

INTRODUCTORY PROGRAMMING ECOSYSTEM

FOR CHILDREN WITH MOBILE APPLICATION

Anastasios Tsimplinas

Master’s thesis

 November 2014

 Information Technology

ABSTRACT

Tampereen ammattikorkeakoulu

Tampere University of Applied Sciences

Degree Program in Information Technology

ANASTASIOS TSIMPLINAS:

Introductory Programming Ecosystem for Children with Mobile Application

Master’s thesis 73 pages

November 2014

Programming has an enormous presence in everyday life of 21 century. New generation

students are surrounded by computer technology and will possibly do in the future an

occupation that has not been invented yet. Digital literacy is the ability to understand and

use digital technologies effectively for everyday tasks. Digital literacy is as important for

children today as reading and writing skills.

The aim of this thesis was to design and implement a mobile application for tablets that

could introduce children to the basics of programming logic with an easy and interactive

way. Children by playing with a friendly user interface will be able to understand better of

what happens inside computers and also improve their math and logic skills. Using the

tablet, children can develop their code by arranging different shapes-pieces-images-blocks

that represent simple programming commands as part of a game. The blocks include basic

functions as “move”, loops as “repeat” and conditions as “if”. Additionally children they

could see the logic results and actions in reality as interaction with a Lego

Mindstorms™ EV3 robot. This will make them also more curious with the magical world of

robotics.

This master’s thesis starts with an introduction on the importance of teaching young

children concepts of programming and we continue with the exploration of the background

and current state solutions in the area of children programming. After the taxonomy of the

various programming environments we present comparative studies between the different

interfaces. Based on the comparisons and studies we have explored, we propose a mobile

application for tablets that is isomorphic with a tangible programming language that will

create a full introductory programming ecosystem, ready to bridge the gap between the

tangible and graphical solutions on the area of programming for children. As a conclusion

we present the different issues raised during the design and development phase of our

application and the future work we intent to carry out.

__

Keywords: children programming, mobile solution, robots, tangible programming

ACKNOWLEDGEMENTS

There many people to thank and acknowledge for all their support, help and motivation

they have given over the last two years. This thesis is dedicated to my parents Theodoros

and Theodora Tsimplina for their endless support and encouragement throughout my life.

I would like to sincerely thank my supervisor Esa Kujansuu for his guidance during this

study. I have been fortunate to have an advisor who gave me the freedom to explore on my

own, and at the same time the guidance to recover when my steps faltered. I would like also

to thank Theodosios Sapounidis for the long discussions that helped me sort out the

technical details of my work and lectures on related topics that helped me improve my

knowledge in the programming for kids area.

A very special thanks goes out to Konstantinos Miliotis and Danai Skournetou for our

philosophical debates, exchanges of knowledge, skills, and venting of frustration during my

graduate program, which helped enrich the experience.

4

TABLE OF CONTENTS

1 INTRODUCTION .. 6

2 BACKGROUND .. 7

2.1 Children and programming ... 7

2.2 Text based languages .. 8
2.2.1 Text based programming ... 8
2.2.2 Text based programming languages .. 8

2.3 Graphical based languages .. 11
2.3.1 Graphical programming ... 11
2.3.1 Graphical based programming languages .. 12

2.4 Tangible based languages ... 16
2.4.1 Tangible programming .. 16
2.4.2 Tangible programming systems ... 17

2.5 Mobile based systems ... 24

3 STUDIES ... 28

3.1 Comparisons between the different interfaces .. 28

3.2 Comparisons in programming ... 29

3.3 Summary of limitations regarding tangible programming tools ... 30

4 DESIGN AND DEVELOPMENT ... 32

4.1 Interaction design for kids .. 32

4.2 Icon Design ... 33

4.3 The Lego Robot .. 37
4.3.1 Connection with the robot ... 37
4.3.2 Motors and Sensors ... 38

4.4 Mock ups .. 40

4.5 Software Requirements ... 42
4.5.1 The Purpose of the Project ... 42
4.5.2 Goals of the Project ... 43
4.5.3 The Stakeholders ... 44
4.5.4 Work Partitioning .. 48
4.5.5 Data Model .. 51
4.5.6 Product Boundary .. 53
4.5.7 Functional & Non-functional software requirements .. 58

5 SUMMARY AND FUTURE WORK ... 65

5.1 Issues that arose during problem analysis ... 65
5.1.1 Design new icons ... 65
5.1.2 Size of icons .. 65
5.1.3 Length of program script ... 66
5.1.4 Connection to robot ... 67
5.1.5 Operating system-Software distribution .. 67
5.1.6 Number of robots supported .. 68
5.1.7 Hardware constraints ... 68
5.1.8 Marketing strategy ... 68

5

5.2 Conclusion .. 69

REFERENCES .. 70

6

1 INTRODUCTION

Not long ago educating children to become adept at reading and writing was considered

enough to provide them with the necessary skills to explore the world of knowledge. But a

quiet revolution has started in the past few years in education matters. Digital literacy is

considered as an important trait as reading and writing. Many countries like the United

Kingdom and Estonia are incorporating into their educational curriculums lessons of

programming, even from the first grades of elementary school.

By departing from the classic approach that computers are just like cars,-someone need not

know about internal combustion engines in order to drive a car-, educating children in the

art of programming has many obvious and substantial benefits. By promoting team work,

sharpening problem solving skills, learning to create algorithms in a children-friendly

manner will be more important in the years to come than just learning a new foreign

language, or how to paint. Without exaggeration we might see coding as the new lingua

franca and who is a better ambassador for this new universal language than children, the

future and hope for every society.

In this thesis we discuss the topic of educational programming software for children. We

provide an overview of existing technologies utilizing different interfaces to educate

children, like text-based programming environments, graphical programming

environments, tangible programming systems and mobile systems. We suggest a mobile

graphical isomorphic equivalent of a tangible programming system which will operate on a

mobile device, e.g. tablet. Furthermore our system will utilize a Lego Mindstorms™ robot

connecting wirelessly to the tablet, which will perform like an actor for playing out the

various programming scripts. The user in mind is any child or classroom of children

wanting to learn to program in a fun and interactive manner, but we believe that our

approach is better suited for children aged 4~10.

7

2 BACKGROUND

2.1 Children and programming

In contradiction to what is happening to automated knowledge activities the ones that

require knowledge or skills that were acquired by repeating practice (e.g. the skills of

writing, reading, multiplication), the process of problem solving presupposes a mental

function in which we need to develop different strategies to approach the problem. When

trainees -children- learn a new programming language (Logo for instance) in order to

accomplish a given task, what really matters is that apart from the end result or the

programming language itself, is the user experience. By experience we mean the process of

developing the necessary problem solving strategies, coming up with ideas and testing their

validity, dealing with errors on problem diagnosis in a positive manner, increasing a

children's confidence in its own judgment, since the tutor shares the same belief and in

general the preoccupation of the apprentice with the process of learning.

The pedagogical value of these activities that require thought, is that they enable the child

to learn to think more effectively and in other areas apart from programming, either by

adopting more flexible and adaptive strategies and logic, or by accelerating the transition to

more advanced mental stages that mold new knowledge to long-term gnosis. Subsequently

learning to program with children must first be an immersive and fun experience. In the

following subsections we present an overview of the different programming interfaces with

chronological order of appearance.

8

2.2 Text based languages

2.2.1 Text based programming

Text based programming implies that the user will type commands-or select them from a

menu- that will form a structured program which will be either compiled or interpreted. The

output of the program will be either in the form of messages or more likely in some form of

on-screen graphical representation (e.g. the movement of a turtle). As in every text based

programming language mastering the syntax of the language takes an initial amount of time

which might make the learning process for children less attractive. It has been pointed out

that text based languages (Kelleher, C., & Pausch, R., 2005) are more suitable as

programming learning aids for children from ages 10 and above that already have some

level of experience from graphical and tangible programming systems.

2.2.2 Text based programming languages

Logo is an educational programming language (Logo webpage 2014) designed in 1967 by

Daniel G. Bobrow, Wally Feurzeig, Seymour Papert and Cynthia Solomon. Today the

language is remembered mainly for its use of "turtle graphics", in which commands for

movement and drawing produced line graphics either on screen or with a small robot called

a "turtle". The language was originally conceived to teach concepts of programming related

to LISP programming language and only later to enable what Papert called "body-syntonic

reasoning" where students could understand (and predict and reason about) the turtle's

motion by imagining what they would do if they were the turtle. There are substantial

differences between the many dialects of Logo, and the situation is confused by the regular

appearance of turtle graphics programs that mistakenly call themselves Logo. Logo is

generally known as an interpreted language, although recently there have been developed

compiled Logo dialects—such as Lhogho or Liogo. It is a compromise between a

sequential programming language with block structures, and a functional programming

language.

9

Logo's most-known feature is the turtle (derived originally from a robot of the same name),

an on-screen "cursor" that showed output from commands for movement and small

retractable pen, together producing line graphics. It has traditionally been displayed either

as a triangle or a turtle icon (though it can be represented by any icon). Turtle graphics were

added to the Logo language by Seymour Papert in the late 1960s to support Papert's version

of the turtle robot, a simple robot controlled from the user's workstation that is designed to

carry out the drawing functions assigned to it using a small retractable pen set into or

attached to the robot's body.

PICTURE 1. A screenshot of a Logo interpreter

Small Basic is a project (Small Basic webpage 2014) that is focused at making

programming accessible and easy for beginners. It consists of three distinct pieces:

•The Language

•The Programming Environment

•Libraries

The Language draws its inspiration from an early variant of BASIC but is based on the

modern .Net Framework Platform. The Environment is simple but rich in features, offering

beginners several of the benefits that professional programmers have come to expect of a

10

worthy IDE. A rich set of Libraries help beginners learn by writing compelling and

interesting programs. Small Basic is intended for beginners that want to learn

programming. In internal trials Small Basic has had success with kids between the ages of

10 and 16. However, it's not limited to just kids; even adults that had an inclination to

programming have found Small Basic very helpful in taking that first step.

