy-pasting and executing the SQL statements into an empty 

database via query window. An alternate solution would have been importing the script file 

directly via Workbench’s file import feature. After the data had been successfully imported, 

it was possible to read and analyze it more practically and intuitively.  

While analyzing the data, it was discovered that the volume of errors and inconsistencies 

within the data was larger than expected. In addition, it was discovered that there was lots 

of variance between error types, where some would require manual cleansing procedures. 

For these tasks, MySQL Workbench was considered a bit impractical, so another staging 

environment was decided to be tested. 

After pondering and testing different options, it was decided that Microsoft Excel 2010 

would be used as final staging solution, since it contained several efficient functions for 

automated data cleansing as well as an intuitive user interface for rapid manual editing 

tasks. Also the support for numerous file formats and the possibility to use multiple 

spreadsheets tabs inside a single document was considered as a benefit. 

First, the data needed to be transformed once more and this time it was achieved by 

simply copy-pasting the data rows from MySQL Workbench’s table view into an empty 

spreadsheet. Before continuing, it was also checked that copy-pasting would not crop out 

any text parts. After this was confirmed, a new spreadsheet tab was created in which the 

structure of Joomla database’s “#__content” table (“#__” refers to table prefix), containing 

all articles, was mimicked in order to have the similar table structure within the 

spreadsheet as well. 

6.3.2 Web scraping new articles with copy-pasting technique 

Since it had been several years since the last content update, new articles were also 

required in order to fulfill the requirement which specified that articles should relevant for 

present time. Because these new articles had not been gathered, new articles were 

collected by applying manual copy-paste web scraping technique. 

Web scraping means the process of collecting information from third party web pages. 

Web scraping can be done by applying different methods, but usually it is done 

automatically by a scraping application or user defined collection scripts (Techopedia).  
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Before the scraping was initialized, once again a new spreadsheet tab was created to 

clearly distinct old articles from newer ones. This spreadsheet was also structured 

according to Joomla database’s “#__content” table. 

The articles were scraped from co-operative organizations’ websites and it was conducted 

manually by copy-pasting the body text, title, lead paragraph, author, publication date, 

source and URL address into separate columns. In the beginning, the method was rather 

laborious and slow, but it turned faster once it became routine. A good practice was to 

arrange two screen displays side-by-side, where the source and spreadsheet were 

organized as parallel windows. This method significantly reduced the time of switching 

views on each copy-paste. 

Automated scraping tools or techniques were not used in this implementation, because it 

was essential to analyze the relevancy of article’s content before the copying was done. 

Also the fact that several information sources were used meant that each source would 

have required an individual scraping routine due to having different DOM structures, and 

by so it was considered rather impractical considering the amount of articles to be scraped 

from one source. 

6.3.3 Conducting the data audit and error inspection with Excel 

Before starting any cleansing procedures, it was important to assess and document the 

location, volume and variance of errors and error types. This so called data audit was 

done so that the errors and inconsistencies could be identified, prioritized and categorized 

in order to help the process of planning and applying cleansing procedures. 

Data audit was conducted by reviewing data items against the data quality requirements 

by applying both manual and automated error inspection methods. At first, all data items 

were browsed through and each time a certain error or inconsistency occurred, it was 

documented and that data item flagged so that it could be traced back later on. Finally, the 

occurrence of specific error types were confirmed by using Excel’s search formulas, which 

used the error as a search parameter and returned the value if the error was found. In 

addition, by using the calculation formulas it was possible to count the occurrences of 

each error type allowing them to be prioritized according to volume. 

During the data audit, the following errors were identified: 

 Irregular paragraph spacing and line break notation 
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 Missing <p> tags for article paragraphs 

 Missing sources, lead paragraphs and publication dates 

 Missing <ul>, <ol>  and <li> tags for lists 

 Excessive and useless line break notations: <br/>, \r and \n 

 Invalid hyperlink notation and link rot: @start_link@, @end_link@ 

 Invalid bold text notation: @start_bold@, @end_bold@ 

 Invalid heading notation: @start_title@, @end_title@ and @start_header@, 

@end_header@ 

 Invalid line-break notation: @break@ 

 Invalid use of special and non-western characters 

 Other irregularities that require manual cleansing  

By identifying these errors and error types, it was possible to invent the automated 

cleansing formulas, in order to minimize the necessity for manual cleansing. Also by 

identifying the errors for each data item, it was possible to run cleansing formulas as a 

batch process for similar error types. 

