

Arto Drees

AUTOMATED DIAGNOSTICS OF ELECTRONIC SYSTEMS

AUTOMATED DIAGNOSTICS OF ELECTRONIC SYSTEMS

Arto Drees
Bachelor´s Thesis
Fall 2014
Information Technology and
Telecommunications
Oulu University of Applied Sciences

3

This thesis was commissioned by Nokia Networks as a part of a wider ongoing
quality project. The main objective for this thesis and the quality project was to
improve diagnostic accuracy on a certain base station product by targeting the
most misdiagnosed faults and to reduce unnecessary component replacement.

To achieve the objective, an early version of an automated diagnostic tool was
developed. The tool was developed using Microsoft Visual Studio and C#
programming language. The tool uses diagnostic databases to hold diagnostic
information. The diagnostic databases were implemented using XML (Extensible
Markup Language). The diagnostic databases implement fault models and rule
based diagnostics to troubleshoot target products.

Two pilot programs were launched in order to verify the functionality of the tool and
measure improvements on diagnostic accuracy. The results of the pilots were
encouraging; the rate of failed diagnoses decreased by 88%.

The success of the pilot programs and the ease of use of the tool sparked interest
to it, and it was decided to be taken into global use in system module repair of
Nokia Networks base stations. Further development is, however, still needed to
extend the coverage of the tool and to add new features.

ABSTRACT

Oulu University of Applied Sciences
Degree programme in Information Technology and Telecommunications, option of
Wireless Devices

Author: Arto Drees
Title of thesis: Automated Diagnostics of Electronic Systems
Supervisors: Tuomo Tikkanen & Ville Nurkkala
Term and year of submission: Fall 2014 Pages: 38 + 2 appendices

Keywords:
diagnostics, automation, XML, C#

4

Tämän opinnäytetyön tilaajana toimi Nokia Networks. Työ tehtiin osaksi laajempaa
laadunparantamisprojektia. Päätavoitteena oli parantaa diagnostiikkaa sekä
vähentää väärien diagnoosien määrää tietyillä tukiasematuotteilla kohdentamalla
työ useimmin väärin diagnosoiduille komponenteille.

Tavoitteet saavutettiin kehittämällä varhainen versio automatisoidusta
diagnostiikkatyökalusta. Työkalu kehitettiin Microsoft Visual Studio-
kehitysympäristössä C#-ohjelmointikielellä. Työkalu käyttää
diagnostiikkatietokantaa, joka kehitettiin XML(Extensible Markup Language)-
kielellä. Tietokannalla toteutetaan vikamallinnusta ja sääntöihin perustuvaa
diagnostiikkaa juurisyyn löytämiseksi.

Kaksi pilottihanketta käynnistettiin varmistamaan työkalun toimivuus ja mittaamaan
onnistuneiden diagnoosien määrän kehitystä. Pilottihankkeiden tulokset olivat
rohkaisevia; väärien diagnoosien määrä laski 88 %.

Pilottihankkeiden hyvät tulokset ja työkalun helppokäyttöisyydestä saatu palaute
johtivat siihen, että työkalu päätettiin ottaa käyttöön globaalisti tilaajan
valmistamien systeemimoduulien korjauskäytössä. Työkalu vaatii silti vielä
jatkokehitystä, erityisesti kattavuuden ja vaillinaisten ominaisuuksien osalta.

TIIVISTELMÄ

Oulun ammattikorkeakoulu
Tietotekniikan koulutusohjelma, Langattomien laitteiden suuntautumisvaihtoehto

Tekijä: Arto Drees
Opinnäytetyön nimi: Automated Diagnostics of Electronic Systems
Työn ohjaajat: Tuomo Tikkanen & Ville Nurkkala
Työn valmistumislukukausi ja -vuosi: Syksy 2014 Sivumäärä: 38 + 2 liitettä