PICTURE 2. A screenshot of a Small Basic IDE

Guido van Robot (GvR) is an educational tool (Guido van Robot webpage 2014) to help

students learn the Python programming language, named after the creator of Python, Guido

van Rossum. GvR uses the idea behind Karel the Robot, making the learning of Python

programming more interesting. Using GvR, a student writes a program that controls a

'robot' that moves through a city consisting of a rectangular grid of streets (left-right) and

avenues (up-down). Guido van Robot uses a minimalistic programming language providing

just enough syntax to help students learn the concepts of sequencing, conditional branching,

looping and procedural abstraction. It permits this learning in an environment that

combines opportunities for problem-solving with instant visual feedback. In short, it is an

interactive, introductory programming language that focuses on learning the basic concepts

of programming, applicable in any high-level language.

http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Guido_van_Rossum
http://en.wikipedia.org/wiki/Guido_van_Rossum
http://en.wikipedia.org/wiki/Karel_the_robot

11

PICTURE 3. A screenshot of GvR

2.3 Graphical based languages

2.3.1 Graphical programming

Graphical or visual programming involves the task of creating a structured program through

the combination of graphical elements on a program canvas or timeline. Through intuitive

graphical representations of programming concepts a user can piece together some kind of

programming puzzle on screen and thereafter observe its execution on screen. Little or no

typing of commands is required to complete the above task. The creation of graphical

programming tools for children is a wide field of research since the early 1960's. Based

mainly on graphical interfaces and utilizing the theories of constructivism by Papert

(Papert, 1980), a large number of programming languages was created for both children

and novice users. These graphical based programming approaches, incorporated simple

syntax, nested loops, and control structures through graphical representation, allowing

children to program by dragging and connecting icons on computer screens.

12

2.3.1 Graphical based programming languages

Scratch is a free desktop and online multimedia authoring tool (Scratch webpage 2014) that

can be used by students, scholars, teachers, and parents to easily create games and provide a

stepping stone to the more advanced world of computer programming or even be used for a

range of educational and entertainment constructivist purposes from math and science

projects, including simulations and visualizations of experiments, recording lectures with

animated presentations, to social sciences animated stories, and interactive art and music.

Viewing the existing projects available on the Scratch website, or modifying and testing

any modification without saving it requires no online registration. Scratch allows users to

use event driven programming with multiple active objects called "sprites". Sprites can be

drawn — as either vector or bitmap graphics — from scratch in a simple editor that is part

of the Scratch, or can be imported from external sources, including webcam.

PICTURE 4. Scratch editor screenshot

Alice is an innovative 3D programming environment (Alice webpage 2014) that makes it

easy to create an animation for telling a story, playing an interactive game, or a video to

http://en.wikipedia.org/wiki/Authoring_tool
http://en.wikipedia.org/wiki/Constructivist_teaching_methods
http://en.wikipedia.org/wiki/Math
http://en.wikipedia.org/wiki/Natural_science
http://en.wikipedia.org/wiki/Social_sciences
http://en.wikipedia.org/wiki/Interactive_art
http://en.wikipedia.org/wiki/Sprite_(computer_graphics)
http://en.wikipedia.org/wiki/Vector_graphics

13

share on the web. Alice is a freely available teaching tool designed to be a student's first

exposure to object-oriented programming. It allows students to learn fundamental

programming concepts in the context of creating animated movies and simple video games.

In Alice, 3-D objects (e.g., people, animals, and vehicles) populate a virtual world and

students create a program to animate the objects.

In Alice's interactive interface, students drag and drop graphic tiles to create a program,

where the instructions correspond to standard statements in a production oriented

programming language, such as Java, C++, and C#. Alice allows students to immediately

see how their animation programs run, enabling them to easily understand the relationship

between the programming statements and the behavior of objects in their animation. By

manipulating the objects in their virtual world, students gain experience with all the

programming constructs typically taught in an introductory programming course.

PICTURE 5. Alice programming environment screenshot

Kodu is a visual programming tool (Kodu game lab webpage 2014) which builds on ideas

begun with Logo in the 1960s and other current projects such as AgentSheets, Squeak and

Alice. It is designed to be accessible by children and enjoyable by anyone. Kodu is

14

available to download as an Xbox 360 Indie Game. There is also a PC version in an open

beta which is available to anyone at their website. Kodu is different from those other

projects in several key ways:

 It avoids typing code by having users construct programs using visual elements via

a game controller

 Rather than a bitmapped or 2D display, programs are executed in a 3D simulation

environment, similar to Alice

Kodu Game Lab has also been used as an educational learning tool in selected schools and

learning centers.

PICTURE 6. Kodu Game Lab programming tool screenshot

Lightbot is a visual programming game designed to teach basic instruction sequencing,

procedures, recursive loops, and conditionals (Lightbot webpage 2014). In Lightbot,

players guide a robot to light up blue tiles to solve levels, utilizing a small set of symbols

representing actions and procedure calls.

15

PICTURE 7. Lighbot programming game screenshot

Baltie is an educational graphic oriented programming tool (Baltie webpage 2014) for

children, youth (and adults). Baltie is also main character of this software a little wizard

keen to execute miscellaneous commands and to conjure pictures (tiles) in his scene. With

Baltie's help children will quickly realize what a computer is and how to master and

program the computer. All that by playing. Baltie can be used also for exercising logical

thinking. It makes no demands on childs knowledge, only playfulness and imagination are

required. It is used in many countries in the basic schools. The new version of Baltie 4 fully

supports C#.

PICTURE 8. Baltie educational programming tool screenshot

http://en.wikipedia.org/w/index.php?title=Baltie&action=edit&redlink=1
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)

16

2.4 Tangible based languages

2.4.1 Tangible programming

Resent research in tangible user interfaces, as they were defined by Ishii and Ullmer, (Ishii,

H., & Ullmer, B. 1997), created excellent opportunities for the pioneering implementation

of technology inside school classes (Ichida et al., 2004; Itoh et al., 2004). An area that

seems to have benefitted by this kind of technology is that of tangible programming

environments, with application mainly to education, but not exclusively to it. (McNerney,

2004; Blackwell, 2003). A tangible programming environment may have the same usage

results, with a text-based or graphical-based programming language. The peculiarity of

tangible environments has to do with instead of using graphical on-screen objects or

selecting on-screen commands, real-world objects are being utilized to fulfill the

programming process.

Programming in general seems to be a demanding task for novices of all ages (Kelleher &

Pausch 2005). Users not only find it difficult to comprehend a cumbersome syntax with

awkward-sounding commands, but in addition how to master the programming

environment itself (Cockburn & Bryant, 1997). Lowering the learning threshold of a

programming environment, is considered as one big advantage of tangible user interfaces.

Given the fact that users no longer need to learn how to use a mouse or keyboard, they only

need to have the natural ability to operate real every-day objects like cubes or puzzles

(Smith, 2007). As a result, it is estimated that tangible systems reduce the knowledge

burden of a person having to master a programming environment and thus its attention is

being focused at the task of learning how to program (Marshall, 2007).

Various systems that have influenced the creation of tangible user interfaces are the

following: (a) AlgoBlocks (Sapounidis, T., & Demetriadis, S. (2009) & Kato, 1993), the

first system to introduce programming commands in the form of cubes, (b) Tangible

Programming Brick (McNerney, 2001), the first system that incorporated parameters

alongside commands, (c) Electronic Blocks (Wyeth & Purchase, 2000), that allowed

17

children to construct robots or simple programmable mechanisms by connecting tangible

programming elements together, (d) Tern (Horn & Jacob, 2007), which was the first to

introduce scanning and recognition systems in order to translate the commands issued by

the user, into a programming sequence.

2.4.2 Tangible programming systems

Radia Perlman, researcher at M.I.T. media lab, at the late 70's, understood that most

children under 11 to 14 years old, were not ready to start programming in the traditional

way, e.g. by entering Logo commands in a PC with a keyboard (Kelleher & Pausch, 2005).

One of the biggest problems the children faced when it came to programming, was not only

writing the code but the user interface also. Perlman then started to design some interfaces

that would allow even pre-elementary education children to learn to program a turtle. Those

efforts matured to the first interface of this kind Tortis - Slot machine (Kelleher & Pausch,

2005). From that day and onwards, different design approaches to tangible programming

followed and they will be presented in brief below.

The Slot machine (Kelleher & Pausch, 2005; McNerney, 2004), was the first system

fabricated that introduced plastic cards that could be inserted in three differently-colored

stacks. At the left extreme of each stack one could see a "Do it" button. When someone

pushed the button, a virtual turtle executed the command that was printed on the card's

label. Furthermore upon execution of the command, a light was turned on below the

corresponding card. The Slot machine offered among others, some important functions as

in the direct manipulation of the executing program, by adding, rearranging, or even

removing cards. Furthermore Prelman introduced later on, special cards that provided

procedure call capabilities.

18

PICTURE 9. The Tortis slot machine

AlgoBlock (Sapounidis, T., & Demetriadis, S. (2009) & Kato, 1993) is a tangible

educational programming language for elementary education and high school students. The

system consists of a collection of cubes that can be connected to form a program. The cubes

are then connected to a PC for the program to be executed. Each cube corresponds to a

command that is similar to the Logo instructions. AlgoBlock was constructed to promote

collaboration. They act as a tool for collaborative activities and help trainees to build

programs through social interactions and discussion. The trainees have the task of steering a

submarine depicted on screen, by utilizing Logo-like statements. The statements available

include, move forward, turn left/right, return etc. Each of the above command-statement

has a corresponding cube.

PICTURE 10. Algo block

Research by Timothy S. McNerney (McNerney, 2001) on tangible user interfaces, began

from 2000 with the construction of the Tangible Programming Brick, which was another

tangible programming language. The researchers decided to build a one dimensional system

19

in which they stacked Lego bricks and thus creating a sequence of commands. To make the

system even more powerful they equipped the bricks with a slot on the side. In this slot one

could insert a electronic card to act as a parameter for the command, but along the way it

became evident that someone could insert other things like switches, sensors etc.