6.3.4 Applying cleansing procedures by using combined method 

The actual data cleansing was conducted by applying a combined method, which included 

both automated and manual cleansing routines. The goal of this work phase was to 

improve the overall quality of data, so that it would match the specified data quality 

requirements and be ready for later data migration. A personal goal for this phase was to 

be able to clean as many errors and inconsistencies as possible by using automated 

means and applying manual routines only when an automated routine could not be 

applied or if the cleansing case was isolated. 

Before the cleansing was started, it was important to plan the order of cleansing 

procedures to help in management of this process. This was mainly because data 

cleansing can involve several stages and require multiple iterations before being 

completed. Thus, it is also important to monitor the progress of the process and to 

establish clear ordering between cleansing procedures to avoid overlaps and ensure 

correct outcomes. The order of procedures was done by creating a flowchart of cleansing 

procedures with Microsoft Visio 2010. 
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6.3.4.1 Running automated cleansing procedures 

The automated data cleansing was conducted by applying Excel formulas and cell 

references. In the beginning, the spreadsheet was organized so that the data column 

containing the uncleansed articles was specified as the data source. From this column, 

the data was transferred into next column by using cell references. During this transfer, 

the data was partly cleansed with pre-defined cleansing formulas, which were associated 

to all data cells in that column. The partly cleansed data was next transferred into next 

column, which contained some other formula and this process was repeated until all 

cleansing procedures had been applied for all data rows. By using this method, the 

original data was never overwritten which allowed reversal to previous cleansing stages. 

 

In general, Excel formulas were really useful for data cleansing procedures. Especially the 

SUBSTITUTE -text function, that substitutes parts of some old text with some new text, 

was considered to be very efficient, since quite often the case was that some text part was 

wanted to be replaced or removed, which the SUBSTITUTE formula was able to handle 

efficiently. For example, the SUBSTITUTE text function allowed the correction of invalid 

HTML notations, removal of unnecessary line breaks and transformation of non-western 

and special characters into valid HTML entities. By being able to do so, majority of the 

data could be cleansed automatically in batch runs. Nevertheless, several cases still 

required manual cleansing procedures in order to be considered clean. 

6.3.4.2 Running manual cleansing procedures 

Since all error types and inconsistencies could not be solved with computational means, 

manual cleansing procedures were also required. Because the data items that required 

manual cleansing were predefined and flagged during the data audit phase, they did not 

need to be identified and the cleansing could be started right away. 

Manual cleansing was extremely laborious process that required precision and constant 

focus to avoid typos and other additional errors. The most laborious turned out to be the 

hyperlinks, since they often contained broken or dead links where the URL address was 

often mixed with the link’s title text. 

6.3.4.3 Concluding the cleansing activities 

Once the planned cleansing procedures had been applied, the quality of data and 

successfulness of cleansing procedures were tested by creating a small web application 
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that printed all articles on a single web page. This was done by copying the cleansed data 

columns into new spreadsheet and exporting it as CSV file. Based on this spreadsheet, a 

new database was created by using the localhost’s PHP MyAdmin tool to import the 

contents of the spreadsheet into the database. Next, the application for printing the 

articles was written in PHP, which fetched the articles from the database and put the 

results into array, which was looped through and printed on separate section blocks on a 

single page. Finally, the quality of data was confirmed by browsing the page’s content and 

reviewing the source code, and checking that each article’s HTML notation worked 

properly. 

In overall, the data cleansing was very laborious work phase, which took, along with the 

data migration, most of time used for this project. Off-the-shelf software suites designed 

for data cleansing were not used, because their functionality for this context could not be 

confirmed and there was no experience from their usage. In addition, it was in the interest 

to research how traditional spreadsheet software, such as Excel, could perform this type 

of data cleansing activities. 

In overall, Excel was considered to be quite good solution for this implementation due to 

containing many efficient formulas and excellent cell reference features. Nevertheless, 

more illustrative and practical presentation and editing features for long article texts would 

have been preferred. 

6.4 Designing the information architecture 

After the articles and other data had been cleansed and properly organized, designing of 

website’s information architecture was started. The goal of this work phase was to 

produce consistent and logical categorization conventions for contents and to decide how 

the website’s navigation structure should be organized. This work phase included the 

following tasks: 

 Defining categorization schemas and naming conventions 

 Organizing and categorizing articles and other content 

 Organizing content in hierarchical structure and producing the sitemap 

 Choosing the media content for the websites (photos, videos etc.) 

