jamk.fi

Model-based acceptance testing as a part of
continuous delivery, Case: Contriboard

Petri Matilainen

Bachelor's Thesis
December 2014

Degree Programme in Information Technology
Technology, Communication and Transport

P d AN .. .
lrm\\ JYVASKYLAN AMMATTIKORKEAKOULU
l% 4) JAMK UNIVERSITY OF APPLIED SCIENCES

llm\‘l JYVASKYLAN AMMATTIKORKEAKOULU Description

L\ JAME UINNERSITY OF APPLIED SCIEMNCES
-
Author Type of publication Date
Matilainen, Petri Bachelor’s thesis 12.12.2014
Language
English
Pages Permission for web
65+17 publication (X)
Title

Model-based acceptance testing as a part of continuous delivery
Case: Contriboard

Degree programme
Software Engineering

Tutor
Mieskolainen, Matti

Assigned by
N4S@JAMK
Rintamaki, Marko

Abstract

The thesis was assigned by NAS@JAMK project within JAMK University of Applied
Sciences. The documentation was published as one contribution from JAMK to
Digile's Need for Speed research program.

The thesis focused on exploring how model-based acceptance testing could be
implemented into a continuous delivery chain Corolla v1.1 and used in its reference
product Contriboard. Both Corolla v1.1 and Contriboard are developed by
N4S@JAMK team.

The tests were made and executed with Ixonos Visual Test tool and made to build
from Jenkins. As the product for various reasons did not have a currently working
developer build, the production build was used as a system under test to prove that
the implementation works.

As a result, the product had a working testing environment and tests which could
be launched from the Jenkins. Later when development build is back online, the
tester can be easily changed to use it as a system under test. The test model was
intentionally made lightweight because of the incoming major changes; however, it
can be very easily expanded in the future.

Keywords
Model-based testing, Acceptance testing, Contriboard, N4S@JAMK

Miscellaneous

rlm\\ JYVASKYLAN AMMATTIKORKEAKOULU Kuvailulehti

w..a JAMK UNIVERSITY OF APPLIED SCIENCES
-
Tekija Julkisun laji Pdivamaara
Matilainen, Petri Opinnaytetyd 12.12.2014
Julkaisun kieli
Englanti
Number of pages Verkkojulkaisulupa
65+17 myonnetty (X)
Tyon nimi

Mallipohjainen hyvaksyntatestaus osana jatkuvaa julkaisua
Case: Contriboard

Koulutusohjelma
Ohjelmistotekniikan koulutusohjelma

Tyon ohjaaja
Mieskolainen, Matti

Toimeksiantajat
N4S@JAMK
Rintamaki, Marko

Tiivistelma

Opinndytetyon toimeksiantaja oli NAS@JAMK -projekti Jyvaskylan ammattikorkeak-
oulusta. Dokumentaatio julkaistiin JAMK:n tuloksena Digilen Need for Speed
-tutkimusohjelmassa.

Tyon tavoitteena oli tutkia, kuinka mallipohjainen hyvaksyntatestausprosessi
saataisiin integroitua Corolla v1.1 jatkuvan julkaisun ketjuun seka toteutettua
Contriboard referenssituotteen osalta. Corolla v1.1 sekd Contriboard ovat
molemmat N4S@JAMK-tiimin tuotoksia.

Testit toteutettiin seka ajettiin Ixonosin Visual Test -tydkalulla ja liitettiin osaksi
Jenkins tehtdvienhallintaa. Koska tuotteesta ei sattuneista syista ollut toimivaa kehi-
tysversiota saatavilla, kdytettiin testauksen todentamisessa sen hetkista tuotan-
toversiota.

Tyon tuloksena tuotteelle saatiin toimiva testausymparisto seka testit jotka pystyt-
tiin ajamaan Jenkinsin kautta. Myohemmin kun kehitysversio on jalleen saatavilla,
testaus saadaan helposti kohdennettua siihen. Testimalli tehtiin tarkoituksella
kevyeksi, koska tuotteeseen on tulossa suuria muutoksia. Mallin laajennus onnistuu
kuitenkin naiden jalkeen helposti.

Avainsanat (asiasanat)
Mallipohjainen testaus, Hyvaksyntatestaus, Contriboard, N4AS@JAMK

Muut tiedot

Table of Contents

I INEEOAUCTION. ...ttt ettt ettt ettt estesbeebeeaeesaeeens 6
1.1 JAMK as a part of N4S research program...........ccccceeveveeeriiieenieeenireeeeeesiveeeeenns 6
1.2 ObJectives Of TRESIS.coviriiiiriiieeiertee et e 7

2 CONEITDOAT. ...ttt sttt et b et sb e e sabeeeabee e 7
2.1 T @ENCTAL ...ttt et ettt e e e e sttt eenbeentaeenraennnes 7
2.2 ATCRITECIUTE. ...ttt ettt ettt st e e et e e e 9

3 ContinUOUS DEIIVETYcuiiiiiiiiiiiiiieicet ettt 11
3.1 Continuous INtEGTatioN.cccvieiiieiieiieeiieeie ettt e e 11
3.2 Continuous DeployMENt..........cccuieiieiiieiiieeiieiieeie et eve e sve e 11

4 Introduction to SOFtWare teSTINE.......ccuveeiiiieriieeciee et e e e e e e eeaaaeee s 12
o B IS 1) RSP R 12
4.2 Box testing Methods.cccvieiiiiiiieiieeiieie ettt e 14
4.3 TOSEINE PIOCESS. ..eeeuvieereerierireeireerteeeteessaeeseessseesseessseesseessseesseessseesseessssseessnssees 14

4.3.1 Planning the teSt......cccuvieiiiieiie ettt e e e e araaee s 14
4.3.2 Designing the teSt.......ceevuieiiieiiieiieete ettt 15
4.3.3 Implementing the teSt........cccieriiirieiieeiierie ettt e 16
4.3.4 EXECUtING the teSt....ccuuiiiiiiieiiiecieecie et 17
4.3.5 Evaluating €Xit CIIteTIA.......cccvreerureeeiieeeieeeereeesaeeesireeesrreeeeennrreeeeesnnsneeeas 18
4.3.6 ClOSUIE ACHIVILICS. cuvveeutieiieeiiesiieeieesiteeteesite et esieeebeesttesabeesseeesnbeeesanneeeeans 18
4.4 TeStING LEVEIS...cueiiiiiiiieiieee et ettt et 19
4.5 Functional and non-functional teSting.............ccceeeueerierciieriesiieiecie e 20
4.5.1 FUnctional teStINE.......c.eeeeviieeciieeeiie et eeiee ettt e et iee e eaee e e e e e e e enraaaee s 21
4.5.2 Non-functional teStiNg.........ceeuieriieriiiiiieiieeieeste ettt 21
4.6 ManUAl tESTING.....c..eeeiieiiieeiieiie et erite ettt et esaeeebeesaee e bt e ssaeesaesaaeeennneeas 23
4.7 Test QULOMATION.eeiutieiieeieeeite ettt ettt sttt ettt st e e sabeeeenaeeeeas 25

S ACCEPLANCE tESTINE. ... ueieeiieeiiieeiieeeieeeecteeeeteeesteeesaeeereaeeetseeesaeesseaeesesnsssseeesennssees 26
5.1 User Acceptance TEStING.......ccuevterieeiirienienienitenieeie ettt sttt et 26
5.2 Operational Acceptance TEeSHNG........ccceevieeriieriiierieeie ettt 26

6 Examples of acceptance teSting t0O0IS.......cc.eevuieriieriieeiieriieeie et e e evee e 27
0.1 CUCUIMDETttt ettt ettt e et ee e 27

0.2 FIENESSE. ettt et e e e e e e e e e e e e e e e e e e eaaeeeeeeeeaeraaaaseeeeeaeaaaaaes 28

0.3 SCLENIUIML ...uiiiiiiiitietest ettt sttt et st sb et et sae e s 29
0.4 RODOt FTameWOTK.coiiiiiiiiiiiiieienieeeece e 30
0.5 TMBT ...ttt ettt ettt st nnee s 31

7 MOdel-based tESTING........eeecuieeeiiieeiiee et eee et e steeesae e e e e e stbeeesaeeeaaeeennnnnaeeens 34
7.1 DEfINIEION.eiiieiiiiiiiitcteeeet ettt st e e e 34
T2 MOttt ettt 35
7.3 TEST CASES..euvteutieiieeiteette et ettt et et ettt et e st e bt e s ab e et e esat e e bt e et e e be e st e e bt e enbeeenaee 35
7.4 TESHING PIOCESS. ...uvveeerieeeirreetreeetteesteeesreeessseeassseeessseeesseessseesseeessssseeesesssssees 36
7.5 Execution and analyzing of teStS.......cccueeriiiriiiiiieiiieiiereetee e 37

8 IX0N0S Visual Test deSIZNET.......ccueeruiieiiiiieiiieiie ettt e e sreeeeseraee e 38
8.1 INIrOAUCTION.eiiiiiiiiiiiie et et 38
8.2 Pa@e MOAEIS.....ccuiiieiiieeiie et e e e e e 39
8.3 MAINTENANCE.eevientiriieiieteeiteeit ettt ettt sae ettt ettt sbe ettt saeeesaneenaeee e 42
8.4 MOdel GIaPN.....cueiiiiiiiiiciieeee et 43
8.5 TOSE TUNMIET ...ttt ettt et ettt et e e st e e sateebeeenaee 44

9 Implementing acceptance testing to Contriboard's development chain..................... 46
9.1 Basis for the Implementation..............cccueiuiiiieiiieiienie e 46
9.2 Setting up the environment for Ixonos Visual Test........ccceoververvenienieeniennnnen. 48
9.3 Designing test MOAEL........cueeeiuiiiiiiieiiieeie e 50
0.3 CTEAtINE TESTS. . eeevrieeiieeerieeeteeeeteeesteeetteeeteeesteeesbaeessseeesseeesseesssseessseeeeanssnees 51
9.3.1 Creating page MOdelS........cccueeiiiriiiiieiie et 51

0.3.2 Creating teSt data.........c.eerieeiieriieeieeiie ettt ae et e e aaee e 52

9.3.3 Creating methods to page models..........ccocvveriiiieriiiinciie e 52

9.3.4 Adding functionality to the model............cccoeeviieeiiieeiiieeeeee e, 53

0.3.5 GENETAtiNg tEST CASES...uveerureerieriiretieriieeteesteeteeseteeteestreeteeeenaeeeenseeeennnes 56

9.5 JenKins INEEZIatiON.cevuiieiieiieeiieieeeteeiteeee et e site et e eaeebaeesebeeeesbeeeensseeeenns 57
9.5.1 Configuring JENKINS.........cccoveeeiiieriiieeiiieesiee e e 57

9.5.2 Running tests and OULPUL.........c.ceevcuiieriieeiiie et ee e 59

10 Results and CONCIUSIONS........cc.eeiiriiriiiiiiiiiecieee e e 60
LO.T RESUIES. ...ttt ettt et e s es 60
10.2 CONCIUSIONS. ..ttt ettt ettt e st ebeesateesaabeeeeaee 62
RETEIEIICES. ...ttt ettt ettt et e st et e st e s 64
ADPEINAICES. ...ttt ettt ettt ettt e et et e st e e bt e et e e beeeabe e bteenbe e teeenbeeneeenbeennes 66

Appendix 1: [ustrated test flOW..........coeeviiriiiiiiinieeeeeeee 66

Appendix 2: Detailed VM setup InStruCtions.........cc.eeeereerierieneenieneeneenieneeneeennne 75

Appendix 3: Ixonos Visual Test installation instructions............ceceeeevveeeeneeneneenne 77

