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The main topic of this thesis was to implement a computer program that can render
photorealistic images by simulating the laws of physics. In practice the program builds an
image by finding every possible path that a light ray can travel. Technique presented in
this thesis will naturally simulate many physical phenomenons such as reflections, glass
materials, soft shadows, indirect lighting etc.

This thesis explains step-by-step how a pixel in an image gets its color by tracing a light
ray through an arbitrary scene. The thesis also explains how to make the renderer run
faster by optimizing certain data structures and exploiting parallellism in CPU and in GPU
by using the OpenCL framework. Using these techniques it is possible to reduce the time
spent in rendering from several days to a few minutes.

The thesis explains the theory behind path tracing algorithm, architecture of the program
and its implementation details. Finally the thesis presents variety of images that the pro-
gram is capable of generating and thoughts about future development.
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Tiivistelma

Tekija(t) Vinh Truong
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Koulutusohjelma Tietotekniikka
Suuntautumisvaihtoehto Ohjelmistotekniikka
Onhjaaja(t) Miikka Maki-Uuro, lehtori

Juha Kopu, lehtori

Insindoritydbn padaiheena on toteuttaa tietokoneohjelma joka simuloi fysiikan lakeja
fotorealistisien kuvien piirtAmiseen. Kaytanndssa ohjelma yrittdd loytaa kaikki mah-
dolliset polut joita valonséade voi matkustaa ja kokoaa kuvan ndistd poluista. Tydssa
esitetty tekniikka simuloi luonnollisesti monia fyysisia ilmiditd esimeriksi heijastukset,
lasimateriaalit, pehmeat varjot, epasuoravalaistus jne.

Tybssa selitetdan vaihe vaiheelta kuinka kuvan yksittdinen pikseli saa varinsa seu-
raamalla valonsadetta mielivaltaisen skenen lapi. Tydssa kayddadn myds lapi kuinka
renderointia voidaan nopeuttaa optimoimalla tiettyja tietorakenteita ja hyddyntamalla
rinnakkaislaskentaa prosessorilla seka nayténohjaimella kayttamalla OpenCL-rajapintaa.
Nailla tekniikoilla on mahdollista lyhent&& renderointiin kuluvaa aikaa useista paivista
muutamiin minuutteihin.

Tyodssa kaydaan lapi teoriaa path tracing -algoritmista, ohjelman arkkitehtuuri ja sen toteu-
tuksen yksityiskohdista. Lopuksi esitetaan erilaisia kuvia joita ohjelma pystyy tuottamaan
ja pohdintaa kuinka ohjelmaa pystyy kehittdmé&an tulevaisuudessa.

Avainsanat tietokonegrafiikka, sateenseuraaja, polunseuraaja, ren-

derointi, fotorealistisuus, OpenGL, OpenCL
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1 Introduction

3D graphics is a fascinating topic that involves a wide variety of disciplines such as visual
arts, mathematics, physics and computer programming to generate a believable image
on a computer monitor. There are many fields that depend on 3D graphics with different
constraints, one of the most important one being time. Simply speaking, most computer
generated images will approach photorealism as the time spent on rendering them in-
creases. For example, in video games the amount of time spent in generating a single
image or a frame is only a couple of milliseconds, which means that sacrifices in realism
have to be made in order to achieve interactivity. On the other hand, if accurate simulation
of light is the main priority, the amount of time required to generate such an image could be
many hours on a regular consumer hardware. Photorealism is desirable in many cases,
for example, when 3D graphics have to blend in with live action footage as in movies with
human actors. Another example would be in architectural designs where an architect
would like to know how a given lighting setup would work in some indoor environment. Of

course it is also needed by 3D artists for creating photorealistic models.

phoe_ray is a computer program created by the author of this thesis. It can be used to
render a good looking image of a user provided 3D scene. The primary technique used by
phoe_ray to accomplish this task is ray tracing, which is currently the most popular way to
generate photorealistic images. There are multiple ways to augment the basic ray tracing
algorithm, one of which is called path tracing. It is also one of the main subjects of this
thesis. Other subjects include a brief overview of the theory behind ray tracing, philosophy
and design decisions behind phoe_ray, implementation details of most significant features
in phoe_ray, results that are generated using phoe_ray and finally some general thoughts

on the development process.



2 Theory

This theory chapter gives a brief overview of the techniques and concepts behind the

creation of photorealistic images.
2.1 Ray Tracing

Ray tracing algorithm is used to gather color information from a scene in order to render it
to an image. A simplified illustration of this can be seen in Figure 1. The algorithm starts
by iterating over every pixel on the image, generating a ray ("view ray” in the figure) that
starts at the position of the camera, goes through the position of the pixel and towards
to the scene. Then it traces that ray through the scene until it either hits a solid opaque
surface or escapes to empty space. If the ray hits something, the algorithm will choose
the closest hit point to the camera, which naturally sorts the objects back to front. The

color of the pixel is therefore defined by where the ray has arrived.

Image

Camera / 8 Light Source
N | View Ray

\\-‘

Scene Object

Figure 1: An illustration of ray tracing algorithm [1].



In order to determine where the shadows should be drawn, an additional "shadow ray”
will be created at the intersection point of the ray and its direction is aimed towards a light
source in the scene. This can be seen in Figure 1. For example, when one of the rays
hit below the sphere, a shadow ray is created and tested against the light source in the
scene. This ray will hit the sphere on its way to the light source, therefore the color of the
pixel that the initial ray was representing is set to black. The other two rays in the Figure
1 have a clear visibility to the light source, therefore the pixel is colored according to the

surface of the sphere.

Additionally, if the ray hits a shiny object like a mirror, the algorithm reflects the ray about
the surface normal at the intersection point and recursively invokes itself. This is also true

for transparent surfaces, but in addition to reflection, this ray might be refracted instead.