Asiasanat:
diagnostiikka, automaatio, XML, C#

5

CONTENTS

ABSTRACT ... 3

TIIVISTELMÄ .. 4

CONTENTS ... 5

GLOSSARY ... 7

1 INTRODUCTION .. 8

2 DIAGNOSTIC METHODS .. 10

2.1 Rule-based approaches .. 11

2.2 Model-based approaches .. 12

2.2.1 Fault Models .. 12

2.2.2 Structural and behavioral models ... 13

2.3 Machine learning approaches ... 14

2.4 Hybrid approaches .. 16

3 XML .. 17

3.1 Structure and syntax ... 17

3.2 XPath .. 21

4 IMPLEMENTATION ... 23

4.1 Tool GUI .. 24

4.1.1 Main view and measurement execution ... 24

4.1.2 Database Manipulation .. 27

4.1.3 DUT Log ... 30

4.2 Diagnostic database .. 31

4.3 Piloting .. 34

5 CONCLUSIONS AND RESULTS ... 35

6

SOURCES... 37

APPENDICES ... 38

7

GLOSSARY

ANN Artificial Neural Network

CAD Computer Assisted Design

CVI C for Virtual Instruments

DOM Document Object Model

DUT Device Under Test

GUI Graphical User Interface

IEEE The Institute of Electrical and Electronics Engineers

PC Personal Computer

R&D Research and Development

TSI Troubleshooting Instruction(s)

W3C The World Wide Web Consortium

XML Extensible Markup Language

8

1 INTRODUCTION

This thesis was commissioned by Nokia Networks as a part of a wider ongoing

quality project. Nokia Networks is a business unit of Nokia Corporation. Nokia

Corporation was founded in 1871 and the global headquarters are located in

Espoo, Finland. As of September 2014 Nokia Corporation employs 59035

employees of which 51980 (88%) work for Nokia Networks (1). The Oulu site of

Nokia Networks serves as a R&D site and ramp-up factory for new products.

The main objective for this thesis was to improve diagnostic accuracy on a certain

base station product by targeting some of the most misdiagnosed faults and to

reduce unnecessary component replacement. To achieve the objective, an early

version of an automated diagnostic tool was developed and a draft of a SRS

(Software Requirement Specification) document was created to guide future

development of the tool. The existing troubleshooting instructions were converted

to a database and a set of diagnostic information which is accessed by the tool.

The SRS follows guidelines set by IEEE document 830-1998: Recommended

Practice for Software Requirements Specifications (2).

The tool solves some problems in the preceding troubleshooting procedure, mainly

in the TSI (Troubleshooting Instructions) -document. Such a document can easily

grow up to hundreds of pages and the relevant information for a single fault can be

spread out to several sections. In such cases the operator can accidentally or

intentionally skip some measurements. The tool hides all the irrelevant

troubleshooting information and guides the operator trough only the relevant

measurements. The repair operator can see the current measurement points at a

glance and observe the flowchart of the higher level measurement. This

encourages the operator to actually go through all the necessary steps.

9

The tool was developed using Microsoft Visual Studio and Visual C# -programming

language. This development environment was chosen because it enables fast and

easy Windows based GUI (Graphical User Interface) development while still

maintaining interoperability with the more commonly used National Instruments

LabWindows/CVI and TestStand -development environments and their libraries.

10

2 DIAGNOSTIC METHODS

A diagnostic process of any electronic system usually follows a set of three

fundamental tasks. These tasks are:

• Hypothesis generation

• Hypothesis testing

• Hypothesis discrimination

Given that a system is undergoing a diagnostic process, it must have at least one

symptom. Using this symptom as a starting point, a list of hypotheses can be

generated. These hypotheses are then tested by checking if they alone can

account for all (and only) observed symptoms. After the hypotheses have been

tested, and usually some eliminated in the process, the initial observations cannot

provide any additional information. At this stage it is necessary to start gathering

new information that allows further discrimination of the remaining hypotheses. The

last step is executed until only a single hypothesis is left. (3.)

Diagnostic systems can be categorized by their approach to execute the

fundamental tasks. Some of these approaches are:

• Rule-based approaches

• Model-based approaches

• Machine learning approaches

• Hybrid approaches

• Others

(4.)

11

2.1 Rule-based approaches

Rule-based approaches are the oldest and simplest form of system diagnosis. A

rule-based diagnostic procedure takes information about the problem and applies a

set of rules on the information. This generates more information or actions, upon

which another set of rules is applied. The procedure is repeated iteratively until a

solution is found. For most modern electronic systems the set of rules can quickly

grow up to hundreds or thousands of rules. In addition, even small changes in the

system can cause large deviation in the rule-set, which then needs to be rebuilt.

However, because the process is simple and clearly defined, it is easy to follow.

(4.)

