OULUN AMMATTIKORKEAKOULU

Arto Drees

AUTOMATED DIAGNOSTICS OF ELECTRONIC SYSTEMS

AUTOMATED DIAGNOSTICS OF ELECTRONIC SYSTEMS

Arto Drees

Bachelor’s Thesis

Fall 2014

Information Technology and
Telecommunications

Oulu University of Applied Sciences

ABSTRACT

Oulu University of Applied Sciences
Degree programme in Information Technology and Telecommunications, option of
Wireless Devices

Author: Arto Drees

Title of thesis: Automated Diagnostics of Electronic Systems

Supervisors: Tuomo Tikkanen & Ville Nurkkala

Term and year of submission: Fall 2014 Pages: 38 + 2 appendices

This thesis was commissioned by Nokia Networks as a part of a wider ongoing
quality project. The main objective for this thesis and the quality project was to
improve diagnostic accuracy on a certain base station product by targeting the
most misdiagnosed faults and to reduce unnecessary component replacement.

To achieve the objective, an early version of an automated diagnostic tool was
developed. The tool was developed using Microsoft Visual Studio and C#
programming language. The tool uses diagnostic databases to hold diagnostic
information. The diagnostic databases were implemented using XML (Extensible
Markup Language). The diagnostic databases implement fault models and rule
based diagnostics to troubleshoot target products.

Two pilot programs were launched in order to verify the functionality of the tool and
measure improvements on diagnostic accuracy. The results of the pilots were
encouraging; the rate of failed diagnoses decreased by 88%.

The success of the pilot programs and the ease of use of the tool sparked interest
to it, and it was decided to be taken into global use in system module repair of
Nokia Networks base stations. Further development is, however, still needed to
extend the coverage of the tool and to add new features.

Keywords:
diagnostics, automation, XML, C#

TIIVISTELMA

Oulun ammattikorkeakoulu
Tietotekniikan koulutusohjelma, Langattomien laitteiden suuntautumisvaihtoehto

Tekija: Arto Drees

Opinnaytetydn nimi: Automated Diagnostics of Electronic Systems

Tyo6n ohjaajat: Tuomo Tikkanen & Ville Nurkkala

Tyon valmistumislukukausi ja -vuosi: Syksy 2014 Sivumaara: 38 + 2 liitetta

Taman opinnaytetyon tilaajana toimi Nokia Networks. Ty0 tehtiin osaksi laajempaa
laadunparantamisprojektia. P&é&tavoitteena oli parantaa diagnostikkaa seka
vahentdd vaarien diagnoosien maaraa tietyilla tukiasematuotteilla kohdentamalla
tyd useimmin vaarin diagnosoiduille komponenteille.

Tavoitteet saavutettin kehittamalla varhainen versio automatisoidusta
diagnostiikkatyokalusta. TyOkalu kehitettiin Microsoft ~ Visual Studio-
kehitysymparistossa C#-ohjelmointikielella. Tyobkalu kayttaa
diagnostiikkatietokantaa, joka kehitettin XML(Extensible Markup Language)-
kielelld. Tietokannalla toteutetaan vikamallinnusta ja saantdihin perustuvaa
diagnostiikkaa juurisyyn loytamiseksi.

Kaksi pilottihanketta kaynnistettiin varmistamaan tytkalun toimivuus ja mittaamaan
onnistuneiden diagnoosien maaran kehitysta. Pilottihankkeiden tulokset olivat
rohkaisevia; vaarien diagnoosien maara laski 88 %.

Pilottihankkeiden hyvéat tulokset ja tyOkalun helppokayttoisyydestd saatu palaute
johtivat siihen, ettd tybkalu paatettin ottaa kayttdon globaalisti tilaajan
valmistamien systeemimoduulien korjauskaytdossa. Tyokalu vaatii silti vield
jatkokenhitysta, erityisesti kattavuuden ja vaillinaisten ominaisuuksien osalta.

Asiasanat:
diagnostiikka, automaatio, XML, C#

CONTENTS

AB ST R A CT e et aene 3
THVISTELMA ...ttt ettt ettt ettt et e et e et e st e sae e e aeeae e e e, 4
L1 @] N = VN I PP 5
GLO S S A R Y et e e e e e et a e e aa e e e eaaanas 7
L INTRODUGCTIONttt e et e e et e e et et e e e e era e e eennnnns 8
2 DIAGNOSTIC METHODS ...t 10
2.1 Rule-based approacChesoouuuiiiiiii e 11
2.2 Model-based approaches..............oiiiiiiiiiiii e 12
2.2.1 FAUIE MOGEIS ... 12
2.2.2 Structural and behavioral models..............ccccooiiiiiii 13

2.3 Machine learning approachescccoooeiiiiiiiiiciii e 14
P2 Y] o1 [0 =T o] o] £ T= T = 1S 16

1 4| PP 17
3.1 SErUCIUIE @Nd SYNTAX ...uuuiieeeeeieeeiiiie s e e e e et e e e e e e e e e e e e e anaaae s 17
.2 XPAN oo 21

4 IMPLEMENTATION ..o e e e e 23
R 1o To | I €16 1 PP PPTPPPPPPPPP 24
4.1.1 Main view and measurement eXeCULIONcccceeeerines 24
4.1.2 Database Manipulationcoooeiiiiiiiiine e 27
A.1.3 DUT LOG: . eeeieeeeeeeeeeee s et et e et et ee et et ee ettt e, 30

4.2 DIagnOStIC database........cooiiiiiiiiiiiiee e 31

7 G B (o] 11 o o PRSP PTTR 34

5 CONCLUSIONS AND RESULTS ..ot 35

SOURCES

APPENDICES ... e

GLOSSARY

ANN

CAD

Cvi

DOM

DUT

GUI

IEEE

PC

R&D

TSI

W3C

XML

Artificial Neural Network
Computer Assisted Design

C for Virtual Instruments
Document Object Model

Device Under Test

Graphical User Interface

The Institute of Electrical and Electronics Engineers
Personal Computer

Research and Development
Troubleshooting Instruction(s)
The World Wide Web Consortium

Extensible Markup Language

1 INTRODUCTION

This thesis was commissioned by Nokia Networks as a part of a wider ongoing
guality project. Nokia Networks is a business unit of Nokia Corporation. Nokia
Corporation was founded in 1871 and the global headquarters are located in
Espoo, Finland. As of September 2014 Nokia Corporation employs 59035
employees of which 51980 (88%) work for Nokia Networks (1). The Oulu site of

Nokia Networks serves as a R&D site and ramp-up factory for new products.

