

Information system for measurement data

Marek Polakovič

Bachelor’s thesis

May 2015

Software Engineering

School of Technology, Communication and Transport

Description

Author(s)

Polakovič, Marek
Type of publication

Bachelor’s thesis
Date

29.05.2015

Language of publication:
English

Number of pages

68
Permission for web

publication: x

Title of publication

Information system for measurement data

Degree programme

Software Engineering

Tutor(s)

Esa Salmikangas

Assigned by

Faculty of Electrical Engineering, University of Žilina

Abstract

The main goal of this bachelor’s thesis was to analyse and develop an information system

for storing, managing and analysing transformer measurement data. The thesis focused on

designing and developing multiple parts of an information system, such as data processing,

reporting and charting part.

The system is intended as a framework of the project APVV-0703-10 - analysis and

diagnostic measurements of power transformers using a "Sweep Frequency Response

Analysis" at the University of Žilina. The information system is used for storing,

processing, managing and analysing data obtained from modern measurement devices.

Additionally, it would be able to generate final report as a result of the analysis.

The system was written in Java under Java Enterprise Edition, with PrimeFaces defining the

user interface for web application and with many other Java frameworks and libraries. The

system also supports REST services for processing, managing and analysing data. This

enables future development for additional platforms (like Android, Windows Phone, etc.),

however, the implementation of the REST services is outside the scope of this thesis.

The information system is still being developed and it has been presented to various people

working with power transformers. Currently the system works in majority of web browsers.

Keywords/tags

Information system, Java, Java Enterprise Edition, transformer, measurement data, analysis,

JasperReports, Highcharts, PrimeFaces, WildFly

 Miscellaneous

1

Contents

Acronyms and glossary .. 3

1 Introduction .. 5

1.1 Assigner ... 5

1.2 Topic introduction ... 5

1.3 Objective of thesis ... 5

1.4 Outline of thesis ... 6

2 Analysis and requirements gathering ... 7

2.1 Gathering of requirements ... 7

2.2 Analysis ... 9

3 Architecture and design of application ... 14

3.1 Implementation platform for application ... 14

3.1.1 Introduction to implementation platform ... 14

3.1.2 Choice of programming language .. 15

3.1.3 Java EE ... 16

3.1.4 Apache Maven .. 17

3.1.5 Manage bean .. 22

3.1.6 Weld CDI ... 23

3.1.7 PrimeFaces (JSF) .. 24

3.1.8 Chart library ... 26

3.1.9 JasperReports ... 29

3.2 Database technologies ... 31

3.2.1 Choice of database system ... 31

3.2.2 Hibernate .. 32

4 Implementation ... 36

4.1 Project structure ... 36

4.2 Data processing.. 38

4.3 Charting library – HighCharts ... 44

4.4 Reporting – JasperReports ... 47

5 Confirmation of results and testing .. 53

6 Discussion .. 54

References .. 57

Appendices ... 60

2

Figures

Figure 1. Use-case diagram of the information system design 10

Figure 2. Layer architecture ... 22

Figure 3. Measurement part database model (EAV) .. 39

Figure 4. Upload - Upload data file .. 42

Figure 5. Upload - Choose related transformer .. 43

Figure 6. Upload - Choose measurement type and operator .. 43

Figure 7. Upload - Final dialog .. 44

Figure 8. Charting - Choose transformer ... 45

Figure 9. Charting - Choose measurement ... 45

Figure 10. Charting - Transfomer details ... 46

Figure 11. Charting - Chart example .. 46

Figure 12. Objects used for Jasper 1 .. 48

Figure 13. Objects used for Jasper 2 .. 49

Figure 14 Report - nameplate data ... 49

Figure 15. Report - measurement table .. 50

Figure 16. Report - chart .. 50

Figure 17. Report – analysis ... 51

Figure 18. Report - menu ... 52

Figure 19. Report – settings ... 52

Tables

Table 1. Default building phase ... 21

Table 2. Features comparision of chart libraries .. 27

file:///C:/Work/Thesis/IS%20for%20storing,%20managing%20and%20analysing.docx%23_Toc419915053

3

Acronyms and glossary

Ajax

Also AJAX, asynchronous JavaScript and XML, group of client technologies

for creating asynchronous web application

API

Application programming interface, set of routines, protocols and tools for

building software applications

CRUD

Create Read Update Delete – basic skeleton of GUI for managing data in

database

CSV

Comma Separated Value – specific file that contains columns and rows, each

column is separated from others by comma

EJB

 Enterprise JavaBeans, application logic implementation

EAV

Entity-Attribute-Value model is a data model to describe entities with their

attributes. The final set of all attributes that can be used to describe a certain

entity is potentially vast, however, the number of attributes that will apply to a

given entity is relatively modest. (Wikipedia, 2015)

FTP

File Transfer Protocol – this protocol is used for transferring data between

computers over the Internet

Framework

Universal, reusable software environment. This environment provides

particular functionality as part of a larger software platform

4

IS

 Abbreviation for Information System

Java

Computer programming language that is concurrent, class-based,

object – oriented

Java EE

Java Enterprise Edition (JEE) – enterprise Java computing platform that

provides an API and runtime environment for running and developing

enterprise software, usually used for more complex projects

JSF

JavaServer Faces – JEE specification for building component-based user

interfaces for web application

JSP

JavaServer Pages – technology that helps developers to create dynamically

generated web pages

POJO

Plain Old Java Object – this type of java object contains only constructors,

attributes and its getters and setters

PrimeFaces

 Ajax framework based on JSF, extended API for JSF

SFRA

Sweep Frequency Response Analysis

5

1 Introduction

1.1 Assigner

This project based on a real request from the Faculty of Electrical Engineering at

University of Žilina. The majority of activities are oriented into monitoring reliability

and quality, study reconfiguring circuits to computers, control of quality and

reliability according to IEC standards, application of programmable logical arrays and

lastly diagnostic and analysis of failures and destructive analysis.