The diagnostic process of a rule-based approach can be represented with a

decision tree as in FIGURE 1. In the diagram; iterative steps are represented with

different colors and each step applies its own rule set on the previous data.

FIGURE 1. Simple decision tree for a rule-based diagnostic approach

Test 1

Pass

Fail

Test 2

Pass

Fail
Replace
component 1

Replace
component 2

Test 3

Pass

Fail Replace
component 3

Replace
component 4

START

Type
1 2

3

Step A
Step B
Step C
Step D

12

2.2 Model-based approaches

Model-based approaches use a model to approximately represent the system. The

model can be constructed in various ways, including fault models, structural and

behavior models. It is usually necessary to construct the model hierarchically, so

that one top level model contains several sub level models representing parts of

the diagnosable system.

2.2.1 Fault Models

Fault models model the system by anticipating various types of faults and their

resulting symptoms. This model performs the first two fundamental tasks;

hypothesis generation and testing. When using a fault model, only the modeled

faults can be diagnosed. The model does not contain any information about the

actual system, but only shows what happens when a modeled fault occurs. Fault

models can be very accurate when dealing with system level blocks and simple

combinational logic. However, they do not work particularly well for complex

circuits or when a vast quantity of different failures can occur. Example fault model

is illustrated in TABLE 1.

TABLE 1. Example fault model

 Test 1
Fail type 1

Test 1
Fail type 2

Test 1
Fail type 3

Test 2
Fail

Test 3
Fail

Comp. 1 - Internal fault X X X

Comp. 2 - Internal fault X X

Comp. 4 - No power X

Comp. 4 - Output shorted X

Comp. 4 - Internal fault X X

Wiring f ault: Comp. 1 - 2 X X

Wiring fault : Comp. 3 - 4 X

13

2.2.2 Structural and behavioral models

A model based on structure and behavior consists of two different representations

of the system, structural and behavioral. The structural representation is essentially

a list of all the components or functional blocks and their connections. The

behavioral representation describes the behavior of individual components or

functional blocks. The advantage of these models is that they can be

straightforwardly generated from CAD data. (4.)

Given a specific input, the model can be used to predict the output of the system. If

a discrepancy is found between the predicted and observed behavior, the model

can quickly narrow the hypothesis list to those components that affect the point of

discrepancy. This hypothesis list can be further discriminated by using a so called

guided probe -method. Essentially the method starts at the observed discrepancy

and follows the causal chain of components following the discrepancies between

observations and predictions. Once a discrepancy is no more found, taking one

step back reveals the cause of the failure. The guided probe -method is just one of

many possible methods, other methods might account for failure probabilities of

different components, finding the optimal probing points to minimize measurement

count or testing with different input values to deduce the point of failure. (4.)

An example of the guided probe method in action is illustrated in FIGURE 2. The

behavior of the components is described by their names and corresponding simple

logical operations. The discrepancy is first observed at F, and then followed

backwards via MAX, Z, ADD, Y and MIN. First, MAX input Z is found incorrect, so it

is followed to ADD, whose input Y is found incorrect. Finally, MIN inputs C & X are

both found to be correct. Therefore the component MIN is found to be faulty,

producing faulty output with correct inputs.

14

2.3 Machine learning approaches

Previously discussed approaches have fixed performance and outcome after initial

implementation. A diagnostic system using machine learning can improve itself

using information on past or example solutions and their success or failure. This

enables continuous improvement on both diagnostic accuracy and time to perform

additional observations. The most widely used learning method is case-based

reasoning. Other methods include explanation based learning (teaching) and

learning from existing data. [4.]

FIGURE 2. Example of a structural and behavioral model in action

F=5 MAX
A=2

B=1

C=8

D=2

E=2

ADD

MIN

MULT
X=4

Y=4

Z=5

F=3 MAX
A=2

B=1

C=8

D=2

E=2

ADD

MIN

MULT
X=4

Y=2

Z=3

Observations

Prediction

15

Case based reasoning starts by identifying the symptoms and observations of the

current problem. Using this information, a set of similar cases is retrieved from a

database. These cases are then further compared and ranked to find the most

matching case. The remaining retrieved case is then adapted to suit the new

problem and a set of repair actions is proposed. After performing the actions and

measuring their success the adapted case is revised if necessary and retained in

the database as a new case. One drawback for this method is that the diagnostic

system must encapsulate the entire repair process in order to measure the

success of repair actions. It also struggles to find solutions for completely new

symptoms or novel faults. FIGURE 3 illustrates the concept of case based

reasoning.