Appendix 4: Detailed Jenkins setup INStruCtions...........ceeceeevueerieenieniiieeeniieeenieeenn 80
Figures
Figure 1: Contriboard UI - WOTKSPaCE........cccueriiriiiiiiniiiiiienieieciestccee e 8
Figure 2: Contriboard UI - Board...........cccoviiiiiiinieiiiienieeeeeecesee e 9
Figure 3: Contriboard architeCture..............coceeiiiriiiiiiniiiienceeeeeeee e 10
Figure 4: ISTQB €Xam LeVEIS.......ccociiiiiiieiie et earaee e 13
Figure 5: TestLink test specification VIEW........ccccecuereineriiniineeienieniecie e 24
Figure 6: Example test case for manual tesSting..........ccceevueevierieneniienienieieeeee e 25
Figure 7: Cucumber WOorkflow..........ccoouiiiiiiiiiiiiceee e 28
Figure 8: FItNESSE EXaAMPIE.....cccuiiiiiieiiiieeiiieeiee ettt eee e e aree e e e e eearaeae s 29
Figure 9: Robot Framework keyword-driven syntax example.........c..cccceevueerveennncnnnn. 31
Figure 10: Robot Framework valid login script in Contriboard............c.ccceeveverennnnen.. 31
Figure 11: fMBT — Example of login model SCript.........ccccerueriieniiiiniiiiiniiieeiieenee 33
Figure 12: fMBT — Example of login adapter Script..........ccccccveeeciviieeeeniiiieeeeeeiieennn. 34
Figure 13: Generic model-based teSting ProCess........cevveerueerieerieeriieniieeieeeeireeeeeeenes 36
Figure 14: Ixonos Visual Test PriCIng..........cccverveeiiierieesiienieeiieenieeieeseeeieessneeesnneeas 39
Figure 15: IVT Ul - Create page models..........coociieriiieniiieiiiieeiee e 40
Figure 16: IVT Ul - Edit method.........cc.oooiiiiiiiecieee et 41
Figure 17: IVT UI - Test data tool.........coceviiririiiniiniiienicieecceeeee e 42
Figure 18: IVT UI - Maintenance t00L..........cccoeeririiriiniiienieneeieseeseee e 43
Figure 19: IVT UI - Edge node in model graph............ccoooeeiiiiiiiniiiiniinieeieee 44
Figure 20: IVT Ul - TeSt TUNNCT.......ceeeiiieeiieeeiieeeiieeeieeeeieeeeiveeeseveeeveeeaaeesnsaeeeenneeas 45
Figure 21: IVT UI - Test TUN TeSULLS.coviruiiiiiiiriiiieeiece e 45
Figure 22: Corolla v1.1 - Contriboard production environment..............ccecceveeruerenenne 46
Figure 23: Sequence diagram of future test automation flow.............coceiviininnnnnnnn. 47
Figure 24: Automated acceptance testing vision for Contriboard...............cccceeennnene.. 48
Figure 25: Virtual Machine in DigitalOcean............cccoceevueriinieneniieenicenieenieeieeeen 49
Figure 26: IVT login screen page Model..........coouevieririiinieniieiienieieeicesiee e 51

Figure 27

: Page model tree hierarchy...........oocoveeviiieeeiiiiniiecc e 52

Figure 28: IVT test data.........cooiiiiiiiiiiieniecieeteeeeete e 52
Figure 29: IVT login screen page model methods.........cccceveevieriininiinienienienieeene 53
Figure 30: IVT visualized model...........cocoiiiiiiiiiiiiiiieeeee e 54
Figure 31: IVT edge node between login and workspace...........cceeeeveeerciieenveeenveeennee. 55
Figure 32: IVT model in DOT VIEW.......cooiiriiiiiiiiiniiiiieicnieeieeeeeeee e 56
Figure 33: IVT generated offline teSt CaSES........evveruieriirierieniieieniereeie e 56
Figure 34: Jenkins NOGe.......ccueveiiiieiiieeiieeeiie ettt aeee e e e eee e 58
Figure 35: Test execution cOmMmMANd...........cceeeruieeeeiireeiiieenieeerieeeeieeeeeeeeeeeeeeseeraeeeens 58
Figure 36: Output of successful Jenkins job build...........ccccceeviiiiiiniiiiiiiiiiieiee, 59
Figure 37: Ixonos Visual Test report of successful run...........ccccecevieniiiiiniencnncnnenne 60

Figure 38: MBT acceptance test job in JenKins..........cccccveevveeiiieeniieeniieeciee e 61

Acronyms

BDD
CDel
CDep
CI
GUI
ISTQB
IVT
JAMK
N4S
OAT
SaaS
SSH
SUT
UAT
Ul

VM

Behavior Driven Development
Continuous Delivery

Continuous Deployment

Continuous Integration

Graphical User Interface

International Softare Testing Qualifications Board
Ixonos Visual Test

JAMK University of Applied Sciences
Need for Speed -program

Operational Acceptance Testing
Software as a Service

Secure Shell

System Under Test

User Acceptance Testing

User Interface

Virtual Machine

1 Introduction

1.1 JAMK as a part of N4S research program

N4S@JAMK is a project started by JAMK University of Applied Sciences at
Jyviskyld, Finland. It is a part of Need for Speed (N4S) which is a four year long
program hosted by Digile and funded by Tekes. Long-term goal of the program is to
provide tools and methods that speed up the work process for other software and ICT

companies. (N4S-program 2014.)

Program currently has 11 large industrial organizations, 15 small and medium-sized
enterprises and 10 research institutes and universities as partners working on three

major areas of focus (N4S-program 2014.):

Delivering value in real-time: The Finnish software industry has taken a new
direction in business by making the organizations lean towards more value-driven and
adaptive real-time value model. Transformation is supported by required assets and

technical infrastructure built especially for the needs.

Deep customer insight (increased profit): Assets and new technical infrastructure
with various sources of information and collected data is utilized to gain and apply
deeper insight to what customers need and how they behave. With this knowledge it is
possible to improve sales and significantly increase the returns on investments in the

development of both products and services.

Mercury Business (finding new income): New approach to growing business by
behaving like liquid mercury. Constantly flowing to new trends and aggressively
finding business opportunities in new markets with as little effort as possible. Key for

success is to adapt to new conditions and actively change and expand focus.

1.2 Objectives of Thesis

Objectives of the thesis were to get familiar with model-based testing paradigm, how
to use it in acceptance testing and how to implement both of them to continuous

delivery chain of an existing product.

N4S@JAMK is developing a production environment called Corolla v1.1 and a web-
based application named Contriboard as a reference product to it for the N4S program
and was in a need of testing solutions for the already existing continuous delivery
chain. Main focus for the thesis was to implement lightweight model for an
acceptance testing and prove that it can be integrated to the Corolla v1.1 development

chain.

Alongside with the actual implementation, other objectives were to explore general
consensus of software testing, and also do collaboration with Ixonos by using their
currently in development testing software named Ixonos Visual Test to create the

actual tests for the implementation.

2 Contriboard

2.1 In general

Contriboard is a web-based service where user can create boards, populate them with
tickets and share them with external URLSs for other users. Users are divided into two

types (Contriboard 2014.):

Power users: User has an account with free trial or valid payment plan. User has a
workspace which contains all his or her boards with options for editing or removing
them and creating new ones (see Figure 1 for GUI example). In specific board user
can create, edit, remove and move tickets. User also has an option to open a specific
board to public and share the given URL to guest users. Currently the creation of

power user account is free since the payment model has not been implemented yet.

Boards

222 Boards Q

[Logout

2]

Secrets! Very important stuff My first board

Figure 1: Contriboard Ul - Workspace

Guests: User does not have an account, instead he or she gets a URL from power user
and is able to use the specific board as long as it is open for public. When user goes to
the board, he or she is prompted to give a name or an alias which is used to log the
performed actions. User can then create, edit, remove and move tickets in the shared

board (see Figure 2 for GUI example).

£22 Boards

& Logout Hello!

= Ticket

Yo!

Figure 2: Contriboard Ul - Board

2.2 Architecture

Contriboard's architecture contains following components (see Figure 3, note that

repositories in GitHub are with the old Teamboard name):

My first board

teamboard-client
receives events

from teamboard-io

events

teamboard-client

|

(actions.

>

teamboard-io

teamboard-api

teamboard-io uses
redis as a memory
store

gy v

teamboard-api
pushes events to
redis

mongodb

Figure 3: Contriboard architecture

(Contriboard 2014)

.l

Client: Used for user interactions. Application is made with AngularJS and runs on

open-source Nginx server. Client connects to API and Socket.IO through HAProxy,

which handles the load balancing accordingly.

API: Application Programming Interface (API) handles the authentication and

resources. API is built on ExpressJS 4 framework service with Mongoose for

MongoDB abstraction. Uses berypt to hash and compare passwords.

10

Socket.IO: Transmits events from API to client. Socket.IO takes an access-token in a

query and compares it to the token generated for the user when logging in through

11

APIL

Redis: Used by Socket.IO as a MemoryStore for scaling and API event handling.

MongoDB: NoSQL classified document-oriented database. Stores all user, board and

ticket data and is queried by the API.

3 Continuous Delivery

Continuous Delivery (CDel) is a software development discipline. Main idea is to
build the software so that it can be released at any given time. This can be achieved by
continuously integrating the developed software, building executables from it and
running automated tests against it to find issues. Afterwards the executables should be
deployed in a production-like environment to make sure that it works before shipping

it to a customer. (Fowler 2013.)

3.1 Continuous Integration

In Continuous Integration (CI) developers integrate their code frequently. Usually this
happens at least once a day which leads to multiple integrations daily. Integration is
immediately verified by automated build and tests to detect issues and complications.

(Fowler 2013.)

Benefits of the Continuous Integration is to rapidly find bugs and issues and to make it
easier to fix them in early stages. It also removes the so called "blind spot" where
there are different branches of code but no idea how easy and fast it is to integrate

them for the final product. (Fowler 2013.)

Continuous Integration is very much required to build Continuous Delivery or

Deployment. (Fowler 2013).

3.2 Continuous Deployment

Continuous Delivery is sometimes mixed with Continuous Deployment (CDep). In

12

Continuous Deployment every change goes through the pipeline and is pushed to
production automatically. Instead Continuous Delivery means that it is possible to do
these frequent deployments, but it is not necessary and completely under the

developer's control. (Fowler 2013.)

Continuous Delivery is required when implementing Continuous Deployment;

however, not the other way around. (Fowler 2013.)

4 Introduction to software testing

Purpose of software testing is to add value to the product, which means raising the
quality and reliability of the program in question. To do that, tester should not try to
prove that the program works, but instead assume that it is filled with errors and try to

find as many of them as possible. (Myers, Sandler & Badgett 2012, Chapter 2.)

While programmers value a working code as a successful accomplishment, testers

could think it upside down and consider test case that finds an issue (more critical the
better) as a success. It is virtually impossible to achieve in making a completely error-
free program, so testing should not be considered as process to proof that the program

works. (Myers et al. 2012, Chapter 2.)

41 ISTQB

International Software Testing Qualifications Board (ISTQB) is a non-profit
association founded in Belgium in November 2002. Organization is based on
volunteer work of hundreds of testing experts around the world. (International

Software Testing Qualifications Board 2014.)

ISTQB issues multiple levels of certifications for software testing competences (see
Figure 4 for the levels). In a nutshell these levels are (International Software Testing

Qualifications Board 2014.):

13

Test Improving
Management| the Testing
Process Test Test .
r.-‘.;?r?eﬁ,:ﬁ::{;:n Implementing Automation Autpmatfon SFecsl‘:irrlwty
Operational Test Test Process Management Engmee”ng 9

Man.

