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tunnel lining in the Helsinki city rail road born.  The thesis is written in 2015 in Arcada 
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1 INTRODUCTION 

The Helsinki city rail loop is a new rail loop that is planned beneath Helsinki to improve 

the commuters’ life (Finnish Transport Agency, 2014). The construction of the Helsinki 

city rail loop will start in 2017 with the designing of it already started this year. I was 

requested at my work, Granlund Oy, to do a research if the utilization of geothermal en-

ergy could be an economical choice to district heating and conventional geothermal 

boreholes in the tunnel. The available geothermal energy in the ground will first be 

studied if it’s enough energy for the heating and cooling of the Helsinki city rail loop. 

This thesis will focus on the subject of tunnel lining method. The tunnel lining technol-

ogy is based on traditional geothermal systems with the absorber loops in boreholes in-

stalled in the earth. The only difference with tunnel lining technology to get geothermal 

energy is that the absorber pipes are installed in the tunnel lining. The thesis will also 

focus on energy gained  from tunnel lining and if it’s more economical than convention-

al ground source heat pumps (GSHP) with 50–200 meters deep bore holes.  This re-

search subject is approved by Paavo Tikkanen from Granlund Oy (Tikkanen.P, 2014). 

There have already been made a few experimental studies on the usage of thermally ac-

tivated tunnel constructions to harvest ground source energy (the text will use the term 

tunnel lining) but no study have been made yet in Finland about tunnel lining. 

When the result from the study is ready it will be financially evaluated if possible. The 

financial evaluation of the tunnel lining system has to be for both 30 and 100 years life-

time. A 30 years interval is chosen because all systems will be replaced every 30 years 

in the tunnel and the tunnel is projected to have at least 100 years of total lifetime. 

 

1.1 Background 

Recent studies show that by 2050 nearly 70% of the world’s population will be living in 

cities (United Nation, 2014). With this increased population growth and energy demand 

in mind are we inevitable forced to build structures underground to meet the popula-

tions’ needs in regards to traffic infrastructure. It is possible to turn these underground 
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structures into energy sources by actively use the available geothermal energy. With 

these new energy sources are the need for fossil fuels reduced and it further reduces the 

CO2 emissions.  

Geothermal  energy  represents  a  significant  heat  source  and  there  is  a  ready  supply  of  

geothermal resources on earth (Axelsson, 2010). So tunnel lining and other ways to use 

geothermal energy as an energy source is inevitably becoming a more important factor 

in tunnel constructions. 

Tunnel lining can be used for many purposes so there is a good economic in it. The 

large interface between the tunnel structure and the surrounding ground enables to har-

vest ground source energy by placing absorber pipes in the tunnel linings. This energy 

can be used to heat up the tunnel or be supplied to user above the ground. It is also pos-

sible to do the cooling of above ground buildings with tunnel lining because most tun-

nels are not prone to overheat. Or if the tunnel has considerable amount of heat building 

up by tunnel operation. Then it can be commercially viable to cool the tunnel by tunnel 

lining rather than use forced ventilation. 

1.1.1 Research aim 

The research aim is to get an environmental and economic option to the usage of con-

ventional district heating in the Helsinki city loop tunnel. Another research aim is to 

provide knowledge about tunnel lining as a technology thus promote further studies 

about the subject. The research aim is to improve the knowledge about tunnel lining and 

the financial aspects of using geothermal energy acquired from tunnels. Another aim is 

to compare tunnel lining technology with geothermal heat pumps with vertical collector 

loops (borehole heat exchangers) drilled into the bedrock and make suggestions if tun-

nel lining is economical viable. 

 

1.2 Problem 

The tunnel lining technology is relative new and there have been only a few test tunnels 

constructed using tunnel lining technology. This means that before tunnel lining tech-
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nology could be installed into the Helsinki city rail loop, some field testing with tunnel 

lining should be performed in Finland to test the Finnish bedrock’s suitability for tunnel 

lining. With all the testing it would probably mean that the construction start of the rail 

loop would be delayed with about one year. Delays could have a negative impact on the 

decision makers and therefore on the possibility of installing tunnel lining into the Hel-

sinki city rail loop. This could ultimately stop the studies about tunnel lining in Finland. 

Meaning that no tunnels get absorber pipes into the tunnel lining to extract energy. 

 

 

1.3 Research scopes 
 

1. Can the geothermal energy be utilized for the heating and cooling of the Helsinki city 

rail loop? 2. Can the usage of geothermal energy acquired from the tunnel be economi-

cally motivated? 3.Can the geothermal energy be utilized in any other way than through 

conventional ground source heat pumps with bore holes, for example by thermally acti-

vating the concrete structure by placing absorber pipes in the tunnel lining. All these 

points are equally important for the tunnel lining technology in Finland. 

 

1.4 The Helsinki city loop 

The Helsinki City Loop is a project (currently at the planning phase) run by the Finnish 

Transport Agency and the City of Helsinki. The loop-shaped track with a length of 7.8 

kilometers, with 6 kilometers of tunnel, will serve the local traffic in the capital region. 

The track is designed to go from Pasila through a tunnel underneath Töölö, Helsinki city 

centre and Hakaniemi, returning to Pasila. The Loop will help make the entire railway 

system of Finland run more smoothly by freeing up railway space between Pasila and 

Helsinki thus leaving it for other trains. (Finnish Transport Agency, 2015) 
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There will be two separate tunnels going side by side beneath Helsinki thus it is possible 

for trains to travel both ways along the loop at the same time. With a service/rescue tun-

nel going next to the railway tunnels. No final building decision has been made yet 

about the Helsinki city rail loop. The planning phase has been underway since 2012 and 

will continue into year 2015 when the Finnish Parliament makes a final decision if the 

Helsinki city rail loop will be built. 

Figure 1 Map of the city rail loop with the 3 stations (Töölö, Helsinki center and Hakaniemi)
marked in white. (Finnish Transport Agency 2015) 
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1.4.1 The need of the Helsinki city rail loop 

“The public transport system must be able to accommodate a continuously growing 

number of passengers. At present there are nearly 1.4 million inhabitants in the Helsinki 

region. This number is expected to increase by 40,000 this decade and by more than 

400,000 during the next few decades.”(Finnish Transport Agency, 2015)  

It is estimated that in 2035 there will be 138,000 people using the city rail loop every 

day with Hakaniemi being the busiest station with about 79,000 users every day. The 

city rail loop will promote the public transport in the area and improve the urban envi-

ronment in Helsinki. 

1.4.2 What is geothermal heating? 

Geothermal heating is short described as a method to utilize the heat contained in the 

groundwater in the bedrock. The sun is, as so often in the context of energy, involved 

because it’s the sun’s energy that is stored in the bedrock. Geothermal heating is thus an 

indirect form of solar energy. 

At 50 to 200 meters depth, the temperature is between two and eight degrees Celsius, as 

this temperature is roughly constant around the year, geothermal heat is a relatively sta-

ble form of energy. (Johnston, Narsilio and Colls, 2011) 

The tunnel lining technology to gather geothermal energy is based on traditional geo-

thermal systems with the absorber loops installed in boreholes into the earth. The only 

difference  with  tunnel  lining  technology to  get  geothermal  energy  is  that  the  absorber  

pipes are installed in the tunnel lining. 

 

1.5 Purpose 

The purpose of this thesis work is to provide knowledge about the tunnel lining tech-

nology to the decision makers working with the Helsinki city rail loop. This work was 

ordered from Granlund Oy as a geothermal energy research. 
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At present day there hasn’t been done any research about tunnel lining in Finland and 

only some researches about tunnel lining worldwide in other tunnels. This thesis job is 

to provide knowledge about the tunnel lining technology and geothermal energy sources 

in general to people. And furthermore will this thesis provide some numbers about what 

the yearly heating and cooling effects could be with the usage of tunnel lining. The cal-

culations will not be exact enough to make any final decision about tunnel lining tech-

nology. The calculations will only provide some guidelines if tunnel lining is possible in 

Finland and the Helsinki city rail loop. Further studies and field studies should be made 

before making a final decision about tunnel lining technology. 

 

1.6 Method 

The research will make use of earlier studies about the usage of tunnel lining done in the 

world, mostly from Germany and China. The theory and facts about tunnel lining and 

tunnels installed with tunnel lining will be analyzed from their material.   