The main objective for this thesis was to improve diagnostic accuracy on a certain
base station product by targeting some of the most misdiagnosed faults and to
reduce unnecessary component replacement. To achieve the objective, an early
version of an automated diagnostic tool was developed and a draft of a SRS
(Software Requirement Specification) document was created to guide future
development of the tool. The existing troubleshooting instructions were converted
to a database and a set of diagnostic information which is accessed by the tool.
The SRS follows guidelines set by IEEE document 830-1998: Recommended

Practice for Software Requirements Specifications (2).

The tool solves some problems in the preceding troubleshooting procedure, mainly
in the TSI (Troubleshooting Instructions) -document. Such a document can easily
grow up to hundreds of pages and the relevant information for a single fault can be
spread out to several sections. In such cases the operator can accidentally or
intentionally skip some measurements. The tool hides all the irrelevant
troubleshooting information and guides the operator trough only the relevant
measurements. The repair operator can see the current measurement points at a
glance and observe the flowchart of the higher level measurement. This
encourages the operator to actually go through all the necessary steps.

The tool was developed using Microsoft Visual Studio and Visual C# -programming
language. This development environment was chosen because it enables fast and
easy Windows based GUI (Graphical User Interface) development while still
maintaining interoperability with the more commonly used National Instruments

LabWindows/CVI and TestStand -development environments and their libraries.

2 DIAGNOSTIC METHODS

A diagnostic process of any electronic system usually follows a set of three

fundamental tasks. These tasks are:
* Hypothesis generation
* Hypothesis testing
* Hypothesis discrimination

Given that a system is undergoing a diagnostic process, it must have at least one
symptom. Using this symptom as a starting point, a list of hypotheses can be
generated. These hypotheses are then tested by checking if they alone can
account for all (and only) observed symptoms. After the hypotheses have been
tested, and usually some eliminated in the process, the initial observations cannot
provide any additional information. At this stage it is necessary to start gathering
new information that allows further discrimination of the remaining hypotheses. The

last step is executed until only a single hypothesis is left. (3.)

Diagnostic systems can be categorized by their approach to execute the
fundamental tasks. Some of these approaches are:

Rule-based approaches

* Model-based approaches

e Machine learning approaches
* Hybrid approaches

» Others

(4.)

10

2.1 Rule-based approaches

Rule-based approaches are the oldest and simplest form of system diagnosis. A
rule-based diagnostic procedure takes information about the problem and applies a
set of rules on the information. This generates more information or actions, upon
which another set of rules is applied. The procedure is repeated iteratively until a
solution is found. For most modern electronic systems the set of rules can quickly
grow up to hundreds or thousands of rules. In addition, even small changes in the
system can cause large deviation in the rule-set, which then needs to be rebuilt.

However, because the process is simple and clearly defined, it is easy to follow.

(4.)

The diagnostic process of a rule-based approach can be represented with a
decision tree as in FIGURE 1. In the diagram; iterative steps are represented with

different colors and each step applies its own rule set on the previous data.

C START) B step A

Step B
Fail Step C
Test 1 1 . Step D
Pass
1 Type
. 3
Fail
Test2 Replace Replace
Pass component 1 component 2
Replace @ Fail
component 3
Pass |
I A 4
l Replace
I component 4
v

FIGURE 1. Simple decision tree for a rule-based diagnostic approach

11

2.2 Model-based approaches

Model-based approaches use a model to approximately represent the system. The
model can be constructed in various ways, including fault models, structural and
behavior models. It is usually necessary to construct the model hierarchically, so
that one top level model contains several sub level models representing parts of

the diagnosable system.
2.2.1 Fault Models

Fault models model the system by anticipating various types of faults and their
resulting symptoms. This model performs the first two fundamental tasks;
hypothesis generation and testing. When using a fault model, only the modeled
faults can be diagnosed. The model does not contain any information about the
actual system, but only shows what happens when a modeled fault occurs. Fault
models can be very accurate when dealing with system level blocks and simple
combinational logic. However, they do not work particularly well for complex
circuits or when a vast quantity of different failures can occur. Example fault model
is illustrated in TABLE 1.

TABLE 1. Example fault model

Test 1 Test 1 Test 1 Test 2 Test 3
Fail type 1 Fail type 2 Fail type 3 Fail Fail
Comp. 1 - Internal fault X X X
Comp. 2 - Internal fault X X
Comp. 4 - No power
Comp. 4 - Output shorted
Comp. 4 - Internal fault X X
Wiring f ault: Comp. 1-2 X X
Wiring fault : Comp. 3-4 X

12

2.2.2 Structural and behavioral models

A model based on structure and behavior consists of two different representations
of the system, structural and behavioral. The structural representation is essentially
a list of all the components or functional blocks and their connections. The
behavioral representation describes the behavior of individual components or
functional blocks. The advantage of these models is that they can be
straightforwardly generated from CAD data. (4.)

