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The goal of this thesis was to provide a proof of concept that keyword-driven test automation 
with the Robot framework is feasible and that it would actually reduce the amount of manual 
work during the testing phase of projects. The result was an easily expandable demonstra-
tion configuration (test data suite), which could be taken into use with a few customizations 
depending on the project. 
 
First, theory of test automation was examined to assess the benefits and the issues in test 
automation. The Robot framework was chosen as the test automation framework, because 
it is open source, thus making it free to use, and because it is platform independent, thus a 
great choice of software to be run on top of a virtual system. Automated tests were run 
against Service Now’s Service Catalog homepage. The homepage is a web application sim-
ilar to an online shop. It consists of order forms built for an organization’s needs to support 
their internal order processes. These processes can include, for example, ordering a new 
laptop for an employee. The test automation, when executed, navigates in the webpage, fills 
in the fields of the order forms, submits orders, reports possible errors and provides statis-
tics. As a result, the test cases were written according to their equivalent use cases. 
 
The result was a configurable test data suite: a set of test data files, which can be easily 
deployed for the Robot framework to execute. The thesis provides theory of the used tech-
niques and instructions on how to implement a working test environment and the basis for a 
working test automation suite. 
 
Before taken into use, the suite requires a few customizations that are needed depending 
on the project and the essential use cases. The suite can be used as a base for any Service 
Now platform test automation project. From a technical point-of-view, the goals of this thesis 
were reached, but studying the advantages and disadvantages of acceptance test-driven 
development could have been emphasized. Also more comparison between a human tester 
and a computer tester could have been made, to provide an easier choice for those who are 
contemplating the utilization of test automation in software development projects. 
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List of Abbreviations 

SUT System under test: a specific target system, which test au-

tomation is run against. 

ATDD Acceptance test-driven development: a methodology which 

provides a common language between the end users, the de-

velopers and the testers. 

JVM Java Virtual Machine: a process that executes a computer 

program compiled into Java bytecode. Distributed together 

with Java Runtime Environment (JRE) by The Oracle Cor-

poration. 

.NET Dot net software framework: a software environment that 

executes programs written for .NET Framework. Devel-

oped by Microsoft and used for creating software for Win-

dows based platforms. 

TSV Tab-separated values: a simple text file format for storing 

data in a tabular structure. 

reST reStructuredText: a textual data file format used in the Py-

thon community for technical documentation. 

API Application programming interface: an API provides a set 

of routines, protocols and tools for easier development of 

programs. Usually a library that specifies object classes, 

variables, data structures and other routines.  

HTML HyperText Markup Language: a standard markup lan-

guage used to create web pages. Written in the form of 

elements, which consist of tags. Designed to display data. 



 

  

XML EXtensible Markup Language: a standard markup lan-

guage used to describe data. Written in the form of ele-

ments, which consist of self-defined tags. 

PaaS Platform as a Service: a set of software applications. A dis-

tribution model made available to users usually over the 

Internet. Applications are hosted by a separate service pro-

vider. 

ITSM IT service management: an integrated, process based set 

of best practices which helps manage IT services.  

UI User interface: an important part of a program, which ena-

bles users to interact with the software. 

VM Virtual Machine: an emulation of a computer system, which 

includes all components of a real computer system such 

as hardware and software. 

GUI Graphical user interface: a part of a program, which ena-

bles users to interact with the software graphically through 

icons and visual indicators. 

LXDE Lightweight X11 Desktop Environment: a fast and energy-

saving desktop environment available for Linux based dis-

tributions. 

APT Advanced Package Tool: a free software user interface 

that handles software package installations and removals 

on various Linux distributions. 

X11 X Window System: a windowing system for bitmap dis-

plays, provides a framework for graphical user interfaces. 

CLI Command-line interface: enables users to interact with a 

program through commands in the form of text. 



 

  

URL Uniform resource identifier: a term for describing all target ad-

dresses and names, which refer to objects in the Internet. 

stdout Standard output: a file handle for processes to print normal 

information in the Command line interface. 

id Identifier: a name, which is used to identify an object or a 

unique class of objects. An identifier can be a word, number, 

letter, symbol or a combination of them. 
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1 Introduction 

As modern applications and software develop, become larger and more complex and at 

the same time are divided between multiple platforms, the importance of software quality 

and usability become more and more important. Nowadays millions of different applica-

tions are easily available for consumers through a wide variety of sources and for various 

devices. The pressure of developing functional software fast is ever growing, so why not 

utilize fast computers to remove some of the already limited amount of time reserved for 

projects and especially for testing? Test automation might provide a solution, because 

the calculation power and efficiency of a computer is used to support developers to make 

better software. 

This final year project was made for Symfoni Finland Oy for studying the use of test 

automation in Service Now Service Catalog projects. The Service Catalog is a user-

friendly webpage for ordering goods and services through Service Now and these goods 

and services are modeled with web order forms also known as Catalog Items. The Ser-

vice Catalog is used by organizations to support their internal ordering processes. These 

ordering processes can help, for example, in the enrollment of a new employee. The new 

employee can visit the page and order the needed tools, for example a mobile phone, a 

laptop or something else for the job in question. One specific Service Catalog project for 

a customer company started an idea which needed more clarification. In that project, the 

Service Catalog included multiple, complex and large-scale Catalog Items. As testing all 

these order forms, their client-side and supporting server-side functionalities would re-

quire a lot of manual work, the requirements were to reduce the amount of actual work 

hours during a testing phase and to provide a packaged solution, which a customer com-

pany could utilize by making only a few changes. The size of the Catalog in the previously 

mentioned project is quite average, but the complexity of the forms makes it a tedious 

job to test manually. Building a test automation suite might also benefit existing or future 

Service Catalog projects, which can include hundreds of Catalog Items. Also generic 

parts of the test automation could be used in other Service Now implementation projects 

in general. 

The purpose of this final year project was to provide a proof of concept that test automa-

tion could be used in customer projects and to study the benefits of acceptance test-

driven development (ATDD) using the Robot framework test automation framework for 
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the Service Now service management platform. More specifically, the testing automation 

was run using the Selenium2Library and Selenium 2.0 WebDriver against the Service 

Catalog homepage of Service Now and different sub-sections of the homepage. Addi-

tional custom keywords were used to support test cases for identifying Service Now web 

elements. As the Robot framework was installed on a virtual machine running a Linux 

distribution, the available web browsers did not include Internet Explorer. Selenium 2.0 

uses and directly supports the latest version of Mozilla Firefox web browser; thus it was 

used as the main client. 