 Choosing the navigation system for the website 

Before any categorization could be made, it was crucial to get familiar on how Joomla 

organizes and stores its content. Especially important was to research which database 

tables are essential for categorization and which components use these tables for 



 

 
 
25 

 

displaying content. This research was done by reading Joomla’s documentation and by 

analyzing Joomla’s database schema, table relations and their contents in practice. In 

addition to this work phase, the information gained from this research, was found 

extremely useful later on, when conducting the data migration. 

In Joomla, content is organized into categories. Each category can then contain sub-

categories, which establishes clear hierarchical structure between different categories. 

Organizing content into categories contains one problem though, since by default, one 

article can only belong to one category. For some implementations, this can make 

categorization with categories a bit inflexible. For this reason, in this implementation 

content was categorized by using tag words, which could be defined as many as liked. 

(Joomla! Docs 2013g.) 

Content’s categorization was started by organizing the content inventory. The Excel 

spreadsheet created during data cleansing served this purpose well, since it already 

contained all the content, which would be required in this implementation. 

In this implementation, the content was organized under three-level structure by using 

subjective categorization schemes. In the beginning, all content was organized under 

main a category, because in Joomla, all articles must belong to some category. After this, 

each article was categorized under three main groups, depending on which topic they 

dealt with. Because these groups were organized by using tag words, each article could 

be assigned to more than one group. These groups also formed the second layer in main 

navigation system. Finally, each main group was assigned with a number of relevant tag 

words as sub-groups, forming the third level in navigation system. 

The implementation of this work phase required extensive awareness of the content since 

the categorization was based on subjective schemas. In addition, the convention of good 

collective and accurate categorization terms was found challenging. 

6.5 Designing the layout mock-ups 

Designing of the layout was done in order to build an early mock-up of the website that 

would illustrate the final presentation by excluding all underlying functionality. This was 

done in order to simulate website’s visual presentation in an early stage and by so help 

the process of building the website’s template. In addition, building an early mock-up 

confirmed that the requirements regarding to layout would be considered in final design. 
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Instead of using the simplistic wireframing technique, mock-up method was chosen, 

because it could demonstrate the final presentation more accurately and aid the process 

of choosing between different design practices. 

The website’s layout and layout design requirements specified that: 

 The website should have a home page for featured and latest articles 

 The website should have subpages for an about page, categories, articles and 

videos 

 The layout should have a static header block for displaying logo, navigation and 

search bar 

 The layout should have a static footer block for displaying partner organizations 

 The layout should have a dynamic body blocks displaying dynamic content 

 The layout should be stylish that emphasizes content 

 The layout should contain familiar and commonly known user-interface elements 

 The layout should contain aesthetic but easy-to-read font stack 

 The layout should be responsive and it should function well on every display 

 The layout design should be made with modern design practices 

The layout mock-up was built by using Microsoft Expression Design 4, a graphics design 

software, which was chosen due to previous experience. Expression Design has many 

similarities with Adobe’s well-known Photoshop software suite, although it contains less 

sophisticated features. Expression Design’s downsides also are that its development was 

discontinued in 2012 and it is only available for Windows operating systems. 

Nevertheless, Expression Design is still very efficient and capable graphics design 

software for lightweight web design purposes. (Microsoft 2014.) 

Before continuing into drawing the layout elements, a proper design document was setup. 

First of all, it is a good practice to use pixels as the measuring unit instead of millimeters 

or inches, when web design is in question. This is mainly because digital media uses 

pixels to define and measure contents at their screen displays. (Webopedia; Web 

Designer Depot 2010.) 

The dimensions of the design document are not absolute in Expression Design 4, since 

the document borders do not restrict the ability to position layout elements beyond the 

borderlines. In addition, document borderlines can be re-sized at any point which makes 

them more as guidelines for designers that aid in visualizing what the users can see at a 

time. That is why it is a good practice to use screen display’s resolution for the document’s 



 

 
 
27 

 

dimensions. In this implementation, the document was set to width of 1920 pixels and 

height of 1080 pixels. (Just Creative 2012; Microsoft Developer Network. 2011.) 

Another good practice is to enable the grid guidelines. This helps alignment and 

positioning of layout elements as the grid allows elements to be snapped to their borders. 