PICTURE 11. Tangible programming brick (McNerney, 2001)

Electronic blocks (Wyeth & Purchase, 2000) are designed in such a way that children can

connect them like any ordinary cube. By placing the electronic blocks one on top of the

other, children build programs that perform different tasks. Each electronic block has an

input and an output and when connected, the output of one cube controls the input of the

other. There are three kind of blocks.

 Sensor Blocks

 Action Blocks

 Logic Blocks

Logic blocks detect light, sound and touch in the surrounding environment. Sensor blocks

are those that signal Action blocks to perform some operation. Logic blocks have an in-

between role. By placing them amid sensor and action blocks, we have the capability of

altering the anticipated command. Even very young children, can use a collection of

electronic blocks. A simple game with action blocks can produce some sort of events that

the children can find interesting and engaging.

20

PICTURE 12. Electronic blocks (Wyeth & Purchase, 2000)

AutoHAN (Blackwell & Hague, 2001) is a networked programming architecture that

allows programming between different media devices in a house. A part of the AutoHan

architecture are the media Cubes. It is a simple programming language suitable for users

who can operate a simple VCR remote controller. Someone can argue that programming a

VCR is far less challenging than from programming in a PC. But if we want to issue a

command to record video from the front door security camera for 5 minutes from the

moment the motion detector is triggered, then we can state that programming is involved.

Each cube of the system represents a function of a home media appliance. If for example

the cube depicts play/pause, the user can associate this cube with the CD player. The

combination of more than one cube that represent different media functions, is the process

needed to complete the creation of the program.

PICTURE 13. Auto-Han media cubes (Blackwell & Hague, 2001)

Tangible programming with strings is a device that was created in order to construct simple

programs that control toy robots. (Patten, Griffith, & Ishii, 2000). For the users to create a

program in this system, events must be associated with actions which in turn shall be

executed as a response to those events. These associations are presented as images that are

connected with a string (actually it is a wire twisted like a string). The user associates

21

events that are created by the robot's sensors, with actions that are executed as a response to

those stimulations. Thus the system creates a program that can be loaded on the robot's

memory, and to function according to the way the strings were connected.

PICTURE 14. Programming with strings (Patten, Griffith, & Ishii, 2000)

The Game Blocks system (Smith, 2007) is comprised of large cubes which are places on

rails and thus creating a sequence of commands. The relative position of the cubes is

important, since it expresses a logic sequence, which in turn is a program. The system

includes in total 6 commands for the control of a humanoid robot. The available commands

are: forward, back, body left, body right, head left, head right. An interesting feature of the

system is that it is not necessary to incorporate electronic circuits inside each cube, since

the task of recognizing the cubes is carried out by electronic circuits on the rails.

Furthermore, it is worth pointing out that the system need not be connected to a PC, since

the computational power is being provided by microcomputers integrated inside the

circuits.

PICTURE 15. Gameblocks (Smith, 2007)

22

Quetzal & Tern (Horn & Jacob, 2007), are yet two more tangible programming languages

with educational orientation. These languages use solid objects without electronic circuits

and electrical power requirements. The programming elements of each language are

identical and resemble puzzle pieces. Quetzal is a language used to control a Lego

Mindstrom robot, while Tern is used to control a virtual robot in a PC screen. The

philosophy of both languages is common, since they were built by the same people, in the

same time period. Students using these languages program in offline mode and exploit a

portable scanning system to recognize the commands. This scanning system scans the

puzzle pieces and recognizes which commands exist and how they are connected, to form a

program. Finally, it is noteworthy to state that both languages allow the user to enter

parameters at the commands.

PICTURE 16. Quetzal Tern (left-right) (Horn & Jacob, 2007)

The T_ProRob system by (Sapounidis, T., & Demetriadis, S. 2011) consists of 28 cubic

commands and 16 smaller cubic parameters. The users of this system can order the cubic

commands and program the Lego Mindstrom (NXT) robot to run the sequence of

commands that have been formed by the cubes pushing just one button. The set of

T_ProRob parameters are smaller cubes which are connected to the commands and

changing their operation. The user connects on the basis (Master Box) the commands in

order to form the program. Then by pushing the run button, which is on the master-box, the

communication between the blocks and the master-box starts in order to have a successful

reading of the program. The next task which is undertaken by the master-box is to

communicate with a remote computer using Bluetooth or RS 232. This computer records in

a Database information about the commands that have been used and also statistical data

concerning the program which was created by the user. Once the computer finishes the

recording, it sends the program to a NXT robot using Bluetooth so as to run it.

23

V_ProRob subsystem by Sapounidis, T., & Demetriadis, S. N. (2012) has the same

commands -parameters with those offered by the tangible T_ProRob. The subsystem is a

graphical isomorphic equivalent of T_ProRob. It accumulates the specific features and the

capabilities of T_ProRob. For instance, V_ProRob informs the users about tests and errors

on the icons of the commands and parameters the same way that has been done with

T_ProRob. It offers to the users a reliable alternative to program the Lego Mindstrom robot

with a simple and easy graphical environment via a mouse.

FIGURE 1. T_Probrob system (Sapounidis, T., & Demetriadis, S. 2011)

24

2.5 Mobile based systems

The mobile revolution has affected many parts of our everyday lives and has also

revolutionized education. Mobile devices have been transformed into powerful learning

tools and technology will play a big part in the future of the classroom. As mobile learning

programs become more ubiquitous, a lot of attention has been given into all the possibilities

of integrating mobile devices into formal schooling tools. Traditional schools and

universities are trying to leverage the enormous opportunities for innovation in this area

and they are investing in tablets for both their students and staff. Technology has spread in

many devices like smart-phones and tablets are now full featured programmable

apparatuses. Thousands of apps have been designed specifically for education.

Hopscotch is a visual introduction to programming for kids ages 8-12. It allows kids to drag

and drop colorful blocks of code to create their own programs (Hopscotch webpage 2014).

Children can select preset characters or create text objects and manipulate them by

dragging-and-dropping method blocks. For example, you can move an object by a set

amount on the X-Y axis, change the scale, or repeat actions. Hopscotch is available on the

iPhone and the iPad.

PICTURE 17. Hopscotch screenshot

ScratchJr is an introductory programming language that enables young children (ages 5-7)

to create their own interactive stories and games (Scratch junior webpage 2014). Children

25

snap together graphical programming blocks to make characters move, jump, dance, and

sing. Children can modify characters in the paint editor, add their own voices and sounds,

even insert photos of themselves and then use the programming blocks to make their

characters come to life. ScratchJr was inspired by the popular Scratch programming

language, used by millions of young people (ages 8 and up) around the world.

PICTURE 18. ScratchJr screenshot

Daisy the Dinosaur by Hopscotch Technologies (Daisy webpage 2014) introduces children

to basic computer programming. A challenge mode tutorial shows how to make the

dinosaur move, jump, shrink and grow using drag and drop instructions. Without explicitly

using the terms, it demonstrates looping and conditional programming.

PICTURE 19. Daisy the Dinosaur screenshot

26

Through Cargo-Bot children (ages 6-12) write programs to control a robotic arm (Cargo-

Bot webpage 2014). The game asks students to program an automated cargo crane to pick

and drop colored boxes in a particular pattern in particular places. It gives kids hands-on

experience with computer science concepts like logic and problem solving. Kids will

practice tackling a big problem by breaking it down into smaller problems to solve.

PICTURE 20. Cargo-Bot screenshot

Move the Turtle (ages 6-12) is an iPad app for teaching basic computer programming to

young children (Move the turtle webpage 2014). Kids find the game's goal—to move a

turtle around the screen using programming instructions. Kids learn how to build their

programs using the command tiles on the chalkboard. Commands include Move, Turn, Pen,

Color, Repeat, Sound, Position, and Conditions. You can reorder the commands and see

how the program changes.

PICTURE 21. Move the Turtle screenshot

27

Tynker (ages 9-12) iPad app is based on collections of puzzles, solved by stringing together

commands in sequences using a drag and drop interface (Tynker webpage 2014).

Introduces concepts like sequencing, repetition and conditional logic. Reinforces basic

geometry concepts while using programming to draw angles and lines. Tynker is inspired

by visual programming languages such as Scratch from MIT, Alice from CMU, and other

programming languages like Logo, SmallTalk, and Squeak.

PICTURE 22. Tynker screenshot

28

3 STUDIES

3.1 Comparisons between the different interfaces

Although a big part of tangible systems has to deal with systems aimed at children, only a

limited number of researches have utilized children and tried to compare graphical and

tangible user interfaces. Specifically in the field of puzzle solving (Xie, L., Antle, A. N., &

Motamedi, N. 2008), presented the results of a comparative research that included physical,

tangible and graphical interfaces to solve the puzzle. The children were occupied with

puzzle solving, using all three interfaces (physical, tangible, graphical). Children responses

regarding the appeal of each interface, showed no difference among the three interfaces. As

far as commitment is concerned, it was noted that in the case of the physical and tangible

interfaces, a larger number of participants wished to solve another puzzle. Furthermore,

Antle et al. (Antle, A. N., Droumeva, M., & Ha, D. 2009) using the same system,

investigated the hypothesis that immediate physical interaction favors users in the case they

have to deal with spatial problems. The results demonstrated that children were faster and

more effective at puzzle solving and that can be attributed to the different actions and

strategies the children adapted using the tangible system.

In the field of mathematics Manches et al. (Manches, A., O'Malley, C., & Benford, S.

2010), compared physical and virtual materials for solving arithmetic problems, to show

how the limitations of the various interfaces, can influence users' actions. This particular

research presented that the properties of an interface are important for finding possible

solutions in arithmetic problems. On the contrary, Olkun (2003) did not find any difference

between the graphical and physical interfaces when the task was to solve two-dimensional

geometrical problems.