This thesis covers theory regarding the technologies used in the project and introduces 

the used software tools. It also describes setting up a testing environment, testing a web 

application and graphical user interface elements in practice and testing results analysis. 
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2 Test Automation in General 

Test automation is carried out with a use of special software to control the execution of 

predefined test cases. The testing results (outcomes) are then compared to the expected 

outcomes. Automation helps in testing repetitive tasks, which would be difficult, or would 

require too much time and resources (manpower) to be run manually. [1, 74.] 

Test automation is an attractive concept, but achieving goals might require a lot of work. 

Keeping this in mind should help in implementing automation well. A test automation 

project with a wide scope should be considered as a separate software project [2, 2]. 

Because of these reasons, the scope of the practical testing in this thesis is kept quite 

narrow and specific to certain areas of the system under test (SUT). 

2.1 Benefits of Test Automation 

Although implementing sufficient test automation is time consuming, it has a few benefits, 

when compared to human testers. Performing repetitive tests might be boring to a human 

tester, which might affect the accuracy of testing. When using test automation, testers 

can concentrate on more demanding and rewarding work. Thus better results can be 

accomplished. [2, 3.] 

Test automation is much faster than human testing. After test cases are implemented, 

the automation can accomplish hundreds or even thousands of tests in a matter of 

minutes. The same amount of tests might take days from a human tester. 

One-time setup is a clear benefit in test automation. After the implementation of a test 

suite, it is possible to run the test suite multiple times, and also it is re-usable. When a 

new version of a system is taken into use, the existing test automation can be used for 

regression testing. [2, 3.] 

Obviously one of the main benefits of test automation is the amount of manual labor 

during the testing phase. The amount of manual work hours can be extremely small, 

compared to the time taken by manual testing. 
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2.2 Possible Caveats of Test Automation 

Everything has negative aspects and this is the case with test automation as well. Defin-

ing use cases and matching test cases against them and to define expected outcomes 

is problematic for many organizations. It might take more time to change an organiza-

tion’s processes in testing than implementing the test automation. 

Analyzing the test outcomes is also important and if the analysis is incorrect, the benefits 

of test automation are tenuous. The test case might fail, but that does not mean there 

was a bug in the SUT. The reason might have been, all along, that the test case was 

written poorly. 

The main caveat in test automation is the fact that building it takes a lot of time. Depend-

ing on the scope of the test automation, the implementation of the test automation can 

vary from days to weeks, even months. It is a slow process to, for example, investigate 

the web elements of a web page and then figure out the methods for invoking the web 

elements. Especially GUI testing automation is difficult, because UI objects are hard to 

recognize. GUIs are also updated and changed often, which causes problems, because 

test automation needs to be updated accordingly. [2, 4.] 
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3 Robot Framework 

The Robot framework is an open source test automation framework, which is used for 

acceptance testing and acceptance test-driven development (ATDD). It has a tabular 

test data syntax and it uses the keyword-driven testing approach. Because the Robot 

framework follows a modular architecture, the testing capability of it can be extended by 

test libraries programmed with Python or Java. [3.] 

It is considered to be a third generation test automation framework. Configuring the Ro-

bot framework test data does not necessarily require programming or scripting, but just 

altering data. The concept of keyword-driven testing makes it easier to create test data 

driving the test execution. [2, 11.] 

The core framework of the Robot framework is implemented with Python, thus making it 

operating system and application independent. It also runs on Jython (JVM) and IronPy-

thon (.NET). The possibility of running it on any operating system, which supports Py-

thon, makes it highly flexible. [3.] 

The Robot framework software is released under Apache License 2.0, and also most of 

the libraries and tools in the ecosystem are open source. Nokia Networks supports the 

development of the core framework. [3.] 

The Robot framework processes the test data when it is started. The framework does 

not need to know the target system, but utilizes test libraries to interact with it. The librar-

ies use application interfaces or separate test tools as drivers. [4.] 
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Figure 1. High level architecture. Modified from robotframework.org. [3.] 

As figure 1 illustrates the actual framework relies on the created test data and then uti-

lizes the data with the help of different libraries. The libraries then use tools and inter-

faces to command the system under test to perform various functions. 

3.1 Acceptance Test-Driven Development 

Acceptance test-driven development (ATDD) is a methodology, which provides a com-

mon language between the end (customer) users, the developers and the testers. It is a 

process, which helps the developers and testers to understand the customer’s require-

ments. [6, 5.] 

ATDD covers acceptance testing, but differs from it, requiring use cases and acceptance 

tests before any development. The emphasis in ATDD is on communication between the 

user, developer and tester. 

3.2 Tabular Test Data Syntax 

As seen in listing 1, Robot framework relies on configuration files which follow a specific 

intended document formatting. This format is called tabular test data syntax. This means 
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that after the beginning of a section every new line of text needs to be intended with two 

or more spaces. Test data is defined in configuration files, using a specific syntax. Mul-

tiple test cases in a file creates a testing suite and multiple files in a directory creates a 

nested structure of test suites. [3.] 

*** Settings *** 

Documentation     A test suite with a single test for 

valid login. 

... 

...               This test has a workflow that is 

created using keywords in 

...               the imported resource file. 

Resource          resource.txt 

 

*** Test Cases *** 

Valid Login 

    Open Browser To Login Page 

    Input Username    demo 

    Input Password    mode 

    Submit Credentials 

    Welcome Page Should Be Open 

    [Teardown]    Close Browser 

Listing 1. Example test data file. Reprinted from robotframework.org. [6.] 

The Robot framework supports four different file formats. The tabular format can be de-

fined using HyperText Markup Language (HTML), tab-separated values (TSV), plain text 

or reStructuredText (reST). According to the Robot framework user guide, plain text file 

format is recommended. Listing 1 describes an example of a plain text test data file. 

When defining plain text test data files, they should have a file extension of “.txt” or “.ro-

bot”. [4.] 

