

Sem Gebresilassie

Harvesting Statistical Metadata from an Online
Repository for Data Analysis and Visualization

Concept application on Theseus

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Media Engineering

Thesis

21 April 2015

 Abstract

Author
Title

Number of Pages
Date

Sem Gebresilassie
Harvesting statistical metadata from an online repository for
data analysis and visualization

35 pages + 3 appendices
21 April 2015

Degree Bachelor of Engineering

Degree Programme Media Engineering

Specialisation option Web Development

Instructor

Olli Alm, Senior Lecturer

Theses and publications from Finnish universities of applied sciences are accessible
from an open online repository called Theseus. This repository has an application pro-
gramming interface (API) that provides tools for harvesting its contents. By properly uti-
lizing this API, it is possible to gather and reuse metadata of thesis documents for any
other objective.

This thesis mainly intends to explain how to gather the author name, title, submission
year, keywords, subjects, department, university, language, and the number of pages of
every thesis document in Theseus and then reuse the gathered data for building a Web
portal. This Web portal provides tools to examine thesis documents and visualize statis-
tical facts about the contribution of each university of applied sciences in Finland. To
achieve this goal, robotic agents that fetch and store the metadata of thesis documents
into a separate MYSQL database were created using the PHP programming language.
Moreover, Google Charts API was extensively used to visualize the gathered statistical
data.

The thesis first discusses the anatomy of Theseus and its communication protocol fol-
lowed by a summary of concepts and technologies in data extraction process. After-
wards, it gives an illustration on the application of these concepts to parse and store
metadata of every thesis document in Theseus. Finally, a brief description and benefits
of the built Web portal are discussed.

Keywords OAI-PMH, API, harvesting, parsing, Web portal, visualiza-
tion, PHP, MYSQL, Web robots

Contents

1 Introduction 1

2 Theseus 2

2.1 Features and Functionalities of Theseus.fi 2

2.2 Dspace 4

2.2.1 Getting Data out from Dspace driven Repositories 4

2.2.2 Dspace OAI-PMH, the Data provider for Theseus 5

2.3 OAI-PMH Principles when Harvesting Theseus 7

2.3.1 Request Types 8

2.3.2 Flow Control 12

3 Fundamental Concepts in Data Harvesting 15

3.1 Web Robots (Internet Bots) 15

3.2 XML Parsing 16

3.3 Simple HTML DOM Parser 16

3.4 PHP built-in Functions 17

4 Parsing Data from Data provider of Theseus 18

4.1 Preparation 18

4.2 Choosing Metadata Format 19

4.3 Parsing Process 20

5 Storing Parsed Data in a MYSQL Database 28

6 Project Results in a Nutshell 31

7 Final Thoughts and Discussions 33

8 Conclusion 35

 References 36

Appendices

Appendix 1: Overall Statistics on University of Applied Sciences

Appendix 2: Sample Statistics on Thesis Documents, Metropolia UAS

Appendix 3: Sample Statistics on Thesis Documents, Tampere UAS

Appendix 4: Keywords Filtering Form and Filtered Results in Partial

1

1 Introduction

Elba is an ancient kingdom that was located around what is currently known as north-

ern Syria. It was a place where the oldest known library was created. Since then, librar-

ies have been expanding and prospering as they continue to preserve the collective

memory of the human race. In return, this expansion has caused the growth in volume

of information in libraries which has led to a necessity to build specialized data struc-

tures for fast searching. Since the beginning of the 1990s, with the introduction of the

World Wide Web (the Web), libraries have been extensively transferred into the Web

which has become a universal repository of human knowledge and culture. [1,624.]

Theses and publications from Finnish universities of applied sciences are accessible

from an open digital library named Theseus. These papers can be read and utilized by

any research and development work [2]. All publicly available data on this digital re-

pository can also be further manipulated through the use of the Theseus API. This API

provides the metadata of each thesis document in different structured formats and of-

fers options for separately querying a list of thesis documents from a particular univer-

sity of applied sciences or even a particular department.

This final year project was divided into two parts. First, in the technical part, data har-

vesting techniques were applied to automatically fetch metadata such as author name,

title, keywords, submission year, department, subjects, university, language, and num-

ber of pages from every thesis document in Theseus and store the information in a

separate MYSQL database. The stored data was then later used to develop a proto-

type Web portal that can be used as a tool for analysing thesis documents and visualiz-

ing overall statistical facts about each university of applied sciences in Finland. This

was achieved by using PHP and visualization tools from Google Charts API. Secondly,

in this written part of the project, a special attention was given to elaborate the pro-

cesses and techniques involved in harvesting Theseus to selectively extract statistical

metadata necessary for the Web portal project. The thesis first starts by describing the

anatomy of Theseus and the communication protocol that governs it, followed by theo-

retical concepts behind technologies used in data extraction process and finally it gives

an illustration on the usage of these technologies to build the Web portal. The thesis

also documents the problems that arose in the development process.

2

2 Theseus

As the processing power of computers and the Web improve, information is being giv-

en a well-defined structure. This progression not only has made finding useful infor-

mation over the World Wide Web easier for quick searching, but also has facilitated

data analysis and data mining feasibilities.

Online repositories promote the preservation of structured intellectual outputs as they

benefit more and more from the convergence of technology developments and digital

assets. In recent years, the significant drop in storage and networking cost has made

digital libraries and repositories more affordable than ever. For this reason alone, Web

based databases (repositories) for managing scholarly materials are commonly offered

by universities and institutions across the globe [4].

Finnish universities of applied sciences collectively use such online digital library, The-

seus, to provide an open access to their theses and publications. Theseus.fi provides

ways for visitors to search thesis documents for reading or to browse the whole content

by thesis title, author, subject and more.

2.1 Features and Functionalities of Theseus.fi

Theseus.fi provides three key features for its end users. These are the search, browse

and upload features. The search feature in Theseus, represented by number 1 in figure

1 below, lets users search the entire library or just specific collections. If users are only

interested in search results from a specific collection, they can limit their search scope

after making their search on the front page and using the options that will appear under

the search box. In addition, the Theseus search box accepts different search formu-

lates such as Field, Boolean, Wild card, Fuzzy, Proximity and Relevance that are well

documented in its search instructions [2]. At the time of writing this thesis (April 2015),

there were 84,391 theses and publications that are already available for an open ac-

cess. Using the Field-search option, specific metadata about each document such as

title, author, abstract, date (when the work was accepted), identifier, university (name

of the school), programme (degree programme), language, and keywords (descriptive

words given by the author) can be used to search and find any of the documents.

3

Figure 1. Landing page of Theseus portal [2.]

On the other hand, the browsing feature, represented by number 2 in figure 1, lets us-

ers filter out theses and publications ordered by for example collection (universities or

department name), title or author name. Typically, browsing starts with a collection. For

instance, by selecting a particular university from a list of universities on the front page

a list of departments in that particular university can be retrieved and when a single

department is selected from this retrieved list another list of individual thesis documents

will be displayed. In this way, end users can utilize the browsing feature to access the-

sis documents of their desire.