Granlund Oy have granted this research access to their database and knowledge about 

geothermal energy (Tikkanen P., 2014). Furthermore is the author allowed to visit the 

designing meetings of the Helsinki city rail loop. The Helsinki city rail loop will work 

as this thesis‘ example case and calculations will be based on it. The thesis uses inter-

views with HVAC engineers and geothermal engineers to provide professional opin-

ions.  

 

1.7 Limitations 

There are several ways of using geothermal energy from tunnels but this thesis focuses 

on the tunnel lining technology and conventional geothermal heat pumps with vertical 

collector loops drilled into the bedrock. There will only be used theoretical numbers 

with tunnel lining because there are no possibilities of field testing tunnel lining in Fin-

land. With no earlier experience of tunnel lining technology usage in the Finnish bed-

rock there will always be a small uncertainty if the theoretical models work.  
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Another limitation with this research is the design of Finnish railway tunnels these days 

that does not allow tunnel lining. The Finnish bedrock which primary consist of granite 

is so stable that most tunnels including the Helsinki city rail road will only use 100mm 

shotcrete  on  the  drilled  tunnel  walls.  100mm  is  too  thin  to  fit  the  collector  pipes  that  

tunnel lining technology uses without risks for damaging the shotcrete. The shotcrete 

could be damaged of the thermal expansion of the absorber pipes. At least 200-300mm 

of shotcrete would be needed to be able to install the collector pipes. This means that a 

bigger  tunnel  is  to  be  drilled  which  cost  more.  Furthermore  if  the  collector  pipes  still  

would be installed is the risk big that the absorbed heat in the collector pipes would 

come from the tunnel’s air and not the adjacent bedrock. (Äikäs K., 2014)  

 

The final decision how the tunnel will be constructed are not made yet. This research 

will focus on earlier European experiences of tunnel lining with normal tunnel structure 

of several layers of materials in the tunnel walls. The Helsinki city rail loop tunnel 

structure will in this research use a more European tunnel structure to make tunnel lin-

ing calculations available and to give the decision makers a hint about how much energy 

is available. If the decision is made that the Helsinki city rail loop will use a tunnel 

model with only shotcrete there have to be made additional researches with field testes. 

(Äikäs K., 2014) 

 

1.8 Theoretical framework 

Peter von Rittinger developed and built the first heat pump in years 1855-1857 (Zogg, 

2008). The Swiss turbine engineer Heinrich Zoelly was the first to propose an electrical-

ly driven geothermal heat pump for the production of low temperatures and received a 

patent for it in 1912 (Zogg, 2008). In 1940, dug Robert C. Webber down 152 m copper 

to 2 meters deep for his heat pump and built the first geothermal heat pump (Zogg, 

2008). But it is only in the last decades that there has been a dramatic increase in the use 

of ground source heat pumps (GSHPs) to heat and cool buildings. (Johnston, Narsilio and 

Colls, 2011) 
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The first experiments with thermal activation of tunnels started for about 10 to 15 years 

ago in Austria. (Baujard, 2010). There have been some models and testing of thermally 

activating tunnels across the word. Zhang, G. and other from Tongji University in 

Shanghai have made a model of analytical solution for the heat conduction of tunnel 

lining ground heat exchangers to prevent the tunnels of freezing in the winter. ( Zhang, 

G.,2014) 

 

Use of geothermal energy absorbers (tunnel lining) have been researched by Adam and 

Markiewicz with well-made formulas for calculating the available energy gain (Adam 

and Markiewicz, 2010). A test plant is in operation on Metro Line 6 at Stuttgart’s 

Fasanenhof underground station. The University of Stuttgart is using this test plant to 

test different load profiles for heating and cooling. The tunnel lining technology enable 

geothermal air-conditioning in Metro Line 6. (Bine.info, 2013) 

 

All geothermal energy systems have to be dimensioned right at the first try Increasing 

the collector area is not financially possible after the installation has been made. Fur-

thermore do designer of the system have to think about sustainable geothermal utiliza-

tion like Axelsson wrote about in his article: Sustainable geothermal utilization – Case 

histories; definitions; research issues and modelling. Without thinking about sustainable 

utilization could the tunnel’s surrounding bedrock temperature drop after a few years 

and efficiency drop drastically. (Axelsson, 2010). 

 

This  thesis  work  will  use  similar  methods  in  the  calculations  of  available  energy  that  

Adam  and  Markiewicz  used.  By  using  earlier  studies  will  this  research  try  to  make  a  

model for sustainable geothermal utilization during the 30 and 100 years of project life. 
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2 GEOTHERMAL ENERGY TECHNOLOGY 

2.1 Heat pumps 

The basic principle of a heat pump is that it captures the heat that already exists natural-

ly in your surroundings. The heat can be from boreholes in the ground next to or under 

your house (ground source), it can be in the uppermost soil layer on your lot, and there 

are heat pumps that use heat stored in a nearby lake bottom (lake heat), or simply the 

heat present in the air. The heat pump is thus a form of solar energy because it takes ad-

vantage of the sun heat stored around us. (EGEC 2008) 

 

Contrary to many people's perception does not heat pumps use traditional geothermal 

energy,  i.e.  heat  from  the  Earth's  interior.  If  the  heat  from  the  Earth's  interior  was  in-

tended to be utilized in Finland should the required drill holes depth be a minimum 

depth of 1000-2000 meters deep. This deep drilling method is in the current situation 

extremely costly and in practice not possible to use regular extraction of large amounts 

of energy. With a few exceptions in countries were the Earth’s crust is thin enough, like 

Iceland. 

 

2.1.1 Heat factor or Coefficient of Performance (COP) 

The heat pump's job is to collect the heat and then make sure that your house gets more 

kilowatt hours (kWh) of heat energy than it consumes in electricity.  The heat factor is 

simply the ratio of how many kWh it requires and how many it generates. Another word 

for heat factor is Coefficient of Performance (COP). E.g. the marking COP 4 means that 

4 kW heat energy can be produced with 1 kW electricity. 

 

The old coefficient COP is about to be phased out and be replaced with SCOP (Seasonal 

Coefficient of Performance) that indicates the efficiency of the entire heating season, 

that is, the annual efficiency. This change is a part in the European Union's climate and 

energy targets 20-20-20. Making it easier for the customers to compare heat pumps with 

the same standard. (European Commission 2014) 
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2.1.2 Needed geothermal energy  

Granlund Oy have made preliminary reports and calculations on the needed energy for 

each of stations the Helsinki city rail loop. With the planning of the rail loop being in 

the start phase the only energy need that is considered is the ventilation’s heating and 

cooling energy for each station. The ventilation at each station will be the biggest en-

ergy user in the tunnel. The tunnel in itself will at the depth it’s situated maintain a 

fairly constant temperature all around the year and only need a little additional heating. 

The needed energy for the rail loop will be tweaked and recalculated by Granlund Oy 

when a building decision is made. Without any other sources on needed energy for the 

tunnel will this research base its energy need on Loisa’s and Pietarila’s report from 

13.10.2014. The following table is from Loisa’s and Pietarila’s report showing the en-

ergy need for each station. Hakaniemi and Töölö have about the same area so they share 

the same values in this table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Energy needed for each station monthly in MWh (Loisa, and Pietarila , 2014) 
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2.2 Ground Source Heat Pump Technology 

A ground source heat pump (GSHP) is a device that is able to transfer heat from one 

fluid at a lower temperature to another at a higher temperature. Heat pumps have got 

their name from the fact that they allow heat to be carried from a lower to a higher tem-

perature level, inverting natural heat flow which, as is well known in nature tends to be 

from a higher to a lower temperature. The central components of a heat pump are; the 

compressor, expansion valve and two heat exchangers, one of which is the evaporator 

and the other is the condenser. In the evaporator, heat is transferred from the collector to 

the heat pump refrigerant. In the condenser, is heat transferred from the heat pump re-

frigerant to the heat distribution system. The heat collected in the collector evaporates 

the refrigerant circulating in the heat pump. (Johnston, Narsilio and Colls, 2011) 

 

Figure 2 Schematic representation of a heat pump cycle (Johnston, Narsilio and Colls, 2011) 

 

In Fig. 2, liquid refrigerant absorbs heat from a heat source and evaporates completely 

at point 1. The refrigerant must initially be cooler than the heat source and have a boil-

ing point (at relatively low pressure) below the heat source temperature. The warm re-

frigerant, in a gaseous state and at low pressure, coming from the evaporator, is taken to 

a high pressure; during compression (point 2) it is heated, absorbing a certain amount of 

heat.  At  this  higher  pressure,  the  refrigerant  gas  will  now  condense  at  a  much  higher  

temperature than at which it boiled. The refrigerant flowing from the compressor passes 

from a gaseous to liquid state at the condenser (point 3), giving off heat to the outside. 