Some of the employees of this faculty monitor and control different types of electronic

systems, components and materials. These activities are mostly performed in the field

of electronics and electro technology.

1.2 Topic introduction

Generally, there are several problems during the development of an information

system. One of these problems is how to store data efficiently. Every second modern

electronic devices produce hundreds of bytes of data. These data have to be processed

and stored properly. The analysis of stored data can contain invaluable information

provided that everything was performed properly. Big data is the term describing the

problem of efficient storage and analysis of huge amounts of data. (Zikopoulos, et al.,

2013). Some of the new techniques of data storage and processing were used to cope

with this problem. The following chapter explains why this problem was mentioned.

1.3 Objective of thesis

The goal of this thesis was to design and develop new information system (some parts

of it) that uses the obtained data for storing, managing, reporting and analysing. This

bachelor’s thesis based on the project APVV-0703-10 - analysis and diagnostic

measurements of power transformers using a "Sweep Frequency Response Analysis."

As can be seen from the project name, the data are obtained as a measurement of power

transformer. Measurement data were non-organized, not well stored and lastly, there was a

need for creating a system that supports at least these activities: to process and store data,

compare data among measurements and generate final report. So far all of equipment

6

operators of measurements and analysts have to store their measurement data manually in a

folder structure, and also they are not able to process the analysis on them or share them

easily. Therefore, the purpose of the thesis was to improve these processes.

1.4 Outline of thesis

The thesis is divided to the several parts or chapters. Chapter one contains brief

information about the assigner, introduction to the project and analysis of current

state.

Chapter two contains the analysis and gathering the requirements with the theoretical

background. This analysis and theoretical background are necessary in order to

properly understand the topic.

The third chapter describes the whole architecture of this information system with

information about the used technologies. All content in this chapter is aimed at the

design parts and for giving the answers for questions such as what was necessary to

use, design, what were the decisions etc.

Chapter four is aimed at the implementation phase from a practical view. In this

chapter all newly created processes are described from the user and developer point of

view.

The last two chapters present confirmation of the results with the testing part,

conclusions and a short self-assessment.

7

2 Analysis and requirements gathering

All necessary information needed for better understanding of the whole process of

gathering requirements or analysis phase can be found in this chapter. During the

whole project lifecycle each step was consulted with experts in electro-technology

(technicians) and also these experts set up basic requirements that should be

considered in the solution.

2.1 Gathering of requirements

The current process of managing transformer measurements does not have any

dedicated software to support it. The process that is described below is the result of

several meetings with the host company.

Firstly, it was necessary to identify all interested parties. During the analytical phase

two main roles of the information system were identified. People who belong to these

groups are included in obtaining, managing, analyzing and distributing measurements.

Concretely, these roles were identified:

1. Technicians

a. measurement equipment operator – a person, who operates the

measurement device during measurement

b. analyst – a person, who views and reviews measurement data,

performs data measurement analysis and finally generates

reports that contain the analysis results

c. administrator – a person, who takes care of the system by back-

upping all data, database, etc., who has a right to perform

administrative tasks e.g. user roles administration, roles

administration etc.

2. customers – a person, who reads, archives and uses final reports.

The first group can be divided into three sub-groups, so a common name for these

sub-groups is Technicians. These sub-groups represent more specific roles, as

described before, in this whole process.

8

Measurement equipment operators are responsible for obtaining the data from the

transformer. It means that they have to get to the transformer and obtain the data using

measurement device. This way, they get data from each transformer is planned for

measurement and they come back to the office. Then they download the data from the

measuring device in CSV format to their own computers. Now the files are ready to be

processed by an analyst. (Grondžák, Grigeľ, Polakovič, & Remenec, 2014)

Firstly all necessary files that are needed for analysis must be downloaded/sent to

user’s computer (for example via email, FTP or USB drive). These files are opened

using a specified software able to perform the SFRA analysis and draw charts based

on the input data. Checking the result and exporting the printed charts into some

image format (JPEG, PNG, etc.) are carried out manually by the analyst. After this

phase a final report can be created using some kind of word processor (for instance

Word or TeX). After that this document is sent by e-mail to SSE (consumer of reports,

from application scope it is customer). The whole process is sometimes time

consuming and has several issues that could happen.

During this process several problems were found out. Data are stored in CSV files on

multiple computers. File sets on different computers do not have to match, so certain

data can be unreachable from one device. On the other hand, these files can be easily

lost. Also it is almost impossible to search or filter this data. Furthermore, the creation

of reports is manual and every time a report is created, the technician has to copy the

data, results and charts into the text processor.

Therefore, the goal for this system is to centralize data storage and analysis and every

technician and consumer can access the data easily from everywhere (no matter if

using tablet, mobile phone, desktop or laptop). It is also important to automate the

report creation and transformer measurement management.

Following sections describe and explain how these goals were achieved.

9

2.2 Analysis

During the whole project lifecycle each step was consulted with experts in electro-

technology who work with transformers and perform the analysis and measurements

on them. The host institution clarified us their ideas and hinted how the application

should look like, what kind of features should be included and how the analysis

should be performed.

One result of the analyse is based on the fact that the best solution for having a

centralized data storage and analysis is to use a client server architecture with a

centralized database server. This decision was made when by discussing and

considering several facts, such as that the application should be accessible to

everybody and the database should be available from all parts of the world. Also the

same data should be shown to all users in real time.

The analysis of the requirements also resulted in an identification of several

subsystems (user’s activities) of use cases that are logically or functionally

interconnected. Each subsystem represents an atomic task which the system should be

able to perform. The use-case diagram of the proposed system design is shown in

Figure 1. The assignment of roles to the activities is illustrated in the diagram.