The upload feature, represented by number 3 in figure 1, is for students and authors

who want to publish their thesis or publication to the repository. By registering and cre-

ating a profile, it is possible to upload documents in electronic format to make them

available as open access publications on Theseus.fi. When uploading a thesis or publi-

cation, uploaders are required to submit author name, title of the thesis and other de-

tailed information about their document. This information is later used as the metadata

of the uploaded document in retrieval processes.

Theseus is powered by a pioneer open source digital asset management system

named Dspace, provided by a non-profit organization called Duraspace [4].

4

2.2 Dspace

Dspace is an open source software platform that provides stable, long-term storages

commonly for digital intellectual materials. Originally launched in November 2002 by

MIT in collaboration with HP, this flexible and customizable software platform captures

and describes digital materials that are submitted over its forms. Dspace grants data

providers the ability to offer their users an easy access to contents with minimal to no

customization of the application. It also allows individual documents to be well orga-

nized and described in its built in structure. As an open source software, Dspace can

be freely downloaded and used or even modified to store digital materials for any un-

specific need. Some features of Dspace include searching and unified browsing. [4.]

These features ease the process of accessing relevant contents in Dspace reposito-

ries. Theseus’s features and functionalities discussed above are directly linked to this

nature of Dspace.

2.2.1 Getting Data out from Dspace driven Repositories

OAI, short for Open Archives Initiative, is an enterprise that develops and promotes

standards for transferring digital objects or metadata from one system to another aim-

ing to facilitate the efficient dissemination of contents in online repositories. Such

standards are called interoperability standards. Open Archives Initiative Protocol for

Metadata Harvesting (abbreviated as OAI-PMH) is an interoperability standard devel-

oped by this enterprise that defines clear methods and protocols for accessing contents

from Dspace repositories. Dspace uses OAI-PMH to define methods for sharing, pub-

lishing and archiving metadata, to enable access to Web materials within repositories

such as Theseus. [4; 5]

Overall, Open Archives Initiative (OAI) driven repositories provide an API that can be

used by third party organizations to utilize their data. In this manner, OAI provides ap-

plication independent framework that helps establish metadata harvesting processes

between the following two participants.

 Data providers that allow OAI-PMH for exposing their metadata

 Data consumers that harvest and use metadata via the OAI-PMH for different

operations

5

It is estimated that about 75% of academic repositories worldwide use the standard

OAI-PMH protocol to provide access to their digital intellectual materials. In authenticity

to this adherence, some or all of the metadata about each intellectual material in such

repositories is exposed for harvesting by external data consumers. When data con-

sumers (harvesters) request for data access, the returned metadata from OAI-PMH

data providers is XML formatted metadata and usually includes a URL for the full text

file which can potentially be further processed if required. [8.]

2.2.2 Dspace OAI-PMH, the Data provider for Theseus

Whenever a need to access data from a third party website arises, there is a good

chance a developer starts his/her work by checking to see if there is an official applica-

tion programing interface (API). APIs provide tools essential to build software and ser-

vices that use data from external sources. They specify how these software and ser-

vices interact with the data source by describing a set of methods and protocols for

accessing the data. Many companies make use of Web APIs to uncover data and func-

tionality in their existing system.

Theseus API provides harvesters a way for accessing metadata of theses and publica-

tions from Finnish universities of applied sciences. This API uses open archives initia-

tive protocol for metadata harvesting (OAI-PMH) to deliver thesis documents in differ-

ent metadata formats from Theseus to harvesters. Theseus OAI-PMH exposes thesis

documents in twelve unique metadata formats. Each metadata format has the following

common properties [20].

 metadataPrefix

 schema URL and

 XML namespace URI

The metadataPrefix is a string consisting of any URI-unreserved characters to uniquely

specify the format during OAI-PMH communication. The schema URL is the URL of the

XML schema that associates defined sets of rules to test validity of the metadata. The

XML namespace URI is a global identifier of the metadata format.

6

Table 1. Metadata formats in Theseus

Metadata prefix

Full name

UKETD_DC United Kingdom Electronic Thesis and Dissertation –

Dublin Core

OAI_DC Open Achieve Initiative – Dublin Core

MARC Machine Readable Cataloging

ETDMS Electronic Thesis and Dissertation Metadata Standard

QDC Qualified Dublin Core

RDF Resource Description Framework

QDC_finna Qualified Dublin Core - Finna search service

ORE Object Reuse and Exchange

KK Kansallis Kirjasto, a metadata format provided by the

national library of Finland.

MODS Metadata Object Description Schema

METS Metadata Encoding and Transmission Standard

DIDL Digital Item Declaration Language

For instance, the following samples show the author name of a single thesis document

in three different metadata formats.

MARC format : <subfield code="a"> Denut, Nicolae </subfield>

OAI DC format : <dc:creator> Denut, Nicolae </dc:creator>

7

KK format:

<kk:field schema="dc" element="contributor" qualifier="author"

language="none" value=" Denut, Nicolae "/>

For purposes of basic communication between data providers and harvesters, OAI-

PMH requires data providers to at least offer the “oai_dc” metadata format shown in

table 1. The “oai_dc” metadataPrefix refers to OAI DC metadata format provided by an

initiative named The Dublin Core Metadata Initiative (DCMI). However, within some

groups and institutions other metadata specifications may be provided as is the case of

Theseus. This is because it is sometimes necessary to adequately describe resources

with complex structures in a specialized way for special needs. Whichever metadata

format is chosen by data consumers, an agreement on its use with the data providers

must be reached. [9; 19.]

Depending on the interest of the developer, thesis documents can be delivered in any

chosen format from table 1 above. Each metadata format can be queried to harvest

any document from the repository for different objectives. OAI-PMH also supports in-

cremental harvesting allowing harvesters to retrieve only the records which have

changed since the last successful harvest. [5.]

2.3 OAI-PMH Principles that apply when Harvesting Theseus

The OAI-PMH protocol works based on HTTP to allow communication between appli-

cations issuing OAI-PMH requests (data consumers) and repositories (data providers)

to harvest metadata and return XML formatted metadata respectively.

Figure 2. Basic OAI-PMH communication. Modified from the Open Archives Forum (OAF)
(2015) [7.]

8

As an OAI based Dspace repository, Theseus has a separate data provider that is or-

ganised and structured in a model convenient for OAI-PMH communications. Conse-

quently, Theseus has an OAI based URL at http://publications.theseus.fi/oai/request?

in addition to its URL for human users at www.theseus.fi. On its own, the OAI based

URL of Theseus simply returns XML error message. Its real power unveils when a

proper request type is appended to it. [6; 18.]

In OAI-PMH, there are six request types (known as "verbs") that can be appended to

OAI based URLs together with other arguments to access repository contents. [18.]