Given a specific input, the model can be used to predict the output of the system. If
a discrepancy is found between the predicted and observed behavior, the model
can quickly narrow the hypothesis list to those components that affect the point of
discrepancy. This hypothesis list can be further discriminated by using a so called
guided probe -method. Essentially the method starts at the observed discrepancy
and follows the causal chain of components following the discrepancies between
observations and predictions. Once a discrepancy is no more found, taking one
step back reveals the cause of the failure. The guided probe -method is just one of
many possible methods, other methods might account for failure probabilities of
different components, finding the optimal probing points to minimize measurement

count or testing with different input values to deduce the point of failure. (4.)

An example of the guided probe method in action is illustrated in FIGURE 2. The
behavior of the components is described by their names and corresponding simple
logical operations. The discrepancy is first observed at F, and then followed
backwards via MAX, Z, ADD, Y and MIN. First, MAX input Z is found incorrect, so it
is followed to ADD, whose input Y is found incorrect. Finally, MIN inputs C & X are
both found to be correct. Therefore the component MIN is found to be faulty,

producing faulty output with correct inputs.

13

| |
| MAX F=5 l
| B=1 |
: C=8 ABD —|Z_:5 :
i = MIN [i
D=2 v=4
! MULT ['
e S [Prediction
L 2] |
| ; MAX F=3 :
i = ADD | [:
i - C=8 VI _l—P Z=3 i
D=2 Y=2
' MULT oy |
e B Ol t@srxa_tierLSJ

FIGURE 2. Example of a structural and behavioral model in action

2.3 Machine learning approaches

Previously discussed approaches have fixed performance and outcome after initial
implementation. A diagnostic system using machine learning can improve itself
using information on past or example solutions and their success or failure. This
enables continuous improvement on both diagnostic accuracy and time to perform
additional observations. The most widely used learning method is case-based
reasoning. Other methods include explanation based learning (teaching) and

learning from existing data. [4.]

14

Case based reasoning starts by identifying the symptoms and observations of the

current problem. Using this information, a set of similar cases is retrieved from a

database. These cases are then further compared and ranked to find the most

matching case. The remaining retrieved case is then adapted to suit the new

problem and a set of repair actions is proposed. After performing the actions and

measuring their success the adapted case is revised if necessary and retained in

the database as a new case. One drawback for this method is that the diagnostic

system must encapsulate the entire repair process in order to measure the

success of repair actions. It also struggles to find solutions for completely new

symptoms or novel faults. FIGURE 3 illustrates the concept of case based

reasoning.

CURRENT
PROBLEM

Retrieval &
matching ,
Retain
REVISED
CASE
Adaptation Perform

ADAPTED ;
CASE repaw
actions

FIGURE 3 Concept of case based reasoning

15

2.4 Hybrid approaches

A hybrid approach can use any combination of the aforementioned approaches to
complement the characteristics of each other. In general, any approach can be
combined with machine learning to improve itself. In addition to the methods
described earlier, there are many other methods that can be used to enhance
diagnostics. These methods include, but are certainly not limited to: Fuzzy logic,
Artificial Neural Networks (ANN) or Genetic algorithms. (4.)

An example of a hybrid approach is the diagnostic database described in detall
later in this thesis. It uses a combination of a fault model and rule based
diagnostics. A fault model is used at system level to generate the initial hypothesis
list. This list is then further discriminated by diagnostic measurements. Each
measurement is essentially a rule based diagnostic approach for a certain block.
The rule based approaches are constructed using knowledge of structure and
behavior of the block and implement a sort of fixed guided probe method.

16

3 XML

XML (Extensible Markup Language) is, as the full form suggests, a simple text-
based format for representing structured information, documents, data,
configurations and much more. XML is used for sharing structured information

between programs, people and computers, both locally and across networks. (5.)
3.1 Structure and syntax

The structure of an XML document as described by a W3C standard; DOM
(Document Objet Model), is a tree-like structure; it starts at “the root®, and
branches all the way to “the leaves”. Between “the root” and the leaves are nodes.
The DOM defines several node types that are shown in TABLE 2. An example xml
tree is illustrated in FIGURE 4.

TABLE 2. XML DOM node types (6)

Node Type Description Children
Document Represents the entire document (the Element (max. one),
root-node of the DOM tree) Processinglnstruction,
Comment,
DocumentType
DocumentFragment Represents a "lightweight" Document Element,
object, which can hold a portion of a Processinglnstruction,
document Comment, Text,
CDATASection,
EntityReference
DocumentType Provides an interface to the entities None

defined for the document
Processinglnstruction Represents a processing instruction None

EntityReference Represents an entity reference Element,
Processinglnstruction,
Comment, Text,
CDATASection,
EntityReference

17

Node Type Description Children
Element Represents an element Element, Text,
Comment,
Processinglnstruction,
CDATASection,
EntityReference
Attribute Represents an attribute Text, EntityReference
Text Represents textual content in an None
element or attribute
CDATASection Represents a CDATA section in a None
document (text that will NOT be
parsed by a parser)
Comment Represents a comment None
Entity Represents an entity Element,
Processinglnstruction,
Comment, Text,
CDATASection,
EntityReference
Notation Represents a notation declared in the None
DTD
Root Element:
<bookstore>
Element: Attribute:
<book> ISBN="9780764547607"
Element: (Element: Element:) Element:
<title> <author> <year> <price>
Text: Text: Text: Text:
XML Bible E. R. Harold 2001 $10.00

FIGURE 4. Example of XML tree-structure

18

The XML syntax is also maintained by The World Wide Web Consortium (W3C).
There are only a handful of syntax rules in XML. If an xml document follows these
rules it is said to be “well-formed”. According to one popular XML guide:

www.w3schools.org (7), the list of XML syntax rules is as follows:

e All XML elements must have a closing tag

o <Example>

This is an example element
</Example>

o <EmptyExample /> < “self closing” empty element
XML tags:

0 are case sensitive

0 cannot start with numbers, punctuation or word “xml”

o (“-“,*“.”7and": ” should be avoided)
« XML Elements must be properly nested

o0 An element must be opened and closed within the same parent
* XML Document must have one root -element

o0 The root-element is the parent of all other elements

e Attribute values must be quoted

0o Examples:
<Element id="123">; <Vehicle type="train">, <Note date="30/12/14">

» Reserved characters are to be replaced with entity references

o <> &l , less than
o > —2>> , greater than
0 & - & , ampersand

0 - ' , aposthrope
o “ ->" , quotation mark

 Comments are expressed within comment tags

19

o <!--,opensacomment
0 a comment can contain any text, including reserved characters

o --> , closes the comment

* New line -character is stored as LF (ASCII: 10)

The tree structure of the earlier example in FIGURE can be represented in XML as
illustrated in FIGURE 5. The first line opens the root element: “bookstore”. In
addition to the earlier example this example also lists another book: “Beginning
XML Databases”.

<bookstore>
<book ISBN="9780764547607">
<title >XML Bible</title>
<author>E. R. Harold</author>
<year>2005</year>
<price>30.00</price>
</book>

<book ISBN ="9780471791201">
<title>Beginning XML Databases</title>
<author>Gavin Powell</author>
<year>2007</year>
<price>25.00</price></book>
</bookstore>

FIGURE 5. Example of XML representation

20

3.2 XPath

Often when working with xml-documents, it is necessary to select nodes or
elements with certain path, properties, values or relations. XML offers a way to do
this by using a special addressing language: XPath. It allows selecting virtually any

node or node set from an XML-document.

An XPath expression can consist of one or more of the following: a path
expression, predicate(s), wildcards and operators. The path expression determines
the initial scope of the selection. This selection can be refined by using predicates
or wildcards, or expanded by using the | operator. Predicates are enclosed within
square brackets (“[]"). TABLE 3 shows some of the most useful XPath expressions
using the earlier bookstore -example. The complete and up-to-date syntax for
XPath can be found from W3C website (8).

TABLE 3. Useful XPath expressions

Expression Description

Path expressions

/ Select from root.

1 Select from anywhere in the document.
Select current context node.

Select parent of current context node.

nodename Selects node(s) “nodename” from current
context.
//INodename/nodename?2 Selects node(s) “nodename2” which are children

of any “nodename” anywhere in the document.

21

Expression

Description

Wildcards

@
node()
Predicate examples

/Ibook[1]

/book[last()-1]

[hitle

/ftitle[../year="2005"]

//book[price<”29”]

//book[@ISBN="9780471791201"]

//book[price<26]

//book[year>"2006"] | //book[price<=25]

Wildcard for elements.
Wildcard for attributes.

Wildcard for any nodes.

Selects the first “book” -element from anywhere

in the document.

Selects the second to last book -element. (only

direct children of the root -element)
Selects all “title” -elements

Selects all “title” elements with a “year” sibling of
value “2005”. (“../” = parent’s child)

Selects all “book” elements with a “price” of
value “2005”.

Selects “book” elements with attribute “ISBN” of
“9780471791201".

Selects all “book” elements with “price” less than
26.

Selects all “book” elements with “year” greater
than 2006 OR “price” less than 25.

22

4 IMPLEMENTATION

The system implementation started with planning the structure of diagnostic
database, how it could be used to help diagnostics and first sketches of the GUI.
Microsoft Visual Studio was chosen as the main development environment.

Microsoft XML Notepad 2007 was used to create and edit the diagnostic database.

Because the diagnostic procedures were available from existing and partly
improved TSI documents, it was decided that the structure of those documents
was not to be altered too much. That decision lead to a functional structure in
which the first failed production test determined additional diagnostic
measurements to be executed. These measurements where further divided into
signals, which could be either real physical signals or logical conclusions of the

observed behavior of the system.

The GUI (Graphical User Interface) was developed using Microsoft Visual Studio
and C# -language. This combination usually leads to event driven programming
style, where the primary function is reacting to events rather than running a loop or

a linear flow of actions.

The schedule for the implementation stage was quite tight. Initial planning stage
was roughly two weeks, followed by one week of GUI design and four weeks of
intense programming. At that point the tool had reached version number 0.1 and
was ready for piloting. Two pilot programs were started to verify the effectiveness
of the tool.

23

4.1 Tool GUI

The main graphical user interface (GUI) design was started early in the
development process. The goal was to develop a simple GUI which displays all
relevant information at a glance and enables easy input of measured values. In
case of an error or failed measurement, the tool should display additional

information and action suggestions.

A total of 4 different forms were created; main view, database link tool and forms
for adding new measurements and signals. These forms and their operation are
described in detail in chapters 4.1.1 and 4.1.2. Additionally, some system provided
forms, such as file- and message dialogs, were added to the tool. The main data
containers used in the program were tree views and picture boxes. Various other
system provided controls such as text boxes, numerical controls, labels, and

buttons were also used.
4.1.1 Main view and measurement execution

The first action required by the user is to load a test plan and a diagnostic
database. This is done via the “File”-menu. The tool remembers last loaded test
plan and database files for the user. After the necessary files have been loaded,
the user must enter a serial number for the DUT. The serial number is only used
for logging purposes. After the text in the serial number textbox (top left in FIGURE
6) is of required length, the tests -tree view (left in FIGURE 6) is enabled.