Moreover, by defining 1 pixel as the document’s nudge increment, which defines how 

much an element is moved by single stroke of an arrow key, can help in aligning elements 

even more precisely. This implementation was done by setting the grid size to 24 pixels, 

which was the initially planned as the default margin between layout elements. 

Next phase in preparing the design document was setting up the grid system. Grid system 

is commonly applied layout design technique that helps alignment of layout elements and 

content sections according to relatively positioned baseline columns. Grid systems can be 

static when each column is given a precise width in pixels, or they can be fluid, when the 

widths are assigned as relative percentages based on the full width of the template. On 

website’s, the responsiveness of grid systems is usually handled with media queries and 

CSS classes, that handle floating, clearing and widths of columns elements. (Bootstrap; 

Sonspring 2008.) 

One of the most common grid systems is a 12-column grid, where the template is divided 

into 12 equally wide columns. The width of columns is dependent on the overall width of 

the page and gutter margin that is left between each column, excluding the first and last 

column. This implementation was done by using a 12 column grid systems where each 

column was assigned to a width of 69 pixels with 24 pixel gutter margins. (Bootstrap.) 

 

 

 
Picture 2: An example of 16 column grid system (Sonspring 2008). 
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After the design document and the grid system had been prepared, drawing of layout 

elements was started. This phase was done by first including the main content sections 

and components that had been specified in the requirements. Next, all the additional page 

modules were included along with dummy texts that served as temporary placeholders to 

visualize the use of space. Finally, all layout elements were organized and groomed to 

represent the finalized mock-up of a webpage.  

The final outcome was achieved by improving the layout mock-up through numerous 

revisions and iterations. During these iterations, different page structures, font-stacks and 

element positions were tested, until the layout was considered to fulfill its requirements 

and be generally well balanced, where content and other layout elements were aligned in 

a good harmony. (Appendix 1.) 

6.6 Data migration 

“Data migration is the process of transferring data between data storage systems, data 

formats or computer systems” (TechTarget 2013). 

In this context, data migration refers to the process of transferring data from an Excel 

spreadsheet into the MySQL database of Joomla. In this implementation, the migration 

was done as a three stage process including data extraction, transformation and 

uploading activities. (Data Integration Info a; Data Integration Info b) 

 

 

Diagram 4: Illustration of data migration process (Jindal. 2). 
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Instead of using Joomla’s administrator application for uploading articles manually, 

migration was done by transforming the contents within the spreadsheet into SQL 

statements and by injecting them directly into database. This method was chosen in order 

to avoid tedious task of inputting each article manually. 

For a successful data migration, it is essential to understand the target system’s database. 

While analyzing Joomla’s database schema and table dependencies, it was discovered 

that Joomla uses multiple tables for categorizing and displaying content. This meant that 

in addition to “#__content”, also a number of other tables needed to be migrated, in order 

to guarantee proper functionality of Joomla’s components in the final website. (TechTarget 

2013) 

For this implementation, the following tables were identified as crucial for data migration 

process: 

 #__assets – A table for application assets that contain access rules 

 #__categories – A table for content categories 

 #__content – A table for articles 

 #__contentitem_tag_map – A table for mapping content items to tags 

 #__content_frontpage – A table for mapping content items that can be featured on 

homepage 

 #__tags – A table for tag words 

 #__ucm_base – A base table for the content that has been defined according to 

unified content model (UCM) 

 #__ucm_content – A table for content that has been defined according to UCM 

 #__ucm_history – A table for UCM content revisions 

6.6.1 Extraction 

The extraction work phase was initialized by creating a new Excel spreadsheet document 

for the migration activities. In this document, all relevant tables were assigned into 

separate tabs, where each tab was organized according to database table’s structure. 

Since the data in “#__content” had already been prepared during the data cleansing, it 

could be merged into the document as such. Next, rest of the remaining tables were 

fulfilled by inserting the missing information or using Excel’s cell references whenever 

there were dependencies between tables. Cell referencing was done in order to avoid 

referential integrity errors and reduce unnecessary repetition. 
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The most challenging task was fulfilling the tables that contained nested sets. Nested sets 

are a technique in relational databases to represent hierarchical structures within tables 

by using left and right column values. Its main purpose is to ease the logic of fetching child 

nodes of a parent in a hierarchical model. The biggest challenge with nested sets is that 

they require each left and right value to be updated whenever new rows are added into 

the table. In Joomla, nested sets are used in various tables, to represent hierarchies 

between components and content for instance. (Joomla Docs 2013f; Petersen 2012.) 