The ray tracing algorithm explained here is also known as "recursive ray tracing algorithm”
invented by Turner Whitted in 1979 [2]. It handles reflections, refractions and simple
shadows quite well and it produces a clean result relatively quickly. However, in its basic
form it only considers direct lighting and it is not powerful enough to simulate effects such
as indirect lighting or "global illumination”. In the case of Figure 1, this algorithm would
produce a perfectly sharp shadow below the sphere. Perfectly sharp shadows are only
possible if the light source has no area, which do not exist in real life. This shadow is also
perfectly black, because the algorithm does not consider any light that might have been

reflected from other surfaces.

2.2 Global lllumination

Global illumination, also known as indirect illumination is a phenomenon where every sur-
face is considered in lighting calculations. This is different from direct illumination which
only considers surfaces that are directly visible to the light sources. While direct illumi-
nation is responsible for most of the lighting in the scene, it is not physically accurate.
The effects of global illumination can be observed by standing in a dark room that has
a small window shining light through it. If only the direct illumination is considered, most

of the room would be completely black. In real life however, the room would be quite



bright, because the light coming through the window would bounce from walls and fur-
nitures before it gets absorbed. This effect can be seen in Figure 2, which shows the
difference between direct illumination and global illumination. As seen in the figure, the

sphere behind the cube completely invisible if no indirect lighting is simulated.

Figure 2: Comparison between only having direct lighting and having both direct and
indirect lighting [3].

James Kajiya in 1986 [4] introduced the rendering equation into world of computer graph-
ics. The rendering equation is an integral equation that describes a relationship between
the outgoing light intensity of a surface element and the incoming light intensity from every
other surface in the scene. In practice, this equation can not be solved analytically. One
way to solve the rendering equation, is to approximate it by augmenting the original ray

tracing algorithm with randomness, which leads to path tracing.



2.3 Path Tracing

Path tracing is similar to recursive ray tracing, the main difference being that instead of
terminating the ray tracing routine after hitting an opaque surface, the path tracing routine
continues from the hit position by randomly choosing a new direction. This is illustrated
in Figure 3. It can be seen that after the initial hit on the red sphere, the algorithm will
find a completely random direction for the new ray. This results in very different paths for
the ray. The algorithm repeats this until the ray escapes to the outer space or enough
bounces have been done. In this context, a single completely traced path is defined as a

"sample”. This sample has the information of every surface along the path. The color of
the pixel is determined by using this information.
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Figure 3: Valid paths for a ray.

The way of which the random directions are chosen is based on a hemisphere that is

oriented towards the surface normal of the intersection point. This is known as the hemi-

sphere sampling. This can be visualized in phoe_ray as seen in Figure 4.
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Figure 4. Hemisphere sampling visualization in phoe_ray.

In the Figure 4, the orange line represents the incoming ray to the surface. The green line
represents the normal vector of the surface and together with red and blue vectors they
form a basis to a local coordinate system. Using this coordinate system, it is now possible
to choose a random direction that is evenly distributed on the surface of a hemisphere.

These random choices are represented as white lines in the figure.

Hemisphere sampling has an additional detail that can be used to simulate roughness of
the material. The definition of roughness can be seen in Figure 5. The roughness value
essentially adjusts the cone of which the directions are sampled from. This definition of

roughness in this context is arbitrary and specific to the implementation of phoe_ray.
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Figure 5: Different values of roughness r defined in phoe_ray.

As seen in Figure 5, when the roughness r approaches zero, the sampled vectors ap-
proach the normal vector that the hemisphere is currently aligned to. This hemisphere
could be aligned to some other vector, such as reflection vector or refraction vector. Now,
by randomly sampling the new direction vector off the hemisphere that is aligned to the

reflection or the refraction vectors, it is possible to simulate rough mirror or rough glass.

This method of randomly choosing directions is known as the Monte Carlo simulation.
Monte Carlo simulations require a large number of samples in order to converge to the
solution. In the context of path tracing, once all the required samples are completed, they
are averaged and saved as a color. An insufficient amount of samples will manifest as
noise in the image. The exact number of samples required for a clean image depends on
the scene. Usually after 2000 samples the image starts to become clean. The effect of

the number of samples can be seen in Figure 18, Figure 21 and Figure 22.



3 phoe_ray Architecture

phoe_ray was developed by using a bottom-up, exploration-style approach which means
that the design of the final program was not known at the beginning. Instead of pre-
planning and writing design documents, the idea is to only focus on experimentation and
implementation of new features. If an idea does not seem to contribute to the program, it
can be removed early in development. Alternatively, the ideas that have proven to work

in practice gets more attention to performance and readability etc.

phoe_ray is written entirely in C++ with large emphasis on procedural C-style. This means
only using basic C features such as struct, malloc, pointers, arrays and functions. The
reason why phoe_ray was not designed like a normal object-oriented program is because
in practice when the program is being developed using the exploration approach, it is not
known in advance which parts of the program are good subjects for concepts such as
classes, interfaces and managers. If these are decided in advance, this by definition is
pre-planning and resembles in writing design documents. This only works if the program
behaviour and its features are known exactly by experience and previous work, which was
not the case in phoe_ray. Writing programs in procedural C-style frees the developer from
thinking about these concepts and focus only on the problem the program was supposed
to solve. That being said there are a few convenient features that phoe_ray uses in C++

such as operator overloading for vector and matrix operations.

3.1 Libraries

phoe_ray uses several standard and third-party libraries for platform-specific features and
minor conveniences such as mathematics and graphical user interface. Every library used

in phoe_ray can be seen in Table 1.



Table 1: Libraries used in phoe_ray.

Name Usage case

GLFW Window, OpenGL Context, OS inputs and events.

GLEW Searches and defines OpenGL types and functions to be
used in source code.

GLM 3D vector and matrix operations.

OpenCL A framework for writing and running general programs
on a GPU.

stb_image Load and save .png image files.

ImGui GUI framework that can run on OpenGL.

C++ STL std: :vector, std: :thread.

C standard library | File 10, printing, basic math, string manipulation and
memory management.