Harvesting data as a client does not require the use of all request types. Nevertheless,

data providers must implement all request types. Depending on the request type, it

might also be necessary to use additional required or optional arguments for an effec-

tive response during data harvesting. [5.] In the following section, each request type in

OAI-PMH communications is described and explained in relation to Theseus.

2.3.1 Request Types

Although OAI-PMH is intended for machine-to-machine communication, it returns re-

sults as XML that can be displayed by all major Web browsers. [9.] For this reason, the

examples that follow are given as direct links.

Identify: This is a function or request type that returns information about the data pro-

vider itself mainly for describing it. Appending this function to the end of Theseus’s OAI

based URL will result http://publications.theseus.fi/oai/request?verb=Identify. As it can

be seen in figure 3 below, Theseus returns XML formatted description of its data pro-

vider for harvesters when this request URL is used to make harvesting request.

http://publications.theseus.fi/oai/request?verb=Identify

9

Figure 3: Response of Theseus to “Identify” request

ListMetadataFormats: This is another function that lists all the metadata formats sup-

ported by data providers. Appending this function to the end of Theseus’s OAI based

URL will give http://publications.theseus.fi/oai/request?verb=ListMetadataFormats. This

request URL can be used when harvesting a list of metadata formats supported by

Theseus’s data provider.

Figure 4: Partial list of Theseus’s metadata formats

http://publications.theseus.fi/oai/request?verb=ListMetadataFormats

10

ListIdentifiers: In Theseus, ListIdentifiers are used to list theses identifiers (that

uniquely identify each thesis document), date stamps (that shows the last modification

date) and two set specs (set identifiers), one for university identifier and another for

department identifier of each thesis document.

This request type requires an additional argument, “metadataPrefix”, for specifying the

chosen metadata format of the required data. For example, appending this request

type to Theseus’s OAI based URL and setting the metadataPrefix to kk (kansalliskirja-

sto, a metadata format provided by national library of Finland) will give the request URL

http://publications.theseus.fi/oai/request?verb=ListIdentifiers&metadataPrefix=kk.This

request URL can be used when harvesting a list of thesis record identifiers, dates and

set specs of each thesis document. Listing 1 below shows the partial XML response

from Theseus to ListIdentifiers request.

 <request verb="ListIdentifiers" metadataPrefix="kk">

http://publications.theseus.fi/oai/request

 </request>
 <ListIdentifiers>
 <header>
 <identifier>oai:www.theseus.fi:10024/474</identifier>
 <datestamp>2013-08-19T10:18:05Z</datestamp>
 <setSpec>com_10024_14</setSpec>
 <setSpec>col_10024_174</setSpec>
 </header>
 <header>
 <identifier>oai:www.theseus.fi:10024/592</identifier>
 <datestamp>2013-05-06T15:30:26Z</datestamp>
 <setSpec>com_10024_12</setSpec>
 <setSpec>col_10024_270</setSpec>
 </header>

Listing 1. XML response to ListIdentifiers request (partially)

ListSets: This function lists all sets prearranged by Theseus (universities of applied

sciences and departments). Sets in Theseus are groups representing each university

of applied sciences and department. Each set contains its own list of thesis documents.

For example, appending ListSets to Theseus’s OAI based URL will give

http://publications.theseus.fi/oai/request?verb=ListSets. When harvesting request is

made using this request URL, Theseus’s data provider returns a list of universities and

departments shown in figure 5 below.

http://publications.theseus.fi/oai/request?verb=ListIdentifiers&metadataPrefix=kk
http://publications.theseus.fi/oai/request
http://publications.theseus.fi/oai/request?verb=ListSets

11

Figure 5. ListSets response in partial

ListRecords: This function also requires additional argument “metadataPrefix” and it is

used to fetch a list of thesis metadata from Theseus. Other optional arguments can

also be appended to limit result lists to a specific subset. For example, it is possible to

add set specs (university and department identifiers) as arguments in order to retrieve

a list of thesis metadata from a single department or university of applied sciences on-

ly.

Figure 6. Partial ListRecords response showing fetched result

12

Appending ListRecords to Theseus’s OAI based URL and setting the metadataPrefix to

kk again, will give the request URL

http://publications.theseus.fi/oai/request?verb=ListRecords&metadataPrefix=kk, which

can be used by harvesters to access the response shown in figure 6 above.

GetRecords: This function can be used to access an individual thesis document from

the repository. It requires the combination of thesis record 'identifier' and 'metadataPre-

fix' arguments. For example the request URL

http://publications.theseus.fi/oai/request?verb=GetRecord&metadataPrefix=kk&identifie

r=oai:www.theseus.fi:10024/77154 is used to retrieve the metadata of the a single the-

sis document shown in figure 7 below,

Figure 7. GetRecords request returning metadata of a single thesis document

2.3.2 Flow control

Theseus has a fairly large set of data. Results from the above listed functions or re-

quest types, can sometimes get messy and too long to display on web browsers. In

such cases, the repository maintains measure of flow control by using articulates

known as “resumption tokens”. [8, 18.] Resumption tokens are options from OAI proto-

col that allow data providers to chunk long list responses in parts. Implementation of

http://publications.theseus.fi/oai/request?verb=ListRecords&metadataPrefix=kk
http://publications.theseus.fi/oai/request?verb=GetRecord&metadataPrefix=kk&identifier=oai:www.theseus.fi:10024/77154
http://publications.theseus.fi/oai/request?verb=GetRecord&metadataPrefix=kk&identifier=oai:www.theseus.fi:10024/77154

13

resumption tokens is beneficial for both the data providers and data consumers when

handling a large set of data.

The four request types - ListMetadataformat, ListIdentifiers, ListSets and ListRecords -

return a list of items [8]. Three of them - ListIdentifiers, ListSets and ListRecords - re-

turn large lists from Theseus. In such cases, Theseus OAI-PMH supports partitioning of

a list items that make use of resumption tokens. By default, Theseus’s data provider

returns 100 list items and a resumption token when a response list contains more than

100 items. In order to get the next items in the response list, a second request has to

be made using the resumption token as an argument. The second request also returns

another list of items and new resumption token continuing from the first response. This

process is repeated until the complete list of items is gathered. This work flow is better

explained in figure 8 below.

Figure 8. Resumption token work flow [5.]

The anatomy of an example resumption token in Theseus is shown below

<resumptionToken completeListSize="84090" cursor="2">
MToxMDB8Mjp8Mzp8NDp8NTpraw==

</resumptionToken>

14

For every new list requests, harvesters must append resumption tokens as a parame-

ter to request URLs. The resumption token is empty if the list returned is the last sec-

tion. [18.]

In summary, Theseus’s data provider uses the OAI-PMH protocol for exposing metada-

ta of thesis documents to data consumers who wish to use the data for different pur-

poses. Data consumers issue OAI-PMH requests to Theseus’s data provider to get the

XML formatted metadata of thesis documents. There are six request types that must be

submitted by harvesters using HTTP methods to get the metadata. These request

types are listed below.