29

3.2 Comparisons in programming

Although a limited number of studies tried to compare tangible with isomorphic graphical

systems at various fields of knowledge, contradictory results that occurred point-out in

many occasions, the need to examine the circumstances under which these kind of

interfaces offer more advantages at the environment of a real classroom. (Zuckerman &

Gal-Oz, 2013). Specifically in the field of programming exist scarcely few such studies

(Orit & Eva, 2009). These comparative studies deal with tangible and graphical systems,

which have analogous characteristics and the focus of research are ease of use, enjoyment

etc. In more detail Kwon et al. (2012) performed a study comparing the Algorithmic Bricks

with Scratch system (Maloney 2010), but in that case the systems were not isomorphic.

A noteworthy study in tangible programming involves the work from Horn et al. (Horn et

al., 2009) which compared a passive and a graphic programming language in the non-

controllable environment of a museum. (Boston museum of Science). The research

revealed advantages of the tangible programming language versus the graphic one.

Specifically the passive tangible programming language was more attractive and more

efficient for the users to get actively involved with. Furthermore this active involvement

seemed to be more evident with girls. In parallel Horn et al. performed a study at a nursery

school with children aged from 5 to 6. (Horn, Crouser, & Bers, 2012). By applying

qualitative analysis, they came to the conclusion that if children were given appropriate

technologies, they could better understand specific concepts from the fields of

programming and robotics.

Even though it is estimated that tangible interfaces are more efficient than graphical ones,

only a limited number of studies has addressed the issue of knowledge and social benefits

from tangible interfaces in comparison to graphical interfaces. (Xie et al., 2008). In more

detail, the impact of tangible interfaces and the circumstances under which tangible objects

can become more effective for children to use in various fields such as programming, have

not been extensively studied and remain unexplored. (Marshall, 2007; Kelleher & Pausch,

2005). Finally a recent study by (Sapounidis, T., & Demetriadis, S. & Stamelos I. 2014),

carried out and presented a comparison study of children’s performance using the two

30

isomorphic subsystems (tangible versus graphical). Data analysis upon task measurements

showed that younger children needed less time to accomplish the programming tasks when

using the tangible interface. On the contrary, elder children, who were more experienced

computer users, needed almost the same time to accomplish the tasks with both interfaces.

Furthermore, fewer programming errors occurred and better debugging was achieved in the

tangible case.

3.3 Summary of limitations regarding tangible programming tools

Although there have been many attempts at constructing tangible systems, a lack of

tangible programming tools is evident (Kwon et al., 2012). In more detail the limitations

that seem to exist are the following: (a) several systems do not have a satisfactory number

of commands and parameters (Cockburn & Bryant, 1997) and that seems to limit

assimilation of programming concepts, (b) the lack of real time control hinders the smooth

interaction of the programmer and the program itself (Gallardo, Julia, & Jorda, 2008), (c)

some systems require special surfaces or rails and thus are difficult to relocate, making

them difficult to use at real school classes, (d) some physical properties like shape,

temperature etc. can offer advantages at tangible systems for programming, nevertheless

such qualities have not been incorporated in existing systems, (Zuckerman et al.,

2005;Manches et al., 2010; Xie et al., 2008), (e) and concepts such as storage and code

reusability, are not supported by any system. It is clear that while tangibles appear more

efficient than graphical user interfaces, more research is required to elucidate the

circumstances under which the advantages are demonstrated in different domains.

(Sapounidis, T., & Demetriadis, S. 2013).

Our effort will try to bridge the world of graphical and tangible programming by offering a

mobile graphical isomorphic equivalent for tablets of an existing tangible programming

language (T_ProRob, section 2.4.2). The tangible part of the system will mainly focus on

the ability of the tablet screen to offer drag and drop capabilities very similar in nature, to

having a physical object at hand. The graphical part of our system is of course the various

icons that comprise the GUI (Graphical User Interface). The third factor-mobility- is

31

greatly enhanced by the combination of a tablet and a Lego EV3 Mindstorms™ robot

connected together wirelessly via Bluetooth, making it an ideal learning aid inside any

classroom or home.

32

4 DESIGN AND DEVELOPMENT

4.1 Interaction design for kids

Interaction design is about shaping digital things for people’s use. It is about helping people

to choose specific goals, through an interface. This could be withdrawing money from an

ATM, taking a picture with a phone, or checking our emails. This is different from

industrial design where the goal is to solve a problem by crafting a physical product that

would be mass-produced, taking into account material and production line constraints. It’s

also different from graphic design, which is more meant to be looked at.

UX (User experience): deals with the overall experience associated with the use of a

product or a service. It requires a good understanding of the user, and of the system of the

product the user interacts with. UI (User Interface) is the specific interface of the product. It

is the tool, the point of interaction between a human, and a system. Therefore, UI is a part

of UX. Similar to designing for adults, designing for kids requires a strong understanding

of what users need and want. But designing for kids differentiates from designing for

adults. Young children except for the end goal they have in their mind while using the

interface, also see the use of a tablet or game as a part of an adventure. Kids delight in

challenge and conflict, regardless of their goals.

This generation of kids is digitally native, meaning that technology has been and always

will be a part of their lives. As our target group starts from children up to 4 years old we

need to be aware of the unique characteristics of this specific age. These are elements of

programming that pre-reader children are capable to support already such as sequence,

concept of code, cause and effect, counting, planning and problem solving. Kids are more

sophisticated than they may appear initially and they’re able to mentally categorize quite

efficiently. (Design for Kids Digital Products for Playing and Learning 2014).

33

FIGURE 2. Workflow of our system

4.2 Icon Design

Colors should act as guides identifying all the interactions and specific contents. There

should be a limited set of bright, bold colors, not too many colors that could overwhelm

kids and make them lose interest. Navigation should be as simple as possible. Symbols

should be basic shapes that mimic everyday items that children are familiar with (Design

for Kids Digital Products for Playing and Learning 2014). Below follows a display of the

various command and parameter icons present at our application.

TABLE 1. Command and parameter icons

Turn Right

(Turn right 90

degrees)

Turn Left

(turn left 90

degrees)

The work of

programming for

kids via a tablet

and a robot

Student/Novice

programmer

Robot

Input command/parameter

Export program script

Sensory feedback from the

execution of the program

script

Successful program creation

Script

database

Automatic storage of

program script

34

Move forward

Move

backward

FOR loop

End of FOR

loop

Turn light off

Turn light on

If condition

(start)

End of if

statement

body

35

Delay for 5

seconds

Make a sound

Forcibly

terminate

program

execution

Numbered parameters

(can be coupled with for

loop commands and

move/turn commands)

36

Light sensor

(Presence of

light)

Light sensor

(Absence of

light)

Touch sensor

(Obstacle present)

Touch sensor

(Obstacle not

present)

Sound sensor

(Ambient sound)

Sound sensor

(No Ambient

sound)

Ultrasonic sensor

(Obstacle up

ahead)

Ultrasonic

sensor (Free

space ahead)

37

4.3 The Lego Robot

Lego robots that act upon programming, have already reached many schools. The Lego

Mindstorms™ kits contain software and hardware to create customizable, programmable

robots. In our case we have chosen the latest version of Mindstorms™ the EV3 which is the

third generation Lego Mindstorms™ product released on September 2013 and fits in our

case due to the advantage of connectivity with smart-devices as mobile phones and tablets.

The EV3 programmable brick has 4 inputs (numbered using numbers from 1 to 4) and 4

outputs (numbered from A to D). The robot can power 4 motors and can gather

information from the environment via various sensors that we will describe below.

PICTURE 23. Robots built using LEGO EV3 Mindstorms

4.3.1 Connection with the robot

The Lego EV3 robot can communicate through Bluetooth, USB (except for Windows

Phone) or Wi-Fi connection. In order to send commands from a mobile device and control

the Lego Mindstorms™ EV3 Robot, we send and receive messages to it using the LEGO

MINDSTORMS EV3 API. We can connect, control and read sensor data from LEGO EV3

brick over Bluetooth, WiFi, or USB. LEGO MINDSTORMS EV3 API provides libraries

38

that are usable from the Windows desktop, Windows Phone 8, and WinRT (via .NET,

WinJS and C++), along with full source code (Lego EV3 webpage 2014).

There are 3 types of commands that can be sent to the brick: DirectCommand,

BatchCommand and SystemCommand. All of them are included inside the Brick object as

DirectCommand, BatchCommand and SystemCommand properties, along with their

corresponding methods. Also need to implement the Icommunication interface which will

determine the way that library will connect to the brick. The library can only be used with a

single brick at a time. Multiple brick communication is not supported yet (Lego EV3

webpage 2014).

PICTURE 24. LEGO EV3 brick

4.3.2 Motors and Sensors

Up to 4 motors can be hooked up to the ABCD ports on the EV3 brick. The EV3 Large

Servo Motor is a powerful motor that uses tacho feedback for precise control to within one

degree of accuracy. By using the built-in rotation sensor, the intelligent motor can be made

39

to align with other motors on the robot so that it can drive in a straight line at the same

speed. The EV3 Medium Servo Motor is great for lower-load, higher speed applications

and when faster response times and a smaller profile are needed in the robot’s design. There

are a variety of methods to interact with the motors which we can find in the API

documentation. As an example, here is a DirectCommand which will turn the motor on Port

A for 5 seconds at 50% power (Lego Mindstorms™ home page 2014):

await brick.DirectCommand.TurnMotorAtPowerAsync(OutputPort.A, 50, 5000);

PICTURE 25. The EV3 Large and Medium Servo Motors

Up to 4 sensors can be hooked up to the 1234 ports on the EV3 brick. There is number of

sensors that come together with Lego EV3 kit. Infrared sensor detects proximity to the

robot and reads signals emitted by the EV3 Infrared Beacon. Touch sensor detects when its

front red button is pressed or released and has the capability to count single and multiple

presses. Color sensor recognizes seven colors and also can detect the amount of reflected

light and the intensity of ambient light. Ultrasonic sensor generates sound waves and reads

their echoes to detect and measure distance from the objects. Gyro sensor measures the

robot’s rotational motion and changes in its orientation. Additionally, each motor also acts

as a sensor and can return positional/rotational data. Each sensor/motor may also have the

ability to return its data in a variety of different modes. As example, the Touch sensor can

return whether the button is pressed, or it can return the number of times it has been pressed

since it was last reset.