These libraries work on multiple platforms, which allows phoe_ray to be supported at least
on Windows and Linux. OpenCL is an exception, because its support not only depends on
the platform, but also the hardware vendor of the GPU. Even though OpenCL is supposed
to work across multiple hardware vendors, in practice there are differences in OpenCL
implementations that can cause the program not run at all or run unreliably. Unfortunately
these problems are hard to solve without owning one of each hardware vendors GPUs
and testing on each one separately. phoe_ray was developed and tested on a NVIDIA
GPU.

3.2 Asset Loading

phoe_ray supports .png image files and .obj 3D object files. Image files are used as
textures. Textures are mapped across the surface of the object using UV-coordinates
which are specified by the 3D object file. The exact details of UV-coordinates and texture

mapping are out of scope for this thesis.

.obj format is used to describe the scene geometry and materials used in the scene. The
geometry of the 3D object is defined by vertices (3D points in space) and triangle indices
that span across those vertices. In addition, it describes UV-coordinates for each vertex
which are used for texture mapping. The .obj format can be also used describe multiple
mesh objects in the scene, for example a chair might be a different object than a table.
This allows the program to discriminate between individual objects and describe materials

in per-object basis. Objects material describes its color and surface properties such as
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emissivity or glossiness and whether or not it has a texture.

3.3 Preview Mode

In addition to path tracing modes, phoe_ray also supports previewing the scene before
any path tracing begins. Preview mode displays a simplified version of the scene and
therefore runs in real-time. Because path tracing is several thousand times slower than
rendering a OpenGL scene, a preview mode is necessary for setting up the scene before
path tracing. During the preview mode users can move and rotate the camera and change
any materials in the scene. By default when path tracing is not happening, phoe_ray is

on the preview mode.

3.4 Rendering Modes

phoe_ray supports two rendering modes: normal and live. Normal mode is the traditional
way of how most ray tracer -based rendering works: user decides to render an image, all
user interactions except for halting are disabled until the entire image is fully rendered.
This simplest one to implement and it was the one that phoe_ray supported first from the

beginning.

Live mode is when user interactions such as camera movement and material changes is
allowed during rendering. To make this work, any previous progress made in rendering
must be erased and entire rendering process has to be halted and restarted. Halting
and restarting happens in less than few milliseconds to preserve interactive frame rates.
Halting is non-trivial, because both path tracer implementations in phoe_ray have multiple

threads running concurrently.

3.5 Path Tracing

Path tracer is the main feature of phoe_ray. As explained in Section 2.3, the path tracer

uses the Monte Carlo methods for solving the rendering equation. This process involves
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thousands of millions of ray-triangle intersection tests for each rendered stillimage. There-
fore it is necessary to have an acceleration structure to very quickly discard any unneces-
sary tests. Acceleration structures used in ray tracing reduces the number of intersection
tests from O(n) to O(log(n)). This is true, because instead of testing every single object
in the scene, the acceleration structure cleverly splits the search space in half after each
test. phoe_ray uses bounding volume hierarchy or BVH as its acceleration structure. The

details of constructing and traversing the BVH are explained in the Section 4.3.

GPU

Results Tasks

Worker Threads

GPU Host Thread

Results l [ Tasks I

Main Thread Main Thread

Figure 6: The two execution models used in phoe_ray.

phoe_ray implements two different versions of the same path tracer, one for the CPU and
one for the GPU. While the path tracer algorithm itself and data structures surrounding
it are identical on both implementations, the platform on which the two path tracers run
on are completely different. The CPU version splits rendering job for multiple CPU cores
and the results are gathered by the main thread. The GPU version runs almost entirely
on the graphics card hardware. It has a CPU host thread assigned to it for doing CPU-
GPU synchronization and gathering results for the main thread. An overview of both
implementations can be seen in Figure 6. Details of both implementations are explained

Sections 4.6 and 4.7.

3.6 Graphical User Interface

Graphical user interface or GUI in phoe_ray is relatively simple. It has several key roles:
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Displaying time information for currently active rendering process.
* Allow user to browse and edit materials.

* Allow user to toggle between rendering modes.

 Allow user to save the rendered image.

* Visualization of different systems in phoe_ray for testing purposes.

¥ menu

¥ makerial ediktor

%checkerboard ¥ materials

B zE4 . color

roughness
1.500 ior
P debug
¥ rendering

live rendering

- + samples

Figure 7: GUI in phoe_ray.

ImGui library is used to implement GUI in phoe_ray. An example of usage of ImGUI in
phoe_ray can be seen in Figure 7. As seen in the figure, ImGUI handles combo boxes,
sliders, check boxes, buttons and grouped elements. At the time of writing, it is one of the
simplest ways to get GUI on an OpenGL-based program. The library itself is only a few
header files. There are no external design tools or markup languages, because the GUI

is directly defined in the source code.
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4 phoe_ray Implementation

Implementing phoe_ray took about 30 days of approximately 8 hours of work per day.
phoe_ray is compiled using C++ compiler in Microsoft Visual Studio. Project files for Visual
Studio are generated using CMake. As mentioned earlier in Section 3.1, every library
used in phoe_ray runs on multiple platforms. CMake allows developers to easily generate
project files for different IDEs and compilers. For example, CMake can generate Makefiles
for Linux operating systems on both Clang and GCC compilers and Visual Studio project

files on Windows.

4.1 Command Line Arguments

phoe_ray supports command line arguments and has default values for some of them.

Table 2 contains every argument supported by phoe_ray:

Table 2: Command line arguments supported by phoe_ray.

Argument | Default value | Description
-W 1024 Screen width
-h 576 Screen height
-s 16 Samples per pixel
-f - 3D object file path. User must provide this.

The user might launch the program in a following way: phoe_ray.exe -w 1280 -h 720
-s 500 -f meshes/house.obj. If some value other than the file path is missing or is
invalid, a default value is chosen. phoe_ray will not start if the file path is not provided or

if it does not exist.

4.2 Asset Loading

After the user has entered correct command line arguments, phoe_ray begins to load

assets. As mentioned in Section 3.2, all assets are either stored in . png files or . obj files.
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Asset loading is done in several phases. The first phase loads everything into memory
and stores counts of every type of data. The second phase does preprocessing of the
loaded data. Interestingly, almost all memory allocations in phoe_ray happens in this
stage. Also every type of data, materials, textures, triangles etc. are all stored in simple

C-arrays.

