

Jani Luostarinen

Web Application Test Automation with Robot
Framework

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technology

Thesis

7 May 2015

 Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Jani Luostarinen
Web-sovellusten testausautomaatio Robot frameworkilla

41 sivua + 8 liitettä
7.5.2015

Tutkinto insinööri (AMK)

Koulutusohjelma Tietotekniikka

Suuntautumisvaihtoehto ohjelmistotekniikka

Ohjaaja

lehtori Pasi Ranne

Insinöörityön tavoitteena oli tutkia Robot frameworkilla rakennetun testausautomaation kan-
nattavuutta ja sen vaikutusta projektin testausvaiheen fyysiseen työmäärään. Lopputule-
mana syntyi helposti laajennettava testauskonfiguraatiokokoelma, joka voitaisiin ottaa käyt-
töön vain muutamalla muutoksella riippuen projektista.

Ensin testausautomaation teoriaa tutkittiin, jotta voitaisiin arvioida sen hyötyjä ja ongelmia.
Robot framework valittiin testausautomaatio viitekehykseksi, koska se on avoimen lähde-
koodin järjestelmä ja täten ilmainen. Robot framework on myös alustariippumaton, joten se
on hyvä valinta virtuaaliseen järjestelmään.

Tuloksena saatiin konfiguroitava kokoelma testidatatiedostoja, joita voidaan helposti suorit-
taa Robot frameworkilla. Insinöörityö käsittelee käytettyjen tekniikoiden teoriaa, ja siihen on
dokumentoitu toimivan testausympäristön rakennusvaiheet. Se tarjoaa myös pohjan toimi-
valle testausautomaatiokokoelmalle.

Riippuen projektista ja sen käyttötapauksista, testauskokoelma vaatii muutamia muutoksia
ennen käyttöönottoa. Kokoelma itsessään tarjoaa perustan mille tahansa testausautomaa-
tioprojektille, jonka testauksen kohteena on Service Now IT -palvelunhallintajärjestelmä.

Avainsanat testausautomaatio, avainsana pohjainen, web-sovellus

 Abstract

Author
Title

Number of Pages
Date

Jani Luostarinen
Web Application Test Automation with Robot Framework

41 pages + 8 appendices
7 May 2015

Degree Bachelor of Engineering

Degree Programme Information and Communications Technology

Specialisation option Software Engineering

Instructor

Pasi Ranne, Senior Lecturer

The goal of this thesis was to provide a proof of concept that keyword-driven test automation
with the Robot framework is feasible and that it would actually reduce the amount of manual
work during the testing phase of projects. The result was an easily expandable demonstra-
tion configuration (test data suite), which could be taken into use with a few customizations
depending on the project.

First, theory of test automation was examined to assess the benefits and the issues in test
automation. The Robot framework was chosen as the test automation framework, because
it is open source, thus making it free to use, and because it is platform independent, thus a
great choice of software to be run on top of a virtual system. Automated tests were run
against Service Now’s Service Catalog homepage. The homepage is a web application sim-
ilar to an online shop. It consists of order forms built for an organization’s needs to support
their internal order processes. These processes can include, for example, ordering a new
laptop for an employee. The test automation, when executed, navigates in the webpage, fills
in the fields of the order forms, submits orders, reports possible errors and provides statis-
tics. As a result, the test cases were written according to their equivalent use cases.

The result was a configurable test data suite: a set of test data files, which can be easily
deployed for the Robot framework to execute. The thesis provides theory of the used tech-
niques and instructions on how to implement a working test environment and the basis for a
working test automation suite.

Before taken into use, the suite requires a few customizations that are needed depending
on the project and the essential use cases. The suite can be used as a base for any Service
Now platform test automation project. From a technical point-of-view, the goals of this thesis
were reached, but studying the advantages and disadvantages of acceptance test-driven
development could have been emphasized. Also more comparison between a human tester
and a computer tester could have been made, to provide an easier choice for those who are
contemplating the utilization of test automation in software development projects.

Keywords test automation, keyword-driven, web application

Contents

List of Abbreviations

1 Introduction 1

2 Test Automation in General 3

2.1 Benefits of Test Automation 3

2.2 Possible Caveats of Test Automation 4

3 Robot Framework 5

3.1 Acceptance Test-Driven Development 6

3.2 Tabular Test Data Syntax 6

3.3 Keywords and Syntax in More Detail 7

3.4 Selenium2Library 9

3.5 Selenium 2 (WebDriver) 9

3.6 Report and Log 9

4 Service Now 10

4.1 Service Catalog Homepage 10

4.2 Catalog Items 11

4.2.1 Catalog Variables 12

4.2.2 Catalog Client Scripts 14

4.2.3 Catalog UI Policies 14

5 Test Environment 16

5.1 Implementation 16

5.1.1 Installation 16

5.1.2 Basic Configuration 18

5.1.3 Basic Testing 19

6 Configurations for Service Catalog Test Automation 22

6.1 Common Keywords 22

6.2 Example Use Case 23

6.3 Example Test Case 24

7 Testing 26

7.1 Analyzing Successful Tests 26

7.2 Analyzing Unsuccessful Tests 27

7.3 Conclusions 30

8 Further Development 32

9 Discussion 33

10 Conclusion 34

References 35

Appendices

Appendix 1. base-suite-test.txt

Appendix 2. base-variables-test.txt

Appendix 3. base-resource-test.txt

Appendix 4. base-tests.txt

Appendix 5. suite-snc-generic.txt

Appendix 6. settings-snc-demo-instance.txt

Appendix 7. resource-snc-common.txt

Appendix 8. tests-sc.txt

List of Abbreviations

SUT System under test: a specific target system, which test au-

tomation is run against.

ATDD Acceptance test-driven development: a methodology which

provides a common language between the end users, the de-

velopers and the testers.

JVM Java Virtual Machine: a process that executes a computer

program compiled into Java bytecode. Distributed together

with Java Runtime Environment (JRE) by The Oracle Cor-

poration.

.NET Dot net software framework: a software environment that

executes programs written for .NET Framework. Devel-

oped by Microsoft and used for creating software for Win-

dows based platforms.

TSV Tab-separated values: a simple text file format for storing

data in a tabular structure.

reST reStructuredText: a textual data file format used in the Py-

thon community for technical documentation.

API Application programming interface: an API provides a set

of routines, protocols and tools for easier development of

programs. Usually a library that specifies object classes,

variables, data structures and other routines.

HTML HyperText Markup Language: a standard markup lan-

guage used to create web pages. Written in the form of

elements, which consist of tags. Designed to display data.

XML EXtensible Markup Language: a standard markup lan-

guage used to describe data. Written in the form of ele-

ments, which consist of self-defined tags.