 
 

 

Diagram 5: Illustration of nested sets with a hierarchical table structure (Petersen 2012). 

6.6.2 Transformation 

After all relevant data had been extracted and properly organized, the transformation 

process was started. The goal of this work phase was to transform the data from 

spreadsheets into valid SQL insert statements, which could be used later on for updating 

the MySQL database. The transformation was done by exporting each table as separate 

CSV files and converting them into SQL statements by using an online CSV to SQL 

conversion application. Finally, the converted statements were exported as SQL script 

files. (Convert CSV To SQL 2013.) 

 

ID Left Right Depth Value 

0 0 13 0 Root 

1 1 8 1 A 

2 2 5 2 C 

4 3 4 3 E 

3 6 7 2 D 

5 9 12 1 B 

6 10 11 2 F 
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6.6.3 Load 

Final phase in data migration was the process of merging the transformed data into 

database. This work phase was conducted within MySQL Workbench environment by 

executing the insert statements as database transactions in separate sessions. 

Transactions were used in order to provide rollback option, in case the statement 

contained errors or the outcome was incorrect. The order of statements was also planned 

beforehand in order to avoid referential integrity violations. 

Finally after all SQL statements had been executed, data’s validity and correctness was 

confirmed by running appearance tests via Joomla’s public application residing on 

localhost. During these tests, the functionality of application’s main components were 

tested by running scenarios such as displaying articles that only contain a specific tag 

word. When the functioning of these components was confirmed, data migration work 

phase was concluded. (Jindal. 7.) 

6.7 Building the website with Joomla 

After the articles and other data had been successfully migrated into database, building of 

the website was started. The goal of this work phase was to construct the final website by 

following the specified requirements, information architecture and mock-up designs.  

This phase included the following main tasks: 

 Setting up a template that was similar to mock-up designs 

 Setting up the navigation structure by creating menu items 

 Assigning components to each menu item in order to provide page functionality 

 Implementing additional modules and page elements 

 Customizing the template according to layout mock-up 

 Optimizing the layout for mobile devices 

6.7.1 Choosing and customizing the template 

Before stating to implement any features, a proper template for the website needed to be 

set up. For this implementation, Shaper Helix – II, a template developed by JoomShaper, 

was chosen, because it contained similar layout structuring and lots of similar features 

than the initially designed mock-up. By using a similar base template, less customization 

was required. Also, the fact that the template came along with a powerful Helix framework 
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that contained good customization features via administrator application, supported the 

decision making. (JoomShaper 2013.) 

The template was installed via Joomla’s back-end application by importing the template’s 

zip file and configured via Template manager. 

 
 

 

 
Picture 3: A screenshot of the Shaper Helix – II, front-end template (JoomShaper 2013). 

6.7.2 Implementing navigation system and additional modules 

The navigation system was created via administrator application’s menu manager by 

creating new menu items in a hierarchical structure and assigning each item to a specific 

component. The components were chosen according to target page as what type of 

content were required to be rendered. Most of the menu items were assigned to a tag 

component, to fetch and display all articles that contain a specific tag word. (Joomla! Docs 

2013g.) 
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Finally, the additional page modules were created via administrator application’s module 

manager. Also, the modules were associated to specific component, although in some 

cases, the Custom HTML component was chosen,   

either included with some components functionality such as displaying a list of latest 

article releases or defined as customized HTML modules, when the content, functionality 

and element structure where defined within the module. 

 

6.7.3 Customizing the template with LESS 

The customization of the template was done by editing template’s LESS files. The editing 

was done by extending the template’s default CSS class selectors and writing additional 

selectors for customized modules. Joomla 3 and Helix framework support LESS, the 

dynamic CSS pre-processor language written in JavaScript, that extend the functionality 

of traditional CSS by adding support for variables, functions, nested rules and other 

features. These additions increase the efficiency and re-usability of CSS definitions and 

allow creation of more logical nested rules that mimic websites’ DOM structures. (Joomla 

2013; LESS) 

In addition to editing the LESS files, the default views of Joomla components written in 

PHP and HTML were edited in order to have full control over contents’ final presentation. 

 

6.8 Testing and Deployment 

Testing was done in order to confirm that the website was functioning well and fulfilled the 

specified requirements. Because the implementation did not include development of 

components or major coding tasks, testing was targeted mostly for website’s usability and 

appearance. 