(Grondžák, Grigeľ, Polakovič, & Remenec, 2014). Seven subsystems were identified.

Next these subsystems are described in more detail.

10

Figure 1. Use-case diagram of the information system design

11

Following subsystems were identificated:

 file processing – is the core subsystem, allows users to upload date in

CSV files into the database,

 administration of measurement – the most important subsystem, allows

the user to view, edit and delete measurement according to measured

data,

 administration of analysis – provides an implementation of algorithms

for data analysis, for instance SFRA,

 plotting subsystem – allows the user to view measured data in the

graphical form,

 administration of reports – enables creation of different forms of

reports,

 administration of transformers – allows to manage static information

about tranformers like their charakteristics, location, type, etc., and

 administration of users – enables managing users (creating, deleteting,

changing password, user role assignment, etc.).

Next the focus in on the identificated subsystems. In the following paragraphs a

deeper description of these subsystems can be found. The next part aims at describing

the subsystems that are related to the goals of this paper.

Subsystem – File processing

This is the first core module of the system. This part of the application should allow

users to upload the CSV file obtained from measurement device to the server. Firstly,

the file that contains measurement data should be serialized and subsequently sent via

network to the server. When the file is successfully uploaded it should be processed

by the server. It means that application can parse all obtained data and get the rest of

data that is necessary for the application (for example name of columns, numeric

waveform data, transformer serial number and other related data). Finally, these

parsed data will be persisted into database. Generally this part allows user to add new

measurements. More details about this subsystem will be described later in this paper.

12

Administration of measurements

This is another core module, because main task of this system is to store, archive and

manage all measurements in the database and also because all uploaded measurements

have to be manage by technicians. This subsystem allows user to remove

measurements, edit certain properties of them, filter and search measurement by using

some of the measurement properties.

Administration of analysis

This module is responsible for performing some type of analysis. One of this analysis

could be Sweep Frequency Response Analysis method with parameters specified by

user. Main tasks of this subsystem are: to perform implemented type of analysis using

given parameters, show user the analysis results and indicate whether the transformer

is fine or it malfunctioned.

Plotting subsystem

When a certain measurements in measurement manager will be selected, the data

according to the selected records should be displayed in a graphical form (at least line

chart). One part of this data is also a chart with curve representing transformer’s

measurement data. User should be able to save actual graphical image, work with

charts like changing selected curves (one curve represents one column in

measurement data), manipulating with zoom and so on. Also charts should be able to

plot whole data in logarithmic scale. More details about this subsystem will be

described later in this paper.

Administration of reports

When the system will had all necessary data and charts of the measurement it should

be able to create final report. The system should create protocols automatically using

data in the database. Of these, the application should allow user to choose which parts

the report will contain and which not. More details about this subsystem will be

described later in this paper.

13

Administration of transformers

A user uploads measurement data of a certain transformer, therefore it is necessary to

have some transformers in the evidence of the system. When user uploads data, the

system should try to determine which transformer it belongs to. This subsystem

should allow a technician to edit information about an existing transformer, to remove

it or to add a new one.

Administration of users

As mentioned before, there are two basic groups of users – common users and

administrators. User manager provides CRUD (Create Read Update Delete)

operations above them. This the way how a new technician can be added to the system

can be edited information about existing ones. The application also provides the

possibility to add a new administrator.

14

3 Architecture and design of application

In the previous chapters the basic concepts that may be met up in this work were

successively described. The analysis was also made and described together with the

gathering of requirements. Therefore, now an implementation platform for the

application itself and also the whole application design can be described. All

technologies described below are used in the application. There is no deep description

how the technologies are used, however, there are the reasons and descriptions why

these technologies are needed, how each part is interconnected and what was

necessary to study or to explore.

3.1 Implementation platform for application

3.1.1 Introduction to implementation platform

The chosen implementation platform depends on the gathered requirements and

performed analysis. All decision were based on results of a prior analysis, consultation

with the representatives of the host company and the author’s own reflections and

ideas how the application should look like, perform the task and help to the end-user.

Today, several operation systems exist and that is why it is necessary for the

application to be platform independent and to be supported on major systems. By this

requirement, the application is runnable almost on each computer. Also, there are

plans that the application can be extended in the future with several modules, so it is

necessary to design a flexible, easy to develop or extend application.

That is why this system is designed as a web application with client – server

architecture. The architecture client – server is well known, thus it is not described in

this paper. There can be some questions what the benefits of this architecture are and

why this information system is designed as a web application. The answer is simple.

The application has to share all available data to all users and all data should be

available from all parts of the world, which is another reason for web application

There is a high possibility that a technician uses this application outside during

performing measurements via a mobile device (such as a tablet), therefore this is the

next reason why the application is designed as a client-server or web app.

15

By analysing the requirements regarding to the above-mentioned plans and

considerations, several requirements that may affect the choice of implementation

platforms were formulated:

 possibility to create intuitive GUI

 possibility to create multiplatform application

 possibility for easy and fast way how to developing new features with

minimal knowledge

 type safety

 common available language

 possibility to generate reports, printing charts and processing plenty of

data.

3.1.2 Choice of programming language

The final set of available solutions – platforms and programming languages was

minimized by these base requirements. These programming platforms meet most of

the criteria: Java EE or ASP .NET.

Both platforms have plenty of common pluses or minuses for the future application.