1. Identify: fetches information about Theseus data-provider itself

2. ListMetadataFormats: returns a list of available metadata formats supported

by a Theseus data-provider

3. ListIdentifiers: lists thesis record identifiers, dates & other headers of each

thesis document

4. ListSets: retrieves the set structure (list of universities and departments) .

5. ListRecords: gets list of complete metadata of thesis documents from a The-

seus and

6. GetRecord: retrieves individual metadata of a thesis document

Theseus’s response to ListIdentifiers, ListSets and ListRecords request types is large.

For this reason, the repository replies to these requests with an incomplete list and a

resumption token. In order to make the response a complete list, harvesters are re-

quired to issue multiple requests with resumption tokens as arguments. This multiple

request response cycle is referred to as Flow control. [20.]

15

3 Fundamental Concepts in Data Harvesting

The task of obtaining relevant and useful information from a large data set requires

assistance from automated information extraction systems. Such systems are in exist-

ence today with the help of software programs and programming concepts that provide

tools for building high-performance, natural language processing applications. Funda-

mentally, automated web harvesting from the Web requires the use of web robots that

apply web crawling, web harvesting and or parsing techniques to meet the goal. [10.]

“OAI-PMH harvesters are robotic agents and care should be taken to avoid creating an

accidental denial-of-service attack against repositories” [20].

3.1 Web Robots (Internet Bots)

Repetitive tasks are not only tedious and time consuming for computer users; they also

create a gap for errors to occur. Enter Web robots, in their productive nature bots are

software applications that are capable of performing computer tasks automatically at a

much higher rate than their human counterpart. They can be used for extracting infor-

mation from the internet, gathering/harvesting comparison data, examining a website

for errors or invalid links, or even handling more advanced matters such as crawling

websites on the internet. The most important objective of internet bots is to transfer

required webpage content from an online data sources to a separate storage. [10; 11.]

Web crawling: In broader sense, the process of finding the most relevant and desired

content involves deploying internet bots to follow links and iterate through URLs of

webpages. This practice is called web crawling. Understanding the techniques used in

web crawling can be a good start in writing data extraction software for a specific

webpage.

Web scraping: Contrary to Web APIs, the ability to grab any online data while having

the complete freedom to choose how to store and retrieve it requires the knowledge

and understanding of another computer programming concept known as Web scraping.

Web scraping (also known as Web harvesting or Web data extraction) is a technique in

computer science to automatically extract data by parsing structured or semi-structured

web contents such as the HTML of websites.

16

Web browsers locate, retrieve and display content from the World Wide Web. Software

written for Web scraping purposes interacts with website hosts in the same manner as

a Web browser. The only difference is, it holds on the data for further manipulation in-

stead of displaying it. For this particular nature, Web scraping software is used in dif-

ferent areas around the Web. Whether it is for comparing prices from different sites or

detecting changes on webpages or even creating a Web mashup, the possibilities are

wide open and endless. [13; 14.]

3.2 XML Parsing

In general, parsing may be defined as the act of taking a set of data and breaking it

apart into its components to help extract the meaningful information out of it. For ex-

ample, XML parsing can be understood as a process of identifying the tags and attrib-

utes inside it with their relation to each other.

XML processors are more commonly referred to as parsers. There are typically two

types of XML parsers, XML DOM parsers and XML SAX parsers

DOM parsers: These type of XML parsers work by creating a Dom Object Model inter-

face of the entire XML document to navigate, add, modify or delete parts of it while still

in memory. This approach is typically used for small XML structures. [15.]

SAX parsers: These parsers (also called “Simple API for XML parsing”) are event

based parsers. It is mainly useful to extract specific tags and attributes from a large

XML document. Unlike DOM parsers, a SAX API never has to hold the whole docu-

ment in memory, just the parts it is interested in. [15.]

3.3 Simple HTML DOM Parser

Parsing can be done in many ways. Simple HTML DOM parser, is an open source par-

ser library written in PHP to read, modify, and return structured content from external

data sources. This parser library can create an object either by loading structured data

from a string, or from a file on a computer. Loading a file can be done either via URL,

or from a local file system. For example, loading file via URL can be achieved in the

following manner.

17

$content=

file_get_html('http://publications.theseus.fi/oai/request?verb=L

istSets');

Once a DOM object is created this way and stored in the “$content” variable, getting

the contents of the DOM object can be attained by using a method called “find ()”. For

example, to get each “record” tag from the above URL of Theseus’s ListSets response,

it is possible to simply use a foreach construct in PHP as follow.

foreach ($content->find('record') as $element) {

 Do something…

}

Other methods to get tags and their attributes are also provided by the parser in a syn-

tax that is quite similar to jQuery. This parser can be freely downloaded for any use and

it was used to harvest thesis metadata from Theseus for building the web portal pro-

ject.

3.4 PHP built-in Functions

PHP.net provides a helpful documentation for different pre-defined functions at its web-

site. Some of these functions are extensively used while working on the data harvest-

ing part of the practical project described in this thesis.

18

4 Parsing Data from Theseus’s Data provider

Part of the practical project was parsing thesis documents from Theseus’s data provid-

er using a parser library called Simple HTML DOM parser. The data gathered was later

stored in a MYSQL database.

4.1 Preparation

Statistics is vital for producing variety of interpretational information based on a data

set and thus it is useful and meaningful scientific knowledge [12]. However, under-

standing data and its patterns is far easier for most people when visualization methods

are used to put the numbers as pictures. On this ground, a challenge was taken to

build a Web portal that can present the statistics of thesis data, from all universities of

applied sciences in Finland, in a more appealing manner with visualization. When pro-

ducing this Web project, different target groups were foreseen to show an interest in-

cluding universities and students around the country.

At its current stage, the Web portal is a good tool to see how thesis submissions to

theseus.fi have increased throughout the years since the first submission. Users can

now judge and compare universities of applied sciences based on their thesis submis-

sion rate every year or based on the total number of thesis papers in Theseus from

each of them. Moreover, if users are interested to know which department in a given

school is producing the highest number of thesis documents so far, the web portal

makes it easy to see this information in a pie chart. In this pie chart, each department

will have its own section showing its share of submitted thesis documents in percent.

On this Web portal, comparing thesis documents with each other according to the

number of pages or seeing keywords of thesis documents from any department in any

given school and in any given year is just two clicks away. A list of keywords from a

chosen year is intended to help users make their own analysis on how trending topics

in each field of study are being more practiced and explored by students.

Theseus contains 84,391 theses documents from students in twenty five universities of

applied sciences. In order to build the web portal, it was necessary to parse all these

documents and harvest interesting data for visualization. Before proceeding with the

parsing process, a decision was first made on what kind of data about these docu-

ments is interesting enough to be extracted for inclusion. The web portal built provides

http://www.theseus.fi/

19

users a statistical breakdown of data about these thesis documents. For this reason,

collecting metadata with variable nature that can answer the questions listed below

was necessary.