FIGURE 3 Concept of case based reasoning

CURRENT
PROBLEM

SIMILAR
CASE

ADAPTED
CASE

REVISED
CASE

Retrieval &
matching

Adaptation Perform
repair
actions

Retain

16

2.4 Hybrid approaches

A hybrid approach can use any combination of the aforementioned approaches to

complement the characteristics of each other. In general, any approach can be

combined with machine learning to improve itself. In addition to the methods

described earlier, there are many other methods that can be used to enhance

diagnostics. These methods include, but are certainly not limited to: Fuzzy logic,

Artificial Neural Networks (ANN) or Genetic algorithms. (4.)

An example of a hybrid approach is the diagnostic database described in detail

later in this thesis. It uses a combination of a fault model and rule based

diagnostics. A fault model is used at system level to generate the initial hypothesis

list. This list is then further discriminated by diagnostic measurements. Each

measurement is essentially a rule based diagnostic approach for a certain block.

The rule based approaches are constructed using knowledge of structure and

behavior of the block and implement a sort of fixed guided probe method.

17

3 XML

XML (Extensible Markup Language) is, as the full form suggests, a simple text-

based format for representing structured information, documents, data,

configurations and much more. XML is used for sharing structured information

between programs, people and computers, both locally and across networks. (5.)

3.1 Structure and syntax

The structure of an XML document as described by a W3C standard; DOM

(Document Objet Model), is a tree-like structure; it starts at “the root“, and

branches all the way to “the leaves”. Between “the root” and the leaves are nodes.

The DOM defines several node types that are shown in TABLE 2. An example xml

tree is illustrated in FIGURE 4.

TABLE 2. XML DOM node types (6)

Node Type Description Children

Document Represents the entire document (the
root-node of the DOM tree)

Element (max. one),
ProcessingInstruction,
Comment,
DocumentType

DocumentFragment Represents a "lightweight" Document
object, which can hold a portion of a
document

Element,
ProcessingInstruction,
Comment, Text,
CDATASection,
EntityReference

DocumentType Provides an interface to the entities
defined for the document

None

ProcessingInstruction Represents a processing instruction None

EntityReference Represents an entity reference Element,
ProcessingInstruction,
Comment, Text,
CDATASection,
EntityReference

18

Node Type Description Children

Element Represents an element Element, Text,
Comment,
ProcessingInstruction,
CDATASection,
EntityReference

Attribute Represents an attribute Text, EntityReference

Text Represents textual content in an
element or attribute

None

CDATASection Represents a CDATA section in a
document (text that will NOT be
parsed by a parser)

None

Comment Represents a comment None

Entity Represents an entity Element,
ProcessingInstruction,
Comment, Text,
CDATASection,
EntityReference

Notation Represents a notation declared in the
DTD

None

FIGURE 4. Example of XML tree-structure

Root Element:
<bookstore>

Element:
<book>

Attribute:
ISBN=”9780764547607”

Element:
<title>

Element:
<author>

Element:
<year>

Element:
<price>

Text:
XML Bible

Text:
E. R. Harold

Text:
2001

Text:
$ 10.00

19

The XML syntax is also maintained by The World Wide Web Consortium (W3C).

There are only a handful of syntax rules in XML. If an xml document follows these

rules it is said to be “well-formed”. According to one popular XML guide:

www.w3schools.org (7), the list of XML syntax rules is as follows:

• All XML elements must have a closing tag

o <Example>
 This is an example element
</Example>

o <EmptyExample /> � “self closing” empty element

• XML tags:

o are case sensitive

o cannot start with numbers, punctuation or word “xml”

o (“ - “ , “ . ” and “ : ” should be avoided)

• XML Elements must be properly nested

o An element must be opened and closed within the same parent

• XML Document must have one root -element

o The root-element is the parent of all other elements

• Attribute values must be quoted

o Examples:
<Element id=”123”>; <Vehicle type=”train”>, <Note date=”30/12/14”>

• Reserved characters are to be replaced with entity references

o < � < , less than

o > � > , greater than

o & � & , ampersand

o ‘ � ' , aposthrope

o “ � " , quotation mark

• Comments are expressed within comment tags

20

o <!-- , opens a comment

o a comment can contain any text, including reserved characters

o --> , closes the comment

• New line -character is stored as LF (ASCII: 10)

The tree structure of the earlier example in FIGURE can be represented in XML as

illustrated in FIGURE 5. The first line opens the root element: “bookstore”. In

addition to the earlier example this example also lists another book: “Beginning

XML Databases”.