40

PICTURE 26. Sensors (Infrared – Touch – Color – Gyro – Ultrasonic)

4.4 Mock ups

PICTURE 27. Mobile tablet system mock-up

41

PICTURE 28. Mobile ecosystem mock-up

PICTURE 29. Tangible programming system

42

4.5 Software Requirements

Software engineering is the process involving the creation of the software blueprint before

the actual construction and release of a software product. It includes detailed specifications

of the software's requirements both functional and non-functional. In order to provide a

better understanding of the interaction our software has with the real world, business use

cases (BUCs) are provided. Furthermore to define precisely all the interfaces between the

product and other automated systems, organizations and users, product use cases (PUCs)

are included. The above terminology is adopted from the Volere software requirements

specification template (Volere requirements resources 2014). Also the goals of the project,

the stakeholders of our product, a business data model and data dictionary are included

which incorporate a specification of the essential subject matter, business objects, entities,

and classes that are relevant to the product.

4.5.1 The Purpose of the Project

Programming has an enormous presence in everyday life of 21 century. New generation

students are surrounded by computer technology and will possibly do in the future an

occupation that hasn’t been invented yet. Also the unprecedented growth rate of tablet

computers or mobile devices in corporate and consumer markets is spreading steadily into

schools. Future schools will most likely replace books with tablets. Researches show that

students using tablets were “more motivated, attentive and engaged “.

A mobile application for tablets could introduce children to the basics of programming with

an easy and interactive way. Children by playing with a friendly user interface will be able

to understand better of what happens inside computers and also improve their math and

logic skills. Using the tablet, children can develop their code by arranging different shapes-

pieces-images-blocks that represent simple programming commands as part of a game.

Additionally they could see the logic results and actions in reality as interaction with a Lego

Mindstorms™ robot. This will make them also more curious with the magical world of

robotics.

43

4.5.2 Goals of the Project

We use Purpose, Advantage, Measurement (PAM) to structure our project's goal.

Purpose: one sentence to explain the organisation’s reason for investing in the project.

Advantage: One sentence describing the benefit that the organization will realize if the

project is successful.

Measurement: One sentence or a graph or diagram that quantifies how we will measure

whether or not the benefit has been achieved.

TABLE 2. The Goals of our project

Goal # Purpose Advantage Measure

1 We want to create a

mobile application

for tablets to

introduce children to

the basics of

programming logic.

We want to be

recognized as a

leading software

house for

educational oriented

software

applications.

Graphs specifying

numbers of software

downloads for both

the trial-period and

full-featured

versions of our

software product.

2 We want to facilitate

the understanding of

fundamental

programming

principals through an

intuitive and

interactive manner.

We want to help

children get

accustomed to

programming and

elevate our corporate

ethos profile.

Number of

elementary schools

enrolling in our

"LEARN TO

PROGRAM"

campaign.

3 Transcend the

programming

experience from the

boundaries of a

tablet screen to the

actual movement of

We want to forge a

business partnership

with Lego©

Number of Lego

Mindstorms™ robot

units sold, that

include a free copy

of our software.

44

a Lego Mindstorms™

robot.

4 We want to improve

mathematical and

algorithmic-problem

solving skills-of

children.

We want to provide

the younger

generations with the

best educational

tools available on the

market.

Positive feedback

from users of the

software product.

5 We want to strive for

the proliferation and

establishment of our

application as an

invaluable and

useful learning aid

for children.

We want our firm to

benefit from being

popular amongst

children.

Internet polls

measuring user

satisfaction. Social

media references of

our software.

4.5.3 The Stakeholders

Stakeholders form the basis on which our software product will operate and whose input is

needed to build the product. The client has the final say on acceptance of the product, and

thus must be satisfied with the product as delivered. We can think of the client as the person

who makes the investment in the product. The person intended to buy/use the product is the

customer. Below follows a table depicting the various stakeholders present at our product,

along with their role in our product's culmination and operation. Furthermore we include

for each stakeholder the degree of influence he/she has on our software product.

TABLE 3. Stakeholder definition for our software product

Stakeholder

Class

Stakeholder

Role

Stakeholder

Rationale

Necessary

Involvement

Stakeholder

Influence

Interfacing

Technology

Existing

Hardware (Lego

Necessary for

our product to

Throughout the

development
Big

45

Mindstorms™

robot)

work phase

Interfacing

Technology

Existing

Hardware (Any

tablet device)

Necessary for

our product to

work

Throughout the

development

phase

Big

Maintenance

Operator

Software

Maintainer

Keeps the

software up-to-

date

Throughout the

lifetime-cycle of

the product

Big

Operational

support
Help Desk

To keep

informed the

customers of the

product

Throughout the

lifetime-cycle of

the program

Medium

Client

Private

investors-

companies,

Government

ministries,

Chief executive

To provide

funding and

market

penetration for

our product

Mainly

throughout the

development

phase

Big

Core Team

Members

Software

Engineer

Responsible for

putting all the

software pieces

together

Mainly

throughout the

development

phase

Big

Core Team

Members

Graphics

Designer

Responsible for

designing the

icons of our

application

Throughout the

development

phase and for

future releases

Big

Core Team

Members
Software Tester

Debugging the

application

Throughout the

development

phase and for

future releases

Big

Core Team

Members
Programmers

Writing the

actual code

Throughout the

development
Big

46

phase and for

future releases

Functional

Beneficiary

Private

corporations

Our product

will bolster the

sales of Lego

Mindstorms™

robot

Throughout the

lifetime-cycle of

the program

Medium

Internal

Consultant

Marketing

specialist

To promote our

product to the

market

1~3 months

before the

official product

release date

Big

Customer

Students,

children,

members of the

public

To actually

purchase the

product

Throughout the

lifetime-cycle of

the product by

providing

feedback

Big

The hands-on users of the product are a list of a special type of stakeholder, the potential

users of the product. For each category of user, we provide the following information:

 User name/category: Most likely the name of a user group, such as clerical users,

schoolchildren, road engineers, or project managers.

 User role: Summarizes the users’ responsibilities.

 Subject matter experience: Summarizes the users’ knowledge of the subject

matter/business. Rate as novice, journeyman, or master.

 Technological experience: Describes the users’ experience with relevant technology.

Rate as novice, journeyman, or master.

 Other user characteristics: Describe any characteristics of the users that have an effect

on the requirements and eventual design of the product.

TABLE 4. The Hands-on users of our software product

User name User role
Subject

matter

Techno-

logical

Other user

characteristics

User

participation

47

experience experience

Elementary

School

Teachers

Demonstrator

of our

software

Novice

and/or

journeyman

Novice Secondary user

Provide

feedback for

improve-

ments in

future

releases

Pre-

Elementary

&

Elementary

School

Students

First time user

of our

software and

Lego

Mindstorms™

robot

Novice Novice
Age group

4~10, key user

Provide

feedback for

improve-

ments in

future

releases

Parents

First time user

of our

software and

Lego

Mindstorms™

robot

Novice Novice Secondary user

Minimal

Owners of

Lego

Mindstorms

™ robot

First time user

of our

software

Novice Journeyman Key user

Throughout

the develop-

ment phase

by

providing

feedback

Beta testers

Development

phase of our

product

Expert Expert

Experience in

debugging

software, key

user

Throughout

the develop-

ment phase

by

providing

feedback

48

Personas is a story about an invented person that will actually use our software product. By

having one or more personas we can make the requirements specific to the people you are

trying to satisfy. This is a particularly effective technique if we are specifying the

requirements for a consumer product or a product that will be used by members of the

public. Below follow two fictitious personas, the first being an elementary school student

and the later being an elementary school teacher.

 Little 9 years old boy Mika Hakkinen, is thinking about what to ask Santa for

Christmas. He doesn't want to be very optimistic for this year's present. He has heard

that Lego is offering their Mindstorms™ robot with a special software that allows to

control the robot via a tablet and make it perform lots of fun stuff! Also it would be a

great chance for little Mika to get his hand on his father's iPad...

 Mrs. Helena is the tech-education teacher at Tampere's 2nd elementary school. She has

heard about a new software company -Cubes Coding- that is launching a new

promotional campaign called "LEARN TO PROGRAM". In this campaign they are

offering a two month license for using their software for educational purposes. Also

they are providing free of charge for the same time period, a Lego Mindstorms™ robot

and a tablet, in order for pupils to experience programming to its fullest! Not to mention

that now children will start to flock to the class by themselves and she will not have to

yell so much...

4.5.4 Work Partitioning

A list showing all business events to which the work responds. Business events are

happenings in the real world that affect the work. They also happen because it is time for

the work to do something—for example, produce weekly reports, remind non-paying

customers, check the status of a device, and so on. The response to each event is called a

business use case (known as a BUC); it represents a discrete partition of work that

contributes to the total functionality of the work (section 4.1, figure 2). The event list

includes the following elements:

49

 Event name

 Input from adjacent systems

 Output to adjacent systems

 Brief summary of the business use case

TABLE 5. Business Event List

Event name Input and Output Summary

1. Student/ Novice

programmer wants to write a

program

New command and

parameter(in)

The user inputs the

command and parameters

via the GUI of the

application

2. Tablet wants to

communicate with robot

Export script(out) Upon completion of the

program, the script is "fed"

to the robot

3. Robot wants to

communicate with tablet

Sensory feedback from the

execution of the script (in)

When certain situations

arise-mainly the fulfilment

of a condition or not- , the

robot communicates with the

tablet and extra info is

displayed

4. Automatic storage of

program script

Program script output to

script database(out)

Every script is ported to a

database in a user friendly

format.