PaaS Platform as a Service: a set of software applications. A dis-

tribution model made available to users usually over the

Internet. Applications are hosted by a separate service pro-

vider.

ITSM IT service management: an integrated, process based set

of best practices which helps manage IT services.

UI User interface: an important part of a program, which ena-

bles users to interact with the software.

VM Virtual Machine: an emulation of a computer system, which

includes all components of a real computer system such

as hardware and software.

GUI Graphical user interface: a part of a program, which ena-

bles users to interact with the software graphically through

icons and visual indicators.

LXDE Lightweight X11 Desktop Environment: a fast and energy-

saving desktop environment available for Linux based dis-

tributions.

APT Advanced Package Tool: a free software user interface

that handles software package installations and removals

on various Linux distributions.

X11 X Window System: a windowing system for bitmap dis-

plays, provides a framework for graphical user interfaces.

CLI Command-line interface: enables users to interact with a

program through commands in the form of text.

URL Uniform resource identifier: a term for describing all target ad-

dresses and names, which refer to objects in the Internet.

stdout Standard output: a file handle for processes to print normal

information in the Command line interface.

id Identifier: a name, which is used to identify an object or a

unique class of objects. An identifier can be a word, number,

letter, symbol or a combination of them.

1

1 Introduction

As modern applications and software develop, become larger and more complex and at

the same time are divided between multiple platforms, the importance of software quality

and usability become more and more important. Nowadays millions of different applica-

tions are easily available for consumers through a wide variety of sources and for various

devices. The pressure of developing functional software fast is ever growing, so why not

utilize fast computers to remove some of the already limited amount of time reserved for

projects and especially for testing? Test automation might provide a solution, because

the calculation power and efficiency of a computer is used to support developers to make

better software.

This final year project was made for Symfoni Finland Oy for studying the use of test

automation in Service Now Service Catalog projects. The Service Catalog is a user-

friendly webpage for ordering goods and services through Service Now and these goods

and services are modeled with web order forms also known as Catalog Items. The Ser-

vice Catalog is used by organizations to support their internal ordering processes. These

ordering processes can help, for example, in the enrollment of a new employee. The new

employee can visit the page and order the needed tools, for example a mobile phone, a

laptop or something else for the job in question. One specific Service Catalog project for

a customer company started an idea which needed more clarification. In that project, the

Service Catalog included multiple, complex and large-scale Catalog Items. As testing all

these order forms, their client-side and supporting server-side functionalities would re-

quire a lot of manual work, the requirements were to reduce the amount of actual work

hours during a testing phase and to provide a packaged solution, which a customer com-

pany could utilize by making only a few changes. The size of the Catalog in the previously

mentioned project is quite average, but the complexity of the forms makes it a tedious

job to test manually. Building a test automation suite might also benefit existing or future

Service Catalog projects, which can include hundreds of Catalog Items. Also generic

parts of the test automation could be used in other Service Now implementation projects

in general.

The purpose of this final year project was to provide a proof of concept that test automa-

tion could be used in customer projects and to study the benefits of acceptance test-

driven development (ATDD) using the Robot framework test automation framework for

2

the Service Now service management platform. More specifically, the testing automation

was run using the Selenium2Library and Selenium 2.0 WebDriver against the Service

Catalog homepage of Service Now and different sub-sections of the homepage. Addi-

tional custom keywords were used to support test cases for identifying Service Now web

elements. As the Robot framework was installed on a virtual machine running a Linux

distribution, the available web browsers did not include Internet Explorer. Selenium 2.0

uses and directly supports the latest version of Mozilla Firefox web browser; thus it was

used as the main client.

This thesis covers theory regarding the technologies used in the project and introduces

the used software tools. It also describes setting up a testing environment, testing a web

application and graphical user interface elements in practice and testing results analysis.

3

2 Test Automation in General

Test automation is carried out with a use of special software to control the execution of

predefined test cases. The testing results (outcomes) are then compared to the expected

outcomes. Automation helps in testing repetitive tasks, which would be difficult, or would

require too much time and resources (manpower) to be run manually. [1, 74.]

Test automation is an attractive concept, but achieving goals might require a lot of work.

Keeping this in mind should help in implementing automation well. A test automation

project with a wide scope should be considered as a separate software project [2, 2].

Because of these reasons, the scope of the practical testing in this thesis is kept quite

narrow and specific to certain areas of the system under test (SUT).

2.1 Benefits of Test Automation

Although implementing sufficient test automation is time consuming, it has a few benefits,

when compared to human testers. Performing repetitive tests might be boring to a human

tester, which might affect the accuracy of testing. When using test automation, testers

can concentrate on more demanding and rewarding work. Thus better results can be

accomplished. [2, 3.]

Test automation is much faster than human testing. After test cases are implemented,

the automation can accomplish hundreds or even thousands of tests in a matter of

minutes. The same amount of tests might take days from a human tester.

One-time setup is a clear benefit in test automation. After the implementation of a test

suite, it is possible to run the test suite multiple times, and also it is re-usable. When a

new version of a system is taken into use, the existing test automation can be used for

regression testing. [2, 3.]

Obviously one of the main benefits of test automation is the amount of manual labor

during the testing phase. The amount of manual work hours can be extremely small,

compared to the time taken by manual testing.

4

2.2 Possible Caveats of Test Automation

Everything has negative aspects and this is the case with test automation as well. Defin-

ing use cases and matching test cases against them and to define expected outcomes

is problematic for many organizations. It might take more time to change an organiza-

tion’s processes in testing than implementing the test automation.

Analyzing the test outcomes is also important and if the analysis is incorrect, the benefits

of test automation are tenuous. The test case might fail, but that does not mean there

was a bug in the SUT. The reason might have been, all along, that the test case was

written poorly.

The main caveat in test automation is the fact that building it takes a lot of time. Depend-

ing on the scope of the test automation, the implementation of the test automation can

vary from days to weeks, even months. It is a slow process to, for example, investigate

the web elements of a web page and then figure out the methods for invoking the web

elements. Especially GUI testing automation is difficult, because UI objects are hard to

recognize. GUIs are also updated and changed often, which causes problems, because

test automation needs to be updated accordingly. [2, 4.]

5

3 Robot Framework

The Robot framework is an open source test automation framework, which is used for

acceptance testing and acceptance test-driven development (ATDD). It has a tabular

test data syntax and it uses the keyword-driven testing approach. Because the Robot

framework follows a modular architecture, the testing capability of it can be extended by

test libraries programmed with Python or Java. [3.]

It is considered to be a third generation test automation framework. Configuring the Ro-

bot framework test data does not necessarily require programming or scripting, but just

altering data. The concept of keyword-driven testing makes it easier to create test data

driving the test execution. [2, 11.]