On GPU implementation, the preprocessing phase is mostly identical, except the data is
copied into special data structures that are aligned to 16-byte boundaries. This is done
by adding some extra padding in required locations. An example of this type of padding

can be seen in Listing 1.

1 struct GPUTriangle {

2 vec4 positions[3]; // 16 + 16 + 16 bytes

3 vec4 normals[3]; // 16 + 16 + 16 bytes

4 vec2 uvs[3]; // 8 + 8 + 8 bytes

5 uint materialld; // 4 bytes

6 uint padding; // 4 bytes

[

8 // sizeof (GPUTriangle) = 128, evenly divisible by 16

Listing 1: Data structure of a GPU triangle.

As seen in the Listing 1, it is helpful to comment very explicitly how many bytes each
field will occupy in the struct. Incorrectly aligned data structures was one of the most

common errors during the development of phoe_ray.

4.3 Bounding Volume Hierarchy

As mentioned briefly in Section 3.5, phoe_ray uses bounding volume hierarchy as its
acceleration structure for ray-triangle intersect tests. This section explains what BVH is,

how it is constructed and how to traverse through this hierarchy.
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Figure 8: A visualization of BVH data structure.

BVH is a tree data structure, where each node in the tree has a bounding volume that en-
compasses all its child nodes and their bounding volumes. Top most node has a bounding
volume that encompasses the entire scene and leaf nodes only contain a single primitive.
In the context of ray tracing, if a ray misses a node, this guarantees that this ray missed
every child node under the tested node. In practice it is very likely that ray will miss objects
in the scene, because objects rarely intersect each other. Therefore the BVH will always

perform much faster compared to brute force methods.

A visualization of BVH can be seen in the Figure 8. Each node in the BVH is colored
as green in the figure. It can be seen that the BVH gets more complicated and dense in

areas that have a lot of geometry.

4.3.1 Construction

Construction of BVH resembles the construction of binary trees, except the input se-
guence is not always split at the middle. In fact, the choice of this split position is very
important. Poorly chosen split position (for example, always splitting at the middle) di-
rectly affects the performance of BVH. In traditional binary search over a list of integers,

sorting is necessary in order for the binary search to work. In the case of BVH, it is not
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obvious how an arbitrary group of objects in 3D space can be sorted in an useful way.
BVH construction strategy used in phoe_ray is from the book Physically Based Rendering
[5]. Figure 9 shows how the BVH construction might happen in a 2D situation and Figure

10 shows what the Figure 9 looks like as a tree.

DUUO;DDU;
D 7o)l D F o
DUUO;DUU;
VP ool D Pl

Figure 9: An example of BVH construction phase.

— O [
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Figure 10: How the Figure 9 looks like as a tree.

First, the BVH construction algorithm generates an axis-aligned bounding box or an AABB
for every primitive that is going to be stored in the BVH. AABB is a bounding box that is

aligned to the three axes in three dimensions. It being axis-aligned simplifies many calcu-
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lations, because it is possible to represent the AABB by only using six values, minimum
and maximum distances for each axes. The algorithm also calculates the point that lies
in the center of the AABB. This point is known as the centroid of the AABB. AABBs and

centroids are used later in the construction algorithm.

The second phase is recursive and starts from the beginning with a complete list of prim-
itives. The algorithm starts by computing an AABB that encompasses every primitives
centroid pointin the list. Then it determines the dimension in which to make the initial split.
This dimension is chosen by finding the maximum extent of the AABB, which is essentially
the longest side of the AABB. For example, an AABB defined as: ((0,0,0), (1,2, 3)), the
Z-dimension will be chosen as the split dimension, because the AABB is longest in that
dimension. Using this split dimension the algorithm starts to partition the primitives by
using surface area heuristic or SAH. The reason why the surface area of a primitive is a
good heuristic relates to the probability of rays hitting a given primitive. Larger primitive

has a greater probability of being hit compared to a smaller one.

Figure 11: An example of trying out different split positions in SAH partitioning algorithm.

The SAH partitioning essentially tries find a split position where the resulting two child
nodes after a split has been made has the smallest combined surface area compared to
every other possible split position choices. One way to do this is by simply trying out every
split position. This would guarantee the best possible split position, but in practice is too
slow. Slightly faster approach is to choose a small number of evenly distributed split posi-

tions and try all of them. This is what phoe_ray does, it tries twelve different split positions
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and chooses the best one. Twelve is small enough number that even brute forcing does
not take very long and produces good enough results in practice. An illustration of this

technique can be seen in Figure 11.

Once the split position has been found, the split is done and the second phase is per-
formed recursively on the two lists that came as a result of doing the split. The second
phase stops going any further once a recursive call starts with only one primitive in the

list.

A

caltes T\

/\ A|B|D|E|C

D E

Figure 12: Flattening of a tree structure into a linear array format.

The final phase takes completely partitioned BVH tree form and flattens it to a pointer-less
array form. An example of this can be seen in Figure 12. Nodes are stored in depth-first
order. This makes it good for traversal purposes, because every node is next to each

other in memory. Doing so improves cache, memory and overall performance.

4.3.2 Traversal

The traversal algorithm keeps a to-do list of node to be tested next. Pseudocode of this

algorithm can be seen in Listing 2.
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1 while(true) {

2 if (intersectBBox(ray, currentNode)) {

3 if (currentNode->primitiveCount == 0) {
4 // leaf node

5 intersectTriangle(

6 ray,

7 currentNode->primitive,

8 &hit);

9 if (todoList->count == 0) break;

10 } else {

11 addNode (currentNode->childs, todoList)
12 }

13 } else {

14 if (todoList->count == 0) break;

15 }

16

17 currentNode = nextNode(todolList) ;

18 }

Listing 2: BVH traversal algorithm.

