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year, keywords, subjects, department, university, language, and the number of pages of 
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Moreover, Google Charts API was extensively used to visualize the gathered statistical 
data.  
 
The thesis first discusses the anatomy of Theseus and its communication protocol fol-
lowed by a summary of concepts and technologies in data extraction process. After-
wards, it gives an illustration on the application of these concepts to parse and store 
metadata of every thesis document in Theseus. Finally, a brief description and benefits 
of the built Web portal are discussed.   
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1 Introduction 

 

Elba is an ancient kingdom that was located around what is currently known as north-

ern Syria. It was a place where the oldest known library was created. Since then, librar-

ies have been expanding and prospering as they continue to preserve the collective 

memory of the human race. In return, this expansion has caused the growth in volume 

of information in libraries which has led to a necessity to build specialized data struc-

tures for fast searching. Since the beginning of the 1990s, with the introduction of the 

World Wide Web (the Web), libraries have been extensively transferred into the Web 

which has become a universal repository of human knowledge and culture. [1,624.] 

 

Theses and publications from Finnish universities of applied sciences are accessible 

from an open digital library named Theseus. These papers can be read and utilized by 

any research and development work [2]. All publicly available data on this digital re-

pository can also be further manipulated through the use of the Theseus API. This API 

provides the metadata of each thesis document in different structured formats and of-

fers options for separately querying a list of thesis documents from a particular univer-

sity of applied sciences or even a particular department. 

 

This final year project was divided into two parts. First, in the technical part, data har-

vesting techniques were applied to automatically fetch metadata such as author name, 

title, keywords, submission year, department, subjects, university, language, and num-

ber of pages from every thesis document in Theseus and store the information in a 

separate MYSQL database. The stored data was then later used to develop a proto-

type Web portal that can be used as a tool for analysing thesis documents and visualiz-

ing overall statistical facts about each university of applied sciences in Finland. This 

was achieved by using PHP and visualization tools from Google Charts API. Secondly, 

in this written part of the project, a special attention was given to elaborate the pro-

cesses and techniques involved in harvesting Theseus to selectively extract statistical 

metadata necessary for the Web portal project. The thesis first starts by describing the 

anatomy of Theseus and the communication protocol that governs it, followed by theo-

retical concepts behind technologies used in data extraction process and finally it gives 

an illustration on the usage of these technologies to build the Web portal. The thesis 

also documents the problems that arose in the development process. 
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2 Theseus 

 

As the processing power of computers and the Web improve, information is being giv-

en a well-defined structure. This progression not only has made finding useful infor-

mation over the World Wide Web easier for quick searching, but also has facilitated 

data analysis and data mining feasibilities.  

 

Online repositories promote the preservation of structured intellectual outputs as they 

benefit more and more from the convergence of technology developments and digital 

assets. In recent years, the significant drop in storage and networking cost has made 

digital libraries and repositories more affordable than ever. For this reason alone, Web 

based databases (repositories) for managing scholarly materials are commonly offered 

by universities and institutions across the globe [4].  

 

Finnish universities of applied sciences collectively use such online digital library, The-

seus, to provide an open access to their theses and publications. Theseus.fi provides 

ways for visitors to search thesis documents for reading or to browse the whole content 

by thesis title, author, subject and more. 

 

2.1 Features and Functionalities of Theseus.fi  

 

Theseus.fi provides three key features for its end users. These are the search, browse 

and upload features. The search feature in Theseus, represented by number 1 in figure 

1 below, lets users search the entire library or just specific collections. If users are only 

interested in search results from a specific collection, they can limit their search scope 

after making their search on the front page and using the options that will appear under 

the search box. In addition, the Theseus search box accepts different search formu-

lates such as Field, Boolean, Wild card, Fuzzy, Proximity and Relevance that are well 

documented in its search instructions [2]. At the time of writing this thesis (April 2015), 

there were 84,391 theses and publications that are already available for an open ac-

cess. Using the Field-search option, specific metadata about each document such as 

title, author, abstract, date (when the work was accepted), identifier, university (name 

of the school), programme (degree programme), language, and keywords (descriptive 

words given by the author) can be used to search and find any of the documents.  
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Figure 1.  Landing page of Theseus portal [2.] 

 

On the other hand, the browsing feature, represented by number 2 in figure 1, lets us-

ers filter out theses and publications ordered by for example collection (universities or 

department name), title or author name. Typically, browsing starts with a collection. For 

instance, by selecting a particular university from a list of universities on the front page 

a list of departments in that particular university can be retrieved and when a single 

department is selected from this retrieved list another list of individual thesis documents 

will be displayed. In this way, end users can utilize the browsing feature to access the-

sis documents of their desire.  

 

The upload feature, represented by number 3 in figure 1, is for students and authors 

who want to publish their thesis or publication to the repository. By registering and cre-

ating a profile, it is possible to upload documents in electronic format to make them 

available as open access publications on Theseus.fi. When uploading a thesis or publi-

cation, uploaders are required to submit author name, title of the thesis and other de-

tailed information about their document. This information is later used as the metadata 

of the uploaded document in retrieval processes.  

 

Theseus is powered by a pioneer open source digital asset management system 

named Dspace, provided by a non-profit organization called Duraspace [4].  
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2.2 Dspace 

 

Dspace is an open source software platform that provides stable, long-term storages 

commonly for digital intellectual materials. Originally launched in November 2002 by 

MIT in collaboration with HP, this flexible and customizable software platform captures 

and describes digital materials that are submitted over its forms. Dspace grants data 

providers the ability to offer their users an easy access to contents with minimal to no 

customization of the application. It also allows individual documents to be well orga-

nized and described in its built in structure. As an open source software, Dspace can 

be freely downloaded and used or even modified to store digital materials for any un-

specific need. Some features of Dspace include searching and unified browsing. [4.] 

These features ease the process of accessing relevant contents in Dspace reposito-

ries. Theseus’s features and functionalities discussed above are directly linked to this 

nature of Dspace. 