3.3 Keywords and Syntax in More Detail 

The framework starts the execution with parsing the test data files. Next it uses keywords 

defined in the test data files and starts to interact with the target system. The libraries 
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communicate with the system directly, but also other testing tools can be utilized as driv-

ers. [3.] 

As listing 2 illustrates, the keywords act as commands for the framework to know what 

should be executed on the target system. It is possible to utilize predefined keywords 

found in existing libraries, or new keywords can be defined to new libraries. 

*** Settings *** 

Library           Selenium2Library 

 

*** Variables *** 

${SERVER}         localhost:7272 

${BROWSER}        Firefox 

${DELAY}          0 

${VALID USER}     demo 

${VALID PASSWORD}    mode 

${LOGIN URL}      http://${SERVER}/ 

${WELCOME URL}    http://${SERVER}/welcome.html 

${ERROR URL}      http://${SERVER}/error.html 

 

*** Keywords *** 

Open Browser To Login Page 

    Open Browser    ${LOGIN URL}    ${BROWSER} 

    Maximize Browser Window 

    Set Selenium Speed    ${DELAY} 

    Login Page Should Be Open 

Listing 2. Example test data file using keywords. Reprinted from robotframework.org. [6.] 

Different sections (test data tables) of a test data file are separated by a line of text 

starting and ending with one or more asterisk (*) characters. Also sections should be 

separated with a line break, to keep the data human-readable and neat. Global variables 

are initialized in the Variables section. A variable starts with a dollar sign ($) and the 

name can be anything as long as it describes its purpose and surrounded by a pair of 

braces ({}). When defining keywords the first “heading” line should be left unindented. 

Every word should start with an upper case letter and be separated with a space. When 

going deeper into the keyword definition, the indentation should be at least two space 
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characters. In listing 2 there are four space characters in the indentation. It is recom-

mended to keep the width of the indentation consistent through all test data files in a test 

suite. Especially in plain text format, the use of space characters is recommended in-

stead of a tabular character. In addition when referring to a variable in between key-

words, at least two space characters should be used before the variable for the Robot 

framework parser to separate the variables from usual keywords. [4.] 

3.4 Selenium2Library 

Selenium2Library is a testing library used by the Robot framework. It utilizes Selenium 2 

and WebDriver libraries to control a web browser and run tests in a real browser session. 

It supports most modern browsers. The Mozilla Firefox browser is supported out-of-the-

box. Other browsers require an additional driver and setup for Selenium to work with 

them. The Selenium2Library provides a wide variety of general keywords to support web 

testing. For the Robot framework to utilize the Selenium2Library, it needs to be imported 

into the test suite using the “Library” keyword in the Settings section of a suite. [7.] 

3.5 Selenium 2 (WebDriver) 

Selenium 2 is the latest implementation and part of Selenium’s kit of software tools. It is 

a test automation tool, which provides an object oriented API. It includes and supports 

technologies from the WebDriver API and Selenium 1. [8.] 

Selenium 2 includes a huge amount of methods for interacting with web elements. Also 

the project’s documentation is comprehensive and available for everyone on the Internet. 

3.6 Report and Log 

At the end of executing the test suite files, the Robot framework will provide results de-

briefing. Result report and log are displayed in HTML format as well as in XML outputs. 

The report provides statistics, for example pass/fail ratios and run times. The log provides 

a more detailed view about the test execution. The logs, for example, display separately 

which keyword was passed and in what keyword the failure occurred. [6.] 
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4 Service Now 

Service Now Inc. was founded in 2003 by Fred Luddy, who was the previous CTO of 

Peregrine Systems and Remedy Corporation. The company is a provider of Service 

Management software called Service Now, which as a product, competes with BMC, 

Computer Associates, IBM and Hewlett-Packard in the area of ITSM applications. 

Service Now is a cloud-based platform, which provides multiple ways to automate a com-

pany’s IT functions. The main focus of the product is to automate and standardize busi-

ness processes and to provide a single system, which can accommodate different parts 

of the enterprise areas, such as improving efficiency and lowering operational costs. 

Nowadays Service Now covers the automation of other, non-IT functions, for instance 

marketing, facilities and human resources, to list a few. 

The platform can be roughly divided into five main categories, which are Asset and Con-

figuration, Planning and Policy, IT Service, Non-IT Service and IT Operations manage-

ment. 

The Service Now platform-as-a-service (PaaS) is a complete suite of applications, which 

are built to be modular. Modularity in Service Now grants a way for customers to pick the 

applications of their specific need. This means that a company can also activate new 

applications later on. The platform itself is highly customizable and the look-and-feel can 

be customized to match an organization’s brand.  

The test automation is run against the front end of Service Now’s Service Catalog appli-

cation called Service Catalog homepage. The homepage provides a web page from 

which users can order services or goods, using user-friendly web forms. To support the 

ordering process, the homepage uses functionalities similar to an “online shop” such as 

categorized items, a shopping cart and an order summary check out page. [9.] 

4.1 Service Catalog Homepage 

The Service Catalog homepage is the primary front end for ordering items via Service 

Now. It is a way for employees to use pre-defined web forms to order goods and services 
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from an IT organization or other departments. Figure 2 displays the Catalog as seen by 

the user from an actual environment. [8.] 

 

Figure 2. Service Catalog in Service Now. Screenshot [15]. 

The Catalog is a categorized listing of Catalog Items, which are provided to end users. 

For example “Hardware” is a category, which may contain one or multiple Catalog Items. 

4.2 Catalog Items 

The Catalog Items form the core of the Service Catalog. As seen in figure 3, a Catalog 

Item is a user-friendly web form, which describes an orderable entity, such as a laptop, 

a mobile phone, a software for a computer, or even a new stack of business cards. [9.] 
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Figure 3. A Catalog Item with a shopping cart. Screenshot [15]. 

A Catalog Item from a technical perspective is constructed from three main elements: 

Catalog variables, Catalog client scripts and Catalog UI policies. It is possible to define 

prices to the Items itself or a price for a specific selection. Also, adding a picture and a 

descriptive text for the item is possible. 