The core framework of the Robot framework is implemented with Python, thus making it

operating system and application independent. It also runs on Jython (JVM) and IronPy-

thon (.NET). The possibility of running it on any operating system, which supports Py-

thon, makes it highly flexible. [3.]

The Robot framework software is released under Apache License 2.0, and also most of

the libraries and tools in the ecosystem are open source. Nokia Networks supports the

development of the core framework. [3.]

The Robot framework processes the test data when it is started. The framework does

not need to know the target system, but utilizes test libraries to interact with it. The librar-

ies use application interfaces or separate test tools as drivers. [4.]

6

Figure 1. High level architecture. Modified from robotframework.org. [3.]

As figure 1 illustrates the actual framework relies on the created test data and then uti-

lizes the data with the help of different libraries. The libraries then use tools and inter-

faces to command the system under test to perform various functions.

3.1 Acceptance Test-Driven Development

Acceptance test-driven development (ATDD) is a methodology, which provides a com-

mon language between the end (customer) users, the developers and the testers. It is a

process, which helps the developers and testers to understand the customer’s require-

ments. [6, 5.]

ATDD covers acceptance testing, but differs from it, requiring use cases and acceptance

tests before any development. The emphasis in ATDD is on communication between the

user, developer and tester.

3.2 Tabular Test Data Syntax

As seen in listing 1, Robot framework relies on configuration files which follow a specific

intended document formatting. This format is called tabular test data syntax. This means

7

that after the beginning of a section every new line of text needs to be intended with two

or more spaces. Test data is defined in configuration files, using a specific syntax. Mul-

tiple test cases in a file creates a testing suite and multiple files in a directory creates a

nested structure of test suites. [3.]

*** Settings ***

Documentation A test suite with a single test for

valid login.

...

... This test has a workflow that is

created using keywords in

... the imported resource file.

Resource resource.txt

*** Test Cases ***

Valid Login

 Open Browser To Login Page

 Input Username demo

 Input Password mode

 Submit Credentials

 Welcome Page Should Be Open

 [Teardown] Close Browser

Listing 1. Example test data file. Reprinted from robotframework.org. [6.]

The Robot framework supports four different file formats. The tabular format can be de-

fined using HyperText Markup Language (HTML), tab-separated values (TSV), plain text

or reStructuredText (reST). According to the Robot framework user guide, plain text file

format is recommended. Listing 1 describes an example of a plain text test data file.

When defining plain text test data files, they should have a file extension of “.txt” or “.ro-

bot”. [4.]

3.3 Keywords and Syntax in More Detail

The framework starts the execution with parsing the test data files. Next it uses keywords

defined in the test data files and starts to interact with the target system. The libraries

8

communicate with the system directly, but also other testing tools can be utilized as driv-

ers. [3.]

As listing 2 illustrates, the keywords act as commands for the framework to know what

should be executed on the target system. It is possible to utilize predefined keywords

found in existing libraries, or new keywords can be defined to new libraries.

*** Settings ***

Library Selenium2Library

*** Variables ***

${SERVER} localhost:7272

${BROWSER} Firefox

${DELAY} 0

${VALID USER} demo

${VALID PASSWORD} mode

${LOGIN URL} http://${SERVER}/

${WELCOME URL} http://${SERVER}/welcome.html

${ERROR URL} http://${SERVER}/error.html

*** Keywords ***

Open Browser To Login Page

 Open Browser ${LOGIN URL} ${BROWSER}

 Maximize Browser Window

 Set Selenium Speed ${DELAY}

 Login Page Should Be Open

Listing 2. Example test data file using keywords. Reprinted from robotframework.org. [6.]

Different sections (test data tables) of a test data file are separated by a line of text

starting and ending with one or more asterisk (*) characters. Also sections should be

separated with a line break, to keep the data human-readable and neat. Global variables

are initialized in the Variables section. A variable starts with a dollar sign ($) and the

name can be anything as long as it describes its purpose and surrounded by a pair of

braces ({}). When defining keywords the first “heading” line should be left unindented.

Every word should start with an upper case letter and be separated with a space. When

going deeper into the keyword definition, the indentation should be at least two space

9

characters. In listing 2 there are four space characters in the indentation. It is recom-

mended to keep the width of the indentation consistent through all test data files in a test

suite. Especially in plain text format, the use of space characters is recommended in-

stead of a tabular character. In addition when referring to a variable in between key-

words, at least two space characters should be used before the variable for the Robot

framework parser to separate the variables from usual keywords. [4.]

3.4 Selenium2Library

Selenium2Library is a testing library used by the Robot framework. It utilizes Selenium 2

and WebDriver libraries to control a web browser and run tests in a real browser session.

It supports most modern browsers. The Mozilla Firefox browser is supported out-of-the-

box. Other browsers require an additional driver and setup for Selenium to work with

them. The Selenium2Library provides a wide variety of general keywords to support web

testing. For the Robot framework to utilize the Selenium2Library, it needs to be imported

into the test suite using the “Library” keyword in the Settings section of a suite. [7.]

3.5 Selenium 2 (WebDriver)

Selenium 2 is the latest implementation and part of Selenium’s kit of software tools. It is

a test automation tool, which provides an object oriented API. It includes and supports

technologies from the WebDriver API and Selenium 1. [8.]

Selenium 2 includes a huge amount of methods for interacting with web elements. Also

the project’s documentation is comprehensive and available for everyone on the Internet.

3.6 Report and Log

At the end of executing the test suite files, the Robot framework will provide results de-

briefing. Result report and log are displayed in HTML format as well as in XML outputs.

The report provides statistics, for example pass/fail ratios and run times. The log provides

a more detailed view about the test execution. The logs, for example, display separately

which keyword was passed and in what keyword the failure occurred. [6.]

10

4 Service Now

Service Now Inc. was founded in 2003 by Fred Luddy, who was the previous CTO of

Peregrine Systems and Remedy Corporation. The company is a provider of Service

Management software called Service Now, which as a product, competes with BMC,

Computer Associates, IBM and Hewlett-Packard in the area of ITSM applications.

Service Now is a cloud-based platform, which provides multiple ways to automate a com-

pany’s IT functions. The main focus of the product is to automate and standardize busi-

ness processes and to provide a single system, which can accommodate different parts

of the enterprise areas, such as improving efficiency and lowering operational costs.

Nowadays Service Now covers the automation of other, non-IT functions, for instance

marketing, facilities and human resources, to list a few.

The platform can be roughly divided into five main categories, which are Asset and Con-

figuration, Planning and Policy, IT Service, Non-IT Service and IT Operations manage-

ment.

The Service Now platform-as-a-service (PaaS) is a complete suite of applications, which

are built to be modular. Modularity in Service Now grants a way for customers to pick the

applications of their specific need. This means that a company can also activate new

applications later on. The platform itself is highly customizable and the look-and-feel can

be customized to match an organization’s brand.