 How many thesis documents are in Theseus?

 Which school has what amount of papers in Theseus?

 How many papers is each school publishing every year?

 What departments are there in each school?

 How many theses belong to which department?

 How many pages does each thesis have?

 In what language are the theses written?

 How many times has each paper been downloaded by Theseus visitors?

 What are the keywords of each thesis document?

Additionally, information on individual thesis documents such as author name, school it

belongs to, department, title of thesis, or number of pages and year of publication were

gathered and stored as essential components.

4.2 Choosing Metadata Format

The structure and organization of the same information is different in every metadata

format. Even though it was expected that the information carried by each metadata

format is the same, it was not the case for Theseus. For this reason, it was very im-

portant to decide what metadata format to use before starting to harvest. This decision

was crucial because the web portal was built based on metadata harvested from The-

seus. As Theseus OAI-PMH implements multiple metadata formats, identifying the

metadata format that has all the information needed for the project was a must. Unfor-

tunately, the development process of this project was in a halt multiple times because

this decision was not made on time. Some harvesting was done with “OAI DC” and

then “METS” metadata formats that had to be abandoned because of error responses

and data inconsistency. After further technical instructions from the National Library,

the “KK” metadata format was proved to be reliable for use and it was utilized during

the harvesting process.

20

4.3 Parsing Process

It is apparent that querying the metadata from the Theseus data provider can be done

in a variety of programming languages such as Java, Visual Basics, PHP or Python.

PHP was chosen for this particular project because the language is famous for its sim-

ple syntax, convenient string-parsing capabilities and portability [11].

After setting up a PHP development environment, the parsing process began by first

making a “ListSets” request with the help of Simple HTML DOM parser. ListSets re-

quest to Theseus returns lists of universities and departments that are used as sets.

Since the list of universities and departments is large (953 items to be specific), The-

seus implements the use of “resumptionToken” to chunk this list of sets and returns

100 list items per a single request.

Figure 9. List request returning an incomplete list.

In order to get the complete list, it is required to issue multiple requests using resump-

tion tokens as arguments. For example, to retrieve the second page of the set list, re-

sumption token from the first response can be appended to the new request URL be-

fore making a new request. The third page of the set list can also be accessed by ap-

pending the corresponding resumption token and making another new request and so

on. Using the Simple HTML DOM parser and PHP, this can be done by first making a

request to get the first page of the list as shown below.

 <?php

require 'simple_html_dom.php';

$firstPage=file_get_html('http://publications.theseus.

fi/oai/request?verb=ListSets');

 ?>

21

To make the next request, it is required to parse through the response from the first

request and get the resumption token and store it in a variable.

$resumptionToken=$firstPage->find('resumptionToken',0)->plaintext;

The next request must use the value of the $resumptionToken as the value of the

resumption token argument.

$secondPage

=file_get_html('http://publications.theseus.fi/oai/request?verb=ListSe

ts&resumptionToken=$resumptionToken);

By creating a PHP loop, this process can be repeated to crawl through each section of

the set list response. The concatenation of these sequential chunks of crawled lists

from sequential requests will form a complete list of all departments and university of

applied sciences in Theseus. Such a sequential list request is known as list request

sequence. [19.]

Theseus returns 100 set items (schools and departments) when a “ListSets” request is

made. Therefore, creating a “for loop” that iterates nine times, making new list request,

will suffice to get the complete list. However, since this crawling process will be repeat-

ed the same way to get the list of thesis documents (84,391 list items), it is a good idea

to device a generic code that can be reused when necessary. To accomplish this, a

special function was created.

This function takes the first resumption token as an argument and use it to make the

next request. When a response is returned, it gets the new resumption again and use it

to make another request and iterates the same way until resumption token returns an

empty result.

Using the Simple HTML DOM parser and PHP again, this iteration can be achieved by

first creating two constant variables that can later be assigned with whichever request

type.

For example in the case of ListSets request the two variables will be:

22

$url='http://publications.theseus.fi/oai/request?verb=ListSets';

$nextset='http://publications.theseus.fi/oai/request?verb=ListSets&res

umptionToken=';

The first variable represents the first request URL. The first ListSet request should be

made with this variable as follow.

 <?php

require 'simple_html_dom.php';

$firstPage=file_get_html($url);

 ?>

The response from this request will return the first 100 list of universities and depart-

ments and a resumption token for the next page. By scraping this resumption token, a

new variable can be created in preparation to make the next request.

$first_RToken=$firstPage->find('resumptionToken',0)->plaintext;

By concatenating the new resumption token and the second constant variable

($nextset), the next request URL can be constructed as follow.

$nextPage=$nextset.$first_RToken ;

At this point, setting up a generic function to continue the same process until there is

no more resumption token value is possible. This function will take $first_RToken

(defined outside of the function) as an argument and iterates through each section by

following the steps listed below

 First use a harvesting techniques to get the resumption token from a section

 Append this resumption token to the variable $nextset to make a new request

URL $nextPage

 Make a new request with the formed new URL ($nextPage)

 Get the new resumption token from the new response and re-assign the first re-

sumption token with the new value

23

 Finally, check to see if the reassigned resumption token is empty or not. If it is

empty the iterations stops and that will be the end of the set list. Otherwise, the

function calls itself again to get the complete list of request URLs.

Parsing each element in the response XML can be done by including scripts inside this

generic function while it is iterating through each set list section.

When making a ListSets request, the goal is to get the list of

 Department identifiers and their correspond name

 University identifiers and their correspond name

The response from ListSets request will return these values in a structured form, shown

in listing 2 below, for an easy harvesting.

<request verb="ListSets">
http://publications.theseus.fi/oai/request

</request>
<ListSets>

 <set>
 <setSpec>com_10024_1</setSpec>
 <setName>Seinäjoen ammattikorkeakoulu</setName>
 </set>
 <set>
 <setSpec>com_10024_4</setSpec>
 <setName>Arcada - Nylands svenska yrkeshögskola</setName>
 </set>

Listing 2. Partial ListSets XML response showing fetched results

A set in OAI-PMH is used for grouping items for the purpose of selective harvesting.

setSpec inside each set holds a unique identifier for the particular set it is in, and must

be unique for each set in the repository. setName is a short descriptive string that is

used for naming the set.

Theseus organizes universities of applied sciences and departments into sets. A

unique identifier inside setSpec is used to identify each school and department in The-

seus. The names of universities and their departments are kept within the setName.

Since setName in OAI-PMH does not have to be unique the same department name

24

from multiple universities of applied sciences is used together with setSpec that

uniquely identifies them.

The first noticeable concern when parsing a ListSets request in Theseus is the fact that

the XML response has a list containing mix of universities and departments. To sepa-

rately parse universities of applied sciences and departments a PHP string function,

strops(), that checks whether the setName tag has a string “ammattikorkeakoulu” or in

two other cases “yrkeshögskola” can be used.