4.2.1 Catalog Variables 

Catalog variables are input elements, which capture and pass on information about 

choices the end user makes during an order. For example, a Catalog Item for ordering a 

new desktop PC can include a variable called “Hard-drive”. This variable could contain 

choices of different hard-drive sizes. The selection of a hard-drive would then reflect the 

price of the orderable item, depending on the selected size. The Variables are so-called 

building blocks for implementing Catalog Items. They provide an easy way to build a web 

form. [10.] 

Service Now provides a set of Variables types: 

 Break — a horizontal line across the form 

 CheckBox — a checkbox that can be selected or cleared (true/false) 

 Containers — a variable that contains other variables for additional layout 
options 
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 Date — a date input variable with a calendar widget 

 Date/Time — a date and time input variable with a calendar widget 

 HTML — user input, or reusable content with a possibility of a simple HTML 
editor 

 Label — a label that is displayed across the form 

 List Collector — a list collector interface for selecting multiple records from 
a table 

 Lookup Multiple Choice — creates radio buttons depending on an underly-
ing table it refers to 

 Lookup Select Box — creates a choice list (drop down list) depending on 
an underlying table it refers to 

 Macro — inserts an UI macro (a modular, dynamic, reusable component 
that is constructed with Jelly scripting) 

 Macro with Label — the same as Macro, but with a label element 

 Masked — a text input box that masks out the entered text with an asterisk 
symbol for every keystroke, used for sensitive data such as passwords, 
can utilize encryption 

 Multi Line Text — a multiple-line text input 

 Multiple Choice — creates radio buttons for static question choices 

 Numeric Scale — creates a horizontal set of radio buttons with numeric 
options 

 Reference — a text input field that references a record on another table 

 Select Box — creates a choice list (drop down list) for static question 
choices 

 Single Line Text — a single-line text input field 

 UI Page — similar to UI macro, a UI page can contain multiple UI macros 

 Wide Single Line Text — a wide single-line text input field 

 Yes/No — creates a choice list with Yes and No options 

[10.] 
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4.2.2 Catalog Client Scripts 

Catalog client scripts add dynamic effects and validation to forms. Three main types of 

Catalog client scripts are usually used for Catalog Items. Table 1 describes the types 

onLoad, onChange and onSubmit, and their run sequence. 

Table 1. Catalog Client Scripts. Modified from wiki.service-now.com. [11.] 

Script type When it runs 

onLoad() When system loads a form 

onChange() A field value on the form changes 

onSubmit() A user saves/submits a form 

These scripts are shipped to the client-side and executed on the browser. Client scripts 

in Service Now are implemented with JavaScript and make use of GlideForm API, which 

provides a wide variety of methods to: 

 Get or set Variable values 

 Hide or display Variables 

 Make Variables mandatory or non-mandatory (enforce user input) 

 Validate form submission 

 Validate user input 

[12.] 

GlideForm.js is a JavaScript class used to customize forms, and g_form is a global object 

in the GlideForm class. [13.] 

4.2.3 Catalog UI Policies 

UI policies are similar in functionality to client scripts for dynamically changing infor-

mation on a form. The main difference to client scripts is that no scripting is required to 

define a UI policy. UI policies are built-in functionalities, which make basic form modifi-

cations easier. They follow conditions defined in the UI policy record and depending on 

the evaluation of the condition the UI policy is executed. Sometimes it is not feasible to 
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implement a script to only change the visibility of one field on a form. In cases like these, 

UI policies are the better and easier option. 
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5 Test Environment 

For testing and demonstration purposes a test environment was built. The implementa-

tion was done keeping minimum requirements in mind. Because of this, it did not fully 

reflect an actual environment. The demonstration environment did not take into consid-

eration for example the network infrastructure, user authentication methods, or any other 

real-world situations, which might affect parts of the process flow of the test automation. 

For running the Robot framework and executing tests which reflect real-world situations, 

a few prerequisites had to be fulfilled. The most sensible option was to use a virtual 

environment with a lightweight operating system and just enough resources. For the test 

environment, a virtual machine running an up-to-date Ubuntu server 14.04.2 operating 

system was implemented. Oracle VM Virtual Box Manager was used as the virtualization 

platform. 

A fully operational demonstration instance of Service Now ITSM platform was already 

running and available for browser access. This included an active user account with the 

correct user rights. In real-world situations, the user rights would depend on the defined 

use case. 

5.1 Implementation 

5.1.1 Installation 

After installing and updating an Ubuntu server 14.04.2 virtual machine with Oracle VM 

VirtualBox Manager, a GUI, Lubuntu Desktop was installed, because a web browser is 

needed to access web applications. Lubuntu was selected as the desktop manager, be-

cause it is lightweight and uses the minimal desktop LXDE and a set of light applications 

with a focus on performance and energy-efficiency, thus making it a great desktop man-

ager for a virtual server system. 

The Lubuntu desktop manager was installed with only the core applications as can be 

seen from the following command. 

sudo apt-get install --no-install-recommends lubuntu-

desktop 
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Listing 3. Install Lubuntu desktop manager 

The “sudo” command executes a program which gives the current user the security priv-

ileges of an administration level user (root). The second command, “apt-get”, pilkku calls 

a package management tool APT. Three parameters are given to the package manage-

ment command. The first “install” command is a parameter which tells the package man-

agement tool to expect a package name and then install it. The second parameter, “--

no-install-recommends”, tells it to install only the core applications. The third parameter 

is the software package name, in this case “lubuntu-desktop”. The next step was to re-

boot the system for accessing the Lubuntu Desktop manager. 

Most modern Linux distributions come pre-installed with a Python interpreter which is 

required by the Robot framework. The Robot framework does not yet support Python 3, 

so the required Python version needed to be checked from the command line (CLI), as 

the command below shows. 

sudo python –version 

Listing 4. Check Python version 

The command “python” calls the python interpreter and “--version” parameter tells it to 

print the version number to the standard output (stdout). Ubuntu server 14.04.2 provides 

Python version 2.7.6 by default. 

There are different ways to install Robot framework. The installation can be done by 

compiling it directly from the source, or by manual installation. It can also be installed 

using a Windows installer, as a standalone JAR distribution, or with a Python package 

manager. [4]. For the most straightforward approach, the Pip, Python package manager 

was selected and installed. 

cd /mnt 

sudo wget https://bootstrap.pypa.io/get-pip.py 

sudo python get-pip.py 

Listing 5. Download and install Pip 

The command “cd /mnt” changes the current working directory to a directory called “mnt”. 