During the testing, the following conditions were under a review: 

 Pages and components function properly 

 Back-end application’s features function properly 

 Layout functions properly on all display sizes 

 Chosen font-stacks and font-sizes are good for readability 

 All type of media content scales well on all display sizes 

 Recommended information security practices has been applied 
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Testing was done by running scenarios, where the functioning of the above mentioned 

test conditions were reviewed. The testing was conducted independently and they were 

run along with other implementation tasks. 

After the basic test scenarios had been completed and the website functioning been 

confirmed, website was demonstrated to the commissioning party. During this 

demonstration session, the commissioning party was able to test the functionality of the 

website and suggest improvements to parts that required more polishing. After the 

demonstration session, the work was approved by the commissioning party and it was 

ready to be released. 

6.8.1 Deploying website to web server 

After the website was approved by the commissioning party, it was released by deploying 

it to a hosting provider’s web server. In order to reduce hosting expenses, it was agreed 

that domain registration would be excluded, so the website was deployed under 

commissioning party’s existing domain name. The deployment process was completed in 

three phases, which all required use of different application tools. 

In the first phase, all project files residing on localhost’s directory were compressed as a 

zip file, that was transferred to the web server with FileZilla, FTP client application. Finally, 

the contents of the zip file were extracted into a new directory on the web server. 

In the second phase, new MySQL database for the website was created within the web 

server by using hosting provider’s CPanel application. Next, the localhost’s MySQL 

database was exported as a database dump file by using localhost’s PHP MyAdmin 

database management application. Finally, the contents within the dump file were 

exported into web server’s newly created database by executing the dump file’s insert 

statements with server’s PHP MyAdmin application. 

In the third and final phase, website’s configurations were set by editing the new 

connection parameters to a config file residing on the website’s root directory on server’s 

side. Finally, the deployment work phase was concluded when the website could be 

publicly accessed by entering the website’s URL address.  
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7 Summary 

Before implementing this thesis, I didn’t have any actual knowledge or experience about 

data cleansing or data migration. Researching these topics as well as getting firsthand 

experience by applying them in practice, helped me to understand their core concepts and 

realizing their importance for website development projects and how they fit in the big 

picture of development process. Especially the importance of clean and high-quality data 

was highly valued, as it was realized through first-hand experience that data becomes 

meaningless and loses its value, if it is badly formatted or contains critical errors. 

Joomla CMS was a familiar platform from my previous projects, so choosing it for this 

implementation was a safe choice. Still, I had never conducted data migration for it, which 

ultimately turned out to be more challenging task than expected. Nevertheless, it was also 

a good experience as it helped me to understand Joomla’s underlying design architecture 

and data storage structures better. 

In overall, this project implementation was quite laborious and challenging, but also useful 

and rewarding and I was able to learn from each work phase something new. The final 

website ended up being functional and decent and it satisfied commissioning party at the 

end.  

The project was delayed with couple of months, since data cleansing and migration 

activities lasted much longer than expected. This could have been avoided by analyzing 

the data and system’s requirements more thoroughly before making the schedule 

estimations or if more efficient data cleansing and data migration plans and practices 

would have been made and applied. 

7.1 Future development 

Future development plans of the website were left undecided by the time of this report and 

its maintenance and editorial work were left for the commissioning party to decide. Since 

some important development areas such as search-engine-optimization were left out from 

this implementation, the website might require further development activities. Also, more 

extensive and thorough usability and information security testing could be applied in the 

future. 
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7.2 Importance of results 

In addition to completing this thesis in order to complete my studies, this project was also 

important for the commissioning party, since the contents of the website concerned 

universally important topics that are also relevant for their film productions. Being forced to 

put the previous website offline, had been very disappointing and frustrating, since a lot of 

work had been put for marketing and producing the website and its content. Thus, having 

the previously produced material back online was very important for them as well as 

updating the content and modernizing the website’s appearance in the process. 
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Appendices 

Appendix 1: Screenshots of the homepage mock-ups 

 

 

 

Picture 4. The mock-up designs made with Microsoft Expression Design 4, showing the 

initially planned content section and module positions (top) and the final homepage mock-

up (bottom). 
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Appendix 2: Screenshots of the finished website’s homepage view 
 
 

 

 

 

 

 
 

 

Picture 5. Website’s layout for desktop displays (left), tablet displays (top-right) and mobile 

phone displays (bottom-right) (Freedom for Sale 2014). 