Both of them are commonly available, provides several frameworks and APIs that can

be freely used, for example the framework for object relation mapping, - ORM,

generating reports and printing charts, etc. The development phase is quite easy

whether using ASP or Java platform and both these languages are supported by

several development environments. Visual Studio can be used for developing

application under ASP and this environment helps us with automation and making

some tasks faster. (Microsoft, ASP .NET) On the other hand NetBeans, IntelliJ or

Eclipse can be used for developing an application under Java EE. (Microsoft, ADO

.NET Overview MSDN)

ASP.NET

The major disadvantages of ASP platform is the weak support of several database

systems or mechanism. There are two common frameworks for database

manipulation: Entity framework and NHibernate. The entity framework works very

16

well with Microsoft SQL Server, however, several problems has occurred when

database system, like PostgreSQL, MySQL, are used (Microsoft, ASP .NET) On the

other hand there is NHibernate. This framework has many disadvantages for the thesis

project. One of these minuses is a missing mechanism such as reverse engineering

(creating model classes that contain access methods to the existing relation database

model) or forward engineering (opposite process of reverse engineering), annotations

and more. (NHibernate Community, 2014)

The last of the disadvantages for developing the application under .NET platform is

insufficient multiplatform for deploying application on servers with another operation

system than Windows. (Microsoft, ADO .NET Overview MSDN)

The decision was not to use ASP. NET as an implementation platform, because this

platform has serious disadvantages for the project. The next candidate was Java EE.

No kind of limitation and serious disadvantages were found in Java platform, so the

decision was to use Java EE. Also, this platform suits very well for this project with

all related frameworks and APIs.

3.1.3 Java EE

Java EE is a set of technologies that enables the development of large-scale

information systems (like .NET, ASP, WCF etc.). This platform also includes API for

accessing databases (ORM), viewing web pages, web services implementation, and

many other features. The great advantage of this platform is the amount of available

open libraries for its expansion. Several technologies can be used in each layer for a

specific problem. This platform is available with several ORM providers such as

Hibernate, DataNucleus or Eclipse Link. In addition, working with the database is

defined in Java Persistence API specification that state how to manage work with

relational data (relational database) for the Java platform in general. Of these,

Hibernate follows one of the referential specifications (EclipseLink JPA). The

advantage of this platform is the support of different database systems, including

NoSQL. (Gupta, 2013)

Nowadays, Java community is very strong, and a great deal of referential

specifications to help the application to communicate better with several existing APIs

17

or components can be found. There are plenty of extending APIs that provides some

useful technologies, frameworks and functionalities for certain tasks such as

generating different types of documents, printing charts, ORM, or moreover, there is

possibility to combine several additional libraries and components for creation of web

GUI (PrimeFaces, GWT, Vaadin, etc.). Some of these frameworks, components and

APIs are described later in this work.

The information about used technologies and frameworks that were used during

implementation phase are described in the next chapters.

3.1.4 Apache Maven

Apache Maven is a tool for software project management and for automation building

process. Maven was developed under Java platform and it is mostly used for Java

projects. Maven is based on the concept of project object model (POM). All

configuration are stored in one file, called pom.xml as was mentioned before.

(Sonatype Company, 2008)

There are several goals that Maven is able to achieve. Maven is mainly used for these

three tasks: defining dependencies, identifying project and defining the way how to

build it. Another task was to introduce certain rules (best practices) for developing

software, for example, it defines the directory structure of project, and to control the

migration phase for new features or projects. (Tutorials Point, 2014) (Sonatype

Company, 2008)

So far the mission of Maven was described, however, there is still one unanswered

question: why should Maven be used for defining dependencies or for building

process, if these possibilities are also included in several developers’ environments.

The answer for this question in described with a practical example below.

A situation is imagined that the user is going to develop a larger project (enterprise

application, information system or expert system) with using many libraries for

generating reports, using several types of charts, creating GUI and more.

If the user is not using Maven all these libraries (.jar files) should be added manually.

This is possible on a small-scale project with less libraries (up to 5-10), however, what

18

about a project that will contain plenty of them (for example 20 and more). It is

necessary to mention that the number of libraries can increase extremely for a few

reasons. One of these reasons is also mentioned previously (need for a new library for

some new feature). The other one is that libraries can have different versions and can

have some other dependencies, thus, finally it is necessary to include these additional

libraries also. Now it can be noted that these libraries need to be included only once

and it is done, however, what about the situation when the project is developed by

many more developers? Every library has to be delivered to each developer, then this

library has to be linked/included into each copy of the project. As can be seen, there is

still much work, even when this process can be fully automatized. It can be mentioned

that all libraries can be stored with the code in some versioning system (e.g.

Mercurial, GIT), however, this idea has also one major disadvantage, which is that if

all libraries are pushed to the version control it can take a lot of storage. Now the

reasons why it is necessary or good to use Maven are known, so now it can be

described how these problems were solved using Apache Maven.

Maven solves all problems that were mentioned before. Maven is able to define all

dependencies in one configuration file - pom.xml. In Maven terminology a more

generic word for each dependency is artifact. The artifact is the output of the Maven

build, generally it can be a jar, war or another executable file. Maven uses the artifacts

for identifying certain dependencies for building and running the code. The design of

the artifact can be seen in the Code example 1.

<project>

 ...

 <dependencies>

...

<dependency>

 <groupId>net.sf.jasperreports</groupId>

 <artifactId>jasperreports</artifactId>

 <version>5.6.0</version>

</dependency>

…

 </dependencies>

 ...

</project>

 Code example 1. Definition of Maven artifact

19

All artifacts are identified by three fields (fields are a part of maven coordinate

system): groupId, artifactId and version. (Gupta, 2013)

All dependencies are defined between XML element dependencies. Element groupId

contains the unique name of the artifact among all projects stored in the Maven

repository. This name should follow at least one convention – it should be named in

reverse domain name notation. The element artifactId is used to uniquely identify

project name. The project name can be freely chosen by developers. The last element

that was not mentioned yet is element version. This element contains the chosen

version of the project. Any conventions for the version can be used, in this case there

are no limitations. The defined dependency for the project that is named jasperreports

can be seen in Code example 1. This dependency is identified by net.sf.jasperreports

and version 5.6.0 is required. (Tutorials Point, 2014) This was an example of one

dependency that is used in this project.