The second command “wget” calls a program which can download files from a given 
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URL. The third command tells the Python interpreter to run the downloaded python script 

which installs the Pip package manager. After this, the Robot framework was installed 

using the Pip. 

sudo pip install robotframework 

Listing 6. Install Robot framework 

The command “pip” calls the Pip package manager and the parameter “install” tells it to 

install a software package defined on the second parameter. The Robot framework in-

stallation was verified by executing its runner script. 

sudo pybot –-version 

Listing 7. Check pybot version 

The runner script “pybot” with parameter “--version” outputs the framework and inter-

preter versions. The versions can be seen from the output below. 

Robot Framework 2.8.7 (Python 2.7.6 on linux2) 

Listing 8. Version output 

For leveraging the Selenium 2 WebDriver libraries, Selenium2Library needed to be in-

stalled as well. 

sudo pip install robotframework-selenium2library 

Listing 9. Install Selenium2Library 

As seen above, the installation command was the same as for the Robot framework 

installation. The only difference was the package name given in the second parameter 

of “pip” command. After a successful installation, the configuration of the test data files 

could be started. 

5.1.2 Basic Configuration 

The configuration of the Robot framework test data files was started by writing a simple 

test suite to be able to confirm correct functionality of the installation. The target of the 
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simple test suite was to control (open and close) the browser, open a correct URL, login 

into an existing Service Now instance and log out of it. 

A test suite file can contain four sections: Settings, Variables, Test Cases and Keywords, 

but for easier maintenance, Variables and keywords were taken into separate files. As 

shown in appendix 1, the first file is the main test suite file, which contains settings and 

a list of test cases. The settings section contains the used keyword libraries and user 

keyword resource files. The list of test cases define the tests, which are run when the 

suite is executed. 

As described in appendix 2, the test file defines the suite’s global Variables. These in-

clude the target address, a valid user name and a password for that specific user. The 

file needs to be included in the suite with a Resource keyword. 

The suite’s base keywords were defined in a user keyword file as shown in appendix 3. 

With the help of base keywords the execution would accomplish the actual navigation on 

the target web page. Majority of the used keywords come directly from the Selenium2Li-

brary. Without including the Selenium library, the execution of the test suite would fail 

and stop. These structure and syntax errors are logged, just like normal test errors into 

HTML and XML output files, but also output into the standard output of the command 

line. For the simple test suite, two new keywords “Login” and “Logout” were defined. As 

the test suite is executed quite fast, a few extra “Wait Until” keyword combinations were 

needed for taking into consideration network latency, browser rendering speed and of 

course the speed of human sight. 

The fourth test data file contains the defined test cases as seen in appendix 4. For the 

simple test suite, only one test case, “Test Login”, was written. The test cases use key-

words defined in the user keyword test data file, but can also contain keywords from the 

Selenium2Library if required. 

5.1.3 Basic Testing 

Basic testing was executed running the simple suite with the runner script “pybot” as 

seen below. 

pybot base-suite-test.txt 
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Listing 10. Run test suite 

As seen in listing 3, the basic test was successful and the Robot framework created 

outputs for the test case and for the overall status of the whole suite. 

======================================================

======================== 

Base-Suite-Test                                                                

======================================================

======================== 

Test Login                                                                                                                            

Test Login                                                            

| PASS | 

------------------------------------------------------

------------------------ 

Base-Suite-Test                                                       

| PASS | 

1 critical test, 1 passed, 0 failed 

1 test total, 1 passed, 0 failed 

======================================================

======================== 

Output:  /home/robot-user/Documents/test-

configs/output.xml 

Log:     /home/robot-user/Documents/test-

configs/log.html 

Report:  /home/robot-user/Documents/test-

configs/report.html 

Listing 11. Base suite results in Standard output 

Also an HTML report was created automatically, which clearly displays statistics of the 

executed suite as seen in figure 4. Reports should not be too cluttered with information, 

so for example, a person without technical expertise can also review the results with a 

simple glance. 
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Figure 4. Base suite results in HTML report. Screenshot [16]. 

The Test Statistics display a “PASS” or “FAIL” tag in the Status column of the test case 

listing. Color coded values are used for easier visual interpretation. Green color is used 

for a passed test case, and red color for a failed test case. The statistics also display 

elapsed run time, start time and end time for each test case, but also for the whole test 

suite. 
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6 Configurations for Service Catalog Test Automation 

6.1 Common Keywords 

The configuration for a specific part of Service Now was started by writing the supposedly 

generic keywords, which would be needed in, for example, navigating through Service 

Now’s graphical user interface. The existing keywords defined in the base suite were 

used, as they would provide the ability to login to the instance and close the browser as 

soon as testing was complete. As seen in figure 5, Service Now’s user interface called 

UI15 is constructed of a few main sections or frames which each contain different func-

tionalities. 

 

Figure 5. A part of Service Now’s UI15. Screenshot [15]. 

The main frames of the UI are displayed in figure 5 above. The left most frame numbered 

with 1 is called Application Navigator, which provides the ability to navigate to applica-

tions and modules within Service Now. When a module, in this case, Service Catalog is 

clicked under the Self-Service application, the content of the module is displayed in the 

Content Frame, which is numbered 2. The Content Frame is the largest frame and spans 

from the edge of the Application Navigator, all the way to the right hand side of the 

browser window. Only a small amount of the Content Frame is shown in figure 5. [14]. 

1. 

2. 
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The common generic keywords were written on as-need-basis. After a single navigation 

step such as a button press or clicking a link in the UI, it was decided that the keyword 

should be a generic one, or a test case specific one. This way, it was possible to expand 

the resource file gradually and collect only the essential keywords. On the way, a few 

rules were made up to help future developers to add more generic keywords. These 

rules were documented in the beginning of the generic resource file as seen in appendix 

7. 