The hot, high pressure liquid refrigerant then passes through an expansion valve (point 



22 

 

4) which returns the pressure and temperature of the liquid to its original conditions pri-

or to point passing through the expansion valve, the liquid refrigerant cools and is par-

tially transformed into vapour(Motiva, 2014) 

 

2.3 Structure of Ground source heat exchanger system 

The basic parts in a ground source heat exchanger system are: the primary circuit situat-

ed in the ground, the heat exchanger and the secondary circuit situated inside the build-

ing. 

The primary circuit is a ground loop filled with a non-freezing fluid. The ground loop 

can  be  installed  horizontally  on  depth  of  1-2  meters  (need  to  be  below  the  frost  line)  

with about 300-600meters of piping for a normal house using a lot of space for the in-

stallation. Another more expensive alternative for the ground loop is to be installed ver-

tically in boreholes like figure 3 is showing with the benefit of allowing cooling of the 

building in the summer and less space is needed on the yard. The primary circuit could 

also be installed into a lake or sea if the house was situated near either with the benefits 

of reduced installation costs. (Liu, Shukla and Zhang, 2014) 

 

The primary circuit in ground source heat pump system works the same regardless of 

how it is installed. The primary circuits circulating fluid absorbs heat from the ground. 

The heat is then extracted by the heat pump situated inside the house. The cooled circu-

lating fluid is re-injected into the ground where it absorbs heat again and completes the 

cycle. 

The heat gained from the primary circuit is then distributed along the secondary circuit 

inside the house to heating elements or floor heating where the heat is used. (Liu, 

Shukla and Zhang, 2014) 
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Figure 4 Showing the location of the bore holes (the white circles) at the Helsinki city centre station. (Loisa, and 
Pietarila , 2014) 

 

Figure 3 Design of a vertical heating and cooling system using a heat exchanger. (Johnston, Narsilio and Colls, 
2011) 

2.3.1 Ground source heat exchanger system calculations in the Helsinki 
city rail loop 

There have already been done preliminary calculations at Granlund Oy about the possi-

bility of conventional ground source heat pumps (GSHP) with about 200-250 meters 

deep bore holes. The calculations were done for every station separately with 25 bore 

holes situated at each station. The boreholes would be drilled in the service tunnel close 

by the stations with 15 meters between each other. (Loisa, and Pietarila ,2014) 
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The calculations used in the following input data: 

 The thermal conductivity of the bedrock was calculated to be 3.2 W / (mK) and 

a thermal capacity of 2500 kJ/(Km3) 

 Bore hole diameter 160 mm 

 The bedrock temperature of 8 ° C degrees 

 The ground loop circuit have heat carrier liquid with 25% ethanol and 75% wa-

ter. This liquid’s density is 948,5 kg/m3, Specific heat Cp is 3735 J/Kg K and the 

thermal conductivity is 0,493 W/(mK).  

 

These input data were inserted into the simulation and calculations program GLHEPRO 

that calculated the usable energy. The following table show the results from GLHEPRO 

as gained heating and cooling energy in MWh during 1 year at year 50 after the installa-

tion of the bore hole. Year 50 is chosen because the bedrock’s temperature decreases 

fast for some years until reaching a specific temperature and after that is the decrease in 

temperature much slower. Year 50 is optimal to be sure that the bedrock’s temperatures 

have had time to stabilize. 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Ground energy calculations results (Loisa, and Pietarila , 2014) 
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This research about tunnel lining technology in the Helsinki city rail loop will make use 

of the above result as a measure to compare the available energy gained by tunnel lin-

ing. 

 

2.4 Tunnel lining Technology 

The tunnel lining technology to gather geothermal energy is based on traditional geo-

thermal systems with the absorber loop horizontally installed in the ground. The only 

difference  with  tunnel  lining  technology to  get  geothermal  energy  is  that  the  absorber  

pipes are installed in the tunnel lining. Tunnel lining technology is based on two things. 

The first aspect is that the tunnel has to be deep enough beneath the ground to ensure 

that the bedrock is at a constant temperature around the year. This constant temperature 

is a source for cooling in the summer and heating in the winter. The second aspect is 

that the concrete used in the tunnel is an excellent heat exchanger because concrete has 

great thermal conductivity and thermal storage capacity.( Zhang, G.,2014) 

 

 

Figure 5 Schematic view of the tunnel heating system using geothermal energy. (Zhang, G.,2013) 
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Figure 4 is a schematic view of tunnel lining in Lichang tunnel in Inner Mongolia, Chi-

na. The figure shows all the main parts of tunnel lining. Like all geothermal energy sys-

tems does tunnel lining consist of a primary circuit, a secondary circuit and a heat 

pump. The primary circuit is the absorber pipes situated between the primary and sec-

ondary lining in the tunnel. These absorber pipes are connected to the heat pump form-

ing a closed loop. The loop contains a non-freezing fluid to prevent it from freezing in 

the winter. The fluid extracts geothermal energy in the loop and is heated from it. The 

heated fluid is then transported through a heat pump that further heat up the fluid. The 

warm fluid is then distributed through a distribution pipe to the secondary circuit con-

sisting of heating pipes situated between the secondary lining and insulation layer. 

(Zhang, G., 2013) 

 

 

 

 

 

 

 

 

 

 

 

 

A tunnel is a complicated structure and to make it easy to analyze tunnels we need to 

make some assumptions. The schematic two-dimensional view of tunnel that is present-

ed above in figure 6 helps us analyze tunnel lining. As seen here is the absorber pipe 

very small, barely 25 mm in diameter, compared with the tunnel structure.  Making the 

absorber pipe viable to make use of the geothermal energy. For easy calculations are the 

Figure 6 2-D schematic of tunnel lining. (Zhang, G.,2013) 
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primary lining and surrounding rock regarded as a homogenous layer with thermal abili-

ties not affected by the temperature. ( Zhang, G.,2014) 

 

2.5 Available geothermal energy  

By analysing bedrock map of the city of Helsinki (Helsinki city map service, 2015) the 

knowledge about what bedrock surrounds the Helsinki city rail loop is acquired. By 

knowing what kind of bedrock there are beneath Helsinki it is possible to calculate the 

available geothermal energy in the bedrock. The results of the analysis suggests that the 

Helsinki centre station’s and Hakaniemi station’s bedrock are mostly of granite and 

mica. The results suggests that Töölö station’s bedrock is a combination of granite, am-

phibolite and metavolcanic rocks. By using the bedrock research that Posiva Oy have 

provided to Granlund Oy the following thermal conductivities are given to each mate-

rial. Mica has about 3 W/(mK), granite has 3,3 W/(mK), amphibolite 2,7 W/(mK) and 

metavolcanic rocks have 2,7 W/(mK). To simplify the calculations an average thermal 

conductivity value was used. The average value was calculated from mica and granite, 

3,2 W/(mK). The heat capacity of the bedrock beneath Helsinki is 2500 kJ/(Km3).   (  

Loisa, and Pietarila, 2014) 

 

2.6 Regulations and laws 

There are many regulations that dictate where and how an installation of conventional 

ground source heat pumps (GSHP) in Finland can be made. Tunnel lining is such a new 

subject so it’s not mentioned in the regulations but Kari Äikäs said in his interview the 

4th February that the decision makers in Finland will use the same regulations with tun-

nel lining as with GSHPs. Some of the most relevant laws with geothermal energy are: 

land use and building act (132/1999), the water act (587/2011) and the environmental 

protection act (527/2014) 
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2.6.1 The land use and building act 132/1999 

‘’The objective of this act is to ensure that the use of land and water areas and building 

activities on them create preconditions for a favorable living environment and promote 

ecologically, economically, socially and culturally sustainable development’’ (Finlex 

132/1999, first chapter) 

The land use and building act (132/1999) tells that new building's heating system con-

struction is treated as part of the construction permit. According to § 125 in the land use 

and building act: The construction permit is required for construction of a building and 

in addition to a number of renovations and alterations of the building. The construction 

permit is also required in a buildings technical systems repair and modification work, 

which can contribute significantly to the building’s energy efficiency. 