The test automation is run against the front end of Service Now’s Service Catalog appli-

cation called Service Catalog homepage. The homepage provides a web page from

which users can order services or goods, using user-friendly web forms. To support the

ordering process, the homepage uses functionalities similar to an “online shop” such as

categorized items, a shopping cart and an order summary check out page. [9.]

4.1 Service Catalog Homepage

The Service Catalog homepage is the primary front end for ordering items via Service

Now. It is a way for employees to use pre-defined web forms to order goods and services

11

from an IT organization or other departments. Figure 2 displays the Catalog as seen by

the user from an actual environment. [8.]

Figure 2. Service Catalog in Service Now. Screenshot [15].

The Catalog is a categorized listing of Catalog Items, which are provided to end users.

For example “Hardware” is a category, which may contain one or multiple Catalog Items.

4.2 Catalog Items

The Catalog Items form the core of the Service Catalog. As seen in figure 3, a Catalog

Item is a user-friendly web form, which describes an orderable entity, such as a laptop,

a mobile phone, a software for a computer, or even a new stack of business cards. [9.]

12

Figure 3. A Catalog Item with a shopping cart. Screenshot [15].

A Catalog Item from a technical perspective is constructed from three main elements:

Catalog variables, Catalog client scripts and Catalog UI policies. It is possible to define

prices to the Items itself or a price for a specific selection. Also, adding a picture and a

descriptive text for the item is possible.

4.2.1 Catalog Variables

Catalog variables are input elements, which capture and pass on information about

choices the end user makes during an order. For example, a Catalog Item for ordering a

new desktop PC can include a variable called “Hard-drive”. This variable could contain

choices of different hard-drive sizes. The selection of a hard-drive would then reflect the

price of the orderable item, depending on the selected size. The Variables are so-called

building blocks for implementing Catalog Items. They provide an easy way to build a web

form. [10.]

Service Now provides a set of Variables types:

 Break — a horizontal line across the form

 CheckBox — a checkbox that can be selected or cleared (true/false)

 Containers — a variable that contains other variables for additional layout
options

13

 Date — a date input variable with a calendar widget

 Date/Time — a date and time input variable with a calendar widget

 HTML — user input, or reusable content with a possibility of a simple HTML
editor

 Label — a label that is displayed across the form

 List Collector — a list collector interface for selecting multiple records from
a table

 Lookup Multiple Choice — creates radio buttons depending on an underly-
ing table it refers to

 Lookup Select Box — creates a choice list (drop down list) depending on
an underlying table it refers to

 Macro — inserts an UI macro (a modular, dynamic, reusable component
that is constructed with Jelly scripting)

 Macro with Label — the same as Macro, but with a label element

 Masked — a text input box that masks out the entered text with an asterisk
symbol for every keystroke, used for sensitive data such as passwords,
can utilize encryption

 Multi Line Text — a multiple-line text input

 Multiple Choice — creates radio buttons for static question choices

 Numeric Scale — creates a horizontal set of radio buttons with numeric
options

 Reference — a text input field that references a record on another table

 Select Box — creates a choice list (drop down list) for static question
choices

 Single Line Text — a single-line text input field

 UI Page — similar to UI macro, a UI page can contain multiple UI macros

 Wide Single Line Text — a wide single-line text input field

 Yes/No — creates a choice list with Yes and No options

[10.]

14

4.2.2 Catalog Client Scripts

Catalog client scripts add dynamic effects and validation to forms. Three main types of

Catalog client scripts are usually used for Catalog Items. Table 1 describes the types

onLoad, onChange and onSubmit, and their run sequence.

Table 1. Catalog Client Scripts. Modified from wiki.service-now.com. [11.]

Script type When it runs

onLoad() When system loads a form

onChange() A field value on the form changes

onSubmit() A user saves/submits a form

These scripts are shipped to the client-side and executed on the browser. Client scripts

in Service Now are implemented with JavaScript and make use of GlideForm API, which

provides a wide variety of methods to:

 Get or set Variable values

 Hide or display Variables

 Make Variables mandatory or non-mandatory (enforce user input)

 Validate form submission

 Validate user input

[12.]

GlideForm.js is a JavaScript class used to customize forms, and g_form is a global object

in the GlideForm class. [13.]

4.2.3 Catalog UI Policies

UI policies are similar in functionality to client scripts for dynamically changing infor-

mation on a form. The main difference to client scripts is that no scripting is required to

define a UI policy. UI policies are built-in functionalities, which make basic form modifi-

cations easier. They follow conditions defined in the UI policy record and depending on

the evaluation of the condition the UI policy is executed. Sometimes it is not feasible to

15

implement a script to only change the visibility of one field on a form. In cases like these,

UI policies are the better and easier option.

16

5 Test Environment

For testing and demonstration purposes a test environment was built. The implementa-

tion was done keeping minimum requirements in mind. Because of this, it did not fully

reflect an actual environment. The demonstration environment did not take into consid-

eration for example the network infrastructure, user authentication methods, or any other

real-world situations, which might affect parts of the process flow of the test automation.

For running the Robot framework and executing tests which reflect real-world situations,

a few prerequisites had to be fulfilled. The most sensible option was to use a virtual

environment with a lightweight operating system and just enough resources. For the test

environment, a virtual machine running an up-to-date Ubuntu server 14.04.2 operating

system was implemented. Oracle VM Virtual Box Manager was used as the virtualization

platform.

A fully operational demonstration instance of Service Now ITSM platform was already

running and available for browser access. This included an active user account with the

correct user rights. In real-world situations, the user rights would depend on the defined

use case.

5.1 Implementation

5.1.1 Installation

After installing and updating an Ubuntu server 14.04.2 virtual machine with Oracle VM

VirtualBox Manager, a GUI, Lubuntu Desktop was installed, because a web browser is

needed to access web applications. Lubuntu was selected as the desktop manager, be-

cause it is lightweight and uses the minimal desktop LXDE and a set of light applications

with a focus on performance and energy-efficiency, thus making it a great desktop man-

ager for a virtual server system.

The Lubuntu desktop manager was installed with only the core applications as can be

seen from the following command.

sudo apt-get install --no-install-recommends lubuntu-

desktop

17

Listing 3. Install Lubuntu desktop manager

The “sudo” command executes a program which gives the current user the security priv-

ileges of an administration level user (root). The second command, “apt-get”, pilkku calls

a package management tool APT. Three parameters are given to the package manage-

ment command. The first “install” command is a parameter which tells the package man-

agement tool to expect a package name and then install it. The second parameter, “--

no-install-recommends”, tells it to install only the core applications. The third parameter

is the software package name, in this case “lubuntu-desktop”. The next step was to re-

boot the system for accessing the Lubuntu Desktop manager.