 

2.2.1 Getting Data out from Dspace driven Repositories 

 

OAI, short for Open Archives Initiative, is an enterprise that develops and promotes 

standards for transferring digital objects or metadata from one system to another aim-

ing to facilitate the efficient dissemination of contents in online repositories. Such 

standards are called interoperability standards. Open Archives Initiative Protocol for 

Metadata Harvesting (abbreviated as OAI-PMH) is an interoperability standard devel-

oped by this enterprise that defines clear methods and protocols for accessing contents 

from Dspace repositories. Dspace uses OAI-PMH to define methods for sharing, pub-

lishing and archiving metadata, to enable access to Web materials within repositories 

such as Theseus. [4; 5] 

 

Overall, Open Archives Initiative (OAI) driven repositories provide an API that can be 

used by third party organizations to utilize their data. In this manner, OAI provides ap-

plication independent framework that helps establish metadata harvesting processes 

between the following two participants. 

 

 Data providers that allow OAI-PMH for exposing their metadata  

 Data consumers that harvest and use metadata via the OAI-PMH for different 

operations 
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It is estimated that about 75% of academic repositories worldwide use the standard 

OAI-PMH protocol to provide access to their digital intellectual materials. In authenticity 

to this adherence, some or all of the metadata about each intellectual material in such 

repositories is exposed for harvesting by external data consumers. When data con-

sumers (harvesters) request for data access, the returned metadata from OAI-PMH 

data providers is XML formatted metadata and usually includes a URL for the full text 

file which can potentially be further processed if required. [8.] 

 

2.2.2 Dspace OAI-PMH, the Data provider for Theseus 

 

Whenever a need to access data from a third party website arises, there is a good 

chance a developer starts his/her work by checking to see if there is an official applica-

tion programing interface (API). APIs provide tools essential to build software and ser-

vices that use data from external sources. They specify how these software and ser-

vices interact with the data source by describing a set of methods and protocols for 

accessing the data. Many companies make use of Web APIs to uncover data and func-

tionality in their existing system. 

 

Theseus API provides harvesters a way for accessing metadata of theses and publica-

tions from Finnish universities of applied sciences. This API uses open archives initia-

tive protocol for metadata harvesting (OAI-PMH) to deliver thesis documents in differ-

ent metadata formats from Theseus to harvesters. Theseus OAI-PMH exposes thesis 

documents in twelve unique metadata formats. Each metadata format has the following 

common properties [20].  

 

 metadataPrefix  

 schema URL and 

 XML namespace URI  

 

The metadataPrefix is a string consisting of any URI-unreserved characters to uniquely 

specify the format during OAI-PMH communication. The schema URL is the URL of the 

XML schema that associates defined sets of rules to test validity of the metadata. The 

XML namespace URI is a global identifier of the metadata format.  
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Table 1.  Metadata formats in Theseus  

 

 

Metadata prefix 

 

 

Full name 

UKETD_DC United Kingdom Electronic Thesis and Dissertation – 

Dublin Core 

OAI_DC Open Achieve Initiative – Dublin Core 

MARC Machine Readable Cataloging 

ETDMS Electronic Thesis and Dissertation Metadata Standard 

QDC Qualified Dublin Core 

RDF Resource Description Framework 

QDC_finna Qualified Dublin Core - Finna search service 

ORE Object Reuse and Exchange 

KK Kansallis Kirjasto, a metadata format provided by the 

national library of Finland. 

MODS Metadata Object Description Schema 

METS Metadata Encoding and Transmission Standard 

DIDL Digital Item Declaration Language 

 

 

For instance, the following samples show the author name of a single thesis document 

in three different metadata formats. 

 

MARC format : <subfield code="a"> Denut, Nicolae </subfield> 

OAI DC format : <dc:creator> Denut, Nicolae </dc:creator> 
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KK format:  

<kk:field schema="dc" element="contributor" qualifier="author" 

language="none" value=" Denut, Nicolae "/> 

 

For purposes of basic communication between data providers and harvesters, OAI-

PMH requires data providers to at least offer the “oai_dc” metadata format shown in 

table 1. The “oai_dc” metadataPrefix refers to OAI DC metadata format provided by an 

initiative named The Dublin Core Metadata Initiative (DCMI). However, within some 

groups and institutions other metadata specifications may be provided as is the case of 

Theseus. This is because it is sometimes necessary to adequately describe resources 

with complex structures in a specialized way for special needs. Whichever metadata 

format is chosen by data consumers, an agreement on its use with the data providers 

must be reached. [9; 19.] 

 

Depending on the interest of the developer, thesis documents can be delivered in any 

chosen format from table 1 above. Each metadata format can be queried to harvest 

any document from the repository for different objectives. OAI-PMH also supports in-

cremental harvesting allowing harvesters to retrieve only the records which have 

changed since the last successful harvest. [5.] 

 

2.3 OAI-PMH Principles that apply when Harvesting Theseus 

 

The OAI-PMH protocol works based on HTTP to allow communication between appli-

cations issuing OAI-PMH requests (data consumers) and repositories (data providers) 

to harvest metadata and return XML formatted metadata respectively. 

 

 

 

Figure 2. Basic OAI-PMH communication. Modified from the Open Archives Forum (OAF) 
(2015) [7.] 
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As an OAI based Dspace repository, Theseus has a separate data provider that is or-

ganised and structured in a model convenient for OAI-PMH communications. Conse-

quently, Theseus has an OAI based URL at http://publications.theseus.fi/oai/request?  

in addition to its URL for human users at www.theseus.fi. On its own, the OAI based 

URL of Theseus simply returns XML error message. Its real power unveils when a 

proper request type is appended to it. [6; 18.]  

 

In OAI-PMH, there are six request types (known as "verbs") that can be appended to 

OAI based URLs together with other arguments to access repository contents. [18.] 

Harvesting data as a client does not require the use of all request types. Nevertheless, 

data providers must implement all request types. Depending on the request type, it 

might also be necessary to use additional required or optional arguments for an effec-

tive response during data harvesting. [5.] In the following section, each request type in 

OAI-PMH communications is described and explained in relation to Theseus.  

 

2.3.1 Request Types 

 

Although OAI-PMH is intended for machine-to-machine communication, it returns re-

sults as XML that can be displayed by all major Web browsers. [9.] For this reason, the 

examples that follow are given as direct links.  

 

Identify: This is a function or request type that returns information about the data pro-

vider itself mainly for describing it. Appending this function to the end of Theseus’s OAI 

based URL will result http://publications.theseus.fi/oai/request?verb=Identify. As it can 

be seen in figure 3 below, Theseus returns XML formatted description of its data pro-

vider for harvesters when this request URL is used to make harvesting request.  