Managing Assessing Test (planned for 2015 (planned for 2015)
the Test Team Processes

Test Manager Test Analyst Tecl;rr;\lac];gest

ement Improvement

ADVANCED
ISTQB® Glossary

Agile Model
Tester Based Testing
planned for 2015

Foundation

=
)
}_
<
(@)
=
>
O
i

Figure 4: ISTQB exam levels
(International Software Testing Qualifications Board 2014)

Foundation: The foundation level qualification is for professionals who want to
demonstrate their practical knowledge of the basic concepts of software testing. Or

anyone who needs the basic understanding of the process.

Advanced: The advanced level qualification is for professionals who have achieved
an advanced point in their career. Or anyone who needs deeper insight of software
testing in general. Candidates who want the certificate must have completed the

foundation level qualifications and have sufficient practical experience in the field.

Expert: The expert level qualification is for professionals that need in-depth and
practically-oriented knowledge of wide range of different testing subjects. Candidates
must have completed the advanced level qualification, have at least five years of
practical testing experience and at least two years of industry experience in the

specific expert level topic.

14

4.2 Box testing methods

Software testing is usually done with one of the box approach methods. They basically
describe the point of view when designing the test cases. These methods are usually
divided between black and white box testing, however, also sometimes as gray box

testing.

Black Box testing: Testing strategy using only requirements and specifications. Tester
does not need to know anything about the structure or implementations of the

program. (Koirala & Sheikh 2008, 2.)

White Box testing: Testing strategy using code structure and implementation of the
program. Tester should have sufficient programming skills for creating the tests.

(Koirala & Sheikh 2008, 2.)

Gray Box testing: Testing strategy where tester looks inside the code just enough to
understand how features work and then implement the tests using black box methods.

(Koirala & Sheikh 2008, 2).

4.3 Testing process

Testing is a multiphase process which includes planning the test, designing the proper
test cases, implementing and executing them, evaluating and reporting the outcome
and finally taking the closing actions. (International Software Testing Qualifications

Board 2014).

4.3.1 Planning the test

Planning a test has multiple major tasks that should be taken in consideration through

the process (International Software Testing Qualifications Board 2014.):

Scope and risks: Determining which parts of the software are tested and what kind of

15

risks they possibly include if issues are found. Objectives need to be identified for the

test in question.

Test approach: Determining which testing methods need to be used. Which one is
needed, black box or white box approach? Are the tests for continuously running
regressive use or for example verifying requirement specification through acceptance

testing?

Test policy: Test policy or test strategy basically is an outline describing the portion of
software that is affected by the testing process. It gives information to testers and
developers alike about some key issues that the testing process in the software

developing cycle.

Resources: Determining the needed resources. How many people are needed to create
the test cases and possibly executing them? What kind of environment is needed? Are

physical machines required or can the tests be done with virtual machines?

Schedule: Determining the schedule for designing tasks, implementation, execution

and evaluation of test in question.

Exit criteria: Determining criteria to see when the test is successfully completed. For
example a coverage criterion defines the percentage of statements in the software that

need to be executed during the testing process.

4.3.2 Designing the test

Designing a test have multiple major tasks that should be taken in consideration

through the process (International Software Testing Qualifications Board 2014.):

Review test basis: Test basis is the needed information for creating the test cases.

16

Usually it is a documentation including requirements, design specifications, risk
analysis and such. Basically a document offering understanding how the system

should work after building it.

Identify test conditions: Defining what should happen in the test when some specific
is done. For example username in sign-up form should always start with an alphabet

and ignore numbers and special characters.

Design tests: Designing test cases for features and defining how they need to be
executed step-by-step from the beginning to the expected outcome. Actual execution

might be done manually or scripted for automated testing.

Evaluate testability: Testability of requirements and system under test (SUT) need to
be evaluated to make a more realistic picture of whole process for creating the test

cases.

Design test environment: Determining an environment and needed tools and

infrastructure to create and execute the test cases.

4.3.3 Implementing the test

Implementation phase is the place to actually start working on test cases and possible
automation scripts. Major tasks for implementation are (International Software Testing

Qualifications Board 2014.):

Develop test cases: Creating and prioritizing test cases. Creating test data is also
usually needed for testing certain features, like those that need some kind of input

from the user, for example login.

Write test procedures: Test procedures are basically instructions how the tests should

17

be executed.

Create test suites: Test suites are collections of test cases. They are used to test a
specified set of behaviours in the software. Test suite includes information and
instruction for the set of test cases. Basically test suites are used to group up same

kind of test cases.

Implement environment: Building up the environment for the test suites and test

cascs.

4.3.4 Executing the test

When test cases are implemented, they naturally need to be executed. Major tasks for

excution are (International Software Testing Qualifications Board 2014.):

Execute tests: Executing of individual test cases and test suites. Tests are carried out

the way they are instructed in the test procedures.

Re-execute tests: Also known as re-testing or confirmation testing. Running the failed

tests again to confirm a possible fix to the issue.

Write logs: Executed tests need to be logged so tester can see what happened during
the run. Test log basically includes which test cases were executed and in what order,

who executed them and did it pass or fail.

Compare results: Compare results from logs to those that were expected. If there was

differences between them, report discrepancies.

18

4.3.5 Evaluating exit criteria

This is where exit criteria is set to determine where the limits are for when enough
testing has been done. These are usually set based on the project's risk assessment plan

or similar documentation. (International Software Testing Qualifications Board 2014.)

Common exit criteria are (International Software Testing Qualifications Board 2014.):

* Maximum amount of test cases has been executed and preset pass percentage

is fulfilled.
* Amount of bugs is below preset treshold.

¢ Preset deadlines are met.

Major tasks for evaluating the exit criteria are (International Software Testing

Qualifications Board 2014.):

Compare to test logs: Exit criteria is compared to test log and evaluated if all of them

are met.

Additional tests: If criterion is not met, there need to be evaluation if additional tests
are needed. Or maybe the exit criterion should be changed. This depends on the state

of the software and recent changes to it.

Write summary: After evaluation, it is important to write a test summary report. It
will be a valuable asset to developers to see how features and systems are currently

working and it also may be required by the stakeholders involved in the project.

4.3.6 Closure activities

These activities are usually done at the moment of software delivery to the end user,

but there are also few other cases when they could be needed. These could be for

19
example (International Software Testing Qualifications Board 2014.):
* All the needed information has been gathered from the executed tests.
* Project has been suddenly canceled.
* Some major milestone has been achieved.

* Anupdate has just been released.

Major tasks for the closure activities are (International Software Testing Qualifications

Board 2014.):

Check status: Verify that everything that was planned has been delivered and

discrepancies have been solved.

Archive test ware: All the used scripts, environments, testing software and other

testing related stuff should be archived for later use.

Handover test ware: The aforementioned test ware should be delivered to the
maintenance crew that will take over the future testing and maintaining of the

software. Usually this a division inside the customer's organization.

Evaluate process: Finally the whole testing process should be evaluated. What went

right, what went wrong and what could be learned from the journey for the next time.

4.4 Testing levels

Testing levels are used to make sure that every phase in development life cycle is
tested and that they do not overlap with each other. Software development life cycle
consists of phases like requirement gathering, design, coding and implementation.

Each phase must be tested with various levels (ISTQB Exam Certification 2014.):

20

Unit testing: Unit testing is done by the developers to verify that their code is
working as intended and corresponds the user specifications. They basically test their

classes, functions and interfaces written in the code.

Component testing: Also known as module testing. Component testing differs from
unit testing in manner of testing the whole component instead of just a piece of it is

code.

Integration testing: Integration testing is done when two modules are integrated, so it
can be verified that they work together as intended. Component integration test is
performed when two components are integrated together. System integration test is

performed when whole systems are integrated to work in same environment together.

System testing: System testing is done when compatibility of software needs to be

verified with certain system.

Acceptance testing: Acceptance testing is done to make sure that the specification

requirements are filled.

Alpha testing: Alpha testing is done at the end of the development cycle, usually at

the developer's site or in other kind of closed environment.

Beta testing: Beta testing is done just before the launch at the end user's site or local

environment.

4.5 Functional and non-functional testing

Testing can be categorized in functional and non-functional testing. (Software Testing

Class 2012).

21

4.5.1 Functional testing

Functional tests derivate from business requirements. They evaluate if the software is
functioning like specified or not, or if it is doing something completely unintended.
Functional test consists of testing an action or function in code and verifying the

outcome. (Software Testing Class 2012.)

Regression testing as an example

Re-testing process of the software that has gone through some modifications. It
basically must be fully automated and aims to find flaws between components every
time that any of them has changed even slightly. It would be counterproductive to run
every test after each change, so usually regression tests are run for example at night or
outside of office hours, and reviewed next morning. Alternatively regression tests
could include only essential test cases to make the process faster, but then they would

not cover all aspects of the software. (Ammann & Offutt 2008, 215.)

Regression tests need constant maintenance to cover all the new changes in the
software. If test fails, it needs to be reviewed if the change is faulty or is the test case

outdated. (Ammann & Offutt 2008, 215.)

Other examples of functional testing:
* Integration testing
* Interface testing
* System testing
e Unit testing

* Acceptance testing

4.5.2 Non-functional testing

Non-functional tests derivate from non-functional requirements, which basically
specify the quality of the product. They evaluate aspects of the software that are not

directly functional or user interactable. For example, how long does it take to respond

22

to user actions under heavy load or how secure the database is. (Software Testing

Class 2012.)

Performance testing as an example

Performance in software generally means that the applications performs well and
responds to user interactions and given tasks without considerable delay or irritation to

the user. (Molyneayx 2009, 2).

Measurement of performance happens with service-oriented and efficiency-oriented
indicators. Service-oriented indicators are availability and response time, which
measure how well the software provides services to user. Efficiency-oriented
indicators are throughput and utilization, which measure how well the software makes

use of the provided resources. Briefly defined these terms are (Molyneayx 2009, 3.):

Availability: The amount of time the software is available for the user. Meaning the
time user is able to access and make use of the services. Lack of availability may be

crucial to the end user in the terms of business cost.

Response time: The amount of time the software takes to respond to a user action.
Usually response time is measured in system response time. System response time is

the time between request action and response message measured client-side.

Throughput: The rate of occurring software-oriented events. For example, number of

hits on a web page within a predefined period of time.

Utilization: The percentage of the used theoretical capacity of resource. For example,
how much network bandwidth is being used while heavy traffic or how much memory

the software uses server-side while high amount of users are active concurrently.

23
Other examples of non-functional testing:
* Compatibility testing
* Recovery testing
* Scalability testing
* Security testing

» Stress testing

4.6 Manual testing

Method requires user to run tests manually without using any automated tools or
predefined scripts. Tester behaves as an end user and tests the software while trying to

find any unexpected behavior or other issues. (Software Testing Types 2014.)

In manual testing the person working as a tester is responsible for the correct
execution of the tests. Tester usually uses a predefined test plan with different test
cases or scenarios to systematically test the software. Another way is to go for
exploratory testing route where tester explores the software without any specific plan

identifying errors as they appear. (Software Testing Types 2014.)

Test plans are created with test management tool. One commonly used is open source
project TestLink which provides ways to create test specifications, test plans and
requirements specifications, execution of the plans, reporting support and

collaboration with various bug trackers. (Havlat 2005.)

Test specification view of the TestLink can be seen in the Figure 5 below.