Most modern Linux distributions come pre-installed with a Python interpreter which is

required by the Robot framework. The Robot framework does not yet support Python 3,

so the required Python version needed to be checked from the command line (CLI), as

the command below shows.

sudo python –version

Listing 4. Check Python version

The command “python” calls the python interpreter and “--version” parameter tells it to

print the version number to the standard output (stdout). Ubuntu server 14.04.2 provides

Python version 2.7.6 by default.

There are different ways to install Robot framework. The installation can be done by

compiling it directly from the source, or by manual installation. It can also be installed

using a Windows installer, as a standalone JAR distribution, or with a Python package

manager. [4]. For the most straightforward approach, the Pip, Python package manager

was selected and installed.

cd /mnt

sudo wget https://bootstrap.pypa.io/get-pip.py

sudo python get-pip.py

Listing 5. Download and install Pip

The command “cd /mnt” changes the current working directory to a directory called “mnt”.

The second command “wget” calls a program which can download files from a given

18

URL. The third command tells the Python interpreter to run the downloaded python script

which installs the Pip package manager. After this, the Robot framework was installed

using the Pip.

sudo pip install robotframework

Listing 6. Install Robot framework

The command “pip” calls the Pip package manager and the parameter “install” tells it to

install a software package defined on the second parameter. The Robot framework in-

stallation was verified by executing its runner script.

sudo pybot –-version

Listing 7. Check pybot version

The runner script “pybot” with parameter “--version” outputs the framework and inter-

preter versions. The versions can be seen from the output below.

Robot Framework 2.8.7 (Python 2.7.6 on linux2)

Listing 8. Version output

For leveraging the Selenium 2 WebDriver libraries, Selenium2Library needed to be in-

stalled as well.

sudo pip install robotframework-selenium2library

Listing 9. Install Selenium2Library

As seen above, the installation command was the same as for the Robot framework

installation. The only difference was the package name given in the second parameter

of “pip” command. After a successful installation, the configuration of the test data files

could be started.

5.1.2 Basic Configuration

The configuration of the Robot framework test data files was started by writing a simple

test suite to be able to confirm correct functionality of the installation. The target of the

19

simple test suite was to control (open and close) the browser, open a correct URL, login

into an existing Service Now instance and log out of it.

A test suite file can contain four sections: Settings, Variables, Test Cases and Keywords,

but for easier maintenance, Variables and keywords were taken into separate files. As

shown in appendix 1, the first file is the main test suite file, which contains settings and

a list of test cases. The settings section contains the used keyword libraries and user

keyword resource files. The list of test cases define the tests, which are run when the

suite is executed.

As described in appendix 2, the test file defines the suite’s global Variables. These in-

clude the target address, a valid user name and a password for that specific user. The

file needs to be included in the suite with a Resource keyword.

The suite’s base keywords were defined in a user keyword file as shown in appendix 3.

With the help of base keywords the execution would accomplish the actual navigation on

the target web page. Majority of the used keywords come directly from the Selenium2Li-

brary. Without including the Selenium library, the execution of the test suite would fail

and stop. These structure and syntax errors are logged, just like normal test errors into

HTML and XML output files, but also output into the standard output of the command

line. For the simple test suite, two new keywords “Login” and “Logout” were defined. As

the test suite is executed quite fast, a few extra “Wait Until” keyword combinations were

needed for taking into consideration network latency, browser rendering speed and of

course the speed of human sight.

The fourth test data file contains the defined test cases as seen in appendix 4. For the

simple test suite, only one test case, “Test Login”, was written. The test cases use key-

words defined in the user keyword test data file, but can also contain keywords from the

Selenium2Library if required.

5.1.3 Basic Testing

Basic testing was executed running the simple suite with the runner script “pybot” as

seen below.

pybot base-suite-test.txt

20

Listing 10. Run test suite

As seen in listing 3, the basic test was successful and the Robot framework created

outputs for the test case and for the overall status of the whole suite.

==

========================

Base-Suite-Test

==

========================

Test Login

Test Login

| PASS |

--

Base-Suite-Test

| PASS |

1 critical test, 1 passed, 0 failed

1 test total, 1 passed, 0 failed

==

========================

Output: /home/robot-user/Documents/test-

configs/output.xml

Log: /home/robot-user/Documents/test-

configs/log.html

Report: /home/robot-user/Documents/test-

configs/report.html

Listing 11. Base suite results in Standard output

Also an HTML report was created automatically, which clearly displays statistics of the

executed suite as seen in figure 4. Reports should not be too cluttered with information,

so for example, a person without technical expertise can also review the results with a

simple glance.

21

Figure 4. Base suite results in HTML report. Screenshot [16].

The Test Statistics display a “PASS” or “FAIL” tag in the Status column of the test case

listing. Color coded values are used for easier visual interpretation. Green color is used

for a passed test case, and red color for a failed test case. The statistics also display

elapsed run time, start time and end time for each test case, but also for the whole test

suite.

22

6 Configurations for Service Catalog Test Automation

6.1 Common Keywords

The configuration for a specific part of Service Now was started by writing the supposedly

generic keywords, which would be needed in, for example, navigating through Service

Now’s graphical user interface. The existing keywords defined in the base suite were

used, as they would provide the ability to login to the instance and close the browser as

soon as testing was complete. As seen in figure 5, Service Now’s user interface called

UI15 is constructed of a few main sections or frames which each contain different func-

tionalities.

Figure 5. A part of Service Now’s UI15. Screenshot [15].

The main frames of the UI are displayed in figure 5 above. The left most frame numbered

with 1 is called Application Navigator, which provides the ability to navigate to applica-

tions and modules within Service Now. When a module, in this case, Service Catalog is

clicked under the Self-Service application, the content of the module is displayed in the

Content Frame, which is numbered 2. The Content Frame is the largest frame and spans

from the edge of the Application Navigator, all the way to the right hand side of the

browser window. Only a small amount of the Content Frame is shown in figure 5. [14].

1.

2.

23

The common generic keywords were written on as-need-basis. After a single navigation

step such as a button press or clicking a link in the UI, it was decided that the keyword

should be a generic one, or a test case specific one. This way, it was possible to expand

the resource file gradually and collect only the essential keywords. On the way, a few

rules were made up to help future developers to add more generic keywords. These

rules were documented in the beginning of the generic resource file as seen in appendix

7.