The process of obtaining dependencies needed to defined next. During the building

process Maven is checking if the library can be obtained from the local Maven

repository, if not this library is going to be downloaded from the remote (external,

global) repository to the local repository. After this phase Maven copies all needed

libraries to the project. If a library is already located in the local repository, Maven

skips downloading the library and it just copies it to the project.

As mentioned before there are two types of repositories – local and remote. The local

repository is stored in the computer in the working directory of Maven. The remote

repository is stored on a server that provides this service. Global Maven repository can

be found on webpage http://mvnrepository.com/, however, there are also some smaller

repositories set up by a third parties. In this project one global repository and also

some of the smaller ones are used. The definition of remote (not global) repository is

shown in the Code example 2.

http://mvnrepository.com/

20

The definition of repository contains three fields: id, name and URL. The field id is

used for unique identification of a repository in the project. The name is used as an

information field for developers. It helps developers to better identify what kind of

repositories are used. The last field is URL. This field contains a direct link to the

remote repository. The example illustrates that one remote repository is used and can

be reached via repository.primefaces.org and it was named as PrimeFaces Maven

Repository. (The Apache Software Foundation)

There is a possibility to include the project into remote Maven repository. To do this

extra credentials to the remote repository are needed. This process is not described in

this paper, however, it was mentioned before because it is necessary to identify the

project, if Maven is used. The project is identified by filling in four elements into the

project element. These elements are: groupId, artifactId, version and packaging. The

purpose of these elements is the same as was described in dependency part. The

undescribed element is packaging. This element can currently contain these values:

pom, jar, maven-plugin, ejb, war, ear, rar or par. These values stand for packaging

type. (The Apache Software Foundation)

So far, two main missions were described – defining dependencies and the

identification of the project. Next, the last important mission of Maven can be

described. This mission is about building and deploying. Maven enables to define

several profiles for different situations. One profile can be used for building and

deploying application on a local server, another one can be used for the same tasks on

…

<repositories>

 <repository>

 <id>prime-repo</id>

 <name>PrimeFaces Maven Repository</name>

 <url>http://repository.primefaces.org</url>

</repository>

</repositories>

…

Code example 2. Definition of remote repository in Maven

21

a remote server, another can be used for running a test (e.g. Arquillian). Different

scenarios, plugins, dependencies and configurations for each profile can be defined, if

Maven is used. Also, Maven tries to make the deployment phase easier, because it

enables to configure exec-maven-plugin for defining additional commands. These

commands are then executed during the deployment phase.

The default building phase has eight phases. These phases are illustrated in Table 1.

Table 1. Default building phase

1 Validate validate if all information is available (includes dependencies)

and if the project is correct (no syntax errors, no missing

dependencies, no errors in configuration files, …)

2 Compile compiles the whole source code

3 Test runs test for compiled source code by using a suitable unit testing

plugin/framework

4 Package takes all compiled code and packages it to the distributable format

(defined in packaging element)

5 Integration

test

deploys and runs integration test into environment where test can

be run

6 Verify runs checks if the package is valid

7 Install installs the package into the local repository, for using as a

dependency in other projects

8 Deploy copies the final package to the server environment (The Apache

Software Foundation)

The last thing that is necessary to state about Maven is that it is not a just tool for

developers, it is also a tool for a person who is deploying (installing) the final project

to the customer. What is necessary to do is to download and install Maven on the

deploy machine, copy the code and run several commands, like mvn deploy. All

necessary configuration files will be configured and libraries will be downloaded

during this phase.

22

3.1.5 Manage bean

This is component architecture on the server side for creating modules. Each module

encapsulates business logic and takes care of security and transactions. Several

integrated APIs are found in container, such as dependency injection, component life

cycle, JDBC, Java Persistent API (JPA), Remote Method Invocation (RMI), Java

naming and Directory Interfaces (JNDI) and more. This is why these kind of Java

Beans are used to build business layers (See Figure 2).

Manage beans sit between the persistent layer and the presentation layer, which is an

entry point for presentation-tier technologies like JSF (described later in the thesis).

Nowadays manage beans are a very simple server-side development model for Java.

They also bring scalability and reusability for an enterprise application. All this comes

from annotating a single Plain Old Java Object (POJO) that is deployed in a container.

Generally the bean is represented as Java class with additional annotations.

(Goncalves, 2009)

Several types of containers containing beans (JSF, EJB, CDI…) can be found. These

containers work independently. JSF, CDI and EJB Managed beans can be

distinguished by the way how they are used and managed in a container. The main

role of the container is to deal with all the technical plumbing, which means that

 composite structure Layer

Presentation layer

Business logic layer

Persistence layer

«executionEnvironment»

Database

Figure 2. Layer architecture

23

developers of business logic can concentrate on implementing the business logic.

(Gupta, 2013) (Goncalves, 2009)

This project was developed by using CDI managed beans, which is why the next part

is aimed at the CDI and not at the other ones.

3.1.6 Weld CDI

CDI Managed Beans contain a full and better-defined technology of managed bean

components (EJB). Apart from the ability to inject and manage these components

offers it offers more scopes, implementation of the various design patterns (Observer,

interceptor, stereotype, decorator etc.), type-safe injection, events and similar. (Jboss

by RedHat)

Weld CDI is a referential implementation of CDI (Context and Dependency Injection)

for Java language to support dependency injection, management of beans and

management of object’s life cycle. CDI is just a specification and Weld CDI is the

concrete implementation as mentioned earlier. Weld CDI was developed by RedHat

during project JBoss. (Jboss by RedHat) (Gibson).