 

According to § 126 in act 132/1999 an operation permit is needed if you want to change 

the heating system in an existing building. The same applies when borehole heat ex-

changers are wanted as an additional source of heat. § 166 (132/1999) instructs the 

building owners to ensure the building’s condition and including the energy supply sys-

tem shall be kept in such condition that they meet the energy performance require-

ments.( Finlex 132/1999, 2015) 

2.6.2 The water act 587/2011 

“This law aims to:1) to promote, organize and coordinate the resources and the aquatic 

environment in use so that it is economically and environmentally sustainable; 2) to 

prevent and reduce negative impacts on the groundwater; and 3) to improve water re-

sources and water environment.” (Finlex 587/2011, §1) 

If the project is in area where groundwater is located then the project need authorization 

of the regional administration according to the water act 587/2011. The consequences of 

the project can alter the groundwater quality, quantity or substantially reduce important 

water supply or otherwise cause damage or harm to water extraction. Therefore there 

have to be thorough investigations on what effects the projects has on the groundwater 

according to the water act § 3:2. (Finlex 587/2011, 2015) 
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2.6.3 The environmental protection act 527/2014 

“This law is intended to: 1) to prevent environmental pollution and danger, to prevent 

and reduce emissions, and prevent damage to the environment; 2) to ensure a healthy 

and comfortable, and ecologically sustainable and diverse environment, support sustain-

able development; 3) to promote the sustainable use of resources and to reduce the 

amount of waste and its harmfulness, and to prevent the harmful effects of waste; 4) to 

improve the polluting activities in such a way that they pollute less; together with 5) en-

ables citizens to influence environmental decision-making” ( Finlex 527/2014, §1) 

 

The environmental act has big impacts on energy efficient buildings and promotes the 

use of renewable energy. But the use of all the energy sources has to be well controlled 

and no harm to environmental is allowed. Geothermal energy usage is affected by § 17 

that states that groundwater pollution is prohibited. Subjects or energy cannot be lead to 

a place or handled in such a way that: 

1. An important water supply or otherwise suitable groundwater may become haz-

ardous to health or its quality otherwise decreased. 

2. Another property’s groundwater may become hazardous to health or unfit for the 

purpose for which it could be used. (Finlex 527/2014, 2015) 

2.6.4 Summary of laws affecting geothermal energy 

The above stated laws are the most relevant laws affecting geothermal energy: land use 

and building act (132/1999), the water act (587/2011) and the environmental protection 

act (527/2014). With the addition of the chemicals act 599/2013. The chemicals act also 

affects geothermal energy usage and tunnel lining by stating in § 15 that ground loop 

circuit fluid have to be handled with the necessary care and respect to prevent environ-

mental impact. The common denominators are energy efficiency and environmental 

care, all the laws and regulations that affects geothermal energy promotes the use of re-

newable energy. But the laws and acts states that there have to be knowledge with each 

project so the environment doesn’t suffer from any project. The installation has to be 

right and the service of the geothermal energy equipment has to be good. (Finlex, 2015) 
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The city of Helsinki also has some restrictions with the usage of geothermal energy. 

There  are  reservations  for  upcoming projects  beneath  the  ground of  Helsinki  city  that  

prevents construction of geothermal borehole heat exchangers in most parts of Helsinki. 

But the tunnel lining in the Helsinki city loop isn’t affected by this restriction by being 

about 30 meters beneath the ground already. Helsinki city has also identified certain is-

sues that need to be taken into account in when drilling the thermal wells. The two drill 

holes need a spacing of at least 15 meters and the distance from the parcel’s boundary 

need to be at least 7.5 meters. If the borehole is installed closer than 7.5 meters to the 

neighboring parcel is the consent of the neighbor needed. (Äikäs. K, 2015). 

 

 

3 FINANCIAL ASPECTS 

3.1 General investment theory 

An investment includes an initial investment cost which in turn will generate a series of 

positive cash flows during the life of the investment. The positive cash flows, together 

with the salvage value will in turn make the investment profitable for the investor. The 

long-term efforts that investment involves forms the basis for a company to be able to 

operate and develop their business. (Ljung and Högberg, 1999) 

 

3.2 Net present value, NPV 

The net present value is the difference between the present value of cash inflows and the 

present value of cash outflows at the moment of the initial investment. This make it pos-

sible to compare the projects all income and costs at the same time. The conversion of 

the cash inflows and cash outflows is done with the help of the discount rate that is de-

preciation of all future inflows and outflows. With the net present value, NPV, calcula-

tions is the present value on the investment’s all payment consequences added up to 

give a present value. If this present value is more than zero is the investment profitable 

to make, the higher value the better. (Ljung and Högberg, 1999) 
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The decision rules of the NPV method are in short the following: 

 

 If the calculated present value exceeds zero is the investment profitable to make. 

The present value indicate the value that future positive and negative cash flows 

are worth today. 

 At a situation ranking different investments is the investment with the highest 

present value selected. Therefore is desirable with as high as possible present 

value. 

 

If the present value in a project was to be negative means it that it is better to invest in 

the alternative that has a yield like the discount rate that was used in the calculations. 

This means that the precision of the calculation is highly dependent on what discount 

rate is used. 

The definition of NPV calculations is the following:  

 

 

 

  : The time of the cash flow 

 i : The discount rate  

  : The net cash flow, at time  . 

 

3.3 Life cycle cost, LCC 

 

The life cycle cost for a building project is the total cost of project throughout the pro-

ject’s lifetime, from the planning until when the building need to be demolished. The 

Life cycle cost calculations promote bigger investments in a project if the money and 

energy are saved during the lifetime of the building. (Kibert, 2008) 

 

 

The key components when to calculate a project’s LCC are: 
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 Energy costs during the life of the building. 

 Investment costs for the building. 

 Maintenance costs for the building during its life. 

 Lifetime of the building 

 Reinvestment to keep the building at same standard during its lifetime. 

 Discount rate and inflation 

 

To calculate the life cycle cost for a project could the following formula be used: 

 

LCCtot = investment cost + LCCenergy + LCCmaintenance 

LCCenergy = annual energy cost • present value factor 

LCCmaintenance = annual maintenance cost • present value factor 

 

A table of present value factor (Cp/Cn) is included in the appendices. ( Levin, Lilliehorn 

and Sandesten, 2008) 

 

 

4 RESULTS 

 

4.1 Background data for calculations 

The Helsinki city loop tunnel part is nearly 6 kilometers. Of these 6 kilometers of tunnel 

do 700 meters at each opening need to be extra insulated to not freeze in the winter and 

thus are not suitable for tunnel lining making only 4,6 kilometres of usable length. The 

absorber pipes used in tunnel lining won’t be installed at the stations because it would 

be hard to fix them if they got any problems during their lifetime. Each station is about 

300 metres long making with 3 stations 900 metres more unusable for tunnel lining. The 

total length usable for absorber pipes in a tunnels is then 3700 metres. With 2 tunnels 

going next to each other with a usable length of 3700 metres each making 7400 metres 
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of usable tunnel for tunnel lining. (Finnish Transport Agency, 2015) The problem with 

installing tunnel lining as above suggested is that the train traffic have to be stopped 

when any maintenance is to be done to the absorber pipes. A better place for tunnel lin-

ing in the Helsinki city rail loop is the service/rescue tunnel that run next to the train 

tunnels. The length of the service tunnel is about 6 kilometres of usable length. The 

benefit of using the service tunnel for the tunnel lining is that there can be done mainte-

nance 24/7 without any consequences on the train traffic. 

 

To be able to calculate the total square metre available for tunnel lining for each metre 

in the service tunnel was the upcoming figure 7 used. The dimensions in figure 7 are the 

most up to date dimension figures when this thesis was made. The wall in the tunnel is 4 

metre high up to the point that the arch starts and the total height of the tunnel is about 

5,4 metre. To be able to calculate the total area was Pythagorean Theorem used. 

+ =  

Where a in this formula is the difference between total height in the tunnel of 5,4 meter 

and the height of the arch of 1,4 meter. 

= 5,4 4,0 = 1,4  

b in this formula is the width of half of the tunnel, 4,05 meter. 

When inserting these numbers into the Pythagorean Theorem and solve it with focus on 

c was the following data acquired: 

= +  

= (1,4 ) + (4,05 )  

= 4,29  

 

The total length of half of the arch, c, and the height up to the arch, 4,0m, is: 

    = 4,29 + 4 = 8,29  

        = 8,29 • 2 = 16,6  

 

This means that the total area available for tunnel lining in 1 meter of the tunnel is 

16,6m2. 
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The service tunnel’s inner surface is about 16,6m2 when taking  a  tunnel  cross-section  

and disregarding the tunnel floor. The minimum pipe distance from each other should 

be 100 cm to avoid problems with taking away too much energy from the bedrock. The 

primary layer is 0,3 meter. Making it possible to install 16 absorber pipes in the tunnel’s 

cross-section. The absorber pipes would be installed in normal tunnel lining tunnels like 

figure 7 shows along the tunnel. There could be a risk for the bedrock to freeze if addi-

tional absorber pipes are installed with the same flowrate that is used in this research. 