FIGURE 5. Example of XML representation

<bookstore>

<book ISBN="9780764547607">

<title >XML Bible</title>

<author>E. R. Harold</author>

<year>2005</year>

<price>30.00</price>

</book>

<book ISBN ="9780471791201">

<title>Beginning XML Databases</title>

<author>Gavin Powell</author>

<year>2007</year>

<price>25.00</price></book>

</bookstore>

21

3.2 XPath

Often when working with xml-documents, it is necessary to select nodes or

elements with certain path, properties, values or relations. XML offers a way to do

this by using a special addressing language: XPath. It allows selecting virtually any

node or node set from an XML-document.

An XPath expression can consist of one or more of the following: a path

expression, predicate(s), wildcards and operators. The path expression determines

the initial scope of the selection. This selection can be refined by using predicates

or wildcards, or expanded by using the | operator. Predicates are enclosed within

square brackets (“[]”). TABLE 3 shows some of the most useful XPath expressions

using the earlier bookstore -example. The complete and up-to-date syntax for

XPath can be found from W3C website (8).

TABLE 3. Useful XPath expressions

Expression Description

Path expressions

/ Select from root.

// Select from anywhere in the document.

. Select current context node.

.. Select parent of current context node.

nodename Selects node(s) “nodename” from current

context.

//Nodename/nodename2 Selects node(s) “nodename2” which are children

of any “nodename” anywhere in the document.

22

Expression Description

Wildcards

* Wildcard for elements.

@ Wildcard for attributes.

node() Wildcard for any nodes.

Predicate examples

//book[1] Selects the first “book” -element from anywhere

in the document.

/book[last()-1] Selects the second to last book -element. (only

direct children of the root -element)

//title Selects all “title” -elements

//title[../year=”2005”] Selects all “title” elements with a “year” sibling of

value “2005”. (“../” = parent’s child)

//book[price<”29”] Selects all “book” elements with a “price” of

value “2005”.

//book[@ISBN="9780471791201"] Selects “book” elements with attribute “ISBN” of

“9780471791201”.

//book[price<26] Selects all “book” elements with “price” less than

26.

//book[year>”2006”] | //book[price<=25] Selects all “book” elements with “year” greater

than 2006 OR “price” less than 25.

23

4 IMPLEMENTATION

The system implementation started with planning the structure of diagnostic

database, how it could be used to help diagnostics and first sketches of the GUI.

Microsoft Visual Studio was chosen as the main development environment.

Microsoft XML Notepad 2007 was used to create and edit the diagnostic database.

Because the diagnostic procedures were available from existing and partly

improved TSI documents, it was decided that the structure of those documents

was not to be altered too much. That decision lead to a functional structure in

which the first failed production test determined additional diagnostic

measurements to be executed. These measurements where further divided into

signals, which could be either real physical signals or logical conclusions of the

observed behavior of the system.

The GUI (Graphical User Interface) was developed using Microsoft Visual Studio

and C# -language. This combination usually leads to event driven programming

style, where the primary function is reacting to events rather than running a loop or

a linear flow of actions.

The schedule for the implementation stage was quite tight. Initial planning stage

was roughly two weeks, followed by one week of GUI design and four weeks of

intense programming. At that point the tool had reached version number 0.1 and

was ready for piloting. Two pilot programs were started to verify the effectiveness

of the tool.

24

4.1 Tool GUI

The main graphical user interface (GUI) design was started early in the

development process. The goal was to develop a simple GUI which displays all

relevant information at a glance and enables easy input of measured values. In

case of an error or failed measurement, the tool should display additional

information and action suggestions.

A total of 4 different forms were created; main view, database link tool and forms

for adding new measurements and signals. These forms and their operation are

described in detail in chapters 4.1.1 and 4.1.2. Additionally, some system provided

forms, such as file- and message dialogs, were added to the tool. The main data

containers used in the program were tree views and picture boxes. Various other

system provided controls such as text boxes, numerical controls, labels, and

buttons were also used.