As seen in Listing 2, the traversal algorithm only stops once the to-do list is completely
empty. This means that even if the algorithm already found a valid ray-primitive intersec-
tion, it will continue to look for other intersects along the same ray, because it might find
an intersection that is closer to the camera. This naturally results in an image that has its

elements perfectly depth sorted.

4.4 Preview Mode

Preview mode was briefly introduced in Section 3.3. Itis implemented in modern OpenGL
with programmable shaders. The main requirement of the preview mode is that it must run
in smooth, interactive frame rates, which in this case means at least 60 Hz. Since most
monitors update at least 60 times a second or 60 Hz, that should be the target frame rate
for the smoothest possible user experience in a given monitor configuration. That said,
phoe_ray does not explicitly limit the frame rate to 60 Hz. It uses vertical synchronization
or VSync to prevent the preview mode to render more frequently than the monitor refresh
rate allows. Rendering more frequently than a monitor can update is not only wasting
resources, but also can cause image tearing where a half-rendered image is displayed

on the monitor.
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Because the preview mode is only supposed to serve as a tool to configure the scene
for the path tracer, there is no need to make the preview mode look good or realistic. In
practice it is good enough to have the scene at least make sense in the mind of the user

(for example object shapes and colors should at least match the path traced image).

During the asset loading phase, in addition to building the structures such as BVH, phoe_ray
also builds OpenGL buffers for rendering loaded 3D objects. Every 3D object has a vertex
buffer associated with it. Vertex is a simple structure that describes a point in space. Its

declaration can be seen in Listing 3.

1 struct Vertex {

2 vec3 positions;
3 vec3 normal;

4 vec2 uv;

5 };

Listing 3: Structure of a vertex.

Every vertex buffer is uploaded to the GPU and their handles are stored in memory for

rendering.

44,1 Camera

One of the main benefits of having a preview mode is giving the user an ability to set up the
camera in the scene. This is like a photographer trying to aim the camera at the object
that he/she is trying to photograph. phoe_ray allows this type of interaction in preview
mode. In phoe_ray, the camera can be moved up, down, left, right, forward and back
by using WSADQE-keys respectively. In addition to movement, the camera can also be

oriented by using a mouse.

Camera movement requires three vectors that defines a local coordinate system to the
camera. These vectors are: fcamm, Ucamera AN Feamerq (fOrward, up and right respec-
tively). Using these three vectors makes it very easy to perform 3D movement, because

now updating the position only requires one vector addition.
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Orienting the camera using the mouse is harder to implement, because the objective is
to map 2D mouse movement to a 3D rotation. phoe_ray uses spherical coordinates to
do this. Converting from spherical coordinates to Cartesian coordinates is done by the
following formulae:

x =rsinfsing

y =1rcosf (1)

z = rsinf cos ¢

where ¢ € [0,27) and 6 € [0,7]. Orientation computations are only concerned with
unit vectors which means that » = 1. To begin, the objective here is to take screen
coordinates (Zscreen, Ysereen) @Nnd map them to (¢, 0) by normalizing both values to get
(Tnormalizeds Ynormalized)- THiS IS done by dividing screen coordinates with screen dimen-
sions. Next the (¢, 0) is computed by using these normalized values. This is done by the

following formulae:

© = 2T Tpormalized
(2)

0= TYnormalized

Once the (¢, ) is computed, they can be converted back to Cartesian coordinates using
the Equation 1 to get the ﬁamem vector. Using the ﬁamm vector, it is now possible to

derive both the tegmerq and the 7.0 VECtors by doing two vector cross products:

7:'came?"cb = fcamera X ﬁworld
)

N
- o
Ucamera = Tcamera X fcamera

where @yoriq = (0,1,0). Teamerq 1S NOrmalized between the cross products.

This entire computation is done in every frame update. It is insignificant enough to the

overall performance that it is unnecessary to optimize any further.

442 Rendering

Preview mode rendering is closely related to basic video game rendering, except every-
thing in the scene is static. phoe_ray implements a simple OpenGL rendering engine for

the preview mode. The rendering procedure can be shown in the following pseudocode:
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1 while (true) {

2 sortObjectsByDepth () ;

3

4 clearScreen();

5

6 foreach (object in scene) {
7 renderObject (object) ;
8 X

9

10 swapBuffers();

1 3}

Listing 4: Rendering loop.

This loop will be executed forever until the user decides to terminate the program. Every
time swapBuffers () is called, the front and back buffers are swapped (double buffering)
and sleeps for a while. Sleep duration is determined by the monitor refresh rate to guar-

antee smooth interactions as explained in Section 4.4.

In order to make sure that the transparent objects are rendered correctly, every object in
the scene have to be sorted back to front in relation to the position of the camera. This is

done on every frame, because the camera might move due to user interaction.

45 Path Tracer

Path tracer implementation in phoe_ray can be expressed as a three step process as

seen in Listing 5:



23

1 for (int sample = 0; sample < samplesPerPixel; sample++) {
2 for (int y = 0; y < screen->height; y++) {

3 for (int x = 0; x < screen->width; x++) {

4 // Step 1

5 Ray cameraRay;

6 cameraRay = generateCameraRay(x, y, screen);

7 // Step 2

8 Color color;

9 color = calculateRadiance(ray, scene, camera);
10 // Step 3

11 constructImage (output, accumulator,

12 X, ¥,

13 color, sample);

14 }

15 }

6 }

Listing 5: Path tracing routine.

There are several interesting observations when looking at the path tracing routine:

1. Each pixel on the screen is independent to every other pixel on the screen. This
means that it is trivial to make this code run in parallel on any number of threads.
This is also true on GPU implementation.

2. Time spent rendering is directly related to the number of samples per pixel and the
resolution of the rendered image.

3. Scene has to stay constant during the rendering process. Any changes to the scene
during rendering invalidates any progress achieved so far.

4. Rendering does not have to be fully finished in order to be displayed on the screen.
This allows the renderer to give user some early feedback of the rendering process
which is useful, because the image is partially recognizable even after only a few
samples and therefore allows the user to cancel the process early if something is

incorrect.