 

http://publications.theseus.fi/oai/request?verb=Identify
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Figure 3:  Response of Theseus to “Identify” request  

 

ListMetadataFormats: This is another function that lists all the metadata formats sup-

ported by data providers. Appending this function to the end of Theseus’s OAI based 

URL will give http://publications.theseus.fi/oai/request?verb=ListMetadataFormats. This 

request URL can be used when harvesting a list of metadata formats supported by 

Theseus’s data provider. 

 

 

Figure 4:  Partial list of Theseus’s metadata formats 

 

http://publications.theseus.fi/oai/request?verb=ListMetadataFormats
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ListIdentifiers: In Theseus, ListIdentifiers are used to list theses identifiers (that 

uniquely identify each thesis document), date stamps (that shows the last modification 

date) and two set specs (set identifiers), one for university identifier and another for 

department identifier of each thesis document.  

 

This request type requires an additional argument, “metadataPrefix”, for specifying the 

chosen metadata format of the required data. For example, appending this request 

type to Theseus’s OAI based URL and setting the metadataPrefix to kk (kansalliskirja-

sto, a metadata format provided by national library of Finland) will give the request URL 

http://publications.theseus.fi/oai/request?verb=ListIdentifiers&metadataPrefix=kk.This 

request URL can be used when harvesting a list of thesis record identifiers, dates and 

set specs of each thesis document. Listing 1 below shows the partial XML response 

from Theseus to ListIdentifiers request.  

 

  <request verb="ListIdentifiers" metadataPrefix="kk">  

http://publications.theseus.fi/oai/request 

  </request> 
    <ListIdentifiers> 
        <header> 
           <identifier>oai:www.theseus.fi:10024/474</identifier> 
            <datestamp>2013-08-19T10:18:05Z</datestamp> 
            <setSpec>com_10024_14</setSpec> 
            <setSpec>col_10024_174</setSpec> 
        </header> 
        <header> 
           <identifier>oai:www.theseus.fi:10024/592</identifier> 
            <datestamp>2013-05-06T15:30:26Z</datestamp> 
            <setSpec>com_10024_12</setSpec> 
            <setSpec>col_10024_270</setSpec> 
        </header> 

Listing 1. XML response to ListIdentifiers request (partially) 

 

ListSets: This function lists all sets prearranged by Theseus (universities of applied 

sciences and departments). Sets in Theseus are groups representing each university 

of applied sciences and department. Each set contains its own list of thesis documents. 

For example, appending ListSets to Theseus’s OAI based URL will give   

http://publications.theseus.fi/oai/request?verb=ListSets. When harvesting request is 

made using this request URL, Theseus’s data provider returns a list of universities and 

departments shown in figure 5 below.  

http://publications.theseus.fi/oai/request?verb=ListIdentifiers&metadataPrefix=kk
http://publications.theseus.fi/oai/request
http://publications.theseus.fi/oai/request?verb=ListSets
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Figure 5. ListSets response in partial 

 

ListRecords: This function also requires additional argument “metadataPrefix” and it is 

used to fetch a list of thesis metadata from Theseus. Other optional arguments can 

also be appended to limit result lists to a specific subset. For example, it is possible to 

add set specs (university and department identifiers) as arguments in order to retrieve 

a list of thesis metadata from a single department or university of applied sciences on-

ly.  

 

 

 

Figure 6.   Partial ListRecords response showing fetched result 
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Appending ListRecords to Theseus’s OAI based URL and setting the metadataPrefix to 

kk again, will give the request URL  

http://publications.theseus.fi/oai/request?verb=ListRecords&metadataPrefix=kk, which 

can be used by harvesters to access the response shown in figure 6 above. 

 

GetRecords: This function can be used to access an individual thesis document from 

the repository. It requires the combination of thesis record 'identifier' and 'metadataPre-

fix' arguments. For example the request URL  

http://publications.theseus.fi/oai/request?verb=GetRecord&metadataPrefix=kk&identifie

r=oai:www.theseus.fi:10024/77154 is used to retrieve the metadata of the a single the-

sis document shown in figure 7 below,  

 

 

 

Figure 7.  GetRecords request returning metadata of a single thesis document 

 

2.3.2 Flow control 

 

Theseus has a fairly large set of data. Results from the above listed functions or re-

quest types, can sometimes get messy and too long to display on web browsers. In 

such cases, the repository maintains measure of flow control by using articulates 

known as “resumption tokens”. [8, 18.] Resumption tokens are options from OAI proto-

col that allow data providers to chunk long list responses in parts. Implementation of 

http://publications.theseus.fi/oai/request?verb=ListRecords&metadataPrefix=kk
http://publications.theseus.fi/oai/request?verb=GetRecord&metadataPrefix=kk&identifier=oai:www.theseus.fi:10024/77154
http://publications.theseus.fi/oai/request?verb=GetRecord&metadataPrefix=kk&identifier=oai:www.theseus.fi:10024/77154
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resumption tokens is beneficial for both the data providers and data consumers when 

handling a large set of data.  

 

The four request types - ListMetadataformat, ListIdentifiers, ListSets and ListRecords - 

return a list of items [8]. Three of them - ListIdentifiers, ListSets and ListRecords - re-

turn large lists from Theseus. In such cases, Theseus OAI-PMH supports partitioning of 

a list items that make use of resumption tokens. By default, Theseus’s data provider 

returns 100 list items and a resumption token when a response list contains more than 

100 items. In order to get the next items in the response list, a second request has to 

be made using the resumption token as an argument. The second request also returns 

another list of items and new resumption token continuing from the first response. This 

process is repeated until the complete list of items is gathered. This work flow is better 

explained in figure 8 below.  

 

 

 

Figure 8. Resumption token work flow [5.] 

 

The anatomy of an example resumption token in Theseus is shown below 

 

<resumptionToken completeListSize="84090" cursor="2"> 
MToxMDB8Mjp8Mzp8NDp8NTpraw== 

</resumptionToken> 
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For every new list requests, harvesters must append resumption tokens as a parame-

ter to request URLs. The resumption token is empty if the list returned is the last sec-

tion. [18.] 

 

In summary, Theseus’s data provider uses the OAI-PMH protocol for exposing metada-

ta of thesis documents to data consumers who wish to use the data for different pur-

poses.  Data consumers issue OAI-PMH requests to Theseus’s data provider to get the 

XML formatted metadata of thesis documents. There are six request types that must be 

submitted by harvesters using HTTP methods to get the metadata. These request 

types are listed below. 