24

After selecting and loading a test from the tests -tree view, a list of additional
measurements is show in the measurements -list (top center in FIGURE 6). These
measurements can be executed automatically; by clicking the “Run all” -button, or
manually; by selecting a single measurement from the list. Once a measurement is
selected, a description of the measurement is shown in the “Description” -textbox
(top right in FIGURE 6). The contents of the description describes the
measurement and provides some diagnostics aid. More information can be

attained from a flowchart of the measurement or measurement related
attachments; accessible by respective buttons near “Description” -textbox.
‘® (=l)
File Tools Help
DUT serial ABC12345678 Meassemerts for ExampleMeasurement_2
TESTS for: EXAMPLE_TESTPLAN FowerUpCurrent Example Signal DESCRIPTION: a 5% |
Powerline test ' « ExampleM ent i ol is 2 exam .
s = | s 2 | B | Tnzmsmmoeomete | e
. Load Run all ekt
Startup Tests Vokage should be 32 ... 3.4 @ both ——
12C Tests measurement points. @
Bourdary scan Tests Measurement paints -picture from 3 bt
10 Tests Wikimedia Commons. | | Mtach-
Voltage Tests http://commons wikimedia org./ - | ments
Temperature Tests

SIGNALS
€ ExampleSignal; 0

SIGNAL Vdltage @ IC
pso |2
SIGNAL Voltage @ FET

& Voltages stable

FIGURE 6. Main view of the tool

25

Once familiarization with the measurement has been established, the actual
execution of the measurement can begin. This is done by selecting a signal from
signals-list (bottom center in FIGURE 6), measuring requested signal at various
points and providing input in the input-panel (bottom right in FIGURE 6).
Measurement points or logical help can be found from the measurement point -
picture (middle right in FIGURE 6). The picture can be enlarged by clicking the
“Full screen™button near the picture. Once the inputs have been given, they can be
evaluated by clicking the “Check” -button. Signal status -picture changes
accordingly and if all inputs are correct, the next signal is selected. If any of the
inputs are incorrect, a message -popup is shown and the user is prompted to see

additional information in flowchart and attachments; as illustrated in FIGURE 7.

E;Flumedia Commons.
http ://commons. wikimedia .ora/

i SIGNAL Voitage @ FET shoud be: i
SIGNAL Votage @ IC_ | | 3234 |||

=& See flowchart for additional instructions i
SIGNAL Voltage @ FET]

318 & Il
| Voltages stable 0K I|

|

FIGURE 7. Failing input and measurement attachments

26

4.1.2 Database Manipulation

In order to ease the extension and manipulation of the database, a database link
tool was implemented in the program. The tool can be used to create
measurements and signals, linking and unlinking tests, measurements and signals
to and from each others. In the “DBLinkTool’-window, the tests are shown on the
left, measurements in the middle and signals on the right.

Upon selecting any item from any list, the other two lists are updated to show
linked items. For example, the last selected item in FIGURE 8 is
“‘ExampleMeasurement” and it is linked to “PowerUpCurrent” -test and
“ExampleSignal; Group: 07; illustrated by link icons. When two items from adjacent
lists are selected, they can be linked by clicking the “Link” -button between the
respective lists. Similarly, when the two items are already linked, the link can be
broken by clicking the “Unlink” -button. It is also possible to add and delete
measurements and signals. These actions can be started by clicking their

respective buttons below measurement and signal -lists.

' ™
_ DBLinkTool (=] B [
EXAMPLE_TESTPLAN) MEASUFIEMENTS) SIGNALS

=) Powerdine tests Y.) | ¢ BxampleSignal: Group: 0
" PowerUpCument ExampleMeasuranent 2 f ExampleSignal. Group: 0
Curmrent Test_BOARD New_Measurement_example Link: Example_Signal; Group: 1

Startup Tests ~ (
12C Tests \:}}J 9'(/)
Boundary scan Tests Uriir Unlink

10 Tests
Voltage Tests
Temperature Tests

e S e S B s

| Add
&) Sona

Delete
Meas

75| Delete |
&) Signal

Meas ‘

FIGURE 8. Database linking tool

27

New measurements are created using the “Add Measurement” -form. The function
for each button and the overall operation of the form is quite self-explanatory once
the name and function of the fields are known. From top to bottom in FIGURE 9 the

fields are:
¢ Measurement name,
* Measurement description
* Object -file path and type (usually a flowchart)
* Attachment file path

+ List of attached files

' N
o) Add Measurement E@ﬂ

New Measurement example

This is an example measurement|

iostics\THESIS_EXAMPLE\fdsfdsafds\EXAMPLE_Flowchartpng |-~ Browse | Image

Attachments
_Measurement_example'\Attachment powerpoint presentation pptx |-~ Browse

Attachment word document.docx Q)
Attachment powerpoint presentation pptx Attach
S
Remove
gl

FIGURE 9. New measurement form

28

New signals can be added by using the “Add Signal” -form, illustrated in FIGURE
10. This form is similar to the “Add Measurements” -form, with the following
differences:

» Signal group can be chosen
* Instead of attachments, inputs can be added

Each input type has special values associated to it. Each tab page also has a short
description or help text to guide the creation of inputs. Once the special values
have been given, the input can be added to the signal by clicking the “Add input” -
button.

89 Add Signal EEN

Example Signal Group |1 &

This is an example signal

sw_Measurement_example\THESIS_SIGNAL_EXAMPLE jog Iimage

Numinput | Boollnput | Group Selection nputs

Input Label Boolean example 5 Bool; Boolean example 1
- Bool; Boolean example 2

- Bool; Boolean example 3

Input will be evaluated as PASS

when a checkbox is checked. ~-Num; Numeric example 1; 10 0
Phrase your label accordingly. - Num; Numeric example 2; 10; 0
(i.e. ls voltage stable?) - Num; Numeric example 3; 10; 0

- Num; Numeric example 4; 10; 0

--Bool; Boolean example 5

HSM ’ ‘@w’ Delete selected

FIGURE 10. New signal form

29

4.1.3 DUT Log

In order to follow the usage and effectiveness of the tool, a logging feature was
implemented in the tool. A log file is created for each unique serial number. It

contains entries on five different levels; DUT, test, measurement, signal and input.