To parse setSpecs and setNames representing each university and department from

the complete list, the generic function that was created earlier can be used. To do this,

first make the function to return every ListSet request URL and store them in an array.

By packing this array in a variable, $requestURL, then use a foreach construct to get

setSpec and setName as follow.

foreach($requestURL->find('set') as $element) {

 foreach($element -> find('setSpec') as $id) {

 $item_id=$id ->plaintext;

 }

 foreach($element -> find('setName') as $name){

 $item_name=$name ->plaintext;

 }

}

The same process can be used to acquire all required metadata for our web portal.

Continuing this manner, responses from “ListRecords” request to get metadata about

each thesis document in Theseus can be harvested. As discussed earlier, it is good to

remember that Theseus OAI-PMH requires the use of “metadataPrefix” when making a

ListRecords request.

A proper ListRecord request with only the “metadataPrefix” argument will return all the-

sis documents on the repository. To limit the returned responses based on department

or university, an additional argument, setSpecs, is required. In such cases, appending

set identifiers (setSpecs) of a department or university to the request URL will result a

response containing thesis documents from that department or university only.

25

For example, to get the metadata of thesis documents from the department of media

engineering in Metropolia (setSpec = col_10024_245), the following request URL

should be used.

http://publications.theseus.fi/oai/request?verb=ListRecords&metadataPrefix=kk&set=col_10024

_245

This is an important concept in order to understand the processes used in parsing

metadata of thesis documents. The response from the ListRecords request is orga-

nized in a different XML structure, shown in listing 3 below, than what was shown for

ListSets request in listing 2.

<request verb="ListRecords" metadataPrefix="kk" set="col_10024_245">

http://publications.theseus.fi/oai/request

</request>

 <ListRecords>

<record>

 <header>

 <identifier>oai:www.theseus.fi:10024/1374</identifier>

 <datestamp>2013-07-10T07:07:22Z</datestamp>

 <setSpec>com_10024_6</setSpec>

 <setSpec>col_10024_245</setSpec>

 </header>

 <metadata><kk:metadata xmlns:kk="http://example.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:doc="http://www.lyncode.com/xoai">

<kk:identifier type="handle" value="10024/1374"/>

<kk:link href="http://www.theseus.fi/handle/10024/1374"/>

<kk:field schema="dc" element="contributor" qualifier="author" lan-

guage="none" value="Guo, Jun"/>

<kk:field schema="dc" element="identifier" qualifier="uri" lan-

guage="none" value="URN:NBN:fi:amk-200812124410"/>

Listing 3. ListRecords XML response of a single thesis document

A record inside the ListRecords tag in the above XML represents a single thesis docu-

ment. It contains different fields to expose different types of information about a thesis

document for harvesters including title, author, university, department, keywords, ab-

stract, language and more. It is also uniquely identified in the repository by its identifier

in the header section. Making a ListRecords request to the repository will return a list of

records of each thesis document in Theseus.

http://publications.theseus.fi/oai/request?verb=ListRecords&metadataPrefix=kk&set=col_10024_245
http://publications.theseus.fi/oai/request?verb=ListRecords&metadataPrefix=kk&set=col_10024_245
http://publications.theseus.fi/oai/request

26

As mentioned earlier, Theseus had 84,391 thesis documents at the time of this writing.

When a list request is made, the data source returns 100 records per each single re-

quest. The rest of the records are sectioned using a resumption token in a manner

shown previously for the ListSets request which makes it convenient to use the same

parsing techniques that was used then. In fact, this is the reason why implementing the

use of a generic code was important. By slightly modifying the generic function ele-

ments, specifically the values of the constant variables $url and $nextset, gathering

request URLs for ListRecords requests can be done the same way.

The problem here is that there is a larger number of list sections to accommodate the

amount of thesis documents. For this reason, the function needs to iterate a lot more

time to get the complete list of request URLs causing max_execution_time error. Also,

storing each one of them in an array for parsing purpose will causes memory_limit is-

sues in PHP. One way to address these issues is increasing the memory limit and ex-

tending the maximum execution time in the php.ini file and restarting the server. It is

also possible to add the following two lines of codes in the PHP script to avoid this

problem.

ini_set('max_execution_time', 600);

ini_set('memory_limit', '-1');

Setting this issue aside, parsing thesis metadata from each section can be done by

making ListRecords requests and repeating the same process that was done for

ListSets requests above. From the header of each record, the setSpec of departments

and setSpec of universities which the records belongs to can be parsed using PHP’s

foreach construct as shown below.

foreach ($requestUrl->find('record') as $element) {

$department_id= $element -> find('setSpec')[0]->plaintext;

 $uas_id= $element -> find('setSpec')[1]->plaintext;

}

To get other metadata of each a thesis document in the record, a careful analysis on

how the metadata format of the XML response is structured is important. Now, as can

be seen from the XML structure in Figure 12 above, the KK metadata format consists

each information about the record as an attribute in its tag <kk:field>. The information

27

of interest is contained inside the attribute element “value” of each <kk:field>. But

since each <kk:field> has the attribute “value”, we have to find another way to identify

what the “value”s stand for in each <kk:field>. This can be done by using the other

attributes inside each <kk:field>.

<kk:field schema="dc" element="contributor" qualifier="author"

language="none" value="Guo, Jun"/>

For example, the name of the author in the above <kk:field> tag (‘Guo, Jun’), can be

parsed using the combination of “element”, “qualifier” and “value” attributes in a

nested if statement inside a PHP code as follow.

 foreach($record -> find('kk:field') as $kk_tag) {

 $kk_attribute = $kk_tag -> element;

 if($kk_attribute =='contributor') {

 $qualifier_attr = $kk_tag -> qualifier;

 if($qualifier_attr == 'author') {

 $author = $kk_tag -> value;

 }

 }

The same method was repeated and used to parse and gather other metadata infor-

mation of each thesis document.

There were numerous drawbacks when the parsing process was applied on Theseus.

Error responses due to a requests to non-existent data or duplicate entries were caus-

ing the parsing process to pause multiple times which usually required the restart of the

whole iteration process.

Figure 10. Duplicate entry with two different set specs

28

5 Storing Parsed Data in a MYSQL Database

After successfully completing the parsing process, the next step was to store relevant

parsed information to a separate database system on a MYSQL server. Storing parsed

metadata to a separate database was necessary so that the web portal can be fast and

independent of Theseus’s data provider. Deciding which metadata to store depends on

the user requirement of the web portal and how the stored data is utilized. This Web

portal was built to help users see graphical representation of of the following things.