6.2 Example Use Case

As ATDD states, every use case should be documented before any implementation or

any test case. Successfully ordering a sales laptop Catalog Item through the Service

Catalog was the first use case and the main flow was defined as follows:

1 Successfully login to Service Now demo instance with the test user credentials

2 Navigate to Service Catalog module under Service Catalog

3 Navigate to Hardware Catalog Category

4 Select “Sales Laptop” Catalog Item

5 Select “Microsoft Powerpoint” CheckBox under “Optional software” Label

6 Input text “Skype pre-installed” into “Additional software requirements” Multi-line
Text Variable

7 Order the Catalog Item, by pressing the “Order Now” button on the catalog
shopping cart

The post conditions define the outcomes of the use case. There are two possible out-

comes, which are success and failure, and these outcomes need to be met by pre-de-

fined conditions. Conditions for a successful outcome were defined as follows:

 Test user (actor) is able to access the demo instance and the Catalog Item
via the specified way of navigating

 Test user is able to fill in the required fields of the order form

24

 Test user is able to submit the order and the order is successfully recorded
in the database

The conditions for a failed outcome were defined as follows:

 Test user (actor) cannot access the demo instance, nor the Catalog Item
via the specified way of navigating

 Test user receives an error message in any point of the order flow

 An error occurs, which prevents the completion of the order (no error mes-
sage displayed)

 Test user cannot submit the order, or the order is not successfully recorded
in the database

6.3 Example Test Case

The test case definitions are based on the requirements of the use case. The test case

was written with keywords, which would match those requirements and fulfill the use

case. Listing 4 describes the needed steps (excluding login) for the main flow of the use

case. The first line of text is the name of the test case, in this case “Order Sales Laptop”.

In addition to test cases, a suite can have a setup and a teardown. The suite setup is run

before any test case and the suite teardown is run after everything else. The “Login/Log-

out” keywords were not needed for every test case separately, but they could be utilized

directly in the settings section of the testing suite as seen in appendix 5. The “Login”

keyword was an ideal step for checking an obvious precondition: successful login with

an existing user account. The “Logout” keyword on the other hand was the last step in

any case, because it is pointless to leave the browser running and taking resources after

test execution. Because of this, the first needed keywords were for navigating to the

correct module, as line two of listing 4 describes.

Order Sales Laptop

 Open Module Self-Service Service Catalog

 Select Main

 Click Link link=Hardware

 Select Main

 Click Link link=Sales Laptop

25

 Select Main

 Select Checkbox

ni.IO:3cfe1f290a0a0a6a01ee1623f4982abd

 Input Text IO:f3776ac9c0a8010a003825c70f35fab7

Skype pre-installed

 Click Button oi_order_now_button

Listing 12. Order Sales Laptop test case

The keywords in line three select and set the focus to the Content frame. “Select Main”

could be easily re-used multiple times as it was included in the common keywords’ re-

source file. Line four tells the web-driver to click a link the title of which is “Hardware” in

the Content frame. As the page, which the link is pointing to, loads and the frame re-

freshes, it is needed to again set the focus to the Content frame (line five). Steps in line

four and five are repeated with a different link parameter to drill deeper into the stack.

Next the Catalog Item is opened into the frame and the form fields (Catalog Variables)

can be filled with a value specified in the use case (lines eight and nine). Service Now

creates an “id” parameter automatically for the Variables as they are rendered. Thus the

format of the “id” is not very readable. Finally in line ten the order is submitted by pressing

the “Order now” button. The full test case configurations can be seen in appendix 8.

26

7 Testing

After the needed test cases were written in to the test case file, the suite could be run

again, using the “pybot” starter script. The suite makes use of three resource test data

files in the same way as in the basic test suite referred to in the earlier chapters. One

additional setting was added to the Variables section of the settings file. As seen in ap-

pendix 6, the variable “${family}” is used for recognizing the latest three Service Now

versions: Dublin, Eureka and Fuji (latest). The Application navigator behaved differently

for an older version of Service Now. Thus an if-clause was needed in the common key-

words file, displayed in appendix 7, to use a condition before running a keyword, which

selects the Application navigator’s frame. Because of the updated GUI, it was decided

not to support older versions of Service Now, although there is still some organizations

using the older ones.

7.1 Analyzing Successful Tests

For the demonstration, the Catalog Items were known for sure to be completely working

and for that reason, the test suite would return only successful results. This would assure

that the suite is configured and working as intended.

After running the suite with two test cases, one for ordering the sales laptop as described

in chapter 6.3 and a second similar test case as described in appendix 5, the report and

log could be examined.

As seen in figure 6, both test cases were successfully completed. In this run, the Order

Sales Laptop test case took just over 13 seconds to execute and Order Development

Laptop took almost 16 seconds. Ten test suite executions were completed and an aver-

age time of 15 seconds per test case was measured. It was also measured that in ten

runs a human tester completed each of the test cases with an average time of 30 sec-

onds.

27

Figure 6. Service Catalog test suite report. Screenshot [16].

It was assumed that the human tester is familiar with the SUT and an experienced tester

with a good overall knowledge of the test cases. Even without any spelling mistakes,

miss clicks, or other manual errors, it could be seen that a human tester is almost two

times slower than the Robot framework when executing test cases. The elapsed time in

test cases executed by the Robot framework could be reduced even more by optimizing

the underlying hardware and removing unnecessary “wait for something to load” key-

words from the test data files.

Of course, if the underlying configurations in Service Catalog changed, the test cases

would require a change, or at least a test run to see if they need to be changed. This too

takes time and the overall difference between a computer and a human tester’s theoret-

ical elapsed times would be smaller. A human tester could adapt to a configuration

change much more quickly and continue testing, taking the change into consideration.

However if the Robot framework can tirelessly run through as many test cases as given

to it, it is safe to assume that it is much faster.

7.2 Analyzing Unsuccessful Tests

For demonstration purposes an error was induced into the main flow of the sales laptop

Catalog Item. As listing 5 shows the error is caused with an onChange Catalog Client

Script, which hides the “Additional software requirements” Multi-line text Variable, if “Mi-

crosoft PowerPoint” CheckBox Variable is selected.

28

function onChange(control, oldValue, newValue,

isLoading) {

 if (isLoading || newValue == '') {

 return;

 }

 else {

 if (newValue == 'true') {

 g_form.setDisplay('add_software', false);

 }

 }

}

Listing 13. An onChange client script

An onChange script is triggered when the related element’s, in this case the PowerPoint

CheckBox’s, value is modified. When the function starts, the first if-clause checks, if the

page is still being loaded and, if the changed value is empty. It is unnecessary to run the

script during a page load, or if the value does not actually contain anything. The next

step is to check that the CheckBox is actually selected. If it is, the Multi-line text field is

hidden with a method from the g_form API. The above mentioned Client Script might be

an undocumented change to the system or just some other mishap done by an enthusi-

astic developer.