6.2 Example Use Case 

As ATDD states, every use case should be documented before any implementation or 

any test case. Successfully ordering a sales laptop Catalog Item through the Service 

Catalog was the first use case and the main flow was defined as follows: 

1 Successfully login to Service Now demo instance with the test user credentials 

2 Navigate to Service Catalog module under Service Catalog 

3 Navigate to Hardware Catalog Category 

4 Select “Sales Laptop” Catalog Item 

5 Select “Microsoft Powerpoint” CheckBox under “Optional software” Label 

6 Input text “Skype pre-installed” into “Additional software requirements” Multi-line 
Text Variable 

7 Order the Catalog Item, by pressing the “Order Now” button on the catalog 
shopping cart 

The post conditions define the outcomes of the use case. There are two possible out-

comes, which are success and failure, and these outcomes need to be met by pre-de-

fined conditions. Conditions for a successful outcome were defined as follows: 

 Test user (actor) is able to access the demo instance and the Catalog Item 
via the specified way of navigating 

 Test user is able to fill in the required fields of the order form 



24 

  

 Test user is able to submit the order and the order is successfully recorded 
in the database 

The conditions for a failed outcome were defined as follows: 

 Test user (actor) cannot access the demo instance, nor the Catalog Item 
via the specified way of navigating 

 Test user receives an error message in any point of the order flow 

 An error occurs, which prevents the completion of the order (no error mes-
sage displayed) 

 Test user cannot submit the order, or the order is not successfully recorded 
in the database 

6.3 Example Test Case 

The test case definitions are based on the requirements of the use case. The test case 

was written with keywords, which would match those requirements and fulfill the use 

case. Listing 4 describes the needed steps (excluding login) for the main flow of the use 

case. The first line of text is the name of the test case, in this case “Order Sales Laptop”. 

In addition to test cases, a suite can have a setup and a teardown. The suite setup is run 

before any test case and the suite teardown is run after everything else. The “Login/Log-

out” keywords were not needed for every test case separately, but they could be utilized 

directly in the settings section of the testing suite as seen in appendix 5. The “Login” 

keyword was an ideal step for checking an obvious precondition: successful login with 

an existing user account. The “Logout” keyword on the other hand was the last step in 

any case, because it is pointless to leave the browser running and taking resources after 

test execution. Because of this, the first needed keywords were for navigating to the 

correct module, as line two of listing 4 describes. 

Order Sales Laptop 

  Open Module  Self-Service  Service Catalog 

  Select Main 

  Click Link  link=Hardware 

  Select Main 

  Click Link  link=Sales Laptop 
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  Select Main 

  Select Checkbox  

ni.IO:3cfe1f290a0a0a6a01ee1623f4982abd 

  Input Text  IO:f3776ac9c0a8010a003825c70f35fab7  

Skype pre-installed 

  Click Button  oi_order_now_button 

Listing 12. Order Sales Laptop test case 

The keywords in line three select and set the focus to the Content frame. “Select Main” 

could be easily re-used multiple times as it was included in the common keywords’ re-

source file. Line four tells the web-driver to click a link the title of which is “Hardware” in 

the Content frame. As the page, which the link is pointing to, loads and the frame re-

freshes, it is needed to again set the focus to the Content frame (line five). Steps in line 

four and five are repeated with a different link parameter to drill deeper into the stack. 

Next the Catalog Item is opened into the frame and the form fields (Catalog Variables) 

can be filled with a value specified in the use case (lines eight and nine). Service Now 

creates an “id” parameter automatically for the Variables as they are rendered. Thus the 

format of the “id” is not very readable. Finally in line ten the order is submitted by pressing 

the “Order now” button. The full test case configurations can be seen in appendix 8. 
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7 Testing 

After the needed test cases were written in to the test case file, the suite could be run 

again, using the “pybot” starter script. The suite makes use of three resource test data 

files in the same way as in the basic test suite referred to in the earlier chapters. One 

additional setting was added to the Variables section of the settings file. As seen in ap-

pendix 6, the variable “${family}” is used for recognizing the latest three Service Now 

versions: Dublin, Eureka and Fuji (latest). The Application navigator behaved differently 

for an older version of Service Now. Thus an if-clause was needed in the common key-

words file, displayed in appendix 7, to use a condition before running a keyword, which 

selects the Application navigator’s frame. Because of the updated GUI, it was decided 

not to support older versions of Service Now, although there is still some organizations 

using the older ones. 

7.1 Analyzing Successful Tests 

For the demonstration, the Catalog Items were known for sure to be completely working 

and for that reason, the test suite would return only successful results. This would assure 

that the suite is configured and working as intended. 

After running the suite with two test cases, one for ordering the sales laptop as described 

in chapter 6.3 and a second similar test case as described in appendix 5, the report and 

log could be examined. 

As seen in figure 6, both test cases were successfully completed. In this run, the Order 

Sales Laptop test case took just over 13 seconds to execute and Order Development 

Laptop took almost 16 seconds. Ten test suite executions were completed and an aver-

age time of 15 seconds per test case was measured. It was also measured that in ten 

runs a human tester completed each of the test cases with an average time of 30 sec-

onds.  
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Figure 6. Service Catalog test suite report. Screenshot [16]. 

It was assumed that the human tester is familiar with the SUT and an experienced tester 

with a good overall knowledge of the test cases. Even without any spelling mistakes, 

miss clicks, or other manual errors, it could be seen that a human tester is almost two 

times slower than the Robot framework when executing test cases. The elapsed time in 

test cases executed by the Robot framework could be reduced even more by optimizing 

the underlying hardware and removing unnecessary “wait for something to load” key-

words from the test data files. 

Of course, if the underlying configurations in Service Catalog changed, the test cases 

would require a change, or at least a test run to see if they need to be changed. This too 

takes time and the overall difference between a computer and a human tester’s theoret-

ical elapsed times would be smaller. A human tester could adapt to a configuration 

change much more quickly and continue testing, taking the change into consideration. 

However if the Robot framework can tirelessly run through as many test cases as given 

to it, it is safe to assume that it is much faster. 