4.1.1 Main view and measurement execution

The first action required by the user is to load a test plan and a diagnostic

database. This is done via the “File”-menu. The tool remembers last loaded test

plan and database files for the user. After the necessary files have been loaded,

the user must enter a serial number for the DUT. The serial number is only used

for logging purposes. After the text in the serial number textbox (top left in FIGURE

6) is of required length, the tests -tree view (left in FIGURE 6) is enabled.

25

After selecting and loading a test from the tests -tree view, a list of additional

measurements is show in the measurements -list (top center in FIGURE 6). These

measurements can be executed automatically; by clicking the “Run all” -button, or

manually; by selecting a single measurement from the list. Once a measurement is

selected, a description of the measurement is shown in the “Description” -textbox

(top right in FIGURE 6). The contents of the description describes the

measurement and provides some diagnostics aid. More information can be

attained from a flowchart of the measurement or measurement related

attachments; accessible by respective buttons near “Description” -textbox.

FIGURE 6. Main view of the tool

26

Once familiarization with the measurement has been established, the actual

execution of the measurement can begin. This is done by selecting a signal from

signals-list (bottom center in FIGURE 6), measuring requested signal at various

points and providing input in the input-panel (bottom right in FIGURE 6).

Measurement points or logical help can be found from the measurement point -

picture (middle right in FIGURE 6). The picture can be enlarged by clicking the

“Full screen”-button near the picture. Once the inputs have been given, they can be

evaluated by clicking the “Check” -button. Signal status -picture changes

accordingly and if all inputs are correct, the next signal is selected. If any of the

inputs are incorrect, a message -popup is shown and the user is prompted to see

additional information in flowchart and attachments; as illustrated in FIGURE 7.

FIGURE 7. Failing input and measurement attachments

27

4.1.2 Database Manipulation

In order to ease the extension and manipulation of the database, a database link

tool was implemented in the program. The tool can be used to create

measurements and signals, linking and unlinking tests, measurements and signals

to and from each others. In the “DBLinkTool”-window, the tests are shown on the

left, measurements in the middle and signals on the right.

Upon selecting any item from any list, the other two lists are updated to show

linked items. For example, the last selected item in FIGURE 8 is

“ExampleMeasurement” and it is linked to “PowerUpCurrent” -test and

“ExampleSignal; Group: 0”; illustrated by link icons. When two items from adjacent

lists are selected, they can be linked by clicking the “Link” -button between the

respective lists. Similarly, when the two items are already linked, the link can be

broken by clicking the “Unlink” -button. It is also possible to add and delete

measurements and signals. These actions can be started by clicking their

respective buttons below measurement and signal -lists.

FIGURE 8. Database linking tool

28

New measurements are created using the “Add Measurement” -form. The function

for each button and the overall operation of the form is quite self-explanatory once

the name and function of the fields are known. From top to bottom in FIGURE 9 the

fields are:

• Measurement name,

• Measurement description

• Object -file path and type (usually a flowchart)

• Attachment file path

• List of attached files

FIGURE 9. New measurement form

29

New signals can be added by using the “Add Signal” -form, illustrated in FIGURE

10. This form is similar to the “Add Measurements” -form, with the following

differences:

• Signal group can be chosen

• Instead of attachments, inputs can be added

Each input type has special values associated to it. Each tab page also has a short

description or help text to guide the creation of inputs. Once the special values

have been given, the input can be added to the signal by clicking the “Add input” -

button.

FIGURE 10. New signal form

30

4.1.3 DUT Log

In order to follow the usage and effectiveness of the tool, a logging feature was

implemented in the tool. A log file is created for each unique serial number. It

contains entries on five different levels; DUT, test, measurement, signal and input.

When a serial is entered in the DUT serial textbox, a log entry “DUT LOADED” is

written. Loading a test writes an entry with test- and test plan name in the log file.

Similarly loading measurements and evaluating signals create their own entries

with details of the operation.

Inputs are the lowest level of information written to the log. An input entry is written

for each passed input evaluation and, if one exists, the first failed evaluation. An

Input entry contains: input label, input value (for numerical inputs) and evaluation

result; “PASS” or “FAIL”. An example log is illustrated in FIGURE 11.