 

1. Identify: fetches information about Theseus data-provider itself 

2. ListMetadataFormats: returns a list of available metadata formats supported 

by a Theseus data-provider 

3. ListIdentifiers: lists thesis record identifiers, dates & other headers of each 

thesis document  

4. ListSets: retrieves the set structure (list of universities and departments) . 

5. ListRecords: gets list of complete metadata of thesis documents from a The-

seus  and 

6. GetRecord: retrieves individual metadata of a thesis document  

 

Theseus’s response to ListIdentifiers, ListSets and ListRecords request types is large. 

For this reason, the repository replies to these requests with an incomplete list and a 

resumption token. In order to make the response a complete list, harvesters are re-

quired to issue multiple requests with resumption tokens as arguments. This multiple 

request response cycle is referred to as Flow control. [20.] 

 

 

 

 

 

 

 

 

 

 



15 

 

3 Fundamental Concepts in Data Harvesting  

 

The task of obtaining relevant and useful information from a large data set requires 

assistance from automated information extraction systems. Such systems are in exist-

ence today with the help of software programs and programming concepts that provide 

tools for building high-performance, natural language processing applications. Funda-

mentally, automated web harvesting from the Web requires the use of web robots that 

apply web crawling, web harvesting and or parsing techniques to meet the goal. [10.] 

“OAI-PMH harvesters are robotic agents and care should be taken to avoid creating an 

accidental denial-of-service attack against repositories” [20]. 

 

3.1 Web Robots (Internet Bots)  

 

Repetitive tasks are not only tedious and time consuming for computer users; they also 

create a gap for errors to occur. Enter Web robots, in their productive nature bots are 

software applications that are capable of performing computer tasks automatically at a 

much higher rate than their human counterpart. They can be used for extracting infor-

mation from the internet, gathering/harvesting comparison data, examining a website 

for errors or invalid links, or even handling more advanced matters such as crawling 

websites on the internet. The most important objective of internet bots is to transfer 

required webpage content from an online data sources to a separate storage. [10; 11.] 

 

Web crawling: In broader sense, the process of finding the most relevant and desired 

content involves deploying internet bots to follow links and iterate through URLs of 

webpages. This practice is called web crawling. Understanding the techniques used in 

web crawling can be a good start in writing data extraction software for a specific 

webpage.  

 

Web scraping: Contrary to Web APIs, the ability to grab any online data while having 

the complete freedom to choose how to store and retrieve it requires the knowledge 

and understanding of another computer programming concept known as Web scraping. 

Web scraping (also known as Web harvesting or Web data extraction) is a technique in 

computer science to automatically extract data by parsing structured or semi-structured 

web contents such as the HTML of websites.   
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Web browsers locate, retrieve and display content from the World Wide Web. Software 

written for Web scraping purposes interacts with website hosts in the same manner as 

a Web browser. The only difference is, it holds on the data for further manipulation in-

stead of displaying it. For this particular nature, Web scraping software is used in dif-

ferent areas around the Web. Whether it is for comparing prices from different sites or 

detecting changes on webpages or even creating a Web mashup, the possibilities are 

wide open and endless. [13; 14.] 

 

3.2 XML Parsing 

 

In general, parsing may be defined as the act of taking a set of data and breaking it 

apart into its components to help extract the meaningful information out of it. For ex-

ample, XML parsing can be understood as a process of identifying the tags and attrib-

utes inside it with their relation to each other.  

 

XML processors are more commonly referred to as parsers. There are typically two 

types of XML parsers, XML DOM parsers and XML SAX parsers 

 

DOM parsers: These type of XML parsers work by creating a Dom Object Model inter-

face of the entire XML document to navigate, add, modify or delete parts of it while still 

in memory. This approach is typically used for small XML structures. [15.] 

 

SAX parsers: These parsers (also called “Simple API for XML parsing”) are event 

based parsers. It is mainly useful to extract specific tags and attributes from a large 

XML document. Unlike DOM parsers, a SAX API never has to hold the whole docu-

ment in memory, just the parts it is interested in. [15.] 

3.3 Simple HTML DOM Parser 

 

Parsing can be done in many ways. Simple HTML DOM parser, is an open source par-

ser library written in PHP to read, modify, and return structured content from external 

data sources. This parser library can create an object either by loading structured data 

from a string, or from a file on a computer. Loading a file can be done either via URL, 

or from a local file system. For example, loading file via URL can be achieved in the 

following manner. 
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$content= 

file_get_html('http://publications.theseus.fi/oai/request?verb=L

istSets');   

 

Once a DOM object is created this way and stored in the “$content” variable, getting 

the contents of the DOM object can be attained by using a method called “find ()”. For 

example, to get each “record” tag from the above URL of Theseus’s ListSets response, 

it is possible to simply use a foreach construct in PHP as follow.  

 

foreach ($content->find('record') as $element) { 

    Do something… 

} 

 

Other methods to get tags and their attributes are also provided by the parser in a syn-

tax that is quite similar to jQuery. This parser can be freely downloaded for any use and 

it was used to harvest thesis metadata from Theseus for building the web portal pro-

ject. 

3.4 PHP built-in Functions  

 

PHP.net provides a helpful documentation for different pre-defined functions at its web-

site. Some of these functions are extensively used while working on the data harvest-

ing part of the practical project described in this thesis. 
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4 Parsing Data from Theseus’s Data provider 

 

Part of the practical project was parsing thesis documents from Theseus’s data provid-

er using a parser library called Simple HTML DOM parser. The data gathered was later 

stored in a MYSQL database. 

4.1 Preparation  

 

Statistics is vital for producing variety of interpretational information based on a data 

set and thus it is useful and meaningful scientific knowledge [12]. However, under-

standing data and its patterns is far easier for most people when visualization methods 

are used to put the numbers as pictures. On this ground, a challenge was taken to 

build a Web portal that can present the statistics of thesis data, from all universities of 

applied sciences in Finland, in a more appealing manner with visualization. When pro-

ducing this Web project, different target groups were foreseen to show an interest in-

cluding universities and students around the country.  

 

At its current stage, the Web portal is a good tool to see how thesis submissions to 

theseus.fi  have increased throughout the years since the first submission. Users can 

now judge and compare universities of applied sciences based on their thesis submis-

sion rate every year or based on the total number of thesis papers in Theseus from 

each of them. Moreover, if users are interested to know which department in a given 

school is producing the highest number of thesis documents so far, the web portal 

makes it easy to see this information in a pie chart. In this pie chart, each department 

will have its own section showing its share of submitted thesis documents in percent. 