The main features of Weld CDI are implementation of several design patterns

(e.g. Observer or Singleton), interceptors, events and several conversation scopes. For

better understanding the whole application process it is necessary to explain several

notations. If the Weld CDI bean from a JSF view is to be used, this can be achieved by

@Named(“measurementUpload”)

@ViewScoped

public class MeasurementUploadController implements

Serializable{

 @Inject

 private TransformerMatchService transformerMatchService;

 @PostConstruct

 public void initConversation(){

 // this code is executed after creation of this bean,

 // e.g. for initialize transformerMatchService and

for obtaining values

 }

}

Code example 3. Example of annotations in Weld CDI Bean

24

tagging the class with the javax.inject.Named annotation. If a bean is to be injected

into another bean, the field is to be annotated with javax.inject.Inject annotation. On

the other hand, all types of scopes used in the system should be familiar to the user. A

base description can be found in the next paragraphs. A general example of using this

annotation is shown in the Code example 3. (Gibson)

RequestScoped – exists until a request is not finished, it exists only for a very short

period. All local attributes are initialized by calling a certain method. After finishing

the request this bean is destroyed. It is mostly used for implementation of algorithms –

a bean is created, input parameters are entered, processing is waited for, results are

obtained and finally the bean is destroyed, because it is not needed anymore.

(Finnigan, 2013)

SessionScoped – exists during the client session, each client has his own object,

user’s interaction across multiple HTTP request. (Rubinger, Lee, & Burke, 2010)

ApplicationScoped – exists during the whole life-cycle of an application, which

means that an instance is created only once for the duration of the whole application.

(Rubinger, Lee, & Burke, 2010)

ViewScoped – exists during viewing certain JSF views in the web browser. Usually it

is used as a backing component for JSF front-end page. (Finnigan, 2013)

ConversationScoped – The developer can control the life-cycle of the object. This

scope is very useful, when backing component is needed for more JSF views. (Gupta,

2013)

3.1.7 PrimeFaces (JSF)

JavaServer Faces (JSF) is a Java a specification for creating and building user

interfaces for web applications, in other words, it is MVC web application framework.

This technology is based on reusable UI components, so if creating a new web page

several components can be used. JSF uses templating system and the default systems

for JSF 2 are called Facelets view. The reference implementation of JSF is Mojarra.

There are many other implementations of web frameworks such as MyFaces, Wicket

and more. The JSF specification defines several predefined UI components, e.g.

25

selectOneMenu, selectManyMenu, dataTable, validation component, command

button, etc., and provides a facility to interconnect widgets (client side) with data

sources (server side) (Tutorials Point)

The process of creating a new webpage is described next. At first XML files that

containing JSF tags for defining the webpage should be created. So the whole

webpage is defined in one of several XML files. These XML files contain JSF

components with other HTML tags or JavaScript. Facelets are mostly used for

transformation of input XML files into JSF component tree. Basically the

FacesServlet processes all requests, loads related view templates, and after that the

component tree can be built and the response can be created (rendered) and sent to the

client. Typically the response is in HTML language, however JavaScript can be also

included, which means that user is able to see just HTML output and is not able to see

JSF XML. (Tutorials Point)

Web view can be created dynamically, which can be proceeded using JSF or JSTL

(JavaServer pages Standard Tag Library) tags. Several useful tags can be found in

JSTL, for example tags for conditions (if), loops (foreach), catching exceptions

(catch), formatting output (formatNumber, formatDate…), defining local variables

(set, remove) and many others. Thus, finally a more complex web view can be created

using these modern technologies. (Tutorials Point)

PrimeFaces is a web application framework for JSF based application, in other

words, it is open source UI component library for JSF technology. This library

contains many components mostly used in building GUI. Also, there is a possibility of

using some of the predefined themes and templates. The webpage view can be built

like a puzzle. This effect can be proceeded by using templates, because each part of

webpage can be defined in separate files (e.g. one file for header, another for body and

another for footer), so each component can be defined once and used through the

whole application. At the end these files can be merged into one by using include tag.

An example code is illustrated in the Code example 4. (PrimeTek)

26

Several development environments (e.g. NetBeans) provide some extra features, such

as generating CRUD GUI interface with corresponding facades for managing certain

entities (entities are stored in database system).

There are several web application frameworks for JSF based application like

ICEFacec, RichFaces, Tobago, Oracle ADF. Each of these web application

frameworks provides several JSF components. Finally, PrimeFaces is used in the

application, because it has very good support, product documentation, showcase and

many UI components in comparison with others. (Mastertheboss.com)

3.1.8 Chart library

The application should be able to show charts with data obtained from the

measurement. These charts have to meet all requirements – they must be interacted

(zoom, print selected data/lines), have logarithm axis, present the current state of chart

(actual view) downloadable, support dynamically added data and be compatible with

PrimeFaces.

Before starting the implementation phase of this feature, it was necessary to make a

research. Many chart libraries can be found on the market, however only some of

them satisfy all customer requirements. After research following libraries were found:

<p:dataTable var="car" value="#{dtBasicView.cars}">

 <p:column headerText="Id">

 <h:outputText value="#{car.id}" />

 </p:column>

 <p:column headerText="Year" sortBy="#{car.year}">

 <h:outputText value="#{car.year}" />

 </p:column>

 <p:column headerText="Brand" filterBy="#{car.brand}">

 <h:outputText value="#{car.brand}" />

 </p:column>

 <p:column headerText="Color">

 <h:outputText value="#{car.color}" />

 </p:column>

</p:dataTable>

Code example 4. PrineFaces example – DataTable (PrimeTek)

27

WickedCharts, PrimeFaces charts, JFreeChart, HighCharts and jqPlot. So the final set

was minimized and now these libraries could be compared and fully tested. All the

found libraries were tested and implemented with a great precision in the web

application, which is the best way to choose the best one. During this phase several of

the pluses and minuses were found. For better understanding only some key features

were chosen for comparison. The comparison is presented in Table 2. Sign ‘+’ stands

for has an ability or if a library is able to provide a certain feature, otherwise sign ‘-‘ is

the opposite of sign plus.