The three most important steps in the path tracing routine are: generateCameraRay (),
calculateRadiance() and constructImage(). All three steps are explained in detail in

their respective subsections 4.5.1, 4.5.2 and 4.5.3.
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45.1 Generating Camera Rays

Like every other object in the scene, the camera in phoe_ray is also defined in world
space. As seen in Section 4.5 Listing 5, for every pixel a corresponding camera ray
is generated. The objective is to take pixel coordinates (z,y) € [0, screenDimension)?
and output a camera ray that starts at cameras position and points forwards towards the
scene. There are several requirements that must be satisfied by the camera ray generator

in phoe_ray:

1. Generated camera rays should result in an image that matches the preview mode
output.

2. Camerarays have to respect perspective projection with a configurable field of view.

3. Ray directions should have a small random offset to effectively eliminate aliasing on

the output image.

In order for the camera rays to match the preview mode output, they have to be converted

to the screen space. This could be done in a single expression for each coordinate:

z+054+z ) ov
Tsereen = <2 < screenWiocg;et> — 1) X aspect Ratio x tan (f2>

y+0-5+yoffset fOU
=11-2 t —
Ysereen ( < screenH eight Tt

where (Zof fsets Yof fset) € [—0.5,0.5]2. Following steps explains how the expressions are

(4)

derived:

1. Add 0.5 to pixel coordinates (z, y). This ensures that the ray will pass through middle
of the pixel.

2. Add a random offset (r,,r,) € [—0.5,0.5)% to (z,y) that will slightly offset the ray
off the center of the pixel. This eliminates aliasing from the output image, because
every subsequent ray now samples a slightly different point in space.

3. Map pixel coordinates (z,y) to normalized device coordinates (z,4c, Yndc) € [0,1]?
by dividing pixel coordinates with the screen dimensions. Note that the y-axis in

NDC space points downwards.
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4. Map the coordinates in NDC space (z,4c, Yndc) t0 Screen space (Tscreen, Yscreen) €
[~1,1]2. This can be done like this: (2z,4c — 1,1 — 2y,q4.). Note that the y-axis in

screen space points upwards.

screenWidth
screenHeight’

5. zsereen 1S Multiplied by the aspect ratio of the screen which is assuming
screenWidth > screenH eight.

6. To account for the field of view, (screen, Ysereen) iS Multiplied by tan (%)

Finally, coordinates in screen space are now transformed into world space by using a 4x4
camera-to-world matrix which is an inverted version of world-to-camera matrix (which is
also known as the coordinate system defined by cameras f.omera, Ueamera @Nd Teamera

vectors) derived in Section 4.4.1.
4,5.2 Calculating Radiance

Calculating radiance is the most important and time consuming process in phoe_ray. AS
seen in Section 4.5 Listing 5, this determines the radiance, or the color of the pixel on the

image. A simplified version of this function can be seen in Listing 6.
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Line 5
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vec3 calculateRadiance (Ray* ray, Scenex* scene) {

vec3 color = vec3(1.0f);
RayHit hit;

for (int depth = 0; depth < maxDepth; depth++) {
if (intersect(ray, scene, &hit)) {
// Color information

if (hit.material.textureType == IMAGE) {
color *= sampleTexture(hit);

} else {
color *= hit.material.color;

3

// Surface information

if (hit.material.surfaceType == EMISSIVE) {
color *= hit.material.emission;
break;

} else {
ray->origin = hit.position;
ray->direction = sampleDirection(hit);
color *= lambert(hit, ray->direction);

}

} else {
color *= sampleSkyDome (ray);
break;

return color;

Listing 6: Calculates radiance.

color variable is initialized to (1,1, 1) to indicate maximum possible radiance. This
variable will be modified throughout the process, usually becoming smaller as the
depth increases.

Line 3
hit variable keeps track of multiple attributes that can be gathered from ray-triangle

intersection tests. These attributes are: position, normal, UV-coordinate and mate-

maxDepth in phoe_ray is set to 6. 6 is a good balance between correctness and per-

formance in most simple scenes. Above a certain point each subsequent iteration
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contributes very little to the final color.

Line 6
Traverses through the bounding volume hierarchy and tries to find the closest ray-
triangle intersection and fill the RayHit structure, if successful. Ray-Triangle inter-
section algorithm used here is called Méller-Trumbore intersection algorithm, named
after its inventors Tomas Mdller and Ben Trumbore [6]. Details of its derivation are
out of scope for this thesis.

Lines 7 to 12
This part determines the color of the hit point. This color can be uniform across the
entire mesh, but if an image is assigned to the triangle, this texture will be sampled
instead. Sampling is done with UV-coordinates.

Lines 14 to 21
This part determines what to do the next iteration. In the case of emissive surfaces,
the path tracing terminates. Every other surface type does hemisphere sampling
based on roughness value. Color is modulated by the Lambert’s cosine law, if ap-
plicable.

Lines 24 to 25
If intersection test fails, the only possibility is that the ray went into open space.
One solution is to simply set the output color to be black. In this case phoe_ray
experiments with image-based lighting and samples the sky dome texture instead.
Because it is multiplying the existing color variable, the sky dome contributes to the

lighting.

4.5.3 Image Construction

Once the radiance value is calculated for a given pixel, the value gets added into an
accumulator buffer. After this, the final output color for a given pixel is calculated by

following steps:

1. Average the pixels radiance values in the accumulator buffer.

2. Clamp the value between [0, 1].
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3. Raise the value to the power of 0.45 for gamma correction. The reason for gamma
correction is related to how computer monitors display color. The exact details of
this are out of scope for this thesis.

4. Multiply the value by 255.0 and cast it to uint8.

Final color value is then written into the output buffer. This can then be displayed on the

screen or output as an image file.

4.5.4 Rendering Modes

As mentioned in Section 3.4, phoe_ray supports normal and live rendering modes. Imple-
menting the normal rendering mode is straightforward: run the entire path tracing process

from start to end normally.