(Baujard and Kohl, 2010) 

 

 

Figure 7 Cross-section of the service tunnel shows how the tunnel lining pipes could be installed in the service tunnel 
at Helsinki city rail loop. Original picture from Granlund Oy then modified by Niklas Wiik. 

 

To prevent too long absorber pipe loops and make the maintenance easier of the tunnels 

are the maximal length of every absorber pipe loop 400 meters. With 16 absorber loops 

on each tunnel meters will one loop be: 

400
16 = 25  
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 Meaning that one absorber loop is 25 meters long in the tunnel. With the usable tunnel 

length of 6000 meters in total there will be: 
6000

25 = 240     

 

The absorber pipe loops will be connected to a distribution pipes situated in an insulated 

ditch that is beside the railway in the tunnel. With these distribution pipes can every ab-

sorber pipe loop be individually be turned on and off. The individual absorber loops can 

also be adjusted for heating or cooling need.  

The used heat carrier in the absorber pipes will be 25% ethanol and 75% water liquid. 

The liquid have a specific heat Cp of 3735 J/Kg K, a liquid viscosity of 0,0012 

kg/(s·m),same as Pa·s, a density  of 948,5 kg/m3 and a thermal conductivity of 0,493 

W/m.K. These values were calculated using the properties of ethanol and water at 20 

degrees Celsius. The absorber pipes will be made of polyethylene with an outer diame-

ter of 25 mm and a wall thickness of 2.4mm). Polyethylene has an thermal conductivity 

of 0,38 W/m.K.(John E. Patterson and Ronald J. Miers, 2010)  

 

The liquid has a flowrate of 1 m3/h, in m3/s: 

1
3600 = 0,000278  

This is 0,000278m3/s and the pipe has an inner diameter of 22,6 mm (radius of 11,3 

mm) making the flowrate: 

(0,000278 )
( • (0,0113 ) ) = 0,693  

 

 The thermal resistance, R-value, (m.K/W) of the absorber pipe is the heat thermal resis-

tance between the circulating fluid in a certain absorber pipe and surrounding bedrock. 

Rsr consists of the convective resistance of the fluid, thermal resistance of the fluid/pipe 

and contact resistance of pipe and primary layer/soil: 

  

= + +  

 

The Rpipe part is calculated by the following formula: 
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= 2  

Where re is the outer radius if the pipe in meter, ri is the inner radius of the pipe in meter 

and k is the thermal conductivity of the pipe in W/m.K 

 

=
0,0025

0,00226

2 • 0,38 .
 

= 0,042
.

 

 

The  Rsoil part is calculated by the formula below. re is here 4,05m(width of the tun-

nel)+0,3m(thickness of the primary layer of the tunnel), ri is 4,05m (width of the tunnel) 

and soil is the average thermal conductivity of the soil of 3,2 W/m.K 

 

= 2  

=
4,35
4,05

2 • 3,2 .
 

= 0,00355
.

 

 

The Rf part is calculated by the following formulas: 

 

=
1

+
1

2 ln ( ) 

=
0,023 , ,

 

=  

=  
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Where the inner diameter of pipe is dpi,  the  outer  diameter  of  pipe  is  dpo, the thermal 

conductivity of the absorber pipe’s wall is p, the thermal conductivity of the liquid is f, 

the flow rate of the liquid is v, the viscosity coefficient of liquid is , the density of liq-

uid is f and the specific heat of liquid is cf. 

 

The equation is solved by starting with solving Re and Pr then inserting them into the 

formula. 

=
0,0012 • 948,5 • 3735 .  

0,493 .
 

= 8623,1  

 

=  

=  
0,693 • 0,00226

0,0012
 

= 1,305  

 

=
0,023 , ,

 

=
0,023 × (1,305 ) , • (8623,1 ) , • 0,493 .

0,00226  

 

= 232,7  

=
1

• 0,00226 • 232,7
+

1

2 • 0,38 W
.

ln (
0,0025

0,00226 ) 

=
1

1,65 .
+

1

2,387 W
.

• 0,10 

= 0,64
.
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When all parts of Rsr is calculated it’s a simple addition to add them all together: 

= + +  

 

= 0,042
.

+ 0,64
.

+ 0,00355
.

 

0,685
.

 

 

The service tunnel’s bedrocks average temperature and the tunnel’s average air tem-

perature had to be calculated by yearly mean temperatures and earlier studies. The re-

sults would be even more accurate if field testes on the tunnel’s temperatures could have 

been made. The average temperature of the bedrock used in this thesis’ calculations is 

8°C. This average value is acquired from the preliminary calculations about the possi-

bility of conventional ground source heat pumps in the Helsinki city rail loop done by 

Loisa, and Pietarila in 2014. 

 

The average air temperature in the service tunnel was calculated by using the average 

coldest and warmest months for Helsinki, these were acquired from the Finnish mete-

orological institute. The average temperature in July in Helsinki is +17,8 °C. The cold-

est month February is in average -4,7°C. Thomas Schlosser et al have made in their re-

search “Potenzial der Tunnelbaustrecke des Bahnprojektes Stuttgart 21 zur Wärme- und 

Kältenutzung” an interesting formula on pages 33-35 about the air temperature in tun-

nels. They state that the air temperature in tunnels is decided by the outside temperature 

and  the  length  from  the  tunnel  opening.  Their  formulas  for  the  air  temperature  in  the  

winter and summer are the following: 

 Air temperature winter formula: 

, , =  , + (1 ( )) 

 

 Air temperature summer formula: 

, , = (  , ) + ( )  

 



39 

 

Where L is the distance from the service tunnel opening in meters. a,b are coefficients 

Thomas Schlosser et al derived from their test data. max is the maximum temperature 

difference between outside air and the air in the tunnel. By combining these formulas 

above for the air temperature in the service tunnel with the average temperatures in Hel-

sinki was the following figure 8 made. 

 

Figure 8 showing the air temperature inside the Helsinki city railway tunnel. The distance is from the service tunnel’s 
opening. The blue line is the average temperature in the winter while the red line is the average temperature in the 
summer 

As seen from figure 8 is the yearly variation of the tunnel temperature at 700meters 

from the service tunnel opening in the interval of +4°C in the winter to +11°C in the 

summer. The variation decreases when going into the tunnel and by 1500 meters is the 

average temperature at winter +6°C and at summer +8°C. To simplify the energy calcu-

lations for the Helsinki city railway loop service tunnel is an average value of the sea-

sonal variations used. This value is +7°C for the tunnel air temperature, this value is the 

average value at all places of the service tunnel.  

 

The total thermal resistance between the circulating fluid in a certain absorber pipe and 

surrounding air: 

= R + +  

 

 

The thermal resistance, R-value, (m.K/W) between the circulating fluid in a certain ab-

sorber pipe and surrounding air. 
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= 2  

Where re is the outer radius if the pipe in meter, ri is the inner radius of the pipe in meter 

and k is the thermal conductivity of the pipe in W/m.K 

 

=
0,0025

0,00226

2 • 0,38 .
 

= 0,042
.

 

 

As an additional parameter on the air side of the heat transfer coefficient is . This value 

was determined based on typical values used in building with free convection on walls. 

Here in this research is the inverse of  used, R  the thermal resistance. Since the ther-

mal  resistance  is  dependent  on  the  heat  flow direction  and  the  position  of  the  surface  

here was a mean of R  = 0.12 m.°C/ W assumed for the examined. 

 

The Rf part is calculated by the following formulas: 

 

=
1

+
1

2 ln ( ) 

=
0,023 , ,

 

=  

=  

Where the inner diameter of pipe is dpi,  the  outer  diameter  of  pipe  is  dpo, the thermal 

conductivity of the absorber pipe’s wall is p, the thermal conductivity of the liquid is f, 

the flow rate of the liquid is v, the viscosity coefficient of liquid is , the density of liq-

uid is f and the specific heat of liquid is cf. 

 

The equation is solved by starting with solving Re and Pr then inserting them into the 

formula. 
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=
0,0012 • 948,5 • 3735 .  

0,493 .
 