BUC scenario for Business Event 1:

-A student starts writing a program.

-A command icon is selected and is placed on the right side of an existing one.

-A parameter icon is selected and is attached at the lower side of a command icon.

-The process is repeated until the end of the program

50

BUC scenario for Business Event 2:

-After the termination of the program.

-The tablet wants to communicate with robot via an already established Bluetooth

connection.

-If the connection is still active the program script is transferred to the CPU of the robot.

-The robot starts executing the script.

BUC scenario for Business Event 3:

-While the robot is executing the script it is prompted to evaluate a condition that is related

to the measurement of one of its sensors. Available sensors on-board the robot are light

(present above a predefined brightness level or not), touch (come to an obstacle or not),

ultrasonic (measure distance ahead from the robot) and sound (ambient sound present

above a predefined threshold).

-After the sensor measurement is performed the outcome (true-false) is transferred back to

the tablet and the user is informed of the outcome.

-The program continues with the next command.

BUC scenario for Business Event 4:

-Before a Student starts to write a program he/she is asked to enter a username.

-That username is used to automatically store the program script to the database in .csv

format.

-If the student does not enter a username, the script is stored by using the current system

time and date as its filename.

51

4.5.5 Data Model

FIGURE 3. UML diagram of the data model, number (1) denotes has one, while the (*)

denotes has many relationship.

TABLE 6. Data Dictionary

Data Name Description Definition Data Type

Programmer Novice Programmer/Student Programmer's

name

Class

Robot Lego Mindstorms™ robot Robot

identifier

Class

Script Program script Script name +

script creation

date/time

Class

Database Program script Database Database name Class

Icons Images used for the GUI Icon type +

Icon colour +

Error message

Class

Program

Script

1

*

Robot

Novice

Programmer

Commands

Parameters

Icons

Database

Sensor

1

1 1 1

1

1

*

*

*

*

* 1

1

*

52

Commands Icons that execute a certain

programming command

Command

name + Max

number of

commands

Class

Parameters Icons that attach to a

command icon and alter it

Parameter

name

Class

Sensor A collection of different

sensors (touch, light,

ultrasonic, sound)

Sensor

measurement

Class

Script Storage Automatic script database

storage

Script name +

Script creation

date/time +

Programmer's

name

Dataflow

Sensory feedback Robot sensor measurement

sent back to tablet

Sensor

measurement

+ robot

identifier

Dataflow

Update software New software version Software

version

number

Dataflow

Script name Script name, also used for

data storage

 Attribute/Element

Robot identifier Unique robot identifier Attribute/Element

Sensor

measurement

Various sensor readings Attribute/Element

Command Name Command type Attribute/Element

Parameter Name Parameter type Attribute/Element

Theme Name Theme Identifier Attribute/Element

Script creation

date/time

In HH:MM:SS and

DD:MM:YYYY format

 Attribute/Element

Error Message In currently selected language Attribute/Element

53

Programmer's

Name

Programmer username Attribute/Element

Server web

address

ftp address Attribute/Element

Icon type Command or parameter Attribute/Element

Icon colour Colour of icon Attribute/Element

Software version

number

V1.1 Attribute/Element

Max number of

commands

Up to 100 Attribute/Element

Database name Default name Attribute/Element

4.5.6 Product Boundary

A use case diagram identifies the boundaries between the users (actors) and the product.

We arrive at the product boundary by inspecting each business use case and determining, in

conjunction with the appropriate stakeholders, which part of the business use case should

be automated (or satisfied by some sort of product) and what part should be done by the

user or some other product. This task must take into account the abilities of the actors, the

constraints, the goals of the project, and our knowledge of both the work and the

technology that can make the best contribution to the work.

54

FIGURE 4. Product boundary diagram

 TABLE 7. Product Use Case Table

PUC Number PUC Name Actor/s Input & Output

1 User issues a parameter

or command

User/programmer Command/parameter

(in)

2 Error message for

inappropriate command

/ parameter

tablet Error message (out)

3 Execution of script

(script is transferred to

robot via Bluetooth)

Robot/tablet Program script (out)

4 Sensory feedback

(measured from sensors

on-board the

Sensor/robot Sensor reading (in)

Programming for

kids

User/

Novice

programmer

Internet

Robot

Sensor Database

Tablet

Command/Parameter

New software version

Update request

to server

Program script

Error

message

/flashing icon

Retrieval of program

script

Sensor reading

Program script

storage

New theme

Show source code

Human

Actor

Automated

Actor
Legend:

55

robot/ultrasonic, touch,

sound, light/

5 Export script to database

.csv format

database Program script (out)

6 Update software via

internet (to incorporate

new Lego sensor e.g.

heat (IR)

internet Update request server

(out)

New software version

(in)

7 Show source (high-level

syntax representation)

tablet Source (out)

8 Flashing icons (when a

condition is met or not,

green -red)

tablet

Flashing icon (out)

9 Look and feel button

(bluish theme boys,

pinkish girls)

tablet New application theme

(out)

PUC # 1

-User issues a command or parameter at the program timeline (commands on top,

parameters below of commands)

FIGURE 5. Snapshot of our application's GUI

The above snapshot will make the robot do the following two times:

 -three steps forward

 -turn on the light of the robot

 -delay for a short time (5 seconds)

 -turn off the light

56

 -using the ultrasonic sensor, check for an obstacle in front of the robot

 -if an obstacle does not exist move one step forward

 -end the sensor check

PUC #2

-Error message with beeping sound for inappropriate command / parameter.

If a user tries to select a command or parameter that cannot be attached at the program

timeline, an appropriate message will appear.

e.g. if for a conditional square icon the user tries to attach a numbered parameter. Only

sensor parameters are attached to a conditional square icon the message could be "No

numbers here".

 NO NUMBERS HERE!!!

FIGURE 6. Error message for inappropriate parameter icon

PUC #3

-As the program script is being interpreted, it transferred to the robot via Bluetooth. The

Bluetooth connection is setup prior to the start of the program writing process.

PUC #4

-When a conditional icon is executed the robot uses the selected sensor. The sensor

measurement is transferred back to the tablet via Bluetooth and the condition is evaluated.

Depending on the evaluation of the condition (true-false) certain actions are performed by

the robot.

57

PUC #5

-When the user enters our application he/she has the option of entering a username. That

username together with a counter will form the filename for the .CSV file which will be

copied to the database (e.g. John001.csv). If no user name is selected the filename

comprises of the current system date and time (e.g. 10_10_2014_09h25m10s.csv). The

whole process of script database storage is unobtrusive to the user.

PUC #6

-If the user wants to check for product updates, he selects the appropriate icon. If there is no

active Internet connection an error message is displayed. Otherwise the tablet connects via

ftp to the predefined address. The ftp address can be altered through the settings button of

our application. When the downloading finishes the user is informed that the migration to

the new software release will occur the next time he starts the application. The main use of

the update process is to incorporate into the application new features such as new robot

sensors (e.g. infrared-heat sensors) and new program commands and parameters.

PUC #7

-If the user wants to present the program flow in programming language-like syntax he can

select the appropriate button and a pop up window will show the code. This product use

case is intended for older children who can read and want to familiarize with basic

programming constructs. An example of this kind of representation could be as follows:

Program script

FIGURE 7. Snapshot of our application's GUI

58

FIGURE 8. Equivalent high-level syntax pop-up window of the above script (figure 7)

PUC #8

-When a condition is being evaluated -refer to PUC #4- the corresponding conditional icon

will start flashing briefly (2 seconds) and its colour will change to green or red depending

on the outcome of the condition (True or False respectively).

PUC #9

-Since the main audience of our product will be children of younger ages (4~10), one could

select through the appropriate button a change of the overall theme of the application. It can

include different coloured icons and background (e.g. pinkish tones for girls, bluish for

boys) and differently stylized icons. Also as stated in PUC #6, one can update the software

with the possibility to incorporate new themes in the future.

4.5.7 Functional & Non-functional software requirements

TABLE 8. List of functional and non-functional requirements

Requirement

number

PUC

Number

Requirement

type

Description Rationale Fit Criterion

Unique

identifier

Number

of the

related

PUC

Functional,

specific

non-

functional or

A one

sentence text

description of

the

The reason

why the

requirement is

important.

Measurement

that makes the

requirement

testable.

FOR 2 TIMES DO

 3 STEPS FORWARD

 TURN ON LIGHT

 DELAY

 TURN LIGHT OFF

END FOR

IF NO OBSTACLE THEN

 1 STEP FORWARD

END IF

59

scenario

Constraint

requirement.

1 #1 Functional The product

shall allow the

user to select a

command icon

For the robot

to move

commands are

needed

The robot

performs the

appropriate

command

2 #1 Functional The product

shall allow the

user to select a

parameter icon

A subset of the

command

icons can be

coupled with a

parameter icon

to alter the

command's

effect

The parameter

is attached to

the lower side

of a command

icon at the

program

timeline

3 #2 Functional The product

shall inform

the user for an

inappropriate

parameter

All parameters

do not couple

with all

command

icons

Flashing

parameter icon

and error

message

4 #3 Performance The product

shall be able to

export the

script via

Bluetooth to

the robot

There is no

physical

attachment of

the robot to the

tablet

The transfer

should not last

more than 5

seconds if a

Bluetooth

connection is

already

established

5 #3 Functional The product

shall be able to

establish in the

background an

active

An active

Bluetooth

connection is

mandatory for

bi-directional

Inform the

user for

successful

connection or

get error

60

Bluetooth

connection

with the robot

communication

of the tablet

and robot

message

6 #4 Functional The product

shall be able to

receive

information

(feedback)

from the robot

sensors

For the

fulfilment or

not of a

condition

Flashing

conditional

icon (red-

green)

7 #5 Functional The product

shall be able to

export the

program script

to a database

in .csv format

For future

reference, open

existing script

The transfer

should occur

automatically

without user

intervention

8 #6 Functional Update

product

software

version

If there is need

to incorporate

a new

command-

parameter icon

(e.g. if there's a

new sensor

available

example heat-

sensor (IR))

The update

process should

first check a

list of mirror

servers and

download and

install the

software. No

user

involvement

required.