As seen in figure 7, a fail tag is visible on the Status column of the Order Sales Laptop

test case. The failure is emphasized with a red background color. A clear error message

can be found in the Message column that indicates a missing element.

29

Figure 7. Service Catalog test suite report with a failure. Screenshot [16].

The test report in figure 7 is a clear indication of a failed test case. But what actually went

wrong? The report gives an overall picture of the status, but does not tell exactly what

the reason was for the failure. The missing element could be anywhere on the form. If

the form would be larger with a lot of fields and dynamic functionality, it would require

time to troubleshoot the issue and find the culprit. This is when the log comes in to the

picture. By clicking the test case name, the log file is opened to the browser, also in

HTML format. As figure 8 displays, the log file gives more of an in-depth view into the

issue.

30

Figure 8. Service Catalog test suite log with an error. Screenshot [16].

The log clearly displays all of the steps in the test case and that way, it is easy to pinpoint

the root cause of the issue. In the example seen in figure 8, the failed keyword is high-

lighted in red and an error message is displayed. Also the “id” parameter of the web

element is displayed. The last keyword is a screenshot of the error situation, taken auto-

matically by the Robot framework using Selenium’s ability to take screenshots, thus mak-

ing it more straightforward to actually go and find the misbehaving element.

This example does not necessarily describe an error situation. It could also be a required

feature, but the use case or the test case have not been updated accordingly. This kind

of behavior in test automation is common and relates to the issues mentioned in chapter

2.2. A test automation can only find issues from places where they are told to look for

them.

7.3 Conclusions

The executed tests show that it is possible to successfully automate the testing of Service

Catalog. Each test case needs to be defined per Catalog Item. Of course, if one Catalog

Item needs more than one use case, then each test case needs to be defined per use

case. Because Service Catalog is a part of the Service Now’s GUI, it might be difficult to

maintain the test automation suite, because the GUI might be updated and change even

more in the next system version. Although, implementing a complete test automation

suite for Service Catalog is time consuming, it might still be feasible, especially for bigger

projects. After implementation, the test automation could be used for regression tests.

31

The overall results are mainly positive and using the Robot framework made implement-

ing test automation easier than, for example, programming Java or Python libraries which

use Selenium directly.

32

8 Further Development

During the implementation phase, a few development ideas emerged, which would take

the Robot framework test automation even further. Unfortunately, the schedule for the

project was too hectic and the scope was too small to really accommodate a larger scale

test automation implementation.

One of the ideas was to name the test cases according to the defined use cases for

example using an ID number on the names. This would help the maintenance and doc-

umentation, because it is possible to refer to different parts of the test automation project

with one name.

Also the configured common keywords could be expanded even more. For instance, new

keywords could be defined to match all different Variable types. This would speed up the

test case implementation and make the test cases more human readable.

The biggest and most important development idea was to take the Selenium server into

action. The use of the Selenium server would make it possible to execute tests on mul-

tiple machines or VMs simultaneously. This would make it possible to automate tests

with specific browsers, browser versions or with hosts running different setups all to-

gether.

33

9 Discussion

This thesis has introduced the main points in test automation and how to implement a

test automation suite using the Robot framework. Nowadays Service Now is a popular

IT-service management platform in the corporate world and this thesis could provide a

basis for many companies that are both using Service Now and considering taking test

automation into action. As mentioned in chapter 8, the use of Selenium server in addition

to this set of tools could provide a comprehensive Service Now testing package.

In the final year project, the test automation and its configurations worked as planned.

The testing was efficient, fast and accurate. Because all of the tools used in this imple-

mentation were open source, they were also free to use. The costs in projects like this

would only consist of the used work hours for defining use cases and documentation,

installing the needed parts for a testing environment and implementing the test suite.

The Robot framework test automation could be used for easy regression testing and for

instance to carry out mass testing. Mass testing could be run during nights and left un-

attended. The results could be examined and analyzed the next morning. Although the

use of the Robot framework would not entirely replace human testers, it would reduce

the workload considerably. If an organization is not mature enough to define precise use

cases in an understandable form, it would be recommended to opt out from test automa-

tion and instead utilize human testers.

The development of the common resource file could be continued and kept on going,

and it could be expanded for other applications of Service Now as well. In some point

the collection of generic keywords would be huge and testing almost anything in Service

Now would be easy.

34

10 Conclusion

As a result of the final year project, a fully working, expandable web application GUI test

automation, using only free of charge tools, was successfully created. Considering that

no bigger technical problems were identified during the implementation and the only ob-

stacle was time consumption when scouring through hundreds of lines of web page

source code and hundreds of pages of Selenium documentation, the project as a whole

was a success.

The goals of this project were reached. Although the minimum requirements of this pro-

ject were met, the research on ATDD could have been emphasized. Also more compar-

isons between a human and a computer tester could have been made.

All in all, test automation is an important part of bigger software development projects

and it could help tackle the tedious testing phase, if built properly. Taking a step towards

test automation is a huge leap for any organization and the advantages and the disad-

vantages should be weighed carefully.

35

References

1 Huizinga D., Kolawa A. Automated Defect Prevention: Best Practices in Soft-
ware Management. New Jersey: Wiley-IEEE Computer Society Press; 2007.

2 Laukkanen P. Data-Driven and Keyword-Driven Test Automation Frameworks.
Master’s Thesis. Helsinki University of Technology - Aalto University; 2006.

3 Introduction [online]. Robot Framework.
URL: http://robotframework.org/#introduction. Accessed 5 February 2015.

4 Nokia Solutions and Networks. Robot Framework User Guide [online]. Robot
Framework; 16 January 2015.
URL: http://robotframework.org/robotframework/latest/RobotFrameworkUser-
Guide.html. Accessed 10 March 2015.

5 Pugh K. Lean-Agile Acceptance Test-Driven Development: Better Software
through Collaboration. New Jersey: Addison-Wesley; 2011.

6 Examples [online]. Robot Framework.
URL: http://robotframework.org/#examples. Accessed 14 March 2015.

7 Selenium2Library User Guide [online]. Robot Framework; 2 November 2014.
URL: https://rtomac.github.io/robotframework-selenium2library/doc/Sele-
nium2Library.html. Accessed 15 March 2015.

8 Selenium WebDriver Documentation [online]. Selenium HQ; 4 May 2015.
URL: http://docs.seleniumhq.org/docs/03_webdriver.jsp. Accessed 15 March
2015.

9 Introduction to Service Catalog [online]. Service Now; 18 March 2013.
URL: http://wiki.servicenow.com/index.php?title=Introduction_to_Service_Cata-
log. Accessed 7 February 2015.

10 Service Catalog Variables [online]. Service Now; 19 January 2015.
URL: http://wiki.servicenow.com/index.php?title=Service_Catalog_Variables.
Accessed 7 February 2015.