The user can halt during the path tracing process and start again if desired. By making the
time between the user issuing the halting command and actually halting very small (less
than few milliseconds), it becomes feasible to implement the live rendering mode. The live
rendering mode is essentially the same as the normal rendering mode, the only difference
is that any changes to the scene or to the camera automatically halts and restarts the
path tracing process. This can potentially give the user greater interactivity and feedback,
assuming that the user has a powerful enough computer to run it. phoe_ray achieves fast
halting times by inserting halting conditions into strategic locations in the code, such as

between individual pixel samples and samples.

4.6 CPU Implementation

Even though the GPU implementation of phoe_ray is several times faster than the CPU
implementation when running on the hardware that phoe_ray was being developed on,

there are good reasons for sticking to the CPU implementation:

* It is easier to develop new features on CPU implementations, because of simpler



29

debugging tools.

* Itis guaranteed to work on almost any computer and on any operating system.

* |t serves as a reference implementation for any other hardware accelerated imple-
mentations. Their correctness is determined by comparing them to the CPU imple-

mentation.

phoe_ray has been tested on Intel Sandy Bridge quad-core processor and AMD Phenom
Il hexa-core processor. Rendering performance scales linearly as core count increases

on both CPU architectures which is expected.

4.6.1 Multithreading

Multithreading in phoe_ray is implemented by using the thread pool pattern. In the thread
pool pattern, all worker threads are launched when the program starts and are only termi-
nated once the program ends. There is an array of task buffers. The worker threads in the
thread pool wait for a condition variable signal which is issued by the main thread. Once a
worker thread receives a signal, it picks a task buffer that is allocated to it. It then begins
to complete tasks sequentially until there are no tasks left. Once a task is completed by a
worker thread, it increments a counter that represents the number of recently completed
tasks. This is used to signal the main thread that some work has been completed. This

is easier to see in pseudocode Listing 7.

1 void workerThread(int threadId, Task** buffers) {
2 while (running) {

3 waitUntilSignal();

4

5 Task* myBuffer = buffers[threadId];
6

7 foreach (task in myBuffer) {

8 doPathTracing (task) ;

9 recentlyCompletedTasks++;

10 b

11 }

12 }

Listing 7: Worker thread routine.
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Important thing to note here is that the doPathTracing () could halt at any point, because
of user interaction. This is handled carefully in phoe_ray to make sure the threads are

correctly put on the idle state.

4.6.2 Load Balancing

phoe_ray implements a simple screen partitioning scheme, where the screen is split into
small 8x8 pixel blocks. These blocks are then stored in a random order. This scheme was
originally intended to make the rendering process look more visually pleasing, but it turned
out to be an effective way to load balance tasks across the worker threads. The main
reason why this is true is that in a given camera view to a scene, some parts of the screen
might see the sky directly and other parts might see a dense pile of objects. In the case
of four threads, if the screen were split into four equal sized quadrants and each quadrant
is assigned to a thread, it is common that some threads will spend very different amounts
of time to render those quadrants. Therefore, by splitting the screen into smaller 8x8
blocks and randomly distributing them, there is a higher probability that the workload will
be evenly distributed across all the threads. This usually results in significantly reduced

rendering times.

4.7 GPU Implementation

GPU implementation in phoe_ray is built on top of OpenCL framework. OpenCL offers
simple abstractions for managing memory and running programs on a GPU. It is a cross-
platform library that works on many popular hardware vendors devices, like Intel, NVIDIA
and AMD. OpenCL comes with an OpenCL C compiler which compiles programs for the
GPU. OpenCL Cis a based on the C programming language, but features like C standard
library and recursive functions are removed. An interesting note about OpenCL, is that
most functions in OpenCL are thread-safe. phoe_ray does not benefit from this fact, but
it is very powerful compared to OpenGL where most functions modify global states. More
information about OpenCL and OpenCL C can be found in the book OpenCL Program-
ming Guide [7].
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In order to begin working with OpenCL, one has to perform the following steps in order:

1. Create a OpenCL context. OpenCL context is required in most operations.

2. Find a compatible compute device. In phoe_ray’s case this would be the GPU in
the system.

3. Create a command queue for the compute device. Every GPU command has to be
pushed into a queue for it to be executed. This includes buffer reads, buffer writes
and running kernels.

4. Read kernels from source files and compile them.

Every step must be successful in order to continue. Every OpenCL function has a way for

giving feedback if something went wrong. A function might return NULL or an error code.

Once OpenCL framework is set up correctly, it is time to allocate buffers and copy data
over to the GPU. As mentioned briefly in Section 4.2, everything that is going to be sent
over to the GPU have to be padded to satisfy 16-byte boundaries. phoe_ray does this

during the asset loading phase.

4.7.1 Kernels

In the context of GPU programming, programs written for the GPU are often called "ker-
nels”. The main difference to regular programs is that kernels are submitted to hundreds
of GPU cores and executed in a very parallel manner. In phoe_ray, kernels are written in
OpenCL C language. Kernels have to be compiled before they can be used. The compi-
lation phase can fail and it is possible to see compiler errors like in a traditional compiled
language. Kernels in phoe_ray are compiled with the -Werror flag to treat every warning

as an error. Here is a list of kernels in phoe_ray and a description of their role.

ray_generator.cl
This is the generateCameraRay () as seen earlier in Section 4.5.1.
pathtracer.cl

This is the calculateRadiance() as seen earlier in Section 4.5.2, except it also
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includes hemisphere sampling functions, the ray-triangle intersection test and the
BVH traversal function.

compositor.cl
This is the constructImage () as seen earlier in Section 4.5.3.

clear_buffers.cl

This is a special kernel that resets every pixel buffer to zero.

It is not necessary to have multiple . c1 files, but in terms of readability it is useful to split

the kernel code into multiple files, based on their role.