= 8623,1  

 

=  

=  
0,693 • 0,00226

0,0012
 

= 1,305  

 

=
0,023 , ,

 

=
0,023 × (1,305 ) , • (8623,1 ) , • 0,493 .

0,00226  

 

= 232,7  

=
1

• 0,00226 • 232,7
+

1

2 • 0,38 W
.

ln (
0,0025

0,00226 ) 

=
1

1,65 .
+

1

2,387 W
.

• 0,10 

= 0,64
.

 

 

 

The total thermal resistance between the circulating fluid in a certain absorber pipe and 

surrounding air is then: 

 

= R + +  
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= 0.12 
m. °C

+ 0,64
.

+ 0,042
. °C

 

= 0,802
. °C

 

 

4.2 Energy calculations for heat exchangers 

 

The simple formula for heat exchange of the heat exchangers’ absorber tubes are the 

following equation. (Eq.1):  

= ( )     (1) 

Where q is the heat exchange of the absorber tubes in W:  is the density of the liquid: 

 is the mass flow rate in m3/s: cp is the specific heat of the liquid in J/(kg°C): Tout is the 

temperature of outlet water in °C : Tin is the temperature of inlet water in °C. To get the 

heat exchange per meter, q, we use the following formula. (Eq.2.) 

 =         (2) 

Q is the heat exchange rate per meter in W/m: H is how deep the absorber pipes are bur-

ied in m. 

 

To be able to use the formula above and expand on it are the explanation of the various 

impacting things needed. Because the heat exchange in W/m from tunnel lining is de-

pendent on many things:  

1. The first thing is mentioned earlier and that is the different pipe distances used in 

tunnel lining. Zhang et al did in the Linchang tunnel experimental with pipe dis-

tances on 50cm and 100cm. They concluded that the pipes’ distance from each 

other will have a significant effect on the heat exchange rate of the heat ex-

change pipes. The bigger the pipe distance is, the faster the ground temperature 

recovery from extracting energy from it. ( Zhang, G.,2014) 

2. The inlet temperature of the absorber loop’s heat carrier liquid. The heat ex-

change rate increase as a linear variation as the inlet temperature of the heat car-

rier liquid increases. With higher temperatures the larger the heat exchange is. 
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By using Eq. 1 with the heat carrier liquid we get that the heat carrier liquid’s 

temperature has a great significance on the heat transfer performance. 

3. The heat exchange rate changes with different flow rates of the heat carrier. 

Zhang et al observed that the heat exchange rate raised exponentially as the flow 

rate increased. But with higher flow rates the circulation pump has to work with 

larger circulation resistance. This lead eventually to a bigger circulation pump 

that use more electricity. Therefore, should the flow rate not only be chosen by 

efficiency but also by economic factors. ( Zhang, G.,2014) 

  

As mentioned above is the heat transfer in the tunnel lining’s absorber pipes highly de-

pendent of the flow rate of the circulating liquid and the inlet/outlet temperatures of the 

liquid. The usable fluid in the system is known, the fluid would be 25% ethanol and 

75% water to prevent freezing. The thermodynamics for this fluid was explained in 

chapter 4.1. To be able to use equation 1 field testes in the tunnel should be performed 

to acquire the optimum flow rate, inlet temperature and outlet temperature in the Hel-

sinki city railway loop. These field-tests haven’t been made yet therefore does this the-

sis disregard the possibility to get optimum flow rates and temperatures for the circulat-

ing fluid in the absorber pipes. The above equation 1 shows that the heat exchange rate 

increases for heat exchangers for every increase in the inlet temperature. Knowing the 

importance of the liquid temperature it’s important to consider the absorber pipes fluids’ 

temperature when designing a tunnel lining system. 

 

4.3 Energy calculations for tunnel lining 

 

To be able to understand the full heat exchange process of tunnel lining ground heat ex-

changers we need to go study figure 9 where it is shown the origin of the energy in tun-

nel lining.  
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By studying figure 9, it is seen that the heat exchange of the tunnel lining ground heat 

exchangers consist of 2 different parts. One part of the energy derives from the tunnel’s 

air and the other part comes from the bedrock surrounding the tunnel. 

, ( ) = , ( ) ( )
+ , ( ) ( )

+ , ( ) , ( )
,

 

 

The above equation describe the heat exchanges in the tunnel. Qa,l(t) is the total heat 

exchange rate of the absorber pipe a in watt. Ta,l(t) is the absorber pipe’s heat carrier 

fluid temperature in °C. Tsr(t) is the temperature of the surrounding bedrock in °C. Tair(t) 

is the air temperature in the tunnel in °C. Rsr is the heat thermal resistance between the 

absorber pipe’s circulating heat carrier fluid and the surrounding bedrock in m2°C/W. 

Rair is the heat thermal resistance between the absorber pipe’s circulating heat carrier 

fluid and the air in the tunnel in m°C/W. Rab,p is the heat thermal resistance between 2 

adjacent absorber pipes a and b in m°C/W. 

Figure 9 shows the principle from where ground heat exchangers get their energy. 
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 Because of the short longitudinal length of each absorber pipe, 25 meters, is the 

temperature difference neglectable between absorber pipe a and b. The equation can 

therefore be simplified by leaving out the final part of the equation and then is the equa-

tion for energy gained from tunnel lining the following: 

       

, ( ) = , ( ) ( )
+ , ( ) ( )

 

The data used in the equation to acquire data on possible energy gain from tunnel lining 

is the following. Tair is in this case +7°C, this proven to be the average air temperature 

in the tunnel. Tsr is +8°C, this is the bedrock’s temperature beneath Helsinki acquired 

from Loisa and Pietarila research about GSHPs in the Helsinki city rail loop. Rair is a 

value that was determined based on typical values used in building with free convection 

on walls. Since the thermal resistance is dependent on the heat flow direction and the 

position of the surface here was a mean of Rair = 0.802 m°C/ W assumed for the exam-

ined. Rsr is in this case with polyethylene absorber pipes 0,685 m°C/W. Ta,l is the most 

important factor in calculating the available energy in tunnel lining, as proven earlier 

with equation 1 is the heat exchange directly comparable with temperature of the ab-

sorber pipe’s liquid. As important as Ta,l is as hard is it to decide a good heat carrier liq-

uid temperature without field-tests. Zhang et al (2014) did in the Linchang tunnel per-

form their research with various temperature on the heat carrier liquid. Their most 

common temperature was 20°C, this thesis’ research will us the same 20°C for Ta,l in 

the lack of field-tests and tunnel lining technology data from Finland. 

Ta,l=20°C  Tsr= 8°C  Tair= 7°C 

0,685
.

 

= 0,802
. °C

 

    

, =
20°C 8°C

0,685  °C
W  

+
20°C 7°C

0,802  °C
W

= 
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, =
12°C

0,685  °C
W  

+
13°C

0,802  °C
W

= 

, = 17,5 + 16,25 = 

, 33,75  

 

This means that a meter of tunnel generates about 33,75 watt using tunnel lining tech-

nology with 20°C in heat carrier temperature. As seen in the calculations does the big-

ger part of energy originate from the bedrock and a smaller part of the energy derives 

from the tunnel’s air.  

 

If all of the total available length of 6000 meters are used for tunnel lining, then by us-

ing earlier calculations that 240 absorber loops fits into the tunnel each with a length of 

400 m are the following calculations calculated: 

    = 240  • 400  

. = 96000m 

 The total usable energy with tunnel lining would then be during 1 hour: 

= 33,75 • 96000 • 1  

3240 = 3,24  

Daily = 3240 • 24  

  77,76  
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The table above shows the available energy each month that could be taken from the 

bedrock in MWh with 20°C in heat carrier temperature. The yearly available energy in 

GWh from tunnel lining in Helsinki city rail loop is 28,3 GWh. About 3,24 MW of ef-

fect each hour is a lot and these calculations are based on optimum solutions and tem-

peratures with no regards on the cooling of the bedrock. In the reality need the flow rate 

to be smaller and therefore is the available energy for tunnel lining less. 

But as mentioned earlier if the heat carrier liquid’s temperature would be 15°C instead 

of 20°C would the usable energy be decreased greatly. This is shown over the following 

calculations: 

Ta,l=15°C  Tsr= 8°C  Tair= 7°C 

0,685
.