24

‘.TestLink pmatilainen [leader] Sl TestLink 1.9.13 [DEV] (Stormbringer) 20141019

E & ok (ATPD- Test Project [ATPD:Accsptance Test plan Demo ¥ |

Navigator - Test Specification Test Project : Acceptance Test plan Demo
Settings 2=
[Update e after 2very operamion s] Test Project Name
= Acceptance Test plan Demo
Filters D
Test Case ID -
BTPD brief description
Test Case Title |
Test Suite (v [Attached files :
Status [Any v P
ICD File @ | Choose File | No file chosen Title/name: | J[[Upload ke |

Importance (Al +

Execution bpe [[Any])

|Apply| |Reset Filters|

[Expand tree| (Collapse tree)

[E] ATPD-2:[Backend] Verfty the demo.sh script populate the custo
»

Figure 5: TestLink test specification view

Most of the testing should be automated but there are still few examples where manual

testing is recommended (Koirala & Sheikh 2008, 127.):

Unstable software: Software that is under heavy development and receives constant
big changes. Automation testing scripts fall behind and it may be more efficient to do

the testing manually.

"Once in a blue moon" test scripts: Testing scripts that are run once in a while
should be executed manually because the software may have changed drastically from

the last run testing script.

Code and document review: Automating code and document review is ill-advised

and probably cause more harm than good.

Example test case for manual testing can be seen in Figure 6 below. It was used in
early states of Contriboard testing at the summer as a part of Summer Challenge

Factory 2014.

25

Test Case - Log in with an existing account

Summary: Test Case made for testing the login process of Contriboard
Preconditions:

« Webpage contriboard.ndsjamk org/login is open in your browser
w with empty login screen is visible.
oweruser@thesis.com with password pa55word is created

Action Expected Result
1 Click 'Email address' field Email input field becomes active
2 Type "poweruser@tnesis.com” Text "poweruser@tnesis.com” shows in the input field
3 Click 'Passwaord' field Password input field becomes active
4 Type "pa55word" Text "= shows in the input field
Click 'Sign in' button Webpage goes to workspace view. All currently existing boards are visible

Figure 6: Example test case for manual testing

4.7 Test automation

In this method tester writes scripts and uses preferred software to handle the testing
process. It is not possible to automate everything, but most of the scenarios can and

should be automated. (Software Testing Types 2014.)

Few examples for the use of test automation are (Software Testing Types 2014.):

Regression testing: Re-run test scenario quickly and repeatedly. Saves considerable

amount of time and resources compared to manual testing.

Performance stress testing: Run test scenario with multiple concurrent actions. For
example log in with 1000 users simultaneously to see if the software can handle the

stress.

Validations and functionality: Test cases that for example test database connections,

input validations and GUI element functionality.

Examples of automation test scripts can be examined in the chapter 6 later below.

26

5 Acceptance testing

Main objective of the acceptance testing is to confirm that the software meets the
given business requirements. It also verifies that the software is working as intended

before delivering it to the end user. (Watkins & Mills 2011.)

5.1 User Acceptance Testing

User acceptance testing (UAT) focuses more on the meeting the business requirements
side of the acceptance testing. It is usually done with black box testing method where
tester does not have any insight what happens under the hood of the software.

(Watkins & Mills 2011.)

User acceptance tests should be performed by the user representatives with the help of
the testing team and supervised by a testing team leader. Leader should make sure that
appropriate amount of testing is done with right kind of testing technics. (Watkins &

Mills 2011.)

User acceptance tests are planned beforehand by the testing team leader. They should
be developed with reference to the overall development and testing plan for the
software so that the developing of the product will not get interfered by the tests. Test
contents should reflect the normal user's everyday use of the software. (Watkins &

Mills 2011.)

5.2 Operational Acceptance Testing

Operational acceptance testing (OAT) is very much similar to user acceptance testing
except it focuses more on meeting the operations requirements side of the acceptance
testing. It is also done with the black box approach but instead of normal users, it
should be performed by the operative’s representatives. There should also be testing
team and their leader present to give support and supervise the testing process.

(Watkins & Mills 2011.)

Operational acceptance tests are planned beforehand by the testing team leader. They
should also be developed with reference to the overall development and testing plan
for the software to minimize possible conflicts in the product development. Test
content should include operations and administrative aspects like updating, backing up

and restoring software systems and used data, registering new users and maintaining

27

their privileges. (Watkins & Mills 2011.)

6 Examples of acceptance testing tools

Next are few examples of different acceptance testing tools. Couple were picked by
popularity and few others were used earlier in Contriboard testing itself alongside the

Ixonos Visual Test tool.

Note that these tools are only described very briefly since the main focus was on using

the Ixonos Visual Test in actual implementation of the work.

6.1 Cucumber

Cucumber has not been used in Contriboard testing but here is a very brief description

of the project.

Cucumber is a Behavior Driven Development (BDD) tool, which means that the
behavior is defined before the actual code implementation. Basically Cucumber lets
developers describe how the software they are working on should work in plain text.
The same text can then be used as a documentation for implementation and testing.

(Cucumber 2014.)

Cucumber works with multiple languages, for example Ruby, Java, .NET, or any

commonly used web application languages. (Cucumber 2014).
Example workflow for Cucumber is as follows (Cucumber 2014.):
1. Describe behaviour in plain text
2. Write test definition with selected programming language
3. Write code to actually make the step pass
4. Run the test

Same flow can be seen in the Figure 7 below.

1: Describe behaviour in plain text

Feature: Additior
In order t
As a math
I want to be told the sum of t

Scenario: Add two numbers
Given I have entered 58 into the caleculator
And I have entered 7@ into the calculotor
When I press add
Then the result should be 128 on the screen

3: Run and watch it fail

$ cucumber feotures/oddition. feoture
Feature: Addition
In order to awoid silly wistakes
As a math idict
I wont to be told the sus of two rusbers
i 0 rs

entered 78 into the caleuletor
add
Then the result should be 128 on the screen

5. Run again and see the step pass

% cuamber fegtures/oddition. fecture
Feature: Addition
In order to ovoid silly wistakes
Az o math idict
wont to be told the sum of two mumbers

I h
When I press odd
Then the result should be 128 on the screen

Figure 7: Cucumber workflow

(Cucumber 2014)

6.2 FitNesse

28

2: Write a step definition in Ruby

Given /I have entered (.*) into the calculator/ do In
caleulator - NN
caleulator.push(n. to_ 12

end

4. Write code to make the step pass

class Calculator
def push(n)
r I=[]
5 << N
end
and

6. Repeat 2-5 until green like a cuke

i cuamber feotures/oddition. feoture
Feature: Addition
In order to awid silly mistakes

Like Cucumber, FitNesse has not been used either in Contriboard testing but here is a

very brief description of the project.

FitNesse is a software development tool for customers, testers and programmers to

collaborate efficiently. It basically tells what the software should do and what it

actually currently does. (FitNesse 2014.)

That being said, FitNesse also is a lightweight software testing tool for acceptance

testing purposes. Tests are written in wiki markup language in the format of tables as

seen in a Figure 8 below. (FitNesse 2014.)

29

eg.Division
numerator|denominator | quotient?

10 |2 |5
12.6 |3 |4.2
188 |4 |33

Figure 8: FitNesse example.

(FitNesse 2014)

As seen in the example, there is a number 10 which will be divided with number 2 and

the expected outcome should be number 5.

6.3 Selenium

Selenium alone has not been used in Contriboard testing, but it is used in fMBT (see
chapter 6.5) and Ixonos Visual Test software. Here is a very brief description of the

project.

Selenium is a set of software tools used in supporting test automation process. For
example location UI elements, interacting with them and comparing expected results.

(Selenium Project 2014.)

These days the Selenium is called Selenium 2 or Selenium WebDriver, because of the
integration of WebDriver project to the original Selenium 1. It enables more varied
testing methods that were not possible with original implementation because of
JavaScript based engine. Selenium 2 basically supports the WebDriver API and
technology used in it for better flexibility for porting tests. (Selenitum Project 2014.)
Selenium IDE is a prototyping tool for creating and running test scripts in browser. It
is basically a plugin for Firefox. It can record user action in the browser and turn them
in reusable scripts for automated tests in multiple different programming languages.

(Selenium Project 2014.)

30

Selenium WebDriver has a support for many different broswers listed below

(Selenium Project 2014.):
* Google Chrome
* Internet Explorer 6-10

¢ Mozilla Firefox

* Safari
* Opera
e HtmlUnit

* phantomjs

It also supports Android with Selendroid extension and 10S with ios-driver extension.

Also both are supported with Appium extension alone. (Selenium Project 2014.)

6.4 Robot Framework

Robot Framework has been somewhat used in testing Contriboard. It is also a subject
for another co-worker's thesis work but here is a very brief description of the Robot

Framework.

Robot Framework is a test automation framework that utilizes keyword-driven testing
methods (see Figure 9 for syntax example). It is primarily made for acceptance level
testing but can also be used in other automation testing. Its testing capabilities can be

easily extended with libraries made by using Python or Java. (Kliarck 2014.)

31

e JOEt Lhses ***

Valid Login
Open Browser To Login Page
Input Username demo
Input Password mode
Submit Credentials
Welcome Page Should Be Open
[Teardown] Close Browser

Figure 9: Robot Framework keyword-driven syntax example

Here in Figure 10 below is a an example script for successful login attempt in

Contriboard.

“ Test Cases ***
Valid Login
Input Username evelyn.holmesgndsjamk.org
Input Password EveHolees
Submit Credentials
Welcome Page Should Be Open
Slesp 2

Figure 10: Robot Framework valid login script in
Contriboard

6.5 fMBT

fMBT (free Model-Based Testing) tool was used earlier in Contriboard testing as a
part of Summer Challenge Factory 2014. Here is a brief explanation of the fMBT

project.

fMBT is for testing anything between individual classes to GUI applications in model-
based fashion. fMBT consists of model editor, test generator, adapters for different

interfaces and log analyzing tools. (Kervinen 2014.)

32

Test generator supports both online and offline model-based testing methods and

scripts themself can be written in few different languages (Kervinen 2014.):
* Python
o C++
* JavaScript

* shell script

fMBT runs on Linux platform and it is easy to implement it to continuous delivery

chain since both test generation and execution are run from the command line.

(Kervinen 2014).

Example of login script in Contriboard model can be seen in Figure 11 below.

#inputs for login dialog
tag "login" {
guard { return state == "login" }
adapter {
testcode.resetCursor()
}
input "click_signin™ {
guard { return registersd == True and try_login == True }
adapter {
testcode.clickSignin()
testcode.wait()
1
body {
try_login = True
state = "try_login®

¥
input "click_createaccount™ {
guard { return registersd == False and try_login == False }
gdapter { testcode.clickCreateaccount() }
body {
try_login = False
state = "register”

}
input "type_logininfo" {
guard { return registersd == True and try_login == False }
adapter {
testcode. typeloginlnfol)
testcode.wait()

1
body {
try_login = True
1
¥
input "delete_account™ {
guard { return registersd == True }
adapter {
testcode.deletedccount()
1
body {
try_login = False
account = "
logged = False
registered = False
1

h
Figure 11: fMBT — Example of login model script

(GitHub teamboard-test -repository)

33

34

Example of login script in selenium adapter can be seen in the Figure 12 below.

def clickSignin():
rs{)
b.find_element_by_css_selector("button.btn[type="submit"']").click()

wait()

def clickCreateaccount():
rs()
if isElement("a[href='/register']"):

b.find_element_by_css_selector("a[href="'/register']").click()

def typeloginInfol):
global account
if len{account) ¢ 3:
return
rs{)
.find_element_by_css_selector("input[name="'email']").send_keys{account)

.find_element_by_css_selector{"input[name="password']").send_keys(account)

ef deletefccount():

[

global account

account = "

if os.path.isfile("account™):
os.remove("account”)

reinitDriver()

wait(2.8)

(.
s

if isElement("p.ng-binding”) a

=1

d b.find_element_by_css_selector({"p.ng-binding").text() == "Unauthorizsd"
return True
else:

return False

Figure 12: fMBT — Example of login adapter script

(GitHub teamboard-test -repository)

7 Model-based testing

7.1 Definition

Model-based testing is practically automation of designing tests with black box
approach. Which means that if tests are traditionally generated by basing them on the
requirements documents, in model-based approach there is a model that is generated
by basing it on the expectation how the SUT should behave. Test cases by themselves
are then generated automatically from that model. (Utting & Legeard 2007, 8.)