On this Web portal, comparing thesis documents with each other according to the 

number of pages or seeing keywords of thesis documents from any department in any 

given school and in any given year is just two clicks away. A list of keywords from a 

chosen year is intended to help users make their own analysis on how trending topics 

in each field of study are being more practiced and explored by students. 

 

Theseus contains 84,391 theses documents from students in twenty five universities of 

applied sciences. In order to build the web portal, it was necessary to parse all these 

documents and harvest interesting data for visualization. Before proceeding with the 

parsing process, a decision was first made on what kind of data about these docu-

ments is interesting enough to be extracted for inclusion. The web portal built provides 

http://www.theseus.fi/
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users a statistical breakdown of data about these thesis documents. For this reason, 

collecting metadata with variable nature that can answer the questions listed below 

was necessary. 

 

 How many thesis documents are in Theseus? 

 Which school has what amount of papers in Theseus? 

 How many papers is each school publishing every year? 

 What departments are there in each school? 

 How many theses belong to which department?  

 How many pages does each thesis have? 

 In what language are the theses written? 

 How many times has each paper been downloaded by Theseus visitors?  

 What are the keywords of each thesis document? 

 

Additionally, information on individual thesis documents such as author name, school it 

belongs to, department, title of thesis, or number of pages and year of publication were 

gathered and stored as essential components.   

 

4.2 Choosing Metadata Format  

 

The structure and organization of the same information is different in every metadata 

format. Even though it was expected that the information carried by each metadata 

format is the same, it was not the case for Theseus. For this reason, it was very im-

portant to decide what metadata format to use before starting to harvest. This decision 

was crucial because the web portal was built based on metadata harvested from The-

seus. As Theseus OAI-PMH implements multiple metadata formats, identifying the 

metadata format that has all the information needed for the project was a must. Unfor-

tunately, the development process of this project was in a halt multiple times because 

this decision was not made on time. Some harvesting was done with “OAI DC” and 

then “METS” metadata formats that had to be abandoned because of error responses 

and data inconsistency. After further technical instructions from the National Library, 

the “KK” metadata format was proved to be reliable for use and it was utilized during 

the harvesting process.  
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4.3 Parsing Process  

 

It is apparent that querying the metadata from the Theseus data provider can be done 

in a variety of programming languages such as Java, Visual Basics, PHP or Python. 

PHP was chosen for this particular project because the language is famous for its sim-

ple syntax, convenient string-parsing capabilities and portability [11].  

 

After setting up a PHP development environment, the parsing process began by first 

making a “ListSets” request with the help of Simple HTML DOM parser. ListSets re-

quest to Theseus returns lists of universities and departments that are used as sets. 

Since the list of universities and departments is large (953 items to be specific), The-

seus implements the use of “resumptionToken” to chunk this list of sets and returns 

100 list items per a single request.  

 

Figure 9. List request returning an incomplete list. 

 

In order to get the complete list, it is required to issue multiple requests using resump-

tion tokens as arguments. For example, to retrieve the second page of the set list, re-

sumption token from the first response can be appended to the new request URL be-

fore making a new request. The third page of the set list can also be accessed by ap-

pending the corresponding resumption token and making another new request and so 

on. Using the Simple HTML DOM parser and PHP, this can be done by first making a 

request to get the first page of the list as shown below. 

 

            <?php   

require 'simple_html_dom.php'; 

$firstPage=file_get_html('http://publications.theseus.

fi/oai/request?verb=ListSets'); 

      ?> 
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To make the next request, it is required to parse through the response from the first 

request and get the resumption token and store it in a variable. 

 

$resumptionToken=$firstPage->find('resumptionToken',0)->plaintext; 

 

The next request must use the value of the $resumptionToken as the value of the 

resumption token argument.  

 

$secondPage 

=file_get_html('http://publications.theseus.fi/oai/request?verb=ListSe

ts&resumptionToken=$resumptionToken); 

 

By creating a PHP loop, this process can be repeated to crawl through each section of 

the set list response. The concatenation of these sequential chunks of crawled lists 

from sequential requests will form a complete list of all departments and university of 

applied sciences in Theseus. Such a sequential list request is known as list request 

sequence. [19.]  

 

Theseus returns 100 set items (schools and departments) when a “ListSets” request is 

made. Therefore, creating a “for loop” that iterates nine times, making new list request, 

will suffice to get the complete list. However, since this crawling process will be repeat-

ed the same way to get the list of thesis documents (84,391 list items), it is a good idea 

to device a generic code that can be reused when necessary. To accomplish this, a 

special function was created.  

 

This function takes the first resumption token as an argument and use it to make the 

next request. When a response is returned, it gets the new resumption again and use it 

to make another request and iterates the same way until resumption token returns an 

empty result. 

 

Using the Simple HTML DOM parser and PHP again, this iteration can be achieved by 

first creating two constant variables that can later be assigned with whichever request 

type. 

 

For example in the case of ListSets request the two variables will be: 
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$url='http://publications.theseus.fi/oai/request?verb=ListSets'; 

$nextset='http://publications.theseus.fi/oai/request?verb=ListSets&res

umptionToken='; 

 

The first variable represents the first request URL. The first ListSet request should be 

made with this variable as follow. 

 

         <?php   

require 'simple_html_dom.php'; 

$firstPage=file_get_html($url); 

     ?> 

 

The response from this request will return the first 100 list of universities and depart-

ments and a resumption token for the next page. By scraping this resumption token, a 

new variable can be created in preparation to make the next request. 

 

$first_RToken=$firstPage->find('resumptionToken',0)->plaintext; 

 

By concatenating the new resumption token and the second constant variable 

($nextset), the next request URL can be constructed as follow.  

 

$nextPage=$nextset.$first_RToken ; 

 

At this point, setting up a generic function to continue the same process until there is 

no more resumption token value is possible. This function will take $first_RToken 

(defined outside of the function) as an argument and iterates through each section by 

following the steps listed below  

 

 First use a harvesting techniques to get the resumption token from a section   

 Append this resumption token to the variable $nextset to make a new request 

URL $nextPage 

 Make a new request with the formed new URL ($nextPage) 

 Get the new resumption token from the new response and re-assign the first re-

sumption token with the new value 
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 Finally, check to see if the reassigned resumption token is empty or not. If it is 

empty the iterations stops and that will be the end of the set list. Otherwise, the 

function calls itself again to get the complete list of request URLs.  