4.7.2 Execution Model

GPU implementation in phoe_ray has one worker thread assigned to submit tasks to the
command queue and collect results once a task is done. Once every task is done, the
worker thread starts from beginning until all samples are done. Before the worker thread
is spawned, the main thread runs the clear_buffers.cl kernel and updates buffers that
might have changed afterwards (user might have moved the camera or changed materi-
als). These buffers include the material buffer and the camera attribute buffer. Once this
is done, one worker thread is spawned and it will start to submit tasks immediately. Here

is a pseudocode that explains what the worker thread does:

1 void gpuWorkerThread () A{

2 while (samplesDone < samplesPerPixel) {

3 foreach (task in tasks) {

4 push("ray_generator.cl", task, commandQueue);
5 push("pathtracer.cl", task, commandQueue);
6 push("compositor.cl", task, commandQueue);
7 }

8 wait (commandQueue) ;

9 recentlyFinishedTasks++;

10 }

1 }

Listing 8: GPU worker thread routine.

task in this context is similar to CPU implementations 8x8 pixel blocks, except here it is

a group of 8192 pixels. In OpenCL it is possible to submit a group that is equal to the
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number of pixels on the screen, but in practice this might cause the operating system
to freeze completely for several seconds. This usually crashes the graphics driver and
subsequently the program as well. Based on empirical testing, it was found that values

around 8192 do not cause this problem.
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5 Results

The following figures showcase material types supported by phoe_ray and how the rough-

ness modifier affects the material.

Figure 13: Diffuse material in variety of different colors.

One of the most impressive feature here is the soft shadows underneath the monkey’s
head. Similarly there are subtle shadows around the monkey’s nose, eye regions and
its left ear. Compared to rasterization-based graphics, the soft shadows are often imple-
mented specifically in order to have them at all, while the path tracing algorithm handles

them naturally. Diffuse material in phoe_ray does not use roughness value.
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Figure 14: Glossy material (left: roughness = 0.0, right: roughness = 0.4).

Glossy material in phoe_ray is acts like a mirror. Here the roughness value has a no-
ticeable effect on the materials reflectiveness. Increasing the roughness value is similar
to a badly scratched mirror. This effect is also something that the path tracer simulates

naturally without significant effort compared to rasterization-based methods.

Figure 15: Glass material (left: roughness = 0.0, right: roughness = 0.4).

Glass material in phoe_ray can achieve surprisingly varied results depending on the
roughness value and the index of refraction. A value of 1.4 is used as the index of re-
fraction in Figure 15. Frosted glass -type of material can be achieved by changing the

roughness value.
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Figure 16: Emissive material.

As emission power increases, the emissive material becomes completely white. It is pos-

sible to emit any color when the emission power and the material color is set correctly.

Figure 17: Textured paintings.

phoe_ray supports simple texture mapping. These two paintings are read from .png im-

age files.
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Figure 18: Effect of sample count (first = 1 sample, second = 16 samples, third = 1024
samples).

Figure 18 demonstrates what happens when an image is rendered with different sample

counts. The image starts out as extremely noisy and barely recognizable and as the
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sample count increases, it starts to get clearer. Number of samples required to get an
image without noticeable noise varies greatly depending on the scene. Typically scenes
that have an extremely large light source (like the sun) tend to require much less samples

compared to scenes that have smaller light sources (like a light bulb).

Figure 19: The famous Cornell Box.

Figure 19 showcases the famous scene in computer graphics research called Cornell Box
which can be downloaded here [8]. Here it is possible to see the effects of global illumi-
nation, which is what path tracer was originally designed to solve. Boxes in the middle
are completely white, but their sides closest to colored walls have wall colors reflected to
them. This is purely due to indirect lighting, because these sides are not directly visible

to the lamp on the ceiling.

All images in this chapter were rendered with a following hardware configuration:
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CPU: Intel i5-2500k

GPU: Nvidia GeForce GTX 560 Ti
RAM: 8 GB of DDR3 Memory
OS: Windows 8.1

L]

Figure 20 displays some benchmarking results from phoe_ray. The benchmarking here
was done using the hardware described above and the scene being benchmarked here
is the scene with the monkey head. 32 samples were used and the resolution is set to
960 by 544.
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Figure 20: How the number of CPU cores increases the speed of rendering.

As seen in Figure 20, as the number of core increases, the speed increases grows linearly.
The linear growth should continue indefinitely, because there are no thread communica-

tion in phoe_ray.

The next two figures 21 and 22 shows how the variance of pixels in an image reduces
as the number of samples increases in the monkey scene (as seen in Figure 13) and the
house scene (as seen in Figure 18), respectively. The setup used here is similar to the

one used in Figure 20, except the number of samples varies from 1 to 128.
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Figure 21: How the sample count decreases the variance of the image (monkey scene).
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Figure 22: How the sample count decreases the variance of the image (house scene).
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The actual values for variance in figures 21 and 22 are not important, the rate of conver-
gence however, is. It is clear that in the monkey scene, the variance converges much
faster compared to the house scene. This is because the monkey scene is completely
visible to the sky which is an extremely large light emitter, while in the house scene al-
most nothing is directly visible to the sky. Most lighting in the house scene is from indirect

lighting, which requires more samples.
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6 Conclusion

The most valuable features in phoe_ray that turned out to be essential to the development
include: visualization of data structures for clarity, prioritizing quick iteration times for fast
debugging and having a preview mode with a GUI on top of it which also affects debugging
and testing efficiency. A feature such as the live rendering mode is very useful in this
context, but also in general it is always worth the time to reduce friction in getting things

done, even if it only remains as a developer-only feature.

There are many exciting ways to extend and to augment existing features in phoe_ray.
E.g. features such as being able to render multiple frames in sequence to produce motion,
as in animation. This includes character animations and physics simulations, too. Other
interesting topics are new types of materials, such as human skin, tree leaf, milk and
wax. Simulating these realistically requires a general support for subsurface scattering.
There are also ways to improve the current diffuse and glass materials to make them even
more realistic, the current models used in phoe_ray are quite simple compared to what is
available. In terms of optimization possibilities, the GPU implementation could be made
even more efficient by implementing the bounding volume hierarchy specifically for the

GPU.

In all, phoe_ray can easily be considered as a success. Every feature imagined by the
author at the beginning of the project were implemented and even more. Many new
concepts and techniques were learned during the development, the main one being able

to program the GPU for large calculations, such as path tracing.
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