FIGURE 11. Log example

5.12.2014 15:43:17: DUT LOADED
5.12.2014 15:43:24: TEST 10: PowerUpCurrent(EXAMPLE_TESTPLAN) LOADED
5.12.2014 15:43:26: MEASUREMENT ExampleMeasurement LOADED
5.12.2014 15:43:50: SIGNAL ExampleSignal; 0 being evaluated:
5.12.2014 15:43:50: INPUT SIGNAL Voltage @ IC 3,3 PASS
5.12.2014 15:43:50: INPUT SIGNAL Voltage @ FET 3,3 PASS
5.12.2014 15:43:50: INPUT Voltages stable PASS
5.12.2014 15:43:50: MEASUREMENT ExampleMeasurement PASS
5.12.2014 15:43:50: MEASUREMENT ExampleMeasurement_2 LOADED
5.12.2014 15:43:57: SIGNAL ExampleSignal; 0 being evaluated:
5.12.2014 15:43:57: INPUT SIGNAL Voltage @ IC 3,3 PASS
5.12.2014 15:43:57: INPUT SIGNAL Voltage @ FET 3 FAIL
5.12.2014 15:44:03: SIGNAL ExampleSignal; 0 being evaluated:
5.12.2014 15:44:03: INPUT SIGNAL Voltage @ IC 3,3 PASS
5.12.2014 15:44:03: INPUT SIGNAL Voltage @ FET 3,30 PASS
5.12.2014 15:44:03: INPUT Voltages stable PASS
5.12.2014 15:44:03: MEASUREMENT ExampleMeasurement_2 PASS
...

31

4.2 Diagnostic database

In order for the tool to work on different products and product lines, all diagnostic

information was decided to be stored in an external file; a diagnostic database.

This database would serve as the diagnostic model of the product or products.

Main elements and relations in the database were to be different diagnostic

measurements, signals within those measurements, their relation to production

tests and any additional diagnostic information for aforementioned elements.

The database was chosen to be implemented as an xml file. This decision was

made mainly for two reasons. Firstly, the database could in the later phases of

development be rather easily extended in contrast to a SQL based database which

would have needed to be recompiled each time even a minor change was made.

And secondly, the used development environment, Visual Studio with C#, provided

good built-in libraries for easy and straightforward XML manipulation and querying.

In addition, although an xml file is quite inefficient in storing data, the file would be

stored locally on each PC, and the size of the additional diagnostic information,

namely measurement point pictures and flowcharts, would greatly exceed the size

of the database file. FIGURE 12 illustrates the high level structure of the database

and relation to a test plan.

FIGURE 12. Diagnostic database high level structure

Diagnostic Database Test plan

Production testplan Testplan- and

product information

 TESTS TESTS SIGNALS

 MEASUREMENTS

32

The following diagrams (FIGURE 13, FIGURE 14, FIGURE 15 and FIGURE 16)

illustrate the structure of the diagnostic database in more detail. An element with

bolded text represents a set (≥1) of elements.

FIGURE 14. Signals-element and direct children

Description

“This signal is

an example

created for

illustration

purposes.”

Signal_Name

ObjectFilePath

“\RelativeFilePath\

Filename.png”

ObjectFileType

”Image”, ”Text”,

etc…

 INPUTS

FIGURE 16

Group

Integer

value

FIGURE 13. Measurement element and direct children

Description

“This

measurement

is an example

created for

illustration

purposes.”

Measurement_Name

ObjectFilePath

“\RelativeFilePath\

Filename.png”

ObjectFileType

”Image”, ”Text”,

etc…

 SIGNALS TESTPLANS

FIGURE 14 FIGURE 15

33

FIGURE 16. Input elements

HIGH

Numerical

value

NumInput

LOW

Numerical

value

”Label text”

BoolInput

”Checkbox

label text”

GroupSelection

 ITEM

Index ”Item text”

TextInput

”Text match”

”PASS”/”FAIL”

FIGURE 15. TestPlans element and children

TestPlan_ID

 Test_name

ID Type Parameters

Integer

value
”Numerical”,

”Boolean”, etc.
Groupname Other parameters

”Test group

name”
Not needed by

the tool.

34

4.3 Piloting

Two pilot programs were scheduled once the tool development reached a state

where; no major bugs were interfering with normal operation, most of the

messages and error handling was implemented and some diagnostic information

was added to the database. First pilot was launched immediately in the Oulu

factory repair area. The second pilot was launched after two weeks in the repair

area of a high volume factory.