 

Parsing each element in the response XML can be done by including scripts inside this 

generic function while it is iterating through each set list section.  

 

When making a ListSets request, the goal is to get the list of  

 

 Department identifiers and their correspond name 

 University identifiers and their correspond name 

 

The response from ListSets request will return these values in a structured form, shown 

in listing 2 below, for an easy harvesting. 

 

<request verb="ListSets"> 
http://publications.theseus.fi/oai/request 

</request> 
<ListSets> 

        <set> 
            <setSpec>com_10024_1</setSpec> 
            <setName>Seinäjoen ammattikorkeakoulu</setName> 
        </set> 
        <set> 
            <setSpec>com_10024_4</setSpec> 
            <setName>Arcada - Nylands svenska yrkeshögskola</setName> 
        </set> 

 

Listing 2.  Partial ListSets XML response showing fetched results 

 

A set in OAI-PMH is used for grouping items for the purpose of selective harvesting. 

setSpec inside each set holds a unique identifier for the particular set it is in, and must 

be unique for each set in the repository. setName is a short descriptive string that is 

used for naming the set.  

 

Theseus organizes universities of applied sciences and departments into sets. A 

unique identifier inside setSpec is used to identify each school and department in The-

seus. The names of universities and their departments are kept within the setName. 

Since setName in OAI-PMH does not have to be unique the same department name 
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from multiple universities of applied sciences is used together with setSpec that 

uniquely identifies them.  

 

The first noticeable concern when parsing a ListSets request in Theseus is the fact that 

the XML response has a list containing mix of universities and departments. To sepa-

rately parse universities of applied sciences and departments a PHP string function, 

strops(), that checks whether the setName tag has a string “ammattikorkeakoulu” or in 

two other cases “yrkeshögskola” can be used.  

 

To parse setSpecs and setNames representing each university and department from 

the complete list, the generic function that was created earlier can be used. To do this, 

first make the function to return every ListSet request URL and store them in an array. 

By packing this array in a variable, $requestURL, then use a foreach construct to get 

setSpec and setName as follow. 

 

foreach($requestURL->find('set') as $element) { 

 

 foreach($element -> find('setSpec') as $id) { 

        $item_id=$id ->plaintext; 

        } 

 foreach($element -> find('setName') as $name){ 

        $item_name=$name ->plaintext; 

        } 

} 

 

The same process can be used to acquire all required metadata for our web portal. 

Continuing this manner, responses from “ListRecords” request to get metadata about 

each thesis document in Theseus can be harvested. As discussed earlier, it is good to 

remember that Theseus OAI-PMH requires the use of “metadataPrefix” when making a 

ListRecords request.   

 

A proper ListRecord request with only the “metadataPrefix” argument will return all the-

sis documents on the repository. To limit the returned responses based on department 

or university, an additional argument, setSpecs, is required. In such cases, appending 

set identifiers (setSpecs) of a department or university to the request URL will result a 

response containing thesis documents from that department or university only. 
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For example, to get the metadata of thesis documents from the department of media 

engineering in Metropolia (setSpec = col_10024_245), the following request URL 

should be used. 

 

http://publications.theseus.fi/oai/request?verb=ListRecords&metadataPrefix=kk&set=col_10024

_245 

 

This is an important concept in order to understand the processes used in parsing 

metadata of thesis documents. The response from the ListRecords request is orga-

nized in a different XML structure, shown in listing 3 below, than what was shown for 

ListSets request in listing 2. 

 

<request verb="ListRecords" metadataPrefix="kk" set="col_10024_245"> 

http://publications.theseus.fi/oai/request 

</request> 

    <ListRecords> 

<record> 

            <header> 

                <identifier>oai:www.theseus.fi:10024/1374</identifier> 

                <datestamp>2013-07-10T07:07:22Z</datestamp> 

                <setSpec>com_10024_6</setSpec> 

                <setSpec>col_10024_245</setSpec> 

            </header> 

            <metadata><kk:metadata xmlns:kk="http://example.com" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:doc="http://www.lyncode.com/xoai"> 

<kk:identifier type="handle" value="10024/1374"/> 

<kk:link href="http://www.theseus.fi/handle/10024/1374"/> 

<kk:field schema="dc" element="contributor" qualifier="author" lan-

guage="none" value="Guo, Jun"/> 

<kk:field schema="dc" element="identifier" qualifier="uri" lan-

guage="none" value="URN:NBN:fi:amk-200812124410"/>  

 

Listing 3. ListRecords XML response of a single thesis document 

 

A record inside the ListRecords tag in the above XML represents a single thesis docu-

ment. It contains different fields to expose different types of information about a thesis 

document for harvesters including title, author, university, department, keywords, ab-

stract, language and more. It is also uniquely identified in the repository by its identifier 

in the header section. Making a ListRecords request to the repository will return a list of 

records of each thesis document in Theseus.  

  

http://publications.theseus.fi/oai/request?verb=ListRecords&metadataPrefix=kk&set=col_10024_245
http://publications.theseus.fi/oai/request?verb=ListRecords&metadataPrefix=kk&set=col_10024_245
http://publications.theseus.fi/oai/request
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As mentioned earlier, Theseus had 84,391 thesis documents at the time of this writing. 

When a list request is made, the data source returns 100 records per each single re-

quest. The rest of the records are sectioned using a resumption token in a manner 

shown previously for the ListSets request which makes it convenient to use the same 

parsing techniques that was used then. In fact, this is the reason why implementing the 

use of a generic code was important. By slightly modifying the generic function ele-

ments, specifically the values of the constant variables $url and $nextset, gathering 

request URLs for ListRecords requests can be done the same way.   

 

The problem here is that there is a larger number of list sections to accommodate the 

amount of thesis documents. For this reason, the function needs to iterate a lot more 

time to get the complete list of request URLs causing max_execution_time error. Also, 

storing each one of them in an array for parsing purpose will causes memory_limit is-

sues in PHP. One way to address these issues is increasing the memory limit and ex-

tending the maximum execution time in the php.ini file and restarting the server. It is 

also possible to add the following two lines of codes in the PHP script to avoid this 

problem. 

 

ini_set('max_execution_time', 600);  

ini_set('memory_limit', '-1'); 

 

Setting this issue aside, parsing thesis metadata from each section can be done by 

making ListRecords requests and repeating the same process that was done for 

ListSets requests above. From the header of each record, the setSpec of departments 

and setSpec of universities which the records belongs to can be parsed using PHP’s 

foreach construct as shown below. 