35

7.2 Model

The model can be thought as an abstraction of the SUT. It defines the possible inputs
and expected outcomes. Model should be as small as possible but also very detailed in

the nature. (Utting & Legeard 2007, 9.)

The model should be focusing only to key aspects of the SUT and what needs to be
tested to maintain the small size. It should also be completely error free, since these

will become bigger issues later on if found. (Utting & Legeard 2007, 28.)

After the model is generally satisfactory, it is time to create a test suite with some free
or commercial model-based testing tool (Utting & Legeard 2007, 9). The test suite is

basically a collection of test cases discussed in the next chapter.

7.3 Test cases

First the abstract test cases are generated from the model. They are sequences of
operations with values such as predefined inputs and expected outputs. (Utting &

Legeard 2007, 9.)

In bigger models especially, it is important to define selection criteria for the test
generation. Reason for this is that there usually are infinite amount of different routes
in the model which the generator tries to turn into test cases. It is usually preferred to
focus for example only on one part of the model for the generation process. (Utting &

Legeard 2007, 28.)

Next these abstract test cases are concretized to executable scripts. This is usually also
done with some model-based testing tool, but they can also be done manually with
some scripting or programming language like Python or Java. (Utting & Legeard

2007, 9-10.)

Main advantage of dividing the tests into two different layers is that the abstract test
cases are not tied to any specific programming language and can be later re-used in
different environments by simply changing the adaptor code which is the link between

test cases and actual SUT when executing them. (Utting & Legeard 2007, 29.)

These scripts can be then executed against the SUT and usually monitored with some

testing tool to see what actually happens.

36
7.4 Testing process

Model-based testing process differs from normal testing process so, that instead of
manually writing every test case, the test designer does the job. This reduces the
overall design time drastically and every possible path in the model will be covered.

(Utting & Legeard 2007, 26-27.)

Testing process is divided in five phases in Figure 13 below (Utting & Legeard 2007,
27.):

Falls’

i % 2 ™,
| Requirements | !
\-, .'f o h -
h 4 | Test Plan
ﬁi_“f‘- 2 o /
L. Miﬁiﬂ"
:.-' — % :
- qu":‘] s [Requirements
) 1 Trul:l_:shi]it}' |
“ | Test Case I“& J
l.'q.'\.. Geﬂ.emtw —_ e # — . -
2. Generate ~—a Model |
' Cuwmg_e’
| Test Cases |
R 1 "
;‘- #| Test Seript “Lp
. Generator o
3. Concretize . 5 Anﬂlj“,
N 1 3 | R’r‘es} _ |
.| Test Seripts | . ;su =)
N Adaptor)

Ti;?-i'l. Execution "I."u.-u! I m-Emut!
System
under
Test
Figure 13: Generic model-based testing process

(Utting & Legeard 2007, 27)

Model: Creation of model for the SUT and defining the restrictions for it.

Generate: Generation of abstract test cases from the model, which are automatically

generated with a model-based testing tool.

37

Concretize: Turning the abstract test cases into executable scripts with the help of

model-based testing tool or by manually writing them.

Execute: Executing the scripts against the SUT in either online or offline method with

a model-based testing tool.

Analyze: Analyzing the outcome of the tests with the testing tool or possibly from the

logs if no visualization is available.

7.5 Execution and analyzing of tests

There are two ways to execute the tests, online and offline. Analyzing model-based

test run usually does not differ from analyzing more traditional test run.

Online execution

When using online method the tests are executed as they are produced. In the case the
model-based testing tool executes the tests in order it sees fit and records the results.

(Utting & Legeard 2007, 30.)

There are usually guards set to restrict some transactions in the model until certain
criterion has been met. Also the paths taken are usually done with setting weights to

them which simulates the probability of user taking them.

Offline execution

When using the offline method, there are preset concrete test case scripts generated
and the testing tool executes them in predefined order and records the results. (Utting
& Legeard 2007, 30). This method is encouraged to be used when there is need to

execute the same tests regularly.

38

Analyzing test run

After execution phase, the results need to be analyzed. Model-based testing tool
should be giving a detailed report for successful and failed test cases. Like stated
earlier, analyzing the test report does not usually differ in model-based testing and

traditional testing methods. (Utting & Legeard 2007, 30.)

Every failed test case need to be examined. It may be that the SUT has a flaw or that
the test case is not up to date or contains an error. If it is the latter case, the adaptor
code or model needs to be examined. It is common that first test runs contain high
amount of failures because of small errors in the adaptor code. (Utting & Legeard

2007, 30.)

8 Ixonos Visual Test designer

Ixonos Visual Test (IVT) tool was used for implementing and running the test model
in the thesis. Next is a brief description of the software and its features used for
making the Contriboard model. Software has many other features that are not included
here because of the limited use experience, for example online test runner used for

performance testing.

Note that the software is currently developing rapidly and these features are described

as they were at the moment of writing in the early December 2014.

8.1 Introduction

Ixonos Visual Test is an automation framework for web and mobile software and it
can be used on both Windows and Linux platforms. IVT is used for visually planning
model-based tests for the target SUT. It uses earlier mentioned Selenium WebDriver

for web page automation and Appium for Android testing. (Ixonos Visual Test 2014.)

39

Test execution can be integrated with Jenkins and TestLink and supported plaforms

are (Ixonos Visual Test 2014.):
* Google Chrome
* Mozilla FireFox
* Internet Explorer
* Opera

e Android

Payment is subscription based and current prices for the different licenses can be seen

in the Figure 14 below.

3-MONTH EXECUTION LICENSE 150€

3-MONTH DEVELOFER LICENSE 300€

1-YEAR EXECUTION LICENSE 300€

1-YEAR DEVELOFPER LICENSE 1300£

Figure 14: Ixonos Visual Test pricing

(Ixonos Visual Test 2014)

Alternatively there is a team license option with 1900€ price per 1-year development

license to the license pool. (Ixonos Visual Test 2014).

8.2 Page models

IVT uses a concept of page models. Page model is created in the Generator-tool by
opening the desired web page in the browser and clicking the create page models
button. User can then decide if the page model is generated from the whole page,
certain area of it or by manually selecting the wanted elements (see Figure 15 for an

example).

40

File Platforms Help

2 Open test runner

te Open model graph

= Page model root
= 1. open_application
2+ L1. login
&-11.1. workspace
111

111.23. delete ficket
1.1113. edit_board
1.1114. delete_board

& Change working directory

O censrator | [pesiger

A Maintenance

) Testdata | | g4 Soipt parser

1D, screenshot manager

Selected page in browser: htip:/fcontriboard.ndsjamk. org/login
Create page models

Page models

> | @

Dynamic object finder

Page model name Page model url

Selected area

Enter page model name and type

P4

Select page model type
@ Full page
) Area of page

) Dynamic mode!

Page model name:

login

Settings oK

Cancel

Console output

Current working directory: C:A\Users\g2516\ Desktop! Tests\ Thesis

Figure 15: IVT UI - Create page models

Page models contain elements of buttons, fields, images and other objects, which can

later be used in interactions and verifications. Elements can be searched from the web

page multiple ways. For example by id, class or xpath.

After page model is created, user can insert and edit methods in the Designer-tool by

clicking the element and selecting the preferred action (see Figure 16 for an example).

User can also write custom Python scripts to the methods.

41

File Platforms Help

B Open test runner O} Generator | [Designer A Maintenance |} Testdsta | | g4 Seiptparser |), Screenshot manager

= Open model graph

e L1 Contriboard

£-1. open_application

Login

Insert step
Password Insert return step

Insert assert step

Retrieve web element data

€ Page model view Test view

New test case Edit test case Dynamic object finder e e I Siatope
T def login(self, parameters=Nane)-
Test set file: .. | Clear 2 selftype(self EMAIL_INPUT, parameters[uluse)
ata i 3 self type(self PASSWORD_INPUT, parameters[u password])
Test data file: w: | Clear 4 self.click(self. SIGN_IN_BUTTON)
Element constants °
OBJECT_NAME LOCATOR VALUE
1 CONTRIBOARD_TEXT By.CSS_SELECTOR hl
2 |LOGIN_TEXT By.CSS_SELECTOR h2.ng-binding

EYeva INeUT ___[By.CS5_SEIECTORinputlname="emai 1. form-<onirol.ng ersting

4 |PASSWORD_INPUT |By.CSS_SELECTOR _ input{niame ="password"]. form-control.ng-pri
5 |SIGN_IN_BUTTON |By.CLASS_NAME bin-ogin

Insert method Stop method editing Save
« i, »

Change working directory Status: OK Method: login

Current working directory: Ci\Users\g2516\ Desktop!Tests\Thesis

Figure 16: IVT UI - Edit method

The test data needed for running the tests can be stored to xml file in Test data -tool

(see Figure 17 for an example). It can be used in Designer by selecting the file when

creating methods.

42

File Platforms Help

3 Open test runner 0 Generator Designer | & Maintenance | > Testdata Script parser | ({2} Screenshot manager
(3] pe A = F ol
= . C:\Users\g2516\Desktop\TestsThesis\data \testdata. xml : Create new Clear
[/ Open model graph Selected test data fie:
=) Page model root Collect test data Add new parameter
1. open_application
&-11. login Section Page model Parameter name Parameter value
rks; url login hitp:/jcontriboard nsjamk. org/login
: . board login usermame poweruser @thesis. com
el login password password
H reate_ticket ticket new_name MNew Ticket
dit_ticket ticket edied_name Edited Ticket
elete ticket board new_name MNew Board
- board edited_name Edited Board
& Change working directory Save to new file Save changes

Current working directory: C:\Users\g2516\ Desktop\Tests\Thesis

Figure 17: IVT UI - Test data tool

8.3 Maintenance

Maintenance-tool offers user an easy way of keeping the page models updated. If for
example an element in login screen shown in Figure 16 changes, user can select the
page model and start the update function (see Figure 18 for an example). It tries to

find missing and new elements and suggest an automatic replace action for them.

File Platforms Help

43

] Open test runner

' Generator | [[f] Designer | A, Mantenance ‘_T, Testdata | | 44 Suiptparsarl), sareenshot manager

5] ‘Oopen model graph

Select page models Clear Model's URL: http:/fcontriboard.n4sjamk.org/flogin Updated models
Page model root
LS Pauscatstrt Page modd name Page model fle
1. open_zpplication
[C] pause at start ~ login C:\Users\g2515\DesktopTestsiTh. ..
ate._ticket O Centibert
2. edit ticket v
lete ficket Use URL from browser =]
i bourd [
1114, delete_board Start update Settings
Console output
This page model (edit_board) is currently edited in Designer tab - skipping! e
This page model (=dit_ticket) is eurrently edited in Designer tab — skipping!
This page model (login) is currently edited in Designer tab — skipping!
This page model (workspace) is currently eited in Designer tab — skipping!
DONE: Page models were updated,
This page made! (login) is currently edited in Designer tab — skipping! E
DOKE: Page madels were updated. ’
« V
lew elements:
Name Mol
Missing elements: [] show all
Name Model Dependencies
& Change working directory Replace

Figure 18: IVT UI - Maintenance tool

8.4 Model graph

Actual inputs and outputs for the page models are defined in edge nodes at the Model

Graph -tool (see Figure 19 for an example).