 

Table 3 Available energy from tunnel lining in Helsinki city rail loop in MWh with 20°C in heat 
carrier temperature. 
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= 0,802
. °C

 

   

  

, =
15°C 8°C

0,685  °C
W  

+
15°C 7°C

0,802  °C
W

= 

  

, =
7°C

0,685  °C
W  

+
8°C

0,802  °C
W

= 

, = 10,2 + 9,98 = 

, 20,18  

 

This means that a meter of tunnel generates about 20,18 watt using tunnel lining tech-

nology with 15°C in heat carrier temperature. As seen in the calculations does the big-

ger part of energy originate from the bedrock and a smaller part of the energy derives 

from the air.  

 

If all of the total available length of 6000 meters are used for tunnel lining, then by us-

ing earlier calculations that 240 absorber loops fits into the tunnel each with a length of 

400 m are the following calculations calculated: 

    = 240  • 400  

. = 96000m 

 The total usable energy with tunnel lining would then be during 1 hour: 

= 20,18 • 96000  

1937 = 1,94  
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Daily = 1937 • 24  

 

 46,49  

 

 

 

 

 

 

 

 

 

 

 

The table above shows the available energy each month that could be taken from the 

bedrock in MWh with 15°C in heat carrier temperature. The yearly available energy in 

GWh from tunnel lining in Helsinki city rail loop is about 16,9 GWh. About 1,94 MW 

of effect each hour is a lot and these calculations are based on optimum solutions and 

temperatures with no regards on the cooling of the bedrock. In the reality need the flow 

rate to be smaller and therefore is the available energy for tunnel lining less. 

But as mentioned earlier if the heat carrier liquid’s temperature would be 10°C instead 

of 20°C would the usable energy be decreased even more. This is shown over the fol-

lowing calculations to provide more context to the heat carrier’s temperatures signifi-

cance: 

Table 4 Available energy from tunnel lining in Helsinki city rail loop in MWh with 15°C in 
heat carrier temperature. 
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Ta,l=10°C  Tsr= 8°C  Tair= 7°C 

0,685
.

 

= 0,802
. °C

 

   

  

, =
10°C 8°C

0,685  °C
W  

+
10°C 7°C

0,802  °C
W

= 

  

, =
2°C

0,685  °C
W  

+
3°C

0,802  °C
W

= 

, = 2,92 + 3,74 = 

, 6,66  

 

This means that a meter of tunnel gives about 6,66 watt using tunnel lining technology 

with 10°C in heat carrier temperature. As seen in the calculations have the order from 

where the biggest part of energy changed in these low temperatures. Now does the big-

ger part of energy originate from the air and a smaller part of the energy derives from 

the bedrock. This can be explained by the thermal resistances and different temperatures 

at the bedrock and in the air. 

 

If all of the total available length of 6000 meters are used for tunnel lining, then by us-

ing earlier calculations that 240 absorber loops fits into the tunnel each with a length of 

400 m are the following calculations calculated: 

    = 240  • 400  

. = 96000m 
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 The total usable energy with tunnel lining would then be during 1 hour: 

= 6,66 • 96000  

639,36 = 0,64  

Daily = 639,4 • 24  

  15,3  

 

 

 

 

 

 

 

 

 

 

 

The table above shows the available energy each month that could be taken from the 

bedrock in MWh with 10°C in heat carrier temperature. The yearly available energy in 

GWh from tunnel lining in Helsinki city rail loop is about 5,6 GWh. About 0,64MW of 

effect each hour is a lot at these temperatures and these calculations are based on opti-

mum solutions and temperatures with no regards on the cooling of the bedrock. In the 

reality need the flow rate to be smaller and therefore is the available energy for tunnel 

lining less. 

 

Table 5 Available energy from tunnel lining in Helsinki city rail loop in MWh with 10°C in heat 
carrier temperature. 
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4.4 Profitability calculations 

Due to the lack of projects with tunnel lining in Finland and outside Finland are no di-

rect cost figures available for tunnel lining technology. L. Loisa and E. Pietarila have 

made preliminary cost analyses about conventional geothermal usage with borehole heat 

exchangers and district heating in the Helsinki city railway loop in their report “Pisara-

radan Asemat Geoenergiaselvitys”.  Loisa and Pietarila do state that their cost figures 

need to be updated before making any bigger decision and therefore do this thesis state 

the same that the exact costs and energy need are needed before making a final decision. 

The cost estimate for conventional geothermal usage is approximately 1500€/kW. This 

cost include the drilling, circulation pumps, pipes and installation. Tunnel lining is a 

cheaper method than geothermal borehole heat exchangers because no expensive drill-

ing is needed. Instead are the absorber pipes attached to the primary layer with fasteners 

that are cheap to made and the installation of the absorber pipes is easy and fast during 

the construction of the tunnel. The drilling of borehole heat exchangers are on the 

ground about 30-35€/m and probably more expensive inside a tunnel with the problem 

of getting the drilling machine there. The Swedish energy department 

(Energimyndigheten, 2014) have stated that 30-50W/m can be extracted from a bore-

hole heat exchanger the number is dependent on the bedrock and other factors. The 

simple formula below with 35€/m costs for drilling and 45W/m gained energy shows 

the costs of drilling/kW: 

 

 

.  =
1000

45
• 35

€
 

.  = 778€/  

.
 

= 1500€/  

   =
1500€ 778€

= 722€/  

 

As seen from the formula above is the drilling cost a little over half of the total price of 

geothermal borehole heat exchangers with ground source heat exchangers. This cost 

doesn’t exist in tunnel lining technology instead there is a bigger installation cost of the 
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absorber pipes when they have to be fastened to the tunnel’s primary layer. There are no 

calculations published about how much the installation work of tunnel lining could cost 

so this research assumes a value of 200€/m in the tunnel. The 200€/m represents the ab-

sorber pipe’s cost and couple of work hours for 2 installers to do the installation. A 

polyethylene absorber pipe cost about 500-1000€ for 400m (1 absorber loop) and 240 

loops are situated in the tunnel. Further there have to be installed the distribution pipe in 

an insulated ditch, this work is done much faster than the fastening of the absorber pipe 

but the pipes are more expensive so a cost of 100€/m could be expected at least. This 

cost include the relatively big distribution pipes and the installation of these. Further-

more are circulations pumps needed, the exact number is dependent how the system will 

be used. The heating and cooling need separate circulations pumps so the systems can 

work simultaneously. Further studies are needed to establish the pressure in the distribu-

tion pipes and adjust the number of pumps needed for the distribution pipes accordingly. 

Every of the 240 absorber loops need a heat exchanger to make the system stable and 

adjustable. 2 loops can be connected to the same heat exchanger to reduce the number 

of heat exchangers. There would then be a need of 120 heat exchangers that can handle 

2 absorber loops of 400m. For these profitability calculations was the geothermal heat 

exchanger Nibe F1135 15 Kw (Nibe, 2015) chosen because it can easily handle 2 ab-

sorber loops and the needed calculated flowrate for the absorber loops. The price in-

stalled for each one of these would at least be 8000€. As mentioned earlier in this thesis 

can’t installed in only 100mm shotcrete that will be installed in the Helsinki city rail 

loop, another 100 mm have to be at least added upon this and Kari Äikäs said that it will 

cost about 35€/m2 at the moment for the shotcrete. This is a cost that will be at least 

doubled for the parts where tunnel lining technology will be installed this concrete cost 

is another cost that need to be considered when a more exact calculation about tunnel 

lining is made. But it won’t be included in the following cost calculations because of the 

simplicity of the calculations.(Äikäs,K., 2015) 

 

200€/m+ 100€/m makes 300€/m in the tunnel for cost in tunnel lining with 6000 meter 

tunnel then adding 120 Nibe heat exchangers making the total costs with 20°C heat car-

rier liquid: 
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= 300
€

• 6000 + 120 • 8000€ = 2 760 000€ 

  °    = 33,75 • 96000  

  °    3240  

  =
2 760 000€
3240 852

€
 

The costs/ KW with 15°C heat carrier liquid is: 

  °    = 20,18 • 96000  

  °    1937  

  =
2 760 000€
1937 1425

€
 

The costs/ KW with 10°C heat carrier liquid is: 

  °    = 6,66 • 96000  

  °    639  

  =
2 760 000€

639 4319
€

 

As seen from the calculations above is the cost per KW highly dependent on the gained 

energy from tunnel lining. The tunnel lining is like earlier in this thesis proven to be de-

pendent on the heat carrier liquid’s temperature. These calculations are based on rough 

estimations and more exact calculations have to be made before any decision is made 

about tunnel lining. But as said earlier will the shotcrete cost be added to this cost/KW. 