Table 2. Features comparison of chart libraries

 WicketCharts PrimeFaces JFreeChart HighCharts jqPlot

Zooming + + - + +

Saving current

state (image)
+ - + + -

Logarithm axis + - + + -

Un/selection

certain series in

realtime

+ + - + -

Compatible

with JSF

+/-

certain

problems with

adding data on

request

+

+/-

by

generating

images on

backend

+ +

Interacted + + - + +

Code

modification
+

+/- difficult

to modify
- + +

Easy to use + + + + -

Documentation

and

examples

+ + + (buyable) + +

28

Only two libraries (WicketCharts and HighCharts) meet almost all criteria and the rest

of them not as can be read from the table. Firstly, the reasons why the rest of the

libraries are insufficient is explained and then the chosen library is described.

To sum up, the charts implemented in PrimeFaces (uses jqPlot) are good and suitable,

however, there are some crucial disadvantages. This library does not support

logarithm axis and it is difficult to make some changes in this library (e.g.

implementing logarithm axis, change legend etc.).

The next library not sufficient for the task is JFreeChart. This library is easy to use,

however, the generated charts are not interactive in the web view (just in desktop view

using Java SE). This library is only able to generate images on the server side and

send them to the client.

The last insufficient library is jqPlot. The major minus of this library is that it is not

able to add data dynamically on request, print the current state of graph to the image

and it is quite difficult to use.

The final set was reduced to two candidates. Generally WicketCharts library is

written in Java. This library uses Apache Wicket and HighCharts on the backed side.

Thus, this library provides similar functionality as HighCharts. The most crucial

reasons why WicketCharts are not used in the application are that it is necessary to use

another web framework (Apache Wicket) along JSF, this web framework is much

slower and less powerful then JSF, and finally, new data cannot be added dynamically

to the existing charts. (Uribe)

Finally HighCharts are used in this application. This library is written in pure

JavaScript (requires one of this libraries jQuery, MooTools or Prototype). It offers an

easy way of adding interactive charts to the web application. This library supports 19

types of charts with great deal of additional functionality, such as adding multiple

axes, tooltips, dynamically adding and remove certain series and more. On this web

page (http://jsfiddle.net/hvv37dcg/2/) an example of using charts can be seen.

(Highcharts)

http://jsfiddle.net/hvv37dcg/2/

29

3.1.9 JasperReports

It is an open source tool used for creating reports in Java. JasperReports is written in

Java. This tool can produce pixel-perfect documents that can be printed, viewed or

exported in a variety of files types, such as HTML, PDF, Microsoft Word or Excel,

RTF, ODT and more. (Jaspersoft Community)

This library can be used in applications that contain Java, including Java SE, Java EE

or web application. It reads all instructions for generating reports from an XML file or

.jasper file. Jasper uses their own XML files called JRXML. The whole structure of

output document is defined in this jrxml. This file can be hand-coded, generated or

designed by using a tool (iReport, Jaspersoft studio). JasperReports predefines several

components that can be used in output documents like tables, graphs (using

JFreeChart), text fields or images. Files .jasper are compiled classes of JRXML. Each

JRXML is compiled before producing the output document. A short example of two

elements of JRXML file is illustrated in the Code example 5.

Other more complex examples can be found on the webpage

http://community.jaspersoft.com/. (Heffelfinger)

Generally working with JasperReports has three phases. The first phase is to define

output document into XML file (.jrxml). After that these files should be compiled for

.jasper files to be generated (compiled by certain tool). The second phase can be

<textField isBlankWhenNull="true">

 <reportElement x="155" y="0" width="25" height="11"/>

 <textElement/>

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{ShipRegion}]]>

</textFieldExpression>

</textField>

<textField pattern="dd/MM/yyyy">

 <reportElement x="185" y="0" width="50" height="11"/>

 <textElement/>

 <textFieldExpression class="java.sql.Timestamp">

 <![CDATA[$F{OrderDate}]]>

 </textFieldExpression>

</textField>

Code example 5. Example of elements in JRXML (Jaspersoft Community)

http://community.jaspersoft.com/wiki/jasperreports-library-samples%23Jasper_Sample

30

skipped, because it is also possible to compile these files at runtime by using the

JasperCompileManager class, however, this is not a very good way to do it in

everyday life, because the application is pushed to compile the JRXML file each time.

These files can be compiled only once by using related tools. The last phase is to use

compiled file and to send the data in. After that the output document can proceed. This

process can be better described via Java code (See Code example 6). The goal in this

example is to create a basic report containing only two fields - ship region and date.

Part of the JRXML file was shown earlier in the Code example 5. (JavaWorld)

// First, load document definition from JRXML into

JasperDesign class; can be skipped

JasperDesign jasperDesign =

JasperManager.loadXmlDesign("Delivery.jrxml");

// Second, take created object and compile it into

JasperRepor, can be skipped

JasperReport jasperReport =

JasperManager.compileReport(jasperDesign);

// Third, create a map of parameters to pass to the report.

HashMap params = new HashMap();

params.put("ShipRegion", "Slovakia");

params.put("OrderDate", new Date(2014-1900, 2, 25);

// Create JasperPrint object by using fillReport() method,

JasperFillManager tries to find all entries of HashMap in

the jasper document and put the related value to the found

place.

JasperPrint jasperPrint =

JasperFillManager.fillReport(jasperReport, params);

// Last step – generate output PDF document from JasperPrint

object (contain whole document with filled in data)

JRPdfExporter pdfExp = new JRPdfExporter(); // Can be

used JRDocxExporter for docx

pdfExp.setExporterInput(jasperPrint);

pdfExp.exportReport();

Code example 6. Generating PDF file using JasperReports

31

3.2 Database technologies

3.2.1 Choice of database system

The system should archive two different types of data. The first type is storing

information about power transformers, locations, manufactures, theirs measurements

and all other related information. The second type stores system logs.