9 #7 Functional The product

shall be able to

present the

program in a

high-level

Introduce older

children to the

syntax and

structure of a

real world

Code is

presented in a

pop-up

window on the

tablet's screen

61

programming

language style

syntax

programming

language

10 #9 Look and

Feel

The product

shall be able to

change the

appearance of

its graphical

environment

Make it more

appealing for

girls and boys

(e.g. bluish

themes for

boys, pinkish

for girls)

Selection

through an

appropriate

icon

11 #1 Usability The product

shall require

no special

training for a

student to use

it

The product's

intended use is

as a learning

aid, not an

integrated

software

development

environment

Children shall

be able to

perform their

tasks in a short

period of time

<=1 hour

12 #1 Functional The number of

command

icons at the

program

timeline must

be restricted

(Finite)

For the robot

to move in

confined

spaces and not

to lose its

Bluetooth

connection

with the tablet

Default value

of maximum

number of

command

icons shall be

30

13 #1 Functional Ability to

change the

maximum

number of

command

icons present

Gradually as

the user gains

experience

he/she may

want to write

more extensive

By accessing

the settings

icon of the

application, a

user can

specify the

62

at the program

timeline

and

complicated

programs

maximum

number of

commands

ranging

30~100.

14 #5 Performance The Database

shall be able to

handle a lot of

scripts

Automatic

storage of

scripts requires

a lot of

database

records

Maximum

number of

scripts stored

10000

15 #6 Operational Maintenance

Releases

To incorporate

new

commands or

Robot sensors

or icon themes

Yearly

releases

16 #2 Functional The product

shall be able to

change the

default

language

For the

various

messages

being

displayed to be

understood by

the user

Selection via a

submenu after

selecting the

settings icon

17 #1 Functional The product

shall prompt

the user to

enter a

username at

the start of the

program

For easy

reference to the

database later

The file is

stored in the

with the

appropriate

filename

18 #2 Functional The product

shall be able to

To emphasize

the event that

Error

messages will

63

produce

beeping

sounds

was triggered be displayed

while

simultaneously

a beeping

sound is being

heard

19 #1 Functional The product

shall offer the

opportunity

for a short

video walk-

around of the

product

To inform the

user

After the

installation

phase of the

application

20 #1 Security The product

shall prompt

the user for a

password

when selecting

the settings

button

To prevent

unauthorized

access, since

children are

going to use

the product

most of the

time

Default value

of password is

TAPAC can

be changed

inside the

settings menu

21 #1~9 Support Our company

shall provide a

comprehensive

means of

supporting

users of our

product

To keep

customers

happy!

Help desk

available

(telephone),

website, social

media

presence

22 #1 Standards The product

shall comply

with the

firmware

To

successfully

operate the

robot

A command

issues a

response from

the robot

64

specifications

of current

MindstormsTM

NXT robot.

23 #1~9 Operational The software

will run on

Windows

mobile tablet

To support

Windows

mobile

platform

Seamless

integration to

the operating

system

TABLE 9. Tasks roadmap-timeframe

Name of the

phase

Required time

to accomplish

Operating

environment

components

included

Functional

requirements

included

Non-functional

requirements

included

Initial planning 2 month

Software

engine

3 months Robot, tablet 1,2,3,5,6,7,8,9,12,

1316,17

4,20,22,23

Graphics

design

2 month Tablet 18 10

Pre-release

phase, beta

testing

1 month Robot, tablet 19 11,14,15,21

65

5 SUMMARY AND FUTURE WORK

5.1 Issues that arose during problem analysis

5.1.1 Design new icons

Since our product leans mostly towards the graphical programming interface which was

defined in section 2.3.1, it is imperative that the icons convey as accurately as possible the

meaning of each command/parameter used in our mobile application. Furthermore the

graphical language offered by the icons which, as we have demonstrated in table1 section

4.2, comprises of 13 command icons and 12 parameter icons, must take in account that the

users of the application will be mainly children who might have no or little reading and

writing skills. As stated before our target group begins with children as young as 4 years

old which represent the majority of our hands-on users among others (section 4.5.3 table 4).

Consequently it is hard to establish what type of design is appealing to children especially

of younger age. As a future work one might suggest that there have to be questioners or

videos of children's responses to the presentation of the system mock-up we have created

(section 4.4, pictures 27 & 28). The questioners will try to grasp kids responses on the

color, size and shape of each icon, also if they like the idea of offering differently colored

themes for our application, a feature that is already included in our application in the form

of a theme selection for differentiating boys and girls (section 4.5.6, table 7, product use

case number 9). By evaluating the results from the above survey, we shall be able to better

understand children's preferences and provide them with a better alternative.

5.1.2 Size of icons

The device which our application will operate on, is a tablet. The typical tablet screen size

ranges from 7 to 10 inch diagonal screen length. This fact raises some constraints on how

large the icons should appear on the screen (section 4.4, pictures 27 & 28). Our current

66

implementation supports 9 command icons present simultaneously at the program timeline

with parameter icons attached at the lower side of a command icon (section 4.5.6, table7,

product use case number 1). The rest of the program script shall be accessible by scrolling

through the program timeline. Based on our previous experience and results, future work

could deal with the following variations. The user could zoom in or zoom out in each icon

thus making them appear smaller or bigger. Also the user could create a second or even

third program timeline at the lower part of the screen. If this is the case, one could have

present on screen at the same time from 9 to 27 command icons. Even more as is stated in

section 4.5.6, table 7, product use case number 7 one can select to view the commands in a

high-level text programming language style, if needed.

5.1.3 Length of program script

The Lego Mindstorms™ robot is an integral part of our system. Through the program script

it can perform actions such as moving around, use its sensors etc. Sensors that are currently

supported are Infrared, Touch, Color, Gyro, Ultrasonic (section 4.3.2, picture 26). Since our

application is meant as a learning aid as is already stated in our project goals (section 4.5.2,

table2, goal number 1), it will be mainly used into confined spaces like classrooms or

homes. That is the reason why we have decided to limit the maximum number of command

icons present at any program timeline to 30. As stated at the software requirements (4.5.7

Table 4, requirement number 13) table, the user can alter that setting to as much as 100

command icons (password is required). As a future work we could investigate-through

surveys- how long will the average program script be and adjust that setting accordingly.

The above measurement is possible since every program script is being saved as a .csv file

in a database, as can be seen in section 4.5.6., table 7, product use case number 5.

Furthermore we could attach a GPS sensor onboard the robot in order to be able to

determine the tablet's distance from the robot. That could be useful for the robot no to stray

too far away and also for the Bluetooth connection to work properly. As an example, our

application would halt the program script execution if it detects that the robot is more than

10 meters away from the tablet.

67

5.1.4 Connection to robot

One might argue why we do not use the Wi-Fi connection option which is already

supported in the LEGO MINDSTORMS EV3 API (see section 4.3.1) in order to achieve

greater range of communication. Our response is that we chose only the option of Bluetooth

connectivity as stated in the software requirements section (section 4.5.7, table 8,

requirements 4 & 5) due below reasons. Wi-Fi and Bluetooth serve different purposes. Wi-

Fi is for network communication on a wider range. Bluetooth is for close-range

communication between two devices and this fits better with our purpose. Also because a

Wi-Fi dongle must be connected to the USB host of the EV3 brick and since dongle is not

included with the product we need to buy it to activate this future (the only dongle known

to work with the EV3 Brick is the NETGEAR WNA1100). Furthermore based on LEGO

specifications, connection through Wi-Fi will consume more battery power than Bluetooth

(Lego EV3 webpage 2014).

5.1.5 Operating system-Software distribution

The current implementation is for the Windows mobile operating system due to the fact that

there are available software libraries for the connection with the robot in the Windows

platform (section 4.3.1). As a future direction we could investigate if it is worthy to port our

application to other tablet operating systems like IOS and Android. This decision is based

on the fact that most lower specification -and therefore cheaper- tablets use the Android

platform. As our application becomes popular and therefore fulfills one of our project's

goals which is to become a useful learning software (section 4.5.2, table2, goal number 5)

we could offer it to a larger audience. Another matter of consideration is if we are going to

offer a full featured time trial version of our application or a downgraded version for free

use. If the user is happy he could select to buy the application. Also special offers could be

made to educational institutions.

68

5.1.6 Number of robots supported

The current version supports only one robot that can be programmed as can be seen in the

UML diagram (section 4.5.5 Figure 3). We could examine if it is worthy for a user to be

able to control a cluster of robots as in 2 or even 3. Variations to this approach could

include the following. A single program script to control each robot independent of the

other, each robot will have a unique identifier as parameter icon. A single program script

which will run on all robots concurrently, like having three identical program scripts

running at the same time. And finally different program scripts running on different robots

at the same time. For the afore mentioned variations to materialize we shall overcome a

significant obstacle we found during the development phase which is that the current

LEGO MINDSTORMS EV3 API library can only be used with a single LEGO EV3

programmable brick -and therefore robot- at a time. Multiple brick communication is not

supported yet (section 4.3.1, picture24).

5.1.7 Hardware constraints

Although the Lego Mindstorms™ firmware and hardware schematics are available free

nowadays it may not be the case with future models. Also the current version of the robot

has Bluetooth connectivity it may not be the case with future models (only USB

connection). Having to communicate with the robot only via a USB cable will almost

certainly prove to be a drawback for our product's appeal. Another issue if we are willing to

offer backward compatibility with the firmware of older models (legacy support) of the

Mindstorms™ robot.

5.1.8 Marketing strategy

We could approach the Lego Corporation to allow us to market our software as a

combination package with the robot. If this is the case we could significantly increase our

customer base. But we shall have an open mind and explore the possibility of contacting

69

other manufactures of programmable generic robots in order to establish a possible

partnership.