The tunnel will be fully renewed every 30th year with no difference what energy system 

is installed. This means that the need of calculating the NPV for tunnel lining is irrele-

vant. The life cycle cost (LCC) could be calculated for the project with the following 

formula: 
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LCCtot = investment cost + LCCenergy + LCCmaintenance 

LCCenergy = annual energy cost • present value factor 

LCCmaintenance = annual maintenance cost • present value factor 

 

The problem with calculating the LCC with no reliable investment cost or maintenance 

cost is that it gives a false picture of tunnel lining. The LCC represents the life cycle 

cost of the project and there is no practical need of a LCC that needs to be recalculated 

before it can be used. Instead does this thesis focus on the cost/KW seemingly as this is 

the most accurate measure point at this time before any project with tunnel lining has 

started. 

 

5 DISCUSSION AND ANALYSE 

As seen in the profitability chapter is tunnel lining in this thesis more profitable than 

conventional geothermal usage with borehole heat exchangers as long as the heat carrier 

liquid’s temperature is at least 15°C. 15°C of heat carrier temperature is not impossible 

in the Helsinki city railroad loop so the author of this thesis thinks that further research-

es should be made about installing tunnel lining. With these rough cost and energy es-

timations are tunnel lining about 40%, with 20°C of heat carrier temperature, cheaper 

than conventional geothermal usage. Although that these results in this thesis only are 

indicative but they could work in discussions about tunnel lining among the decision 

makers if the Helsinki city rail loop will be built if tunnel lining could be the way to go.  

  

In the energy calculations in this thesis is no energy for cooling calculated due to uncer-

tainty in the total cooling need for the Helsinki city railway loop. Although with 240 

absorber loops in the tunnels would the simple solution be to have about half of the 

loops to produce cooling and the other half heating. The following table shows the en-

ergy needed for the 3 stations (Hakaniemi, Töölö and Helsinki city centre) and the 

gained energy from tunnel lining technology with optimal conditions with 20°C of heat 

carrier temperature. 
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As can be seen from table 6 is not the tunnel’s heating included in the needed energy 

table because there have not yet been done a research how much energy is needed to 

heat the tunnel. But the needed energy for the tunnel will be less than for 1 station be-

cause the temperature in the tunnel can be much lower. When comparing the numbers in 

table 6 can it be found that the heating and cooling needed for the Helsinki city railway 

loop with stations could be produced within the tunnel and therefore would no energy 

be needed to buy from the outside. This argument could be a benefit for tunnel lining 

technology in the Helsinki city railway loop with all the talks’ nowadays about renew-

able energy and self-sufficiency. Although the energy gained from tunnel lining will be 

less than what this thesis shows because the thesis has used optimal solutions and rough 

estimations that need to be carefully recalculated before any decision is to be made 

about tunnel lining. 

 

Table 6 Comparison between the available energy from tunnel lining and the energy needed 
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5.1 Answering the research questions 

In the start of this thesis was 3 research scopes presented. By interpreting the research’s 

results are the following results gained. The first 2 research scopes can be answered at 

the same time as they were: Can the geothermal energy be utilized for the heating and 

cooling of the Helsinki city rail loop? And can the usage of geothermal energy acquired 

from the tunnel be economically motivated?  Loisa and Pietarila described in their re-

port “Pisaradan Asemat Geoenergiaselvitys” about the possibility of installing conven-

tional geothermal borehole heat exchangers drilled into the floor of the tunnel. They 

pointed out in their report that it is possible and highly recommendable to install geo-

thermal borehole heat exchangers into the Helsinki city rail loop. With a positive eco-

nomic comparing to district heating in less than 20 years. The same positive result about 

the usage of geothermal energy usage did this thesis about tunnel lining technology 

conclude. The usage of tunnel lining can’t be financially validated yet as the cost figures 

yet only are rough estimations but the indications are that it could be even more cost 

effective than traditional geothermal usage. The last research scope was: Can the geo-

thermal energy be utilized in any other way than through conventional ground source 

heat pumps with bore holes, for example by thermally activating the concrete structure 

by placing absorber pipes in the tunnel lining? This research scope has already been an-

swered here and the answer is yes geothermal energy can be utilized by using tunnel 

lining. The thing to take from this research is that geothermal energy can and should be 

utilized in one form or another for the heating and cooling of the Helsinki city rail loop. 

 

5.2 Approach of the thesis 

This thesis about geothermal energy for utilization within tunnels, case study: Helsinki 

city railway loop was about enlightening the decision makers and the people about the 

possibility of utilizing the tunnel lining technology. The fact that there have been so few 

projects utilizing tunnel lining worldwide and no project in Finland yet did the author 

find that people needed to know about the possibilities of tunnel lining. This thesis has 

strictly been theoretical as no field testes have been made as the tunnel doesn’t exist yet. 

This approach of the subject was inspired by the company Granlund Oy as they ordered 
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a research about alternative usage of geothermal energy usage within the Helsinki city 

railway loop. The study could have included the cooling calculations from tunnel lining 

but since no exact cooling demand exist yet and the efficiency of tunnel lining still isn’t 

confirmed did this thesis only focus on the heating part. The author has striven to make 

this thesis to be a model for further tunnel lining researches in Finland. Although this 

thesis has its faults like not include the cooling part of tunnel lining and flaws like no 

reliable costs nor are energy calculations the most accurate but by providing some rough 

calculations and estimations about tunnel lining in the Helsinki city rail loop are the in-

terest for further studies hopefully awaken.  

 

There would have been other subjects also to write about in this thesis like utilizing the 

energy from the groundwater entering the tunnel but as this would have been an equal 

big subject like tunnel lining didn’t the author include it in this research. Only focusing 

on tunnel lining technology gives the reader a good picture of how the technology 

works and how it could be utilized in the Helsinki city rail loop. The subject about how 

to utilize the energy from the groundwater entering the tunnel through the tunnel walls 

could be an own thesis subject that would be very interesting if somebody studied it 

more and made a research about it. 

 

 

6 CONCLUSION AND RECOMMENDATION 

The theoretical calculations about tunnel lining technology at the Helsinki city rail loop 

expanded the understanding of heat exchangers buried between the primary lining and 

secondary lining. First, compared with a conventional borehole heat exchanger, some 

similarities and heat transfer characteristics of tunnel lining ground heat exchangers 

were revealed. Second, by analysing other people’s work and calculating, was the inlet 

temperature and flow rate of the heat carrier liquid proven to be very important factors 

influencing the heat exchange of tunnel lining. In this thesis the different inlet tempera-

tures are calculated to prove the importance of the temperature. From the results of this 

study, can the following conclusions be drawn: 
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1. Tunnel lining in the Helsinki city rail loop can be financially motivated if the 

necessary studies and optimization are made. Tunnel lining can more effective 

than conventional borehole heat exchanger with the right optimal settings. 

2. The heat exchange rate presents a linear variation with the inlet temperature of 

the heat carrier fluid. On average increases the heat exchange rate 2.7 W/m for 

every 1°C in the inlet temperature over 10°C. 

3. The flowrate affects the heat exchange rate exponentially with higher flow rates. 

But the water pressure increase also linearly with the flow rate resulting into that 

a bigger water pump is needed. Therefore is additional studies needed to deter-

mine the optimal flowrate in efficiency and economy. 

4. The heat  exchange  rate  in  tunnel  lining  consists  of  two parts.  Like  seen  in  the  

calculations does the bigger part of energy originate from the surrounding rock 

and smaller part originates from the air in the tunnel.  

5. Tunnel lining technology in the Helsinki city rail loop can with optimal solu-

tions be utilized for heating and cooling of the train tunnel and train stations. 

Eliminating the need of buying external energy and therefore making tunnel lin-

ing even more economical viable. 

6. Potential weak points in the tunnel lining system could be the collection pipe as 

it connects all the absorber pipes together. If something happens to the collection 

pipe then large parts of the system have to be turned off while the collection pipe 

is fixed. Another weak point with tunnel lining is potential concrete cracking 

that than happen if the temperature difference is too big.  

 

The author recommend that further studies about tunnel lining in the Helsinki city rail 

loop should be made as these preliminary studies gave such a positive result. Further 

does the author wish that someone could do a thesis about utilizing the energy from the 

groundwater entering the tunnel through the tunnel walls as this could be another major 

energy source within the tunnel.With further studies about tunnel lining and the utiliza-

tion  of  the  energy  from  the  groundwater  could  the  Helsinki  city  rail  loop  be  the  first  

long tunnel that utilize geothermal energy to the maximum. 
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