11 Client Scripts [online]. Service Now; 9 February 2015.
URL: http://wiki.servicenow.com/index.php?title=Client_Scripts. Accessed 8
February 2015.

12 Creating a Catalog Client Script [online]. Service Now; 6 May 2014.
URL: http://wiki.servicenow.com/index.php?title=Creating_a_Catalog_Cli-
ent_Script. Accessed 8 February 2015.

36

13 GlideForm (g_form) [online]. Service Now; 30 April 2015.
URL: http://wiki.servicenow.com/index.php?title=GlideForm_(g_form). Accessed
9 February 2015.

14 Navigation and the User Interface [online]. Service Now; 12 March 2015.
URL: http://wiki.servicenow.com/index.php?title=Navigation_and_the_User_In-
terface#Content_Frame. Accessed 20 March 2015.

15 Service Now [computer program]. Version glide-fuji-12-23-2014__patch1-02-11-
2015. Santa Clara, United States of America: Service Now; February 10, 2015.

16 Robot Framework [computer program]. Version 2.8.7. Espoo, Finland: Nokia
Networks; March 30, 2015.

Appendix 1

 1 (1)

base-suite-test.txt

Author: Jani Luostarinen

<jani.luostarinen@symfoni.com>

Version: 1.0.20150212

*** Settings ***

Library Selenium2Library

Resource base-variables-test.txt

Resource base-resource-test.txt

Resource base-tests.txt

*** Test Cases ***

Test Login

 Test Login

Appendix 2

 1 (1)

base-variables-test.txt

Author: Jani Luostarinen

<jani.luostarinen@symfoni.com>

Version: 1.0.20150212

*** Variables ***

${baseurl} https://INSTANCENAMEHERE.service-now.com/

${username} robot_frmwork

${password} **********

Appendix 3

 1 (1)

base-resource-test.txt

Author: Jani Luostarinen

<jani.luostarinen@symfoni.com>

Version: 1.0.20150213

*** Keywords ***

Login

 [arguments] ${baseurl} ${username} ${password}

 Open Browser ${baseurl}

 Unselect Frame

 Wait Until Element Is Visible gsft_main

 Select Frame gsft_main

 Wait Until Element Is Visible

css=div.welcome_content

 Input Text user_name ${username}

 Input Text user_password ${password}

 Click Button sysverb_login

 Wait Until Element Is Visible gsft_main

Logout

 Click Button css=button.nav_header_button

 Wait Until Element Is Visible gsft_main

 Close Browser

Appendix 4

 1 (1)

base-tests.txt

Author: Jani Luostarinen

<jani.luostarinen@symfoni.com>

Version: 1.0.20150213

*** Keywords ***

Test Login

 Login ${baseurl} ${username} ${password}

 Logout

Appendix 5

 1 (1)

suite-snc-generic.txt

Generic ServiceNow test suite.

Author: Jani Luostarinen

<jani.luostarinen@symfoni.com>

Version: 1.0.20150411

*** Settings ***

Library Selenium2Library

Resource settings-snc-demo-instance.txt

Resource resource-snc-common.txt

Resource tests-sc.txt

Suite Setup Login ${baseurl} ${username}

${password}

Suite Teardown Logout

*** Test Cases ***

Order Sales Laptop

 Order Sales Laptop

Order Development Laptop

 Order Development Laptop

Appendix 6

 1 (1)

settings-snc-demo-instance.txt

Settings for ServiceNow demo instance.

baseurl: Target instance url

username: Target instance user account

password: User account password

family: Service Now version (Supported: Dublin,

Eureka, Fuji)

Author: Jani Luostarinen

<jani.luostarinen@symfoni.com>

Version: 1.0.20150411

*** Variables ***

${baseurl} https://INSTANCENAMEHERE.service-now.com/

${username} robot_frmwork

${password} **********

${family} Fuji

Appendix 7

 1 (3)

resource-snc-common.txt

Common generic purpose keywords for interacting with

ServiceNow.

Should not contain any test case specific

functionality.

When adding or modifying functions please follow

these rules:

- Each keyword should wait that action performed

is ready

so next keyword has clean environment to proceed

- Never assume which frame is selected - always

select

correct frame just in case before doing anything

- Always test compatibility with all families

supported

Supported families (SNC versios): Fuji, Eureka,

Dublin

Author: Jani Luostarinen

<jani.luostarinen@symfoni.com>

Version: 1.0.20150411

*** Keywords ***

Select Navigator

 Unselect Frame

 Wait Until Element Is Visible gsft_nav

 Select Frame gsft_nav

 Wait Until Element Is Visible css=ul.nav-wrapper

Appendix 7

 2 (3)

Select Main Before Login

 Unselect Frame

 Wait Until Element Is Visible gsft_main

 Select Frame gsft_main

 Wait Until Element Is Visible

css=div.welcome_content

Select Main

 Unselect Frame

 Wait Until Element Is Visible gsft_main

 Select Frame gsft_main

 Wait Until Element Is Visible css=i.pointerhand

Login

 [arguments] ${baseurl} ${username} ${password}

 Open Browser ${baseurl}

 Select Main

 Input Text user_name ${username}

 Input Text user_password ${password}

 Click Button sysverb_login

 Select Main

Logout

 Close Browser

Open Application

 [arguments] ${application}

 Run Keyword If '${family}' == 'Fuji' Select

Navigator

 Run Keyword If '${family}' == 'Eureka' Select

Navigator

 Run Keyword If '${family}' == 'Dublin' Unselect

Frame

 Input Text filter ${application}

Open Module

 [arguments] ${application} ${module}

 Open Application ${application}

Appendix 7

 3 (3)

 Select Navigator

 Click Link link=${module}

 Select Main

 ${sys_target} = Get Value sys_target

 Set Test Variable ${sys_target}

Appendix 8

 1 (1)

tests-sc.txt

ServiceNow Service Catalog test cases.

Author: Jani Luostarinen

<jani.luostarinen@symfoni.com>

Version: 1.0.20150411

*** Keywords ***

Order Sales Laptop

 Open Module Self-Service Service Catalog

 Select Main

 Click Link link=Hardware

 Select Main

 Click Link link=Sales Laptop

 Select Main

 Select Checkbox

ni.IO:3cfe1f290a0a0a6a01ee1623f4982abd

 Input Text IO:f3776ac9c0a8010a003825c70f35fab7

Skype pre-installed

 Click Button oi_order_now_button

Order Development Laptop

 Open Module Self-Service Service Catalog

 Select Main

 Click Link link=Hardware

 Select Main

 Click Link link=Development Laptop

 Select Main

 Select Radio Button

IO:3cf4a9d60a0a0a6a00fc892d0f6834e8 500

 Click Button oi_order_now_button