7.2 Analyzing Unsuccessful Tests 

For demonstration purposes an error was induced into the main flow of the sales laptop 

Catalog Item. As listing 5 shows the error is caused with an onChange Catalog Client 

Script, which hides the “Additional software requirements” Multi-line text Variable, if “Mi-

crosoft PowerPoint” CheckBox Variable is selected. 
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function onChange(control, oldValue, newValue, 

isLoading) { 

 if (isLoading || newValue == '') { 

  return; 

 } 

 else { 

  if (newValue == 'true') { 

  

 g_form.setDisplay('add_software', false); 

  } 

 } 

} 

Listing 13. An onChange client script 

An onChange script is triggered when the related element’s, in this case the PowerPoint 

CheckBox’s, value is modified. When the function starts, the first if-clause checks, if the 

page is still being loaded and, if the changed value is empty. It is unnecessary to run the 

script during a page load, or if the value does not actually contain anything. The next 

step is to check that the CheckBox is actually selected. If it is, the Multi-line text field is 

hidden with a method from the g_form API. The above mentioned Client Script might be 

an undocumented change to the system or just some other mishap done by an enthusi-

astic developer. 

As seen in figure 7, a fail tag is visible on the Status column of the Order Sales Laptop 

test case. The failure is emphasized with a red background color. A clear error message 

can be found in the Message column that indicates a missing element. 
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Figure 7. Service Catalog test suite report with a failure. Screenshot [16]. 

The test report in figure 7 is a clear indication of a failed test case. But what actually went 

wrong? The report gives an overall picture of the status, but does not tell exactly what 

the reason was for the failure. The missing element could be anywhere on the form. If 

the form would be larger with a lot of fields and dynamic functionality, it would require 

time to troubleshoot the issue and find the culprit. This is when the log comes in to the 

picture. By clicking the test case name, the log file is opened to the browser, also in 

HTML format. As figure 8 displays, the log file gives more of an in-depth view into the 

issue. 
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Figure 8. Service Catalog test suite log with an error. Screenshot [16]. 

The log clearly displays all of the steps in the test case and that way, it is easy to pinpoint 

the root cause of the issue. In the example seen in figure 8, the failed keyword is high-

lighted in red and an error message is displayed. Also the “id” parameter of the web 

element is displayed. The last keyword is a screenshot of the error situation, taken auto-

matically by the Robot framework using Selenium’s ability to take screenshots, thus mak-

ing it more straightforward to actually go and find the misbehaving element. 

This example does not necessarily describe an error situation. It could also be a required 

feature, but the use case or the test case have not been updated accordingly. This kind 

of behavior in test automation is common and relates to the issues mentioned in chapter 

2.2. A test automation can only find issues from places where they are told to look for 

them. 

7.3 Conclusions 

The executed tests show that it is possible to successfully automate the testing of Service 

Catalog. Each test case needs to be defined per Catalog Item. Of course, if one Catalog 

Item needs more than one use case, then each test case needs to be defined per use 

case. Because Service Catalog is a part of the Service Now’s GUI, it might be difficult to 

maintain the test automation suite, because the GUI might be updated and change even 

more in the next system version. Although, implementing a complete test automation 

suite for Service Catalog is time consuming, it might still be feasible, especially for bigger 

projects. After implementation, the test automation could be used for regression tests. 
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The overall results are mainly positive and using the Robot framework made implement-

ing test automation easier than, for example, programming Java or Python libraries which 

use Selenium directly. 
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8 Further Development 

During the implementation phase, a few development ideas emerged, which would take 

the Robot framework test automation even further. Unfortunately, the schedule for the 

project was too hectic and the scope was too small to really accommodate a larger scale 

test automation implementation. 

One of the ideas was to name the test cases according to the defined use cases for 

example using an ID number on the names. This would help the maintenance and doc-

umentation, because it is possible to refer to different parts of the test automation project 

with one name. 

Also the configured common keywords could be expanded even more. For instance, new 

keywords could be defined to match all different Variable types. This would speed up the 

test case implementation and make the test cases more human readable. 

The biggest and most important development idea was to take the Selenium server into 

action. The use of the Selenium server would make it possible to execute tests on mul-

tiple machines or VMs simultaneously. This would make it possible to automate tests 

with specific browsers, browser versions or with hosts running different setups all to-

gether. 
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9 Discussion 

This thesis has introduced the main points in test automation and how to implement a 

test automation suite using the Robot framework. Nowadays Service Now is a popular 

IT-service management platform in the corporate world and this thesis could provide a 

basis for many companies that are both using Service Now and considering taking test 

automation into action. As mentioned in chapter 8, the use of Selenium server in addition 

to this set of tools could provide a comprehensive Service Now testing package. 

In the final year project, the test automation and its configurations worked as planned. 

The testing was efficient, fast and accurate. Because all of the tools used in this imple-

mentation were open source, they were also free to use. The costs in projects like this 

would only consist of the used work hours for defining use cases and documentation, 

installing the needed parts for a testing environment and implementing the test suite. 

The Robot framework test automation could be used for easy regression testing and for 

instance to carry out mass testing. Mass testing could be run during nights and left un-

attended. The results could be examined and analyzed the next morning. Although the 

use of the Robot framework would not entirely replace human testers, it would reduce 

the workload considerably. If an organization is not mature enough to define precise use 

cases in an understandable form, it would be recommended to opt out from test automa-

tion and instead utilize human testers. 

The development of the common resource file could be continued and kept on going, 

and it could be expanded for other applications of Service Now as well. In some point 

the collection of generic keywords would be huge and testing almost anything in Service 

Now would be easy. 
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10 Conclusion 

As a result of the final year project, a fully working, expandable web application GUI test 

automation, using only free of charge tools, was successfully created. Considering that 

no bigger technical problems were identified during the implementation and the only ob-

stacle was time consumption when scouring through hundreds of lines of web page 

source code and hundreds of pages of Selenium documentation, the project as a whole 

was a success. 

The goals of this project were reached. Although the minimum requirements of this pro-

ject were met, the research on ATDD could have been emphasized. Also more compar-

isons between a human and a computer tester could have been made. 