44

File Help

= Zo X £ &
visual tool model DOT model Test data template Setlp TearDown Guards Generate offine tests Model Onine runner
L
1. open application 1Llogin 111 workspace 1111 create board 1.11.2.1. create ticket
- - SR v §
No additional inputs No additional —— —_ﬁ‘J»——_‘ﬂ—@
B Transition data 111 --> 1113,
Functional testing
1.11. workspace 11.13. edit board
I n
o additionat inputs 2] 111 =]

XML data template
Testdata XML : testdata.xml

Preconditions
1. werkspace.select_new_board(parameters) - [u'board']

+

Transition and guard
Requirement/Issue: User story/EPIC:
Input: | workspace.cick_edit0 - No parameters
Output: [edit_board.verify_view - No parameters
Set: [-
Check: | -
Weight (0.01-1.00) : 1.00

oK Cancel

Figure 19: IVT UI - Edge node in model graph

User can insert methods created in Designer-tool to inputs, outputs and preconditions.
Usually input is the action that moves to new page model and output is the step for

verifying it. Preconditions are always run before the input action.

If Figure 19 is examined, precondition and input methods are located in the page
model where the transaction begins and output method is located in the page model

the transaction ends.

When all transactions have been defined, test cases can be generated from the Model

graph tool.

8.5 Test runner

Generated offline tests can be run from the Test runner -tool (see Figure 20 for an
example). User can select the test file, choose test cases to be executed and select a

test data.

File Help
Test dasses and cases Settings
e
= Load tests from files Browser: [Firefox + | Ignore Chrome bad flags:
=] All test dasses and cases Selected test data file: D:\Thesis\Test Thesis\data\testdata. xml

= PoweruserTests
test case_1 to 111 2 3 to 1112 Remote server address:

Default imeout: 20

Activate page model maintenance: [~ Show advanced options

View previous reports

Console output

m | »

<
| =
Em Create execution profile

B Run selected test cases 4 }

Current working directory: D\ Thesis\Test\Thesis

Figure 20: IVT UI - Test runner

The test execution is shown on the browser and user can see all the test cases in
action. After the test run is concluded, IVT gives a report screen (see Figure 21 for an

example).

Ixonos Visual Test Report

Start Time: 2014-12-08 14:32:06
Duration: 0:00:39
Test case count: 2

Status: Pass 2

Pass rate: 100.0% 2
Fail rate: 0.0%
Eror rate: 0.0% Test cases

0S: Windows 7 (6.1.7601)
Browser: Firefox 30.0 (English)

Test results
Pass Fail @ Error
' ™
Show Summary Failed All

Test Group/Test case Count Pass Fail Error View

tests. poweruserTests. PoweruserTests 2 2 0 0 Detail

Total |2 |2 lo lo | |
p .

Figure 21: IVT UI - Test run results

46

Result are color coded as follows:
* Green means that the test case passed
¢ Yellow means that the test case failed

* Red means that there was an error in the test, usually a bug in the script

9 Implementing acceptance testing to Contriboard's

development chain

9.1 Basis for the implementation

Currently Contriboard's production environment called Corolla v1.1 looks like as it is

shown in Figure 22 below.

Reference Production Environment
- COROLLA v e
[oo ~
E=N

=)
uservoiceG®) /

I
i

apier

Flowdock

_ Ny
“famazon
7 webservices™

Figure 22: Corolla v1.1 - Contriboard production environment

47

Basically when new version is pushed to master branch in GitHub, Jenkins launches a
job which tells Ansible to make a new build. After that the person responsible for

quality assurance manually launches various tests with various tools.

What actually should be happening, is that when new version is pushed to GitHub,
Jenkins should tell Ansible to build a development build, or possibly a testing build,
depending on how the builds will be organized in the future. After that the Jenkins
should start a new job that fires up the testers directly against the built SUT (see

Figure 23 for sequence diagram of the flow).

GitHub y { Jenkins]
[[

—

Ansible y [Ixonos Visual Test] sSuUT

I I
Code changes | . | | |
3 Launch job N | |
—% Deploy bui
) > 1
I
I
Daone | Done
< _____ h . b _________ ‘L < | -
LBURCH o >, Execute tests
| = >4
I
I
R | Done |_J v, Ponesl.)

Figure 23: Sequence diagram of future test automation flow
Different kind of automated acceptance testing tools has been considered for the job as

it can be seen in Figure 24 below.

48

(single
node)

Figure 24: Automated acceptance testing vision for Contriboard

In this thesis the main focus was to take the right side road where Ixonos Visual Test
tool handles the automated acceptance testing and integrate it to the Corolla v1.1

development chain.

As there currently was no development build available, the implementation needed to
be made against the production build. So in this case it was enough that testing
environment was up and running, test cases were functional, test runner executed the

created tests flawlessly and all this could be launched from the Jenkins manually.

9.2 Setting up the environment for Ixonos Visual Test

The first matter that needed to be set up was a Virtual Machine (VM) to host the
Ixonos Visual Tester and other related packages and tools. VM was created to
DigitalOcean's cloud, mainly because it has been used for other aspects of

Contriboard's development too.

49

Specs for the VM were (see Figure 25):
* 64-bit Ubuntu 14.04 server
* 512MB memory

* 20GB disk space

@ VisualTester 178.62.184.190 Active 512MB 20GB amsz2

Figure 25: Virtual Machine in DigitalOcean

After the VM was fired up, SSH connection was made through the Ubuntu's terminal
at the local workstation to get inside the virtual machine. After that apt-get update and

upgrade were run to make sure every software component was up-to-date.

Latest version (1.6.2 developer at the time) of the Ixonos Visual Test 64-bit Linux
package was downloaded from Ixonos' cloud at visualtest.ixonos.com to the local

workstation. Files were extracted and copied to the VM through scp command.

Next Ixonos Visual Test software itself and all the relevant packages for its
functionality were installed following the instructions in the readme file included in
the package (see Appendix 3 for detailed instructions). After that license key was
activated by creating a licence.info file to /home/ixonos-visual-test -folder. License
information provided by Ixonos personnel was then copied to the file to make it

active.

Then it was essential to install Firefox for executing the tests in a browser and X
virtual framebuffer (Xvfb) for running the tests in memory instead of showing them
on the screen. Xvfb was started as a background process in the virtual machine. With
these software installed, the environment was ready for executing the tests on the

virtual machine using Ixonos Visual Test software headless.

See Appendix 2 for more detailed setup instructions.

50

9.3 Designing test model

The main objective for the thesis was to implement the model-based acceptance
testing process to the continuous delivery chain. The test model was intentionally left
as lightweight as possible. Reason for this is that the Contriboard is receiving big
overhaul in the near future and model needs to be changed drastically. Also if needed,
the model can be expanded very easily at its current state without affecting the

continuous delivery chain itself.
Model was designed to test basic power user interactions which included:
* Signing in
* Creating a new board
» Editing the board
* Deleting the board
* Creating a new ticket inside the board
* Editing the ticket

* Deleting the ticket

The reasons for leaving out some other basic interactions are discussed more on the

results chapter of the thesis.

Test flow

Pre-conditions: User has an active power user account for Contriboard and its

workspace is empty.
1. User signs in to Contriboard with:
* Username: poweruser@thesis.com
* Password: pa55wOrd
2. User is directed to workspace view.
3. User creates a board and names it "New Board".

4. User enters the created board and is directed to specific board view.

51

5. User creates a red ticket and names it "New Ticket".
6. User edits the ticket:

* Changes the color to purple

* Changes the name to "Edited Ticket"
7. User deletes the ticket.
8. User navigates to workspace view.

1. User edits the board:

* Changes the name to "Edited Board"

9. User deletes the board

Post-conditions: User's workspace is empty.

See appendix 1 for more detailed and illustrated test flow.

9.3 Creating tests

9.3.1 Creating page models

Actual work on the test model started with creating the page models. It was done by
opening the desired page in the browser, for example login, and by clicking the Create
Page Models button in Ixonos Visual Test. IVT found all the elements from the page
and saved them automatically to the page model file. See Figure 26 below for example

of automatically created login screen page model.

CONTRIBQARD By.CSS_SELECTOR,
LOGIN_TEXT = (By.CSS_SELECTOR, u'h
EMAIL INPUT = (By.CSS_SELECTOR, u
PASSWORD_INEUT = (By.CSS_SELECTOR,
SIGN_IN_BUTTON = (By.CLASS NAME, ©

Figure 26: IVT login screen page model

52

Page models were created for total of nine views. They can be seen in Figure 27 below

showing the page model tree hierarchy.

-- Page model root
=J-1. open_application

Figure 27: Page model tree
hierarchy

9.3.2 Creating test data

After page models were created, some test data was needed. That was done with IVT's
testdata creation tool. For example user needed a username and password to sign in
the Contriboard, so they were created under Login category. See Figure 28 below for

all created test data.

Section Page model Parameter name Parameter value

url login http: /fcontriboard. ndsjamk.org/login
login username poweruser @thesis.com

login password pa55wird

ticket new_name Mew Ticket

ticket edited_name Edited Ticket

board new_name MNew Board

board edited_name Edited Board

Figure 28: IVT test data

9.3.3 Creating methods to page models

Next in line was to implement functionality. This was done in the designer tool of
IVT. By clicking the Add Method button, it was possible to create a new function by
simply clicking the elements on the screen and choosing the functionality from the
dropdown list. Some methods needed some manual Python scripting to make them

work but most were done simply by choosing what was needed from IVT's selections.

53

See Figure 29 below for an example of login page model's functions.

def login(=elf, parameters=Hone):
self.cype (self.EMATL INFUT, parameters[u'usernams'])
self.cype (self.PASSWORD INPUT, parameters[u'password'])

self.click(self.5IGH IN BUTTOCN)

def verify view(self, parameters=HNHone):

sleesp(l)

gself.wait_ for browser loaded()
gself.verify text (2elf.CONTRIBOARD TEXT, u'Contrikboard')
gself.verify text (2elf.LOGIN TEXT, u'lLogin')

Figure 29: IVT login screen page model methods

The first method simply types the username and password to the right fields in

browser and then clicks the sign in button.

The second method verifies that the login screen is visible at the moment.

9.3.4 Adding functionality to the model

The next step was to link all the methods to right transactions in the model. As it was
seen earlier in Figure 27, the page models were created in certain tree hierarchy.

Below, in Figure 30, the same hierarchy can be seen in visualized format.

54

1. open application 1.1 login 1.1.1. workspace 1.1.1.1. create board 1.1.1.2.1. create ticket
No additiona inputs No additionat inputs (ENo additional inputs 111] 1112 =]
1.1.1.2. board 1.1.1.2.2. edit ticket
—@-)-I

(& o additional inputs 1112 =

Figure 30: IVT visualized model

In the figure above, there are nodes between the different views. Those are the edges
where the transactions take place. Login page model for example used those two
methods: one for signing in and one for verifying the view. After login comes the
workspace page model, which also has a method for verifying the view. Every edge
has input and output (see Figure 31 for screenshot of edge between login and
workspace) which need to be defined. When the test is moving from login page model
to the workspace page model, the input method is called from the login and the output

method is called from the workspace.

55

Functional testing

1.1. login 1.1.1. workspace

MNo additional inputs E] WCNo additional inputs E]

XML data template

Testdata XML : testdata.xml
Preconditions

il - <Select Precondition Parameter=

+

Transition and guard

Requirement/Issue: User story/EPIC:

Input: | login.login{parameters) - | [u'legin']

Qutput: |workspace.verify'_uiew0 v| No parameters

Set: | hd |

Check: | - |

Weight (0.01-1.00) : 1.00 =

Figure 31: IVT edge node between login and workspace

In other words, using the above edge example, the user types in username and
password and clicks the Sign in button. Input is completed and Contriboard moves to
workspace view. Next the output method is called and verification of the workspace
view begins. If it is succeeded the edge is covered. If for some reason either the input

or output method fails, the test step is failed and seen that way in the report at the end.