 How the number of thesis documents published by universities of applied sci-

ences have increased/decreased over the years

 A comparison between departments in a university based on the number of pa-

pers they have in the repository

 Trending keywords used by students in different departments and universities

of applied sciences in any academic year

Additionally, other information about thesis documents such as author, title and number

of pages of a thesis document in any given year, university and department should be

graphically represented by the web portal. In order for these functionalities to be possi-

ble, metadata from each university, department and thesis document were stored sep-

arately in their own table. Table 2 below summarizes the metadata that was harvested

and stored

Table 2. Summary of required metadata

Metadata from University of ap-

plied sciences

Metadata from departments

Metadata from thesis docs

identifier (setSpec) identifier (setSpec) Thesis Identifier

name name Author

ListSets Request URLs ListSets Request URLs Title

Total Number of papers Total Number of papers GetRecord URL

- University identifier Department identifier

- - University identifier

- - Keywords

- - Subjects (official keywords)

- - Number of pages

- - year

- - Language

29

With this information at hand, it is now possible to start working on the relational model

of the database.

Figure 11. ER model of tables that was mapped in the database

Based on the relational model design (see figure 11), a MYSQL database that has four

tables was first created using the phpMyAdmin interface and then the tables were pop-

ulated with the parsed data. The four tables have their own particular benefits in rela-

tion to each other.

Set_request_URL: This is a table to store only the request URLs of each set list section

(list of schools and departments). The generic function devised earlier, is used to popu-

late this table.

30

Universities: This table stores metadata about each university. Populating this table

was done by using the first request URL in the set_request_URL table to make ListSets

request. This is because all of the university are returned in the first ListSets request.

Departments: this table stores metadata about each department. By using all entities of

the set_request_URL table, multiple ListSets requests were made to gather each de-

partment in each list section. Sets of schools gathered from this request were manually

deleted from this table.

Thesis_documents: This table has metadata of every thesis documents as can be seen

from figure 12. It can be regarded as the most important table for the Web portal project.

Figure 12. Partial list of thesis metadata in Thesis_documents table

At this stage, all the required information to build the web portal is stored and ready for

fetching and display. This paper does not discuss how the web portal was built. How-

ever, main functionalities, benefits and results achieved are discussed in the next chap-

ter.

31

6 Project Results in a Nutshell

So far this thesis has presented the two critical stages in the development of the tech-

nical project. First, how harvesting techniques were applied on Theseus was shown

and then the thesis has discussed how this harvested data was stored into a separate

MYSQL database. The third stage in the development process was bringing the stored

data and using it to build a web portal that adds visualization to it so users can easily

digest and observe interesting patterns. Although the thesis does not discuss how pro-

cessing the stored data for visualization was implemented, this chapter intends to de-

scribe the main functionalities of the end product.

The built Web portal aims to give better insights on the contribution of each university

to Theseus on its front page.

Figure 13. Landing page of the Web portal

On this landing page (see figure 13 above), the portal shows overall statistics that

compares each university of applied sciences based on the amount of thesis docu-

ments they have published on Theseus. The graph is friendly and easy to understand

and it attempts to create the impression to a visitor that the portal is mostly all about

statistical visualization of data within Theseus.

32

There is also a fixed navigation bar for users to navigate and see statistical data about

a university of their choice. The portal is divided into sections using a jQuery plugin

named fullPage.js. Each section contains statistical data for one university of applied

science and is reachable by links on the navigation bar. Furthermore, the sections en-

close landscape sliders to divide more statistical information about the university repre-

sented by them.

At the web portals current stage of development, information displayed in each section

include graphical depiction for the following details.

 The number of thesis documents versus publication year

 Departments and their respective number of thesis documents (see figure 14)

 Comparing thesis documents based on number of pages

Figure 14. Departments and their respective number of thesis documents

The other main feature of the web portal is the keyword analyser that enables users to

explore keywords used by students. By selecting year, university and department, us-

ers are able to filter and see keywords based on their selection. Moreover, users can

also compare universities using another feature in the web portal that generates the

combination graphs from two chosen universities. (More screen caption images from

the web portal are included in Appendix 1 and 2.)

33

7 Final Thoughts and Discussions

Working on this project has required several revisions of programming courses to be

made together with learning new concepts and programing techniques. I was out for a

challenge from the start and I have gotten exactly what I needed. I think I can safely

say that this was the toughest challenge and journey I took in my academic journey.

Numerous excitement periods about discovering new concepts and sleepless nights

trying to implement previously gained knowledge have made the process quite over-

whelming. In the end, it has all paid off and the result achieve was self-satisfying.

There were three phases of work involved in achieving the final Web portal. First, a

data from the concerned digital library had to be selectively harvested to match the

desired content of the Web portal, and then a database system was designed and con-

figured to store the harvested data. Finally, different approaches and techniques were

used to bring the data and its components together and deliver the Web portal for con-

sumption.

The works in the first stage started out by answering some questions beforehand and

making analysis on Theseus itself.

 What kind of data can be extracted from Theseus?

 Which of this data is best fit in the Web portal?

 Why is the chosen data interesting enough to include it?

 Who would be interested in it?

 Does it really make a point to include it?

To answer these questions, extensive discussions and arguments were made with ex-

perts and peers. Afterwards, newly discovered techniques including web harvest-

ing/scraping, developing a web bot to do things automatically and also other previous

knowledge such as how to make a uniform request-response cycle between servers,

utilizing PHP built-in functions and XML parsing libraries was applied to gathered con-

tents of Theseus that best match the purpose of the Web portal.

The second phase was rather easier and was not in the core goals of the project. How-

ever, hours were spent figuring out the best practice in MYSQL to create the tables and

their entities so the gathered data can be stored for easy and faster access.

34

At the end, by carefully addressing usability and interface concerns to present the

stored data, the Web portal was built. Despite some limitations, the product interprets

the stored data and provides users a visualization platform full of statistical charts and

figures. The benefits from using JQuery plugins and the Google Charts API have also

eased the work in coding some of the portal’s functionalities. During the process of

development knowledge of HTML 5, CSS and procedural PHP were exceedingly prac-

ticed.

Limitations and Future Developments

Even though the developed Web portal is fully functioning and ready for use, not all the

data gathered from Theseus is put to use in the foreseen manner. For this reason,

some limitations apply to the Web portal. These limitations include inability to compare

two thesis documents based on their respective number of downloads, inability to show

most popular or trending topics, and inability to show average page length per universi-

ty.

I strongly believe that the concept of this product is interesting and important enough to

continue its production and add more features to it. Whether it is for comparing thesis

documents based on the number of downloads and using the information to motivate

upcoming students or showing how many thesis documents from each university was

produced every year compared to how many students were accepted as a first year

student, the possibilities of the project are very vast and can be extended further. By

being creative on using the statistical data, the web portal can be further developed

and even influence decision making processes.

35

8 Conclusion

The purpose of this project was to harvest thesis metadata from Theseus’s data-

provider, store it separately and then later develop a Web portal that visualizes statisti-

cal facts about theses and publications from Finnish universities of applied sciences.

Harvesting the metadata was carried out by making “harvesting requests” to Theseus’s

data provider that uses Open Archives Initiative Protocol for Metadata Harvesting (OAI-

PMH) to provide and deliver metadata of thesis documents in different metadata for-

mats. The OAI-PMH has made this harvesting process possible by providing a simple,

yet powerful framework. This thesis paper has introduced some technical ways to use

the OAI-PMH for harvesting metadata from a digital repository using Theseus as an

example repository.