 

foreach ($requestUrl->find('record') as $element) { 

 

$department_id= $element -> find('setSpec')[0]->plaintext; 

        $uas_id= $element -> find('setSpec')[1]->plaintext;  

} 

 

To get other metadata of each a thesis document in the record, a careful analysis on 

how the metadata format of the XML response is structured is important. Now, as can 

be seen from the XML structure in Figure 12 above, the KK metadata format consists 

each information about the record as an attribute in its tag <kk:field>. The information 
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of interest is contained inside the attribute element “value” of each <kk:field>.  But 

since each <kk:field> has the attribute “value”, we have to find another way to identify 

what the “value”s stand for in each <kk:field>.  This can be done by using the other 

attributes inside each <kk:field>.  

 

<kk:field schema="dc" element="contributor" qualifier="author" 

language="none" value="Guo, Jun"/> 
 

For example, the name of the author in the above <kk:field> tag (‘Guo, Jun’), can be 

parsed using the combination of “element”, “qualifier” and “value” attributes in a 

nested  if statement inside a  PHP code as follow.   

 

        foreach($record -> find('kk:field') as $kk_tag) { 

          $kk_attribute = $kk_tag -> element; 

 

          if($kk_attribute =='contributor') { 

            $qualifier_attr = $kk_tag -> qualifier; 

            if($qualifier_attr == 'author') { 

              $author = $kk_tag -> value; 

            } 

          } 

 

The same method was repeated and used to parse and gather other metadata infor-

mation of each thesis document. 

 

There were numerous drawbacks when the parsing process was applied on Theseus. 

Error responses due to a requests to non-existent data or duplicate entries were caus-

ing the parsing process to pause multiple times which usually required the restart of the 

whole iteration process.  

 

  

Figure 10. Duplicate entry with two different set specs  
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5 Storing Parsed Data in a MYSQL Database 

 

After successfully completing the parsing process, the next step was to store relevant 

parsed information to a separate database system on a MYSQL server. Storing parsed 

metadata to a separate database was necessary so that the web portal can be fast and 

independent of Theseus’s data provider. Deciding which metadata to store depends on 

the user requirement of the web portal and how the stored data is utilized. This Web 

portal was built to help users see graphical representation of of the following things. 

 

 How the number of thesis documents published by universities of applied sci-

ences have increased/decreased over the years 

 A comparison between departments in a university based on the number of pa-

pers they have in the repository 

 Trending keywords used by students in different departments and universities 

of applied sciences in any academic year 

 

Additionally, other information about thesis documents such as author, title and number 

of pages of a thesis document in any given year, university and department should be 

graphically represented by the web portal. In order for these functionalities to be possi-

ble, metadata from each university, department and thesis document were stored sep-

arately in their own table. Table 2 below summarizes the metadata that was harvested 

and stored 

 

Table 2.  Summary of required metadata 

 

 

Metadata from University of ap-

plied sciences 

 

Metadata from departments 

 

Metadata from thesis docs 

identifier (setSpec) identifier (setSpec) Thesis Identifier 

name name Author 

ListSets Request URLs ListSets Request URLs Title 

Total Number of papers Total Number of papers  GetRecord URL 

- University  identifier  Department identifier  

- - University  identifier 

- - Keywords 

- - Subjects (official keywords) 

- - Number of pages 

- - year 

- - Language  
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With this information at hand, it is now possible to start working on the relational model 

of the database.  

 

 

Figure 11.     ER model of tables that was mapped in the database 

 

Based on the relational model design (see figure 11), a MYSQL database that has four 

tables was first created using the phpMyAdmin interface and then the tables were pop-

ulated with the parsed data. The four tables have their own particular benefits in rela-

tion to each other.  

 

Set_request_URL: This is a table to store only the request URLs of each set list section 

(list of schools and departments). The generic function devised earlier, is used to popu-

late this table.  
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Universities: This table stores metadata about each university. Populating this table 

was done by using the first request URL in the set_request_URL table to make ListSets 

request. This is because all of the university are returned in the first ListSets request.   

   

Departments: this table stores metadata about each department. By using all entities of 

the set_request_URL table, multiple ListSets requests were made to gather each de-

partment in each list section. Sets of schools gathered from this request were manually 

deleted from this table. 

 

Thesis_documents: This table has metadata of every thesis documents as can be seen 

from figure 12. It can be regarded as the most important table for the Web portal project.  

 

Figure 12. Partial list of thesis metadata in Thesis_documents table 

 

At this stage, all the required information to build the web portal is stored and ready for 

fetching and display. This paper does not discuss how the web portal was built. How-

ever, main functionalities, benefits and results achieved are discussed in the next chap-

ter.   
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6 Project Results in a Nutshell  

 

So far this thesis has presented the two critical stages in the development of the tech-

nical project. First, how harvesting techniques were applied on Theseus was shown 

and then the thesis has discussed how this harvested data was stored into a separate 

MYSQL database. The third stage in the development process was bringing the stored 

data and using it to build a web portal that adds visualization to it so users can easily 

digest and observe interesting patterns. Although the thesis does not discuss how pro-

cessing the stored data for visualization was implemented, this chapter intends to de-

scribe the main functionalities of the end product.  

 

The built Web portal aims to give better insights on the contribution of each university 

to Theseus on its front page. 

 

 

Figure 13. Landing page of the Web portal 

 

On this landing page (see figure 13 above), the portal shows overall statistics that 

compares each university of applied sciences based on the amount of thesis docu-

ments they have published on Theseus. The graph is friendly and easy to understand 

and it attempts to create the impression to a visitor that the portal is mostly all about 

statistical visualization of data within Theseus. 
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There is also a fixed navigation bar for users to navigate and see statistical data about 

a university of their choice. The portal is divided into sections using a jQuery plugin 

named fullPage.js. Each section contains statistical data for one university of applied 

science and is reachable by links on the navigation bar. Furthermore, the sections en-

close landscape sliders to divide more statistical information about the university repre-

sented by them.  

 

At the web portals current stage of development, information displayed in each section 

include graphical depiction for the following details.  