When a serial is entered in the DUT serial textbox, a log entry “DUT LOADED” is
written. Loading a test writes an entry with test- and test plan name in the log file.
Similarly loading measurements and evaluating signals create their own entries

with details of the operation.

Inputs are the lowest level of information written to the log. An input entry is written
for each passed input evaluation and, if one exists, the first failed evaluation. An
Input entry contains: input label, input value (for numerical inputs) and evaluation
result; “PASS” or “FAIL". An example log is illustrated in FIGURE 11.

5.12.2014 15:43:17: DUT LOADED

5.12.2014 15:43:24: TEST 10: PoweruUpCurrent(EXAMPLE_TESTPLAN) LOADED
5.12.2014 15:43:26: MEASUREMENT ExampleMeasurement LOADED
5.12.2014 15:43:50: SIGNAL ExampleSignal; O being evaluated:
5.12.2014 15:43:50: INPUT SIGNAL Voltage @ IC 3,3 PASS
5.12.2014 15:43:50: INPUT SIGNAL Voltage @ FET 3,3 PASS
5.12.2014 15:43:50: INPUT Voltages stable PASS

5.12.2014 15:43:50: MEASUREMENT ExampleMeasurement PASS
5.12.2014 15:43:50: MEASUREMENT ExampleMeasurement_2 LOADED
5.12.2014 15:43:57: SIGNAL ExampleSignal; O being evaluated:
5.12.2014 15:43:57: INPUT SIGNAL Voltage @ IC 3,3 PASS
5.12.2014 15:43:57: INPUT SIGNAL Voltage @ FET 3 FAIL
5.12.2014 15:44:03: SIGNAL ExampleSignal; O being evaluated:
5.12.2014 15:44:03: INPUT SIGNAL Voltage @ IC 3,3 PASS
5.12.2014 15:44:03: INPUT SIGNAL Vo1tage @ FET 3,30 PASS
5.12.2014 15:44:03: INPUT voltages stable PASS

5.12.2014 15:44:03: MEASUREMENT ExampleMeasurement_2 PASS

FIGURE 11. Log example

30

4.2 Diagnostic database

In order for the tool to work on different products and product lines, all diagnostic
information was decided to be stored in an external file; a diagnostic database.
This database would serve as the diagnostic model of the product or products.
Main elements and relations in the database were to be different diagnostic
measurements, signals within those measurements, their relation to production

tests and any additional diagnostic information for aforementioned elements.

The database was chosen to be implemented as an xml file. This decision was
made mainly for two reasons. Firstly, the database could in the later phases of
development be rather easily extended in contrast to a SQL based database which
would have needed to be recompiled each time even a minor change was made.
And secondly, the used development environment, Visual Studio with C#, provided
good built-in libraries for easy and straightforward XML manipulation and querying.
In addition, although an xml file is quite inefficient in storing data, the file would be
stored locally on each PC, and the size of the additional diagnostic information,
namely measurement point pictures and flowcharts, would greatly exceed the size
of the database file. FIGURE 12 illustrates the high level structure of the database
and relation to a test plan.

Test plan Diagnostic Database

(N\
Testplan- and MEASUREMENTS

product information
& J

TESTS @ - -‘ TESTS SIGNALS

FIGURE 12. Diagnostic database high level structure

31

The following diagrams (FIGURE 13, FIGURE 14, FIGURE 15 and FIGURE 16)
illustrate the structure of the diagnostic database in more detail. An element with

bolded text represents a set (1) of elements.

[Measurement_Name]

-

N

is an example
created for
illustration

purposes.”

| J S

FIGURE 13. Measurement element and direct children

[Signal_Name

Description ObjectFilePath [ObjectFileType]
) I ° I I I | I
(“This “\RelativeFilePath\ "Image”, Text’, | | FIGURE 14 | FIGURE 15
measurement Filename.png” etc...] J

| S

-

Description

N

\

-

ObjectFilePath [ObjectFiIeType

/|

Group]

INPUTS

“This signal is
an example
created for
illustration

purposes.”

~

.

“\RelativeFilePath\ "Image”, "Text”,

Filename.png” etc...

FIGURE 14. Signals-element and direct children

32

Integer

value

I
| FIGURE 16 'I

N - -

TestPlan_ID

FIGURE 15. TestPlans element and children

/
I
|
|
I
|
|
I

om e e -

Test_name
ID Type Parameters
A\ I J/ A\ I J A\ : J/ I
4 A 4 A (3
Integer "Numerical”, Groupname ‘ Other parameters ’
value "Boolean”, etc. L
(. J (. J I I
4 N\
"Test group Not needed by
name” the tool.
| —

oo = mm = -

\.

Vs

\

(.

[Numinput]] I Boollnput
| | I
| | I
I I | e)
Y \ | | "Checkbox
HIGH LOW "Label text”
| | label text”
I I | \o———=
Numerical Numerical |
value value] o o = -
i S |
——————= | [GroupSelection
| Textlnput 1 I
I I I ITEM
I "PASS”/"FAIL” I I I
| I | I !
| "Text match” I |[Index] ["Item text”
\ / \

FIGURE 16. Input elements

33

——_,

-_—e—— e - - - -

4.3 Piloting

Two pilot programs were scheduled once the tool development reached a state
where; no major bugs were interfering with normal operation, most of the
messages and error handling was implemented and some diagnostic information
was added to the database. First pilot was launched immediately in the Oulu
factory repair area. The second pilot was launched after two weeks in the repair

area of a high volume factory.

The pilot in Oulu started after the tool was installed on one repair area tester. The
tool was advised to be used whenever failures within a predetermined scope were
found. Log files would be gathered regularly to monitor the effectiveness of the
tool. The main aims for this pilot were to find bugs and give the repair operators in
Oulu a chance to try out the program and give improvement suggestions. However,
because of the small amount of boards matching the scope and the nature of the
faults on those boards, the usage of the tool was minimal and no bug reports or

improvement were received.