5.2 Conclusion

Our proposal dealt with the problem of creating an application that could introduce children

of a young age to the magical world of programming. The subject of educational software

has many parameters and our approach to it was to try and merge the worlds of tangible and

mobile graphical programming, creating an introductory programming ecosystem for

children. We decided to create a graphical mobile isomorphic equivalent of an existing

tangible programming system (T_ProRob system, section 2.4.2) that uses cubes as

programming elements. Furthermore our application operates on a mobile tablet device thus

making it more portable. In order to make the experience of programming more appealing

and fun for children, we combined our application with a Lego Mindstorms™ robot (section

4.3) that serves as an actor for playing out the various programming scripts. The main

features of our envisioned application include the following:

 Low power Bluetooth connection with the robot

 Ability to control a Lego Mindstorms™ robot

 Utilize robot onboard sensors

 Store each program script at a local database.

 Change the look -and-feel of our applications GUI.

 Update software to incorporate new commands or sensors for the robot

 Option to view program script in text form instead of icons

Through a careful selection of icons, intuitive design and inherent ease of use as specified

in the software requirements section (section 4.5), we believe that our application can serve

as an invaluable learning aid for children aged 4~10.

70

REFERENCES

Antle, A. N., Droumeva, M., & Ha, D. (2009). Hands on what?: Comparing children's

mouse-based and tangible-based interaction. Paper presented at the Proceedings of the 8th

International Conference on Interaction Design and Children, pp. 80-88.

Alice programming language. Read 23.11.14

http://www.alice.org/index.php

Baltie graphical programming tool. Read 23.11.14

http://www.sgpsys.com/en/

Blackwell, A., & Hague, R. (2001). AutoHAN: An architecture for programming the home.

Paper presented at the Proceedings IEEE Symposia on Human-Centric Computing

Languages and Environments, 2001, pp. 150-157.

Blackwell, A. (2003). Cognitive dimensions of tangible programming languages. Paper

presented at the Proceedings of the First Joint Conference of the Empirical Assessment in

Software Engineering and Psychology of Programming Interest Groups, Keele, UK. pp.

391-405.

CargoBot mobile application. Read 23.11.14

http://twolivesleft.com/CargoBot/

Cockburn, A., & Bryant, A. (1997). Leogo: An equal opportunity user interface for

programming. Journal of Visual Languages and Computing, 8(5-6), 601-619.

Daisy the dinosaur mobile application. Read 23.11.14

http://www.mindleaptech.com/apps/daisy-the-dinosaur/

Design for Kids Digital Products for Playing and Learning Published: July 15, 2014

Paperback: 248 pages, ISBN 1-933820-30-6 Digital: ISBN 1-933820-43-8

Guido van Robot. Read 23.11.14

http://en.wikipedia.org/wiki/Guido_van_Robot

Horn, M. S., & Jacob, R. J. K. (2007). Tangible programming in the classroom with tern.

[CHI 2007 San Jose, CA, USA] , 1965-1970.

Horn, M. S., Solovey, E. T., Crouser, R. J., & Jacob, R. J. K. (2009). Comparing the use of

tangible and graphical programming languages for informal science education. Paper

presented at the Proceedings of the 27th International Conference on Human Factors in

Computing Systems, Boston, MA, USA. pp. 975-984.

Horn, M., Crouser, R., & Bers, M. (2012). Tangible interaction and learning: The case for a

hybrid approach. Personal and Ubiquitous Computing, 16(4), 379-389. Retrieved from

http://dx.doi.org/10.1007/s00779-011-0404-2

71

Hopscotch mobile application. Read 23.11.14

http://www.gethopscotch.com/

Ichida, H., Itoh, Y., Kitamura, Y., & Kishino, F. (28 March 2004). ActiveCube and its 3D

applications. Paper presented at the IEEE VR 2004 Workshop Beyond Wand and Glove

Based Interaction, Chicago, IL USA.

Ishii, H., & Ullmer, B. (1997). Tangible bits: Towards seamless interfaces between people,

bits and atoms. Paper presented at the Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, Atlanta, Georgia, United States. pp. 234-241

Itoh, Y., Akinobu, S., Ichida, H., Watanabe, R., Kitamura, Y., & Kishino, F. (2004). TSU.

MI. KI: Stimulating children's creativity and imagination with interactive blocks. Paper

presented at the Creating, Connecting and Collaborating through Computing, 2004.

Proceedings. Second International Conference on, pp. 62-70.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of

programming environments and languages for novice programmers. ACM Computing

Surveys, 37(2), 83-137.

Kodu game lab. Read 23.11.14

http://en.wikipedia.org/wiki/Kodu_Game_Lab

Kwon, D. -., Kim, H. -., Shim, J. -., & Lee, W. -. (2012). Algorithmic bricks: A tangible

robot programming tool for elementary school students. IEEE Transactions on Education,

55(4), 474-479.

Lego Mindstorms™ home page. Read 23.11.14

http://www.lego.com/en-us/mindstorms/?domainredir=mindstorms.lego.com

Lego Mindstorms™ EV3 API webpage. Read 23.11.14

http://legoev3.codeplex.com/

Lightbot visual programming game. Read 23.11.14

http://lightbot.com/index.html

Logo programming language. Read 23.11.14

http://en.wikipedia.org/wiki/Logo_(programming_language)

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch

programming language and environment. Trans.Comput.Educ., 10(4), 16:1- 16:15.

doi:10.1145/1868358.1868363

Manches, A., O'Malley, C., & Benford, S. (2010). The role of physical representations in

solving number problems: A comparison of young children's use of physical and virtual

materials. Computers & Education, 54(3), 622-640.

http://www.lego.com/en-us/mindstorms/?domainredir=mindstorms.lego.com

72

Marshall, P. (2007). Do tangible interfaces enhance learning? Paper presented at the

Proceedings of the 1st International Conference on Tangible and Embedded Interaction,

Baton Rouge, Louisiana, USA. pp. 163-170.

McNerney, T. (2001). Tangible computation bricks: Building-blocks for physical

microworlds. Paper presented at the Proceedings of CHI 2001,

McNerney, T. S. (2004). From turtles to tangible programming bricks: Explorations in

physical language design. Personal and Ubiquitous Computing, 8(5), 326-337.

Move the turtle mobile application. Read 23.11.14

http://movetheturtle.com/

Olkun, S. (2003). Comparing computer versus concrete manipulatives in learning 2D

geometry. Journal of Computers in Mathematics and Science Teaching, 22(1), 43-56.

Orit, S., & Eva, H. (2009). Tangible user interfaces: Past, present, and future directions.

Foundations and Trends® in Human–Computer Interaction, 3(1-2), 1-137.

Papert, S. (1980), Mindstorms: Children, computers and powerful ideas. New York: Basic

Books.

Patten, J., Griffith, L., & Ishii, H. (2000). A tangible interface for controlling robotic toys.

Paper presented at the CHI '00 Conference on Human Factors in Computing Systems,

Hague, The Netherlands. pp. 277-278

Sapounidis, T., & Demetriadis, S. (2009). Tangible programming interfaces: A literature

review. 4th Balkan Conference in Informatics, Thessaloniki, GREECE. pp. 70-75.

Sapounidis, T., & Demetriadis, S. (2011). Touch your program with hands: Qualities in

tangible programming tools for novice. Paper presented at the 15th Panhellenic Conference

on Informatics (IEEE/PCI), pp. 363-367.

Sapounidis, T., & Demetriadis, S. N. (2012). Exploring children preferences regarding

tangible and graphical tools for introductory programming: Evaluating the PROTEAS kit.

Paper presented at the Advanced Learning Technologies (ICALT), 2012 IEEE 12th

International Conference on, pp. 316-320.

Sapounidis, T., & Demetriadis, S. (2013). Tangible versus graphical user interfaces for

robot programming: Exploring cross-age children’s preferences. Personal and Ubiquitous

Computing, 17(8), 1775-1786. DOI 10.1007/s00779- 013-0641-7

Sapounidis, T., & Demetriadis, S. & Stamelos I. (2014). “Evaluating children performance

with graphical and tangible robot programming tools”. Personal and Ubiquitous Computing

DOI 10.1007/s00779-014-0774-3

Scratch junior mobile application. Read 23.11.14

http://www.scratchjr.org/

73

Scratch programming language. Read 23.11.14

http://en.wikipedia.org/wiki/Scratch_(programming_language)

Small Basic programming language. Read 23.11.14

http://smallbasic.com/

Smith, A. C. (2007). Using magnets in physical blocks that behave as programming

objects. Paper presented at the Proceedings of the 1st International Conference on Tangible

and Embedded Interaction, pp. 147-150.

Tynker mobile application. Read 23.11.14

http://www.tynker.com/

Volere Requirements Resources. Read 23.11.14

www.volere.co.uk

Wyeth, P., & Purchase, H. C. (2000). Programming without a computer: A new interface

for children under eight. Paper presented at the User Interface Conference, 2000. AUIC

2000. First Australasian, pp. 141-148.

Xie, L., Antle, A. N., & Motamedi, N. (2008). Are tangibles more fun?: Comparing

children's enjoyment and engagement using physical, graphical and tangible user interfaces.

Paper presented at the Proceedings of the 2nd International Conference on Tangible and

Embedded Interaction (TEI '08), pp. 191-198.

Zuckerman, O., Arida, S., & Resnick, M. (2005). Extending tangible interfaces for

education: Digital montessori-inspired manipulatives. Paper presented at the Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, Portland, Oregon, USA.

pp. 859-868.

Zuckerman, O., & Gal-Oz, A. (2013). To TUI or not to TUI: Evaluating performance and

preference in tangible vs. graphical user interfaces. International Journal of Human-

Computer Studies, 71(7–8), 803-820. doi:10.1016/j.ijhcs.2013.04.003

http://www.tynker.com/