Some of the page models needed references back to earlier page model when the test
step was completed. For example when board was created, the reference was set back
to workspace from the create board page model. References were made in the same

way as the edges with input and output.

Additionally, some transactions needed a precondition. For example editing a board
requires user to actually click the board active before clicking the edit button. These
were simply their own methods in the same page model as the input method was and
set in the same place as the input and output methods were (see Figure 31 for an

example).

After all the edges and references were covered, the model could be viewed in DOT

format as seen in the Figure 32 below.

56

dit_board.edit(/1.0 workspace.click_delete()/0.25)delete_board. delete()/1.0

delete_ticket. delete()/1.0

Figure 32: IVT model in DOT view

9.3.5 Generating test cases

Finally, the actual test file was built with clicking the create offline tests button. IVT
automatically generated test cases based on possible ways the model can be used. In

this case there was two test cases created as it can be seen in the Figure 33 below.

= |¥| Al test dasses and cases
=¥ PoweruserTests

Figure 33: IVT generated offline test cases

The first test case flow:
* Browser goes to login screen
* User signs in
» User creates a new board
* User navigates to the board
» User creates a new ticket
» User edits the ticket

e User deletes the ticket

57

The second test case flow:
* Browser goes to login screen
e User edits the board

e User deletes the board

The test cases were both located in the same test file which could be run from the IVT

test runner tool or from the command line as it was done in the Jenkins job.

9.5 Jenkins integration

Before anything else, the test files created with Ixonos Visual Test tool was moved to

the virtual machine.

9.5.1 Configuring Jenkins

To run Jenkins, Java was needed to be installed to the virtual machine and after that
the root user needed SSH-key pair which was generated inside the VM. After
generation process, public key was added to the authorized keys location in VM and
private key to the Jenkins itself. New credentials were made in Jenkins and private

key set to that user.

After SSH-keys were set, next in line was to create a slave node to Jenkins. Node was

set up as shown in Figure 34 below.

58

Jenkins N © rvoconen | log o

Jenkins » nodes »

4 Back to Dashboard Name Ixonos_visualtester

£} Manage Jenkins

MNew Node Description
&% configure
of executars |1
Build Queue =

No builds in the queue
Remote FS root |/root/

Build Executor Status =
Status
o Labels
1 Idle
2 Idle
T Usage Leave this node for tied jobs only h
1 Idle
Le
(offline) Launch method |Launch slave agents on Unix machines via SSH v
Host 178.62.184.190
Credentials [raot {ixonos visualtester) v
Availability Keep this slave on-line as much as possible v

Figure 34: Jenkins Node

After slave node was configured, it was time to create the actual job for executing the
test run. Real case scenario would be that the job was executed every time there was
new code pushed to the GitHub where the hooks resides, but in this case it was
simplified that the job could be executed manually. Reasons for this decision are

described in results chapter.

Script for running the test itself in the job is shown in the Figure 35 below.

Execute shell

Command | ¢d /root/test
DISPLAY=:8 /root/.local/lib/python2.7/site-packages/ixonos-visual-test/webframework/resources/ixowebrunner.py -c PoweruserTests -b ff -p data/testdata.xml

»

See the list of available environment variables

Figure 35: Test execution command

59

9.5.2 Running tests and output

Like stated earlier, tests at this case were run manually by clicking the "build now"
button in Jenkins. One build took somewhere around 30 seconds and after it was
executed, the console output could be examined. Here in Figure 36 the output for

successful build can be seen.

workspace

t implementation.

/webframewo resourc

New Board®

Figure 36: Output of successful Jenkins job build

Since Jenkins only shows the console log of the test run, the implementation for
showing the test report of Ixonos Visual Test tool's own format was made with using
Apache2 in the VM and redirecting the results to website in address
http://178.62.184.190/reports/. Here in Figure 37 the same successful test report can

be seen in IVT's visualized format.

Ixonos Visual Test Report

Start Time: 2014-12-05 07:59:32
Duration: 0:00:28

Test case count: 2

Status: Pass 2

Pass rate: 100.0% 2
Fail rate: 0.0%
Error rate: 0.0% Test cases

0S: Linux 3.13.0-37-generic {#64-Ubuntu SMP Mon Sep 22 21:28:38 UTC 2014)
Browser: Firefox 34.0 (English)

Test results

Pass Fail @ Error
' ™
Show Summary Failed All
Test Group/Test case Count Pass Fail Error View
tests. poweruserTests.PoweruserTests 2 2 1] 0 Detaijl
Total |2 |2 lo lo \ |
. .

Figure 37: Ixonos Visual Test report of successful run

See Appendix 4 for detailed instructions.

10 Results and conclusions

10.1 Results

As a result, Contriboard has a working model-based acceptance testing solution that

has been integrated to the Jenkins as it can be seen in the Figure 38 below.

61

Jenkins » ENABLE AUTO REFRESH

& e fem [#fadd description
&, people Al -
@ Build History
S w Name | Last Success Last Failure Last Duration
{8} Manage Jenkins
a ColoRobot-demo 6 mo 0 days - #78 5 mo 2 days - #79 1 min 10 sec <
& Credentials
. ColoRobot-demo-deployment 6 mo 0 days - #6 N/A 15 sec ivj
& My Views
. dev-teamboard-api 6 days 1 hr - #121 11 days - #116 7.6 sec <o
Build Queue — . dev-teamboard-client 2 days 2 hr - #67 10 days - #59 10 sec (v
Mo builds in the queue.
[] dev-teamboard-crypt 1 mo 24 days - #5 N/A 5.5 sec V]
Build Executor Status =
. dev-teamboard-img 4 mo 2 days - =4 N/A 3.8 sec <@
Status
m "] dev-teamboard-io 24 days - #12 19 days - #13 3.7 sec <@
= 1dle
5 — o homepage-dev 2 mo 15 days - #71 2 mo 9 days - #136 6.4 sec <
I
x . > 2 days 0 hr - #23 2 days 1 hr - #21 34 sec (V)
= idle
Le . a lego-ev3-demo 6 mo 18 days - #19 6 mo 8 days - #20 1 min 54 sec <
(offline)
a toolbar 4 mo 9 days - #135 N/A 52 sec <
Icon: S ML Legend [J RSS for all [J RSS for failures [EJ RSS for just latest builds
Help us localize this page Page generated: Dec 7, 2014 8:37:06 AM REST API Jenkins ver. 1.562

Figure 38: MBT acceptance test job in Jenkins

Because of the currently missing development build or testing build, the tests had to
be made to run against the production build. This changed the actual implementation

part of the thesis a little.

When development or testing build is brought online, the tests will use it as a SUT and
Jenkins will be configured to launch the job every time new code is pushed to the
GitHub's master branch. Now the implementation is temporarily so, that the testing

process can be launched manually from the Jenkins.

Tests are run and the output can be viewed in two different format. First one is the
Jenkin's own console log (see Figure 36 earlier for successful run) and Ixonos Visual
Test tool's own visualized output in a web page (see Figure 37 earlier for successful

run).

Tests were designed to be small and lightweight since there is a major overhaul
coming to the Contriboard in the near future and most of the model will need to be
changed. Tests currently simply demonstrate that everything works in the continuous

delivery chain as it was defined in the objectives of the implementation part of the

62

thesis. For example registering the user was not included in the test mainly because of
the SUT being the production build. It would have been unwise to delete existing user
from the database just for the sake of testing integration to the continuous delivery

chain and same user cannot be registered twice.

10.2Conclusions

Model-based testing in general feels very flexible way of testing systems which have
different states and multiple ways of navigating to them. Creating the model from
scratch might take some time but after it is done, the test generation happens

automatically and saves a huge amount of time.

Like it was stated in the chapter about model-based testing, the amount of errors in
fresh model can be a bit taunting at the beginning. But after the issues are solved, rest

of the process feels very fluid.

Oftline testing seems to work well with acceptance testing in mind. Every possible
path is tested and even functionalities that could be forgotten are almost automatically

brought in front of the tester's eyes when creating the model.

One big challenge in creating the tests time to time was using the Ixonos Visual Test.
Software itself performs very well, but it is currently in constant development and
sometimes when bigger changes happened, something broke down and actual test
development of Contriboard went to a halt momentarily. The upside for this of course
was the instant feedback opportunity. When there was a problem with the software, it
was as easy as picking up the phone and calling to Anssi Pekkarinen at Ixonos and
telling him about the issue. Usually it was solved and new version of the IVT software

was available in a couple of days or earlier.

Biggest challenge in creating the tests and trying to maintain them through the autumn
was definitely the testability of the Contriboard. Product was developed long time
before any kind of proper testing solutions were implemented or even thought of, so
there was some work to be done on that field. With this in mind, future testing
implementations can be made a lot easier by better communication between testers

and developers when designing new features and modifying the old ones.

Now that the implementation of model-based acceptance testing is done once and it

has been linked to the Jenkins successfully, it can be re-used in other kind of testing

63

processes, for example future solution for the performance testing.

Working on the thesis broadened my view of testing in general tremendously. Not to
even mention the whole model-based testing concept, which was very much unknown
when the work was started. Implementing the tests and integrating them to the Corolla
v1.1 chain offered some challenges like mentioned earlier, but after actually solving
the issues and finally getting everything to work, the practical knowledge had grown
greatly.

64

References

Ammann, P., Offutt, J. 2008. Introduction to Software Testing. 15t Ed. New York City:
Cambridge University press.

Cucumber. 2014. Project's web pages. Accessed on 6 December 2014. Retrieved from
http://cukes.info/.

Contriboard. 2014. Project's GitHub wiki pages. Accessed on 20 October 2014.
Retrieved from https://github.com/N4SJAMK/teamboard-meta/wiki.

FitNesse. 2014. What is FitNesse? Accessed on 6 December 2014. Retrieved from
http://www.fitnesse.org/FitNesse.UserGuide.OneMinuteDescription.

Fowler, M. 2013. Continuous Delivery. Accessed on 18 November 2014. Retrieved
from http://martinfowler.com/bliki/ContinuousDelivery.html.

International Software Testing Qualifications Board. 2014. Certification path.
Accessed on 21 October 2014. Retrieved from http://www.istgb.org/certification-path-
root.html.

ISTQB Exam Certification. 2014. What are Software Testing Levels? Accessed on 1
December 2014. Retrieved from http://istgbexamcertification.com/what-are-software-
testing-levels/.

Ixonos Visual Test. 2014. Software's web pages. Accessed on 6 December 2014.
Retrieved from http://www.ixonos.com/products/ixonos-visual-test.

Kervinen, A. 2014. fMBT — Overview. Accessed on 6 December 2014. Retrieved from
https://01.org/fmbt/overview.

Klarck, P. 2009. Robot Framework Introduction. Accessed on 3 December 2014.
Retrieved from http://www.slideshare.net/pekkaklarck/robot-framework-introduction.

Koirala, S., Sheikh, S. 2008. Software Testing: Interview Questions. 15¢ Ed. Hingham:
Infinity Science Press.

Molyneayx, 1. 2009. The Art of Application Performance Testing. 15t Ed. Sebastobol:
O'Reilly Media, Inc.

65

Myers, G. J., Sandler, C. & Badgett, T. 2012. The Art of Software Testing. 3R¢ Ed.
Hoboken: John Wiley & Sons, Inc.

N4S-program. 2014. N4S-Program: Finnish Software Companies Speeding Digital
Economy. Accessed on 20 October 2014. Retrieved from http://www.n4s.fi/en/.