All in all, test automation is an important part of bigger software development projects 

and it could help tackle the tedious testing phase, if built properly. Taking a step towards 

test automation is a huge leap for any organization and the advantages and the disad-

vantages should be weighed carefully. 
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base-suite-test.txt 

# 

# Author: Jani Luostarinen 

<jani.luostarinen@symfoni.com> 

# Version: 1.0.20150212 

# 

 

*** Settings *** 

 

Library  Selenium2Library 

Resource  base-variables-test.txt 

Resource  base-resource-test.txt 

Resource  base-tests.txt 

 

*** Test Cases *** 

Test Login 

  Test Login
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base-variables-test.txt 

# 

# Author: Jani Luostarinen 

<jani.luostarinen@symfoni.com> 

# Version: 1.0.20150212 

# 

 

*** Variables *** 

 

${baseurl}  https://INSTANCENAMEHERE.service-now.com/ 

${username}  robot_frmwork 

${password}  **********
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base-resource-test.txt 

 

# 

# Author: Jani Luostarinen 

<jani.luostarinen@symfoni.com> 

# Version: 1.0.20150213 

# 

 

*** Keywords *** 

 

Login 

  [arguments]  ${baseurl}  ${username}  ${password} 

  Open Browser  ${baseurl} 

  Unselect Frame 

  Wait Until Element Is Visible  gsft_main 

  Select Frame  gsft_main 

  Wait Until Element Is Visible  

css=div.welcome_content 

  Input Text  user_name  ${username} 

  Input Text  user_password  ${password} 

  Click Button  sysverb_login 

  Wait Until Element Is Visible  gsft_main 

 

Logout 

  Click Button  css=button.nav_header_button 

  Wait Until Element Is Visible  gsft_main 

  Close Browser
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base-tests.txt 

# 

# Author: Jani Luostarinen 

<jani.luostarinen@symfoni.com> 

# Version: 1.0.20150213 

# 

 

*** Keywords *** 

 

Test Login 

  Login  ${baseurl}  ${username}  ${password} 

  Logout
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suite-snc-generic.txt 

# 

# Generic ServiceNow test suite. 

# 

# Author: Jani Luostarinen 

<jani.luostarinen@symfoni.com> 

# Version: 1.0.20150411 

# 

 

*** Settings *** 

 

Library  Selenium2Library 

Resource  settings-snc-demo-instance.txt 

Resource  resource-snc-common.txt 

Resource  tests-sc.txt 

Suite Setup  Login  ${baseurl}  ${username}  

${password} 

Suite Teardown  Logout 

 

*** Test Cases *** 

 

Order Sales Laptop 

  Order Sales Laptop 

 

Order Development Laptop 

  Order Development Laptop
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settings-snc-demo-instance.txt 

# 

# Settings for ServiceNow demo instance. 

# 

# baseurl: Target instance url 

# username: Target instance user account 

# password: User account password 

# family: Service Now version (Supported: Dublin, 

Eureka, Fuji) 

# 

# Author: Jani Luostarinen 

<jani.luostarinen@symfoni.com> 

# Version: 1.0.20150411 

# 

 

*** Variables *** 

 

${baseurl}  https://INSTANCENAMEHERE.service-now.com/ 

${username}  robot_frmwork 

${password}  ********** 

${family}  Fuji
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resource-snc-common.txt 

# 

# Common generic purpose keywords for interacting with 

ServiceNow. 

# Should not contain any test case specific 

functionality. 

# 

# When adding or modifying functions please follow 

these rules: 

# 

#   - Each keyword should wait that action performed 

is ready 

#     so next keyword has clean environment to proceed 

# 

#   - Never assume which frame is selected - always 

select 

#     correct frame just in case before doing anything 

# 

#   - Always test compatibility with all families 

supported 

# 

# Supported families (SNC versios): Fuji, Eureka, 

Dublin 

# Author: Jani Luostarinen 

<jani.luostarinen@symfoni.com> 

# Version: 1.0.20150411 

# 

 

*** Keywords *** 

 

Select Navigator 

  Unselect Frame 

  Wait Until Element Is Visible  gsft_nav 

  Select Frame  gsft_nav 

  Wait Until Element Is Visible  css=ul.nav-wrapper
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Select Main Before Login 

  Unselect Frame 

  Wait Until Element Is Visible  gsft_main 

  Select Frame  gsft_main 

  Wait Until Element Is Visible  

css=div.welcome_content 

 

Select Main 

  Unselect Frame 

  Wait Until Element Is Visible  gsft_main 

  Select Frame  gsft_main 

  Wait Until Element Is Visible  css=i.pointerhand 

 

Login 

  [arguments]  ${baseurl}  ${username}  ${password} 

  Open Browser  ${baseurl} 

  Select Main 

  Input Text  user_name  ${username} 

  Input Text  user_password  ${password} 

  Click Button  sysverb_login 

  Select Main 

 

Logout 

  Close Browser 

 

Open Application 

  [arguments]  ${application} 

  Run Keyword If  '${family}' == 'Fuji'  Select 

Navigator 

  Run Keyword If  '${family}' == 'Eureka'  Select 

Navigator 

  Run Keyword If  '${family}' == 'Dublin'  Unselect 

Frame 

  Input Text  filter  ${application} 

 

Open Module 

  [arguments]  ${application}  ${module} 

  Open Application  ${application}
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  Select Navigator 

  Click Link  link=${module} 

  Select Main 

  ${sys_target} =  Get Value  sys_target 

  Set Test Variable  ${sys_target} 
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tests-sc.txt 

# 

# ServiceNow Service Catalog test cases. 

# 

# Author: Jani Luostarinen 

<jani.luostarinen@symfoni.com> 

# Version: 1.0.20150411 

# 

 

*** Keywords *** 

 

Order Sales Laptop 

  Open Module  Self-Service  Service Catalog 

  Select Main 

  Click Link  link=Hardware 

  Select Main 

  Click Link  link=Sales Laptop 

  Select Main 

  Select Checkbox  

ni.IO:3cfe1f290a0a0a6a01ee1623f4982abd 

  Input Text  IO:f3776ac9c0a8010a003825c70f35fab7  

Skype pre-installed 

  Click Button  oi_order_now_button 

 

Order Development Laptop 

  Open Module  Self-Service  Service Catalog 

  Select Main 

  Click Link  link=Hardware 

  Select Main 

  Click Link  link=Development Laptop 

  Select Main 

  Select Radio Button  

IO:3cf4a9d60a0a0a6a00fc892d0f6834e8  500 

  Click Button  oi_order_now_button 