The toughest challenge that was faced in achieving this goal was dealing with a large

set of data. There were 84,391 thesis documents at the time when the project was car-

ried out. This made harvesting and storing metadata of thesis documents a demanding

task. Also, frequent need for modification of written codes to accommodate bad re-

sponses from the data provider’s server was a time consuming task that seek patience.

However, with continuous guidance and support from the instructor, a successful result

was achieved.

It was quite a ride into the world of programing and web development world. As inter-

esting as it is to visualize statistical thesis data, it was a surprise to find out that it was

not implemented by anyone before. Thus, with a mission to implement it and show its

relevance, this project was conducted. The result achieved was satisfying and the

product can now be used as a tool that visualises contents of Theseus.fi to give an

overall insight into each university’s contribution.

36

References

1. Baeza-Yates R., Ribeiro-Nato B. Modern Information Retrieval: the Concepts
and Technology behind Search. Second edition. Harlow, England: Addision
Wesley; 2011.

2. Theseus. Theseus.fi: Open Repository of Universities of Applied Sciences

[online]. Jyväskylä, Finland: AMKIT Consortium; 2015.
URL: http://theseus.fi.
Accessed 27 April 2015.

3. Malik S. Information Extraction Using Web Usage Mining, Web Scrapping and
Semantic Annotation. New Delhi, India: Computational Intelligence and
Communication Networks (CICN); 2011.

4. DuraSpace. DuraSpace wiki [online]. Sydney, Australia: Atlassian Corporation

Pty Ltd; 2015.
URL: https://wiki.duraspace.org/display/DSPACE/Home.
Accessed 7 March 2015.

5. Carpenter Leona. Open Archives Forum. Basic OAI Concepts and Features
[online]. Bath, United Kingdom: University of Bath; 2003.
URL: https://www.oaforum.org/tutorial/english/page1.htm#section2.
Accessed 7 April 2015.

6. Downes Stephen. Open Archives Initiative [online]. North Carolina, United
States: University of North Carolina; 2003.
URL: http://technologysource.org/article/226/.
Accessed 17 April 2015.

7. Heery R. Review of Metadata Formats [online]. Bath, United Kingdom: Universi-

ty of Bath; 1998.
URL: http://www.ukoln.ac.uk/metadata/review.html.
Accessed 7 March 2015.

8. The Repositories Support Project. Harvesting Repository Data and OAI-PMH
[online]
URL: http://www.rsp.ac.uk/grow/registration/harvesting/.
Accessed 14 March 2015.

9. Leona Carpenter. Open Archives Forum. Main Technical Ideas of OAI-PMH

[online]. Bath, United Kingdom: University of Bath; 2003.
URL: https://www.oaforum.org/tutorial/english/page3.htm.
Accessed 22 March 2015.

10. Schrenk M. Webbots, Spiders, and Screen Scrapers: A Guide to Developing In-
ternet Agents with PHP/CURL. 2nd ed. San Francisco, U.S.A: No Starch Press;
2012.

37

11. Michel J. P. Web Service APIs and libraries. USA: American Library Associa-
tion; 2012.

12. Gray j., Chambers L., Bounegru L. The Data Journalism Handbook [online].

Newton, Massachusetts: O'Reilly Media: 2012.
URL: http://datajournalismhandbook.org/1.0/en/getting_data_3.html.
Accessed 18 April 2015.

13. Mitchell R. Instant Web Scraping with Java. Birmingham, United Kingdom:

Packt Publishing Ltd; 2013.

14. Anderson S. M. Instant Simple Botting with PHP. Birmingham, United Kingdom:
Packt Publishing Ltd; 2013.

15. Hunter D., Rafter J., Fawcett J. Beginning XML. River Street, USA: John Wiley

& Sons; 2007.

16. Google Developers. Using Google Charts [online]. UAS: Google, Inc.; 2015.
URL: https://developers.google.com/chart/interactive/docs/index.
Accessed 4 February 2015.

17. Marc J. Web application description language (WADL). Mountain View, CA,
USA: Sun Microsystems, Inc.; 2006.

18. Carl Lagoze, Herbert Van de Sompel. Open Archives Initiative Protocol for
Metadata Harvesting - v.2.0 [online]. New York, NY: Andrew W. Mellon Founda-
tion;2008.
URL: http://www.openarchives.org/OAI/openarchivesprotocol.html#FlowControl.
Accessed 8 April 2015.

19. Carl Lagoze, Herbert Van de Sompel. Open Archives Initiative Protocol for
Metadata Harvesting - v.2.0 [online]. New York, NY: Andrew W. Mellon Founda-
tion;2008.
URL:
http://www.openarchives.org/OAI/openarchivesprotocol.html#MetadataNamesp
aces.
Accessed 8 April 2015.

20. Carl Lagoze, Herbert Van de Sompel. Open Archives Initiative Protocol for
Metadata Harvesting - v.2.0 [online]. New York, NY: Andrew W. Mellon Founda-
tion;2008.
URL: http://www.openarchives.org/OAI/2.0/guidelines-
harvester.htm#RunningAHarvester.
Accessed 18 April 2015.

Appendix 1

1 (4)

Appendix 1. Overall statistics on university of applied sciences

The column chart, on the front page of the Web portal (shown in the above figure), is a vertical

bar that shows the total number of thesis documents from each university of applied sciences in

Finland. Each bar in the chart represents one university of applied sciences. The column chart

also displays a tooltip when users hover over any of the bars in the chart (shown in the figure

below). This tooltip shows the total number of thesis documents together with the name of the

school represented by any of the bar selected by the user.

From this chart, users can see the number of thesis documents in Theseus and how many are

published by each school in comparison to other schools.

Appendix 4

4 (4)

Appendix 2. Sample statistics on thesis documents, Metropolia UAS

The above chart is generated by the Web portal. It shows the number of thesis documents be-

ing published by Metropolia university of applied sciences in every academic year. This chart

also has a tooltip, which appears when hovering over the graph to show the year selected and

the number of thesis documents published in that selected year. Departments in Metropolia

UAS and the number of thesis documents published by them are also represented by a pie

chart in comparison with each other. This is shown in the figure below.

Appendix 4

4 (4)

Appendix 3. Sample statistics on thesis documents, Tampere UAS

The same chart is generated for each university of applied sciences in Finland. This particular

chart, in this appendix, represents a sample from Tampere university of applied sciences.

Appendix 4

4 (4)

Appendix 4. Keywords filtering form and filtered results in partial

In order to see trending keywords used by students from universities of applied sciences in Fin-

land in every academic year, users can fill a form, shown in the above figure, to filter keywords

by year, university and department. Keywords used by students in the selected year from the

selected university and department will be returned (see figure below) by the Web portal after

the form is submitted.