The pilot in Oulu started after the tool was installed on one repair area tester. The

tool was advised to be used whenever failures within a predetermined scope were

found. Log files would be gathered regularly to monitor the effectiveness of the

tool. The main aims for this pilot were to find bugs and give the repair operators in

Oulu a chance to try out the program and give improvement suggestions. However,

because of the small amount of boards matching the scope and the nature of the

faults on those boards, the usage of the tool was minimal and no bug reports or

improvement were received.

The second pilot was launched in the high volume -factory after approximately two

weeks of piloting in Oulu. Few minor improvements and bug fixes were done to the

tool and the diagnostic database was updated. In the high volume factory, the

program was installed on a production tester, where repair operators perform

diagnostic measurements. Similarly, the log files were gathered weekly by local

tester engineers and sent back to Oulu for analysis. See chapter 5 for detailed

results.

35

5 CONCLUSIONS AND RESULTS

An automated diagnostic tool was developed in order to improve diagnostic

accuracy in production rework process. The tool consists of a GUI and diagnostic

databases for different products. In order to support further development of the

tool, a software requirements specification document was drafted. The diagnostic

databases contain system level fault models and lower level rule based diagnostic

information. The tool also gathers logs of diagnosed products, which are used to

help evaluate the performance of the tool.

The tool was developed using Microsoft Visual Studio and C# programming

language. The databases were implemented using XML language, and the tool

utilizes XML built-in addressing language XPath to query the diagnostic database.

The production tests and their limits are taken directly from a production test plan -

file and the databases link to those tests.

Developing a diagnostic system and implementing an XML -based database

deepened the author’s knowledge about diagnostic systems and XML -related

technologies. The initial experiences from the tool lead to a decision to take it into

global use if the pilot programs yield positive results.

As of mid December 2014, the system has been piloted for a total of four weeks in

two Nokia Networks -factories. The initial pilot in Oulu -factory did not yield any

reasonable results because the number of faulty products matching the scope was

minimal and hence the tool has not been used very much. The piloting in the high

volume factory yielded encouraging results. During the piloting period the number

of misdiagnoses for the entire product decreased by 88%, and no misdiagnoses

were logged within the scope of the tool.

36

The results of the pilot programs are quite positive and repair operators have

reported the tool to be easier to use compared to TSI-documents. The tool is

planned to be taken into global use for Nokia Networks system module production

rework. The roll-out will be in early 2015 and until then the tool will be further

developed and diagnostic databases will be extended and refined to cover more

faults with better accuracy.

37

SOURCES

1. Nokia Corporation. 2014. Financial report Q3 2014, Earnings release.

Date of retrieval: 10 October 2014, http://company.nokia.com/en/investors/

financial-reports/results-reports

2. IEEE 830-1998, IEEE Computer Society, Software Engineering Standards

Committee & IEEE-SA Standards Board. 1998. IEEE Recommended

Practice for Software Requirements Specifications. Institute of Electrical

and Electronics Engineers.

3. Davis, R., & Hamscher, W. C., 1988. Model-based reasoning:

Troubleshooting (No. AI-M-1059). MASSACHUSETTS INST OF TECH

CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB.

4. Fenton, W. G., McGinnity, T. M., & Maguire, L. P. 2001. Fault diagnosis of

electronic systems using intelligent techniques: a review. Systems, Man,

and Cybernetics, Part C: Applications and Reviews. IEEE Transactions on,

31(3). 269-281.

5. W3C. 2008. Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C

Recommendation 26 November 2008. Date of retrieval: 1 December 2014.

http://www.w3.org/TR/xml/

6. W3Schools. 2014. XML DOM Tutorial. Date of retrieval: 1 December 2014.

http://www.w3schools.com/dom/

7. W3Schools. 2014. XML Tutorial. Date of retrieval: 1 December 2014.

http://www.w3schools.com/xml/

8. W3C. 1999. XML Path Language (XPath), W3C recommendation 16

November 1999. Date of retrieval: 1.12.2014. http://www.w3.org/TR/xpath

38

APPENDICES

Appendix 1 Memo of initial data (in Finnish)

Appendix 2 Thesis example diagnostic database

Memo of initial data (in Finnish) Appendix 1

Thesis example diagnostic database Appendix 2