The second pilot was launched in the high volume -factory after approximately two
weeks of piloting in Oulu. Few minor improvements and bug fixes were done to the
tool and the diagnostic database was updated. In the high volume factory, the
program was installed on a production tester, where repair operators perform
diagnostic measurements. Similarly, the log files were gathered weekly by local
tester engineers and sent back to Oulu for analysis. See chapter 5 for detailed

results.

34

5 CONCLUSIONS AND RESULTS

An automated diagnostic tool was developed in order to improve diagnostic
accuracy in production rework process. The tool consists of a GUI and diagnostic
databases for different products. In order to support further development of the
tool, a software requirements specification document was drafted. The diagnostic
databases contain system level fault models and lower level rule based diagnostic
information. The tool also gathers logs of diagnosed products, which are used to

help evaluate the performance of the tool.

The tool was developed using Microsoft Visual Studio and C# programming
language. The databases were implemented using XML language, and the tool
utilizes XML built-in addressing language XPath to query the diagnostic database.
The production tests and their limits are taken directly from a production test plan -
file and the databases link to those tests.

Developing a diagnostic system and implementing an XML -based database
deepened the author’s knowledge about diagnostic systems and XML -related
technologies. The initial experiences from the tool lead to a decision to take it into
global use if the pilot programs yield positive results.

As of mid December 2014, the system has been piloted for a total of four weeks in
two Nokia Networks -factories. The initial pilot in Oulu -factory did not yield any
reasonable results because the number of faulty products matching the scope was
minimal and hence the tool has not been used very much. The piloting in the high
volume factory yielded encouraging results. During the piloting period the number
of misdiagnoses for the entire product decreased by 88%, and no misdiagnoses

were logged within the scope of the tool.

35

The results of the pilot programs are quite positive and repair operators have
reported the tool to be easier to use compared to TSI-documents. The tool is
planned to be taken into global use for Nokia Networks system module production
rework. The roll-out will be in early 2015 and until then the tool will be further
developed and diagnostic databases will be extended and refined to cover more
faults with better accuracy.

36

SOURCES

1. Nokia Corporation. 2014. Financial report Q3 2014, Earnings release.
Date of retrieval: 10 October 2014, http://company.nokia.com/en/investors/

financial-reports/results-reports

2. IEEE 830-1998, IEEE Computer Society, Software Engineering Standards
Committee & IEEE-SA Standards Board. 1998. IEEE Recommended
Practice for Software Requirements Specifications. Institute of Electrical

and Electronics Engineers.

3. Davis, R., & Hamscher, W. C., 1988. Model-based reasoning:
Troubleshooting (No. AI-M-1059). MASSACHUSETTS INST OF TECH
CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB.

4. Fenton, W. G., McGinnity, T. M., & Maguire, L. P. 2001. Fault diagnosis of
electronic systems using intelligent techniques: a review. Systems, Man,
and Cybernetics, Part C: Applications and Reviews. IEEE Transactions on,
31(3). 269-281.

5. W3C. 2008. Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C
Recommendation 26 November 2008. Date of retrieval: 1 December 2014.

http://www.w3.0rg/TR/xml/

6. W3Schools. 2014. XML DOM Tutorial. Date of retrieval: 1 December 2014.

http://www.w3schools.com/dom/

7. W3Schools. 2014. XML Tutorial. Date of retrieval: 1 December 2014.

http://www.w3schools.com/xml/

8. W3C. 1999. XML Path Language (XPath), W3C recommendation 16
November 1999. Date of retrieval: 1.12.2014. http://www.w3.0rg/TR/xpath

37

APPENDICES

Appendix 1 Memo of initial data (in Finnish)

Appendix 2 Thesis example diagnostic database

38

Memo of initial data (in Finnish)

ORME LAHTOTIETOMUISTIO
Tekniikan yksikkd
Tietotekniikan osasto

Langattomien Bitteiden syuntautumisvaintoshto

Appendix 1

Telya Arto Drees
Tilaaja Mokia
Tilaajan vhteyshenkldft) ja viteystiadot

Projekim tavoiftest

Mokia Oj, Kaapelitie 4 90620 Oulu, Ville Nurkkala, tel +358504869550

Eonauschjetia kiytetiin vaztimusmadntelyna automatisoudulle
kogausolgelmstolle, jolla pynfdén ohjsamzan ja belpottaoaan
kopaustoimmntaa. Tavoitteena viaphalmohjeslls ja olyelmstolls on et=mi ja
esitidd selkedsh tamattavat vianhakutoimet seki varmistaa niden cikezoppimen
suorrtus, jobta pmnsyy 1ovtyy nopessh ja tuotieet saadaan korattua lnotettanash

Progekiissa k3ytettavi prosessmmalll (mahdolimen vathejakoon perustinva atkatauhates)

A3 project process: Background Cumrent condition, Goal staterment, Root-Cause
analysis, Countermeasmres, Actuzl Resutts, Follow-up

Projekiissa kdvtettivit menetelmdt ja telmologiat

Boundary Sean, BIST, POST, C, Labwindows, Labview, Visuzl Studio, C#

Projektin aln=tava aikatanlu

Projektitys 5 viikkoa, opimivtetys 2014 loppmm

Paivays ja allekirjoitukset

Thesis example diagnostic database Appendix 2

(NI

s

~1 & LA b

~1 & oh

e el e e vl

B o

WoWw W W
P T

S Ly

5 Co

|<?:cml version="1.0"2>
<MELSUREMENTS>
<ExampleMeasurement>
<Descripticn>This measurement is an example created for illustration purposes.

Flowchart shows troubleshooting to fix a broken lamp.