Selenium Project. 2014. Introduction. Accessed on 6 December 2014. Retrieved from
http://www.seleniumhgq.org/docs/01 _introducing_selenium.jsp.

Software Testing Class. 2012. Functional Testing vs Non-Functional Testing.
Accessed on 19 November 2014. Retrieved from
http://www.softwaretestingclass.com/functional-testing-vs-non-functional-testing/.

Havlat, M. 2014. TestLink Features. Accessed on 25 November 2014. Retrieved from
http://testlink.sourceforge.net/docs/docs/features.php.

Utting, M., Legeard, B. 2007. Practical Model-Based Testing: A Tools Approach. 15¢
Ed. San Fransisco: Elsevier.

Tutorialspoint. 2014. Software Testing Types. Accessed on 25 November 2014.
Retrieved from http://www.tutorialspoint.com/software testing/testing types.htm.

Watkins, J. & Mills, S. 2011. Testing IT: An Off-the-Shelf Software Testing Process.
2Nd Ed. New York City: Cambridge University Press.

66

Appendices

Appendix 1: lllustrated test flow

This process is automated with Ixonos Visual Test tool like stated earlier, but the tester

here is referred as a user for better understanding of the process.

Test begins.

User opens the login screen of Contriboard and types username

"poweruser@thesis.com" and password "pa55wO0rd" to the fields.

Not registered?

67

User clicks Sign In button and is directed to empty workspace view.

L] Contriboard [EECIEEES]
522 Boards (Q

® Logout

A

User clicks the Create Board button and enters name "New Board".

Create a new board

MName New Board

68

User clicks Create button in pop up and sees the board with name "New Board" on the

workspace view.

Boards

£ Boards

= Logout

2]

= New Board

User clicks the board and is directed to the board specific view.

New Board

69

User clicks the Create Ticket button, selects red color and enters the name "New

Ticket".

New Ticket

User clicks the Create button in pop up and sees the red ticket with name "New

Ticket" in the board view.

2% Boards (

New Ticket

= Logout

2]

70

User selects the ticket, clicks the Edit icon, changes the color to purple and enters new

name "Edited Ticket".

Edited Ticket

User clicks the Apply button in pop up and sees that the ticket has changed from red to

purple and is now named "Edited Ticket".

E22 Boards . (

Edited Ticket o

= Logout

71

User leaves the ticket selected and clicks the Delete icon.

Delete ticket

Avre you sure you want to delete ticket

Edited Ticket

User clicks the Delete button in pop up and sees that the ticket has disappeared from

the board view.

Ll Contriboard REETEEEE

=2 Boards ‘ =z

= Logout

2]

72

User moves back to workspace and sees the board named "New Board" created earlier
(Note that in actual test the first test case in IVT has ended and the new one begins
from the login screen where username and password are typed again and user is

directed to the workspace view shown below).

Boards ¢y

222 Boards

= Logout

2]

= New Board

User selects the board, clicks the Edit icon and enters new name "Edited Board".

Edit board

Name Edited Board

73

User clicks Save changes button in pop up and sees that the board in workspace is

now named "Edited Board".

2 Boards (

Log out

User leaves the board selected and clicks the Delete icon.

Delete board

Are you sure you want to delete board

Edited Board

74

User clicks the Delete button in pop up and sees that the board has disappeared and

workspace is empty again.

Boards J

222 Boards Q

= Logout

2]

Test is concluded.

75

Appendix 2: Detailed VM setup instructions
Creating virtual machine to DigitalOcean
Creating a virtual machine is very straightforward process:
* Log in to DigitalOcean
* Click Create Droplet button in Droplets tab
* Type name: VisualTester
* Select size: 512 MB, 20GB SSD, 1000 GB Transfer (5$/mo)
* Select region: Amsterdam 2
* Select image: Ubuntu 14.04 x64
* Click Create Droplet

After that [P-address, username and password were sent to the email.

Connecting to VM and updating it

In these examples IP address used is the one received from the DigitalOcean after

creating the Droplet.
SSH connection is established through terminal with command:
ssh root@178.62.184.190
At first connection time, VM prompts user to change the password.
Latest package repositories are loaded with command:
sudo apt-get update
And installed to VM with comand:

sudo apt-get upgrade

Installing Ixonos Visual Test

Latest Ubuntu package can be loaded from their cloud at visualtest.ixonos.com. Note

that proper account is required to access them.

76

After ZIP package is extracted to for example local workstation, user can copy them

with following command while inside the extraction folder:
scp * root@178.62.184.190:~/ivt

Note that ~/ivt means folder named "ivt" at the root folder of VM, which can be done

with command:
mkdir ivt
while in root folder. Folder name does not matter.

Pyhton developer packages must be installed to avoid complications later with

command:
sudo apt-get install python-dev

After these preparations are made, Ixonos Visual Test and packages for the functions

are installed as described in Appendix 3.

Installing Firefox and Xfvb
Firefox is required to run the tests so it can be installed with command:
sudo apt-get install firefox

Firefox alone needs a GUI for browser so Xfvb needs to be installed to run it in

memory instead of on the screen. Xfvb can be installed with command:
sudo apt-get install xfvb
After Xfvb is installed, it can be started as a background process with command:

Xfvb :0 -ac &

77

Appendix 3: Ixonos Visual Test installation instructions

Ixonos Visual Test installation guidelines from the README file included in the 64-

bit Linux Development Release package.

INSTALL / RE-INSTALL.:

1. Unzip 32bit/64bit Ixonos-Visual-Test-1.6.x-linux-xxbit-official-xxxxxxxx-

release.zip
2. To install 'Ixonos Visual Test' framework run command in terminal:
Jinstaller lin.py ixonos-visual-test-1.6.x.tar.gz

Note! If old version exists uninstall earlier version before installing new:

Jinstaller lin.py remove

3. To use all Ixoweb Visual Test functionality following packages should be

installed:
e vlc
* python-pip

* python packages:
* selenium
e openpyxl
o xlrd
* wxpython-common
* setuptools
« PIL
* graphviz
* pygraphviz

Installation process depend on operating system.

Python packages can be installed using pip or python-pip.

78

For Debian based distro, can install needed packages with running next commands in

terminal:
* sudo apt-get install -y python-pip vlc
* sudo apt-get install -y python-wxgtk2.8
* sudo apt-get install -y graphviz-dev
* sudo apt-get install -y graphviz
* sudo pip install selenium openpyxl xlrd setuptools
* sudo pip install pygraphviz
* sudo apt-get install python-pil

NOTE!
Problems installing: sudo apt-get install python-pil
If it cannot be installed or if the tool keeps generating exceptions, you will have to

reinstall it. This happens at least in Ubuntu version 14.04.

(re)Install PIL (Debian-based distros):

* Remove existing apt version if any: sudo apt-get remove python-pil and/or

sudo pip uninstall PIL
* sudo In -s /usr/include/freetype2 /usr/local/include/freetype
If you use x64 arch, create the following symlinks
* sudo In -s /ust/lib/x86 64-linux-gnu/libjpeg.so /ust/lib
* sudo In -s /usr/lib/x86_64-linux-gnu/libfreetype.so /ust/lib
* sudo In -s /ust/lib/x86_64-linux-gnu/libz.so /ust/lib

* sudo LC_ALL=C pip install PIL --allow-external PIL --allow-unverified PIL

Finalize installation with log off computer and log in that environment variables are

loaded correctly.

UNINSTALL:

To uninstall 'Ixonos Visual Test' framework run command in terminal:

* /installer lin.py remove

79

80

Appendix 4: Detailed Jenkins setup instructions
Install Java
Install Java with command:

sudo apt-get install default-jre

SSH-key generation
SSH-key needs to be created to the VM root user with command:
ssh-keygen -t rsa

When prompted, key locations should be set to default and passphrase should be left
empty. Then private and public keys will be saved to following files:

~/.ssh/id_rsa
~/.ssh/id_rsa.pub

Next public key need to be add to .ssh/authorized keys file. When in ~/.ssh folder, it

can be done with command:

cat id_rsa.pub >> authorized keys

SSH-key to Jenkins

Login to Jenkins. In this case the url was:
https://jenkins.n4sjamk.org

Click "Manage Jenkins".

Click "Manage Credentials".

Click "Add Credentials".

Choose "SSH Username with private key".

Leave Scope to "Global".

Leave Username to "Root".

Write a description, in this case it was "ixonos visualtester".

81
Select option "Enter directly".

Copy / Paste contents of the ~/.ssh/id_rsa -file to "Key" text box.

Click "Save".

Creating Node
Click "Manage Jenkins".
Click "Manage Nodes".
Click "New Node".
Write name for the node, in this case it was "Ixonos_visualtester".
Choose "Dumb Slave".
Click "OK".
Set parameters (in this case):
Remote FS root: /root/
of executors: 1
Usage: Leave this node for tied jobs only
Launch method: Launch slave agents on Unix machines via SSH
Host: 178.62.184.190
Credentials: root (ixonos visualtester)
Availability: Keep this slave on-line as much as possible

Click "Save".

Creating Job

Click "New Item".

Write name for the Item, in this case it was "launch tests".
Select "Build a free-style software project".

Click "OK".

Enable "Restrict where this project can be run" and write name of the Node to the

"Label Expression". In this case it was: Ixonos_visualtester.

Under "Build Environment", enable "SSH Agent" and add to "Credentials": root

(ixonos visualtester).
Under "Build" itself, write the following two lines to "Command":
cd /root/test

DISPLAY=:0 /root/.local/lib/python2.7/site-packages/ixonos-visual-
test/webframework/resources/ixowebrunner.py -c PoweruserTests -b ff -p

data/testdata.xml

82

	1 Introduction
	1.1 JAMK as a part of N4S research program
	1.2 Objectives of Thesis

	2 Contriboard
	2.1 In general
	2.2 Architecture

	3 Continuous Delivery
	3.1 Continuous Integration
	3.2 Continuous Deployment

	4 Introduction to software testing
	4.1 ISTQB
	4.2 Box testing methods
	4.3 Testing process
	4.3.1 Planning the test
	4.3.2 Designing the test
	4.3.3 Implementing the test
	4.3.4 Executing the test
	4.3.5 Evaluating exit criteria
	4.3.6 Closure activities

	4.4 Testing levels
	4.5 Functional and non-functional testing
	4.5.1 Functional testing
	4.5.2 Non-functional testing

	4.6 Manual testing
	4.7 Test automation

	5 Acceptance testing
	5.1 User Acceptance Testing
	5.2 Operational Acceptance Testing

	6 Examples of acceptance testing tools
	6.1 Cucumber
	6.2 FitNesse
	6.3 Selenium
	6.4 Robot Framework
	6.5 fMBT

	7 Model-based testing
	7.1 Definition
	7.2 Model
	7.3 Test cases
	7.4 Testing process
	7.5 Execution and analyzing of tests

	8 Ixonos Visual Test designer
	8.1 Introduction
	8.2 Page models
	8.3 Maintenance
	8.4 Model graph
	8.5 Test runner

	9 Implementing acceptance testing to Contriboard's development chain
	9.1 Basis for the implementation
	9.2 Setting up the environment for Ixonos Visual Test
	9.3 Designing test model
	9.3 Creating tests
	9.3.1 Creating page models
	9.3.2 Creating test data
	9.3.3 Creating methods to page models
	9.3.4 Adding functionality to the model
	9.3.5 Generating test cases

	9.5 Jenkins integration
	9.5.1 Configuring Jenkins
	9.5.2 Running tests and output

	10 Results and conclusions
	10.1 Results
	10.2 Conclusions

	References
	Appendices
	Appendix 1: Illustrated test flow
	Appendix 2: Detailed VM setup instructions
	Appendix 3: Ixonos Visual Test installation instructions
	Appendix 4: Detailed Jenkins setup instructions