 

 The number of thesis documents versus publication year  

 Departments and their respective number of thesis documents (see figure 14) 

 Comparing thesis documents based on number of pages 

 

 

Figure 14. Departments and their respective number of thesis documents 

 

The other main feature of the web portal is the keyword analyser that enables users to 

explore keywords used by students. By selecting year, university and department, us-

ers are able to filter and see keywords based on their selection. Moreover, users can 

also compare universities using another feature in the web portal that generates the 

combination graphs from two chosen universities. (More screen caption images from 

the web portal are included in Appendix 1 and 2.) 
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7 Final Thoughts and Discussions  

 

Working on this project has required several revisions of programming courses to be 

made together with learning new concepts and programing techniques. I was out for a 

challenge from the start and I have gotten exactly what I needed. I think I can safely 

say that this was the toughest challenge and journey I took in my academic journey. 

Numerous excitement periods about discovering new concepts and sleepless nights 

trying to implement previously gained knowledge have made the process quite over-

whelming. In the end, it has all paid off and the result achieve was self-satisfying. 

 

There were three phases of work involved in achieving the final Web portal. First, a 

data from the concerned digital library had to be selectively harvested to match the 

desired content of the Web portal, and then a database system was designed and con-

figured to store the harvested data. Finally, different approaches and techniques were 

used to bring the data and its components together and deliver the Web portal for con-

sumption.  

 

The works in the first stage started out by answering some questions beforehand and 

making analysis on Theseus itself. 

 

 What kind of data can be extracted from Theseus?  

 Which of this data is best fit in the Web portal?  

 Why is the chosen data interesting enough to include it?   

 Who would be interested in it? 

 Does it really make a point to include it? 

 

To answer these questions, extensive discussions and arguments were made with ex-

perts and peers. Afterwards, newly discovered techniques including web harvest-

ing/scraping, developing a web bot to do things automatically and also other previous 

knowledge such as how to make a uniform request-response cycle between servers, 

utilizing PHP built-in functions and XML parsing libraries was applied to gathered con-

tents of Theseus that best match the purpose of the Web portal.   

 

The second phase was rather easier and was not in the core goals of the project. How-

ever, hours were spent figuring out the best practice in MYSQL to create the tables and 

their entities so the gathered data can be stored for easy and faster access.  
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At the end, by carefully addressing usability and interface concerns to present the 

stored data, the Web portal was built. Despite some limitations, the product interprets 

the stored data and provides users a visualization platform full of statistical charts and 

figures. The benefits from using JQuery plugins and the Google Charts API have also 

eased the work in coding some of the portal’s functionalities. During the process of 

development knowledge of HTML 5, CSS and procedural PHP were exceedingly prac-

ticed.  

 

Limitations and Future Developments 

 

Even though the developed Web portal is fully functioning and ready for use, not all the 

data gathered from Theseus is put to use in the foreseen manner. For this reason, 

some limitations apply to the Web portal. These limitations include inability to compare 

two thesis documents based on their respective number of downloads, inability to show 

most popular or trending topics, and inability to show average page length per universi-

ty. 

 

I strongly believe that the concept of this product is interesting and important enough to 

continue its production and add more features to it. Whether it is for comparing thesis 

documents based on the number of downloads and using the information to motivate 

upcoming students or showing how many thesis documents from each university was 

produced every year compared to how many students were accepted as a first year 

student, the possibilities of the project are very vast and can be extended further. By 

being creative on using the statistical data, the web portal can be further developed 

and even influence decision making processes.  
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8 Conclusion  

 

The purpose of this project was to harvest thesis metadata from Theseus’s data-

provider, store it separately and then later develop a Web portal that visualizes statisti-

cal facts about theses and publications from Finnish universities of applied sciences. 

Harvesting the metadata was carried out by making “harvesting requests” to Theseus’s 

data provider that uses Open Archives Initiative Protocol for Metadata Harvesting (OAI-

PMH) to provide and deliver metadata of thesis documents in different metadata for-

mats. The OAI-PMH has made this harvesting process possible by providing a simple, 

yet powerful framework. This thesis paper has introduced some technical ways to use 

the OAI-PMH for harvesting metadata from a digital repository using Theseus as an 

example repository. 

 

The toughest challenge that was faced in achieving this goal was dealing with a large 

set of data. There were 84,391 thesis documents at the time when the project was car-

ried out. This made harvesting and storing metadata of thesis documents a demanding 

task. Also, frequent need for modification of written codes to accommodate bad re-

sponses from the data provider’s server was a time consuming task that seek patience. 

However, with continuous guidance and support from the instructor, a successful result 

was achieved.  

 

It was quite a ride into the world of programing and web development world. As inter-

esting as it is to visualize statistical thesis data, it was a surprise to find out that it was 

not implemented by anyone before. Thus, with a mission to implement it and show its 

relevance, this project was conducted. The result achieved was satisfying and the 

product can now be used as a tool that visualises contents of Theseus.fi to give an 

overall insight into each university’s contribution. 
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Appendix 1. Overall statistics on university of applied sciences 

 

 

 

 

The column chart, on the front page of the Web portal (shown in the above figure), is a vertical 

bar that shows the total number of thesis documents from each university of applied sciences in 

Finland.  Each bar in the chart represents one university of applied sciences. The column chart 

also displays a tooltip when users hover over any of the bars in the chart (shown in the figure 

below). This tooltip shows the total number of thesis documents together with the name of the 

school represented by any of the bar selected by the user.  

 

 

 

 

 

From this chart, users can see the number of thesis documents in Theseus and how many are 

published by each school in comparison to other schools. 
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Appendix 2. Sample statistics on thesis documents, Metropolia UAS  

 

 

 

The above chart is generated by the Web portal. It shows the number of thesis documents be-

ing published by Metropolia university of applied sciences in every academic year. This chart 

also has a tooltip, which appears when hovering over the graph to show the year selected and 

the number of thesis documents published in that selected year. Departments in Metropolia 

UAS and the number of thesis documents published by them are also represented by a pie 

chart in comparison with each other. This is shown in the figure below.  
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Appendix 3. Sample statistics on thesis documents, Tampere UAS  

 

 

 

The same chart is generated for each university of applied sciences in Finland. This particular 

chart, in this appendix, represents a sample from Tampere university of applied sciences.  
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Appendix 4. Keywords filtering form and filtered results in partial 

 

 

 

 

In order to see trending keywords used by students from universities of applied sciences in Fin-

land in every academic year, users can fill a form, shown in the above figure, to filter keywords 

by year, university and department. Keywords used by students in the selected year from the 

selected university and department will be returned (see figure below) by the Web portal after 

the form is submitted.   

 

 

 

 