Flowchart -picture from Wikimedia Commons.
http://commons . wikimedia.orgs </Description>
<CbjectFilePath>\THESIS EXAMPLE\fdsfdsafds\EXAMPLE Flowchart.png</CbjectFileFPathx
<0bjectFileTyperInage</CbhjectFileTypes
<5IGNALS>
<ExampleSignal>
«<Dezcripticn>This signal is an example created for illustration purposes.

Voltage should be 3,2 ... 3,4 & both measurement points.

Measurement points -picture from Wikimedia Commons.
http: //fcommons.wikimedia.org/ </Descripticn>
<CbjectFileFath>\THESIS EXAMPLE\ExampleMeasurement\THESIS SIGNAL EXAMPLE.jpg</CbjectFileFath>
<0ObjectFileType>Image</CbjectFileTypex
<NumInput>SIGHAL Voltage @ IC<HIGH>3,4</HIGH><LOW>3,2</LOW></NunInputs
<NumInput>SIGHAL Voltage @ FET<HIGH>3,4</HIGH><LOW>3, 2« /LOW></HumInputs>
<BooclInput>Voltages stable</BooclInputs>
<Group>0</Group>
</ExampleSignal>
</SIGNALS>
<TESTFLANTESTS>
<EXAMPLE TESTPLAN>
<PowerlUplurrent>
<IDx10</ID>
<TYPE>NumlimitTest</TYFE>
<PARRMETERS>
<GROUPNAME:"4 x.x.x, Powerline tests"</GROUFNAME:
</PRRAMETERS>
</PowerlUplurrent>
</EXBMPFLE TESTEFLAN>
</TESTPLANTESTS>
</ExampleMeasurement
<ExampleMeasurement 2>
<Descripticn>This measuremet iz an example created for illustration purposes.

Flowchart shows troubleshooting to fix a broken lamp.

Flowchart -picture from Wikimedia Commons.

http://commons . wikimedia.orgs </Description>
<CbjectFilePath>\THESIS EXAMPLE\ExampleMeasurement 2\EXAMPLE Flowchart.png</CbjectFilePath>
<0bjectFileTyperInage</CbhjectFileTypes
<AttachmentFile>\THESIS EXAMPLE\ExampleMeasurement 2‘Attachment bitmap.bmp</AttachmentFile>
<LttachmentFile>\THES IS_EXM[PLE \Example}!easumment_Q ZAttachment PDF.pdf</LttachmentFiles
<ittachmentFile>\THESIS ENAMPLE\ExampleMeasurement 2\Attachment powerpoint presentation.pptx</AttachmentFile>
<httachmentFile>\THESIS ENAMPLE\ExampleMeasurement 2\Attachment word document.decx</AttachmentFile>
<AttachmentFile>\THESIS EXAMPLE\ExampleMeasurement 2\Attacment text file.txt</AttachmentFilex

oo omoen
. = T

= o

(8]

[= B - VI - V- R]
=

[

[T N

30

(TR T T T R TR TR
G- T R S R =Y

]
(SRR

[= = =
o T e T T T B & 1
o O Y

105
106
107

<5IGNALS>
<ExampleSignal>
«<Dezcripticn>This signal is an example created for illustration purposes.

Woltage should be 3,2 ... 3,4 £ both measurement points.

Measurement peoints -picture from Wikimedia Commons.
http: //fcommons.wikimedia.org/ </Descripticn>
<CbjectFileFath>\THESIS ENAMPLE\ExampleMeasurement I\THESIS SIGNAL EXAMPLE.jpg</CbjectFileFath>
<0ObjectFileType>Image</CbjectFileTypex
<NumInput>SIGHAL Voltage @ IC<HIGH>3,4</HIGH><LOW>3,2</LOW></NunInputs
<NumInput>SIGMAL Voltage @ FET<HIGH>3,4</HIGH><LOW>3,2</LOW></NumInputs
<BoolInputxVoltages stable</Boollnputs
<Group>0</Group>
</ExampleSignal>
</SIGNALS>
<TESTFLANTESTS>
<EXAMPLE TESTPLAN>
<PowerlUplurrent>
<ID»10</ID>
<TYFE>NumLimitTest</TYFE>
<PARRMETERS>
<GROUPNAME:"4 x.x.x, Powerline tests"</GROUFNAME:
</PRRAMETERS>
</PowerlUplurrent>
</EXBMPFLE TESTEFLAN>
</TESTPLANTESTS>
</ExarpleMeasurement 2>
<lNew Measurement example>
<Descripticn>This is an example measurement</Descripticn>
<CbjectFilePath>\THESIS_EXAMPLE\New Measurement example\EXAMPLE Flowchart.png</CbjectFileFathx>
<0bjectFileTyperInage</CbhjectFileTypes
<AttachmentFile>\THESIS EXAMPLE\New Measurement example‘\Attachment word decument.docx</AttachmentFile>
<httachmentFile»\THESIS EXAMPLE\New Measurement example\Attachment powerpoint presentation.pptx</AttachmentFiles
<SIGMALS/>
<TESTFLANTESTS>
«EXZMFLE TESTELAN:
<CurrentTlest BOARD>
<ID»350</I0>
<TYPE>NumLimitTest«</TYPE>
<TOLERANCE LIMIT3>0«/TOLERANCE LIMITS>
<LIMIT1>
<LOW>0.3</LOW>
<HIGH>3.0</HIGH>
<UNITS>A</UNITS>
</LIMIT1>
«<PARAMETERSI>
<GROUFNAME:>"#,x.x.x, Powerline tests"</GROUPNAME:
< /PAERAMETERS>
</CurrentTest BOARD>
</EXRMPLE TESTFLAN>
</TESTFLANTESTS>
</New_Measurement_examplex

- </MELSUREMENTS>