The first data types are related to the relations, so it would be good to store this data in

a relation database system. There is also another reason for using relation database,

which is that the mostly used operations in the system are about searching

transformers with all additional information based on certain filters (name, date,

location…). The relation database systems are optimised for select operation. Thus,

that is why the relation database system is used instead of NoSQL systems.

PostgreSQL was chosen as a relation database system, because this database system is

open source, does not have high hardware requirements, is fast enough, appears to be

more flexible and comfortable in comparison with MySQL and finally it follows

ACID (Atomicity, Consistency, Isolation, Durability) in a better level in comparison

with MySQL. (Matiaško, Vajsová, Zábovský, & Chochlík, 2008)

The last requirement for the database system was the ability to store logs from the

application. The reason why logs are to be stored into the database is the availability

of obtaining logs in a structured format and the possibility of searching or filtering

these logs. Working with the logs has certain peculiarities, such as inserting to the

database is a relatively common and frequent operation. On the other hand reading is

used rarely or less frequently. Over time there can be another requirement for

recording some extra information in the log entry, however, all old logs should also be

still available. A log entry usually contains just text information like timestamp,

severity (fine, info, warning, error, fatal), related class (class that error has happened).

(Matiaško, Vajsová, Zábovský, & Chochlík, 2008)

As mentioned before relation database systems are optimized for select operations,

however, the logging system requires a frequent insert operation. Also, there is the

possibility of changing a log entry (changed table columns by adding or removing)

that may cause several problems in the existing relationship model. That is why this

32

type of database systems are not good for this requirement. It was necessary to find

another type of database system that would be suitable for this problem. One solution

was found by using document-oriented database (MongoDB). Logging system is not

within the scope of this thesis, however, it was necessary to be mentioned, because all

logs that are generated by newly created parts are stored in this database.

3.2.2 Hibernate

Hibernate ORM, developed by JBoss Community was used for the communication

with database. It is a library that implements object relation mapping (ORM). Two

types of Hibernate can be distinguished - ORM and OGM. Hibernate OGM is used for

mapping NoSQL database into Java object. This technology is not used in the

application, therefore these lines are aimed at Hibernate ORM. (The Hibernate Team)

Hibernate ORM maps relation database model into Java objects with attributes

corresponding to the columns in data tables. It is more common and natural to work

with objects rather with values that are obtained directly from the database by using

direct SQL statements (select, insert, update, delete). (Ottinger, Linwood, & Minter,

2014)

For correct use Hibernate ORM technology it is necessary to define the way how a

certain object is mapped to the database table. This mapping can be proceeded by

using Java annotations. Hibernate uses JPA (Java Persistence API) specification so

JPA annotations can be used for this mapping.

For a better understanding how to map certain objects to the database table a short

example has been provided (See Code example 7). In the Code example 7 POJO class

can be seen mapped to the database table. Concretely, the name of the table is label.

This table contains two attributes – idLabel and name. For the creation of a new POJO

class these steps need to be followed: create an attribute corresponding to the column

names, add standard get, set, default constructor, hashCode and equal methods. These

methods have to be added, because all entries should be uniquely distinguished. All

relationships (both sides) are mapped as lists (java.util.List), set (java.util.Set) or

generally collections (java.util.Collection). All classed created by this way are called

POJO. When all definition steps have been done then JPA annotations can be used for

33

marking a class to the certain table (@Entity and @Table), attributes (their standard

get methods) to the certain columns (@Column and @Id if related column is and

primary key) and relationships between classes (tables) (@OneToMany). (Tutorials

Point)

@Entity

@Table(name="label",schema="public")

public class Label implements java.io.Serializable {

 private int idLabel;

 private String name;

 private Set<Transformer> transformers = new

HashSet<Transformer>(0);

 public Label() { }

 public Label(int idLabel, String name) {

 this.idLabel = idLabel;

 this.name = name;

 }

 public Label(int idLabel, String name, Set<Transformer>

transformers) {

 this.idLabel = idLabel;

 this.name = name;

 this.transformers = transformers;}

 @Id

 @Column(name="id_label", unique=true, nullable=false)

 public int getIdLabel() { return this.idLabel; }

 public void setIdLabel(int idLabel) { this.idLabel =

idLabel; }

 @Column(name="name", nullable=false)

 public String getName() { return this.name; }

 public void setName(String name) { this.name = name; }

 @OneToMany(fetch=FetchType.LAZY, mappedBy="label")

 public Set<Transformer> getTransformers() { return

this.transformers; }

 public void setTransformers(Set<Transformer>

transformers) {

 this.transformers = transformers;

 }

Code example 7. Example of POJO class with JPA annotation

34

The most important configuration file for Hibernate is hibernate.cfg.xml. In this file

detail information about connection, like host, name, database name, password are

defined, however, also some other configurations are included (e.g. session timeout,

batch size and so on). (The Hibernate Team)

If working with database model containing plenty of entities it can be quite laborious

to manually create all POJO classes with related annotations or form the scope of view

to manually write SQL statements for creation database tables, in case POJO class has

been changed in Java, which is a reason why Hibernate is able to provide reverse and

forward engineering. Reverse engineering is the process when Hibernate generates

POJO classes with all related annotations from the database model (stored in

database). Forward engineering is an opposite process – POJO classes have been

done with JPA annotations, and a database model needs to be created into database.

These process are done automatically and can also be used during the migration phase.

During the developing phase, the data model (was made in ER editor) was imported

into the PostgreSQL database system and then the reverse engineering was used for

generating POJO classes. (The Hibernate Team)

Sometimes there is a need to customize more complicated SQL statements. Hibernate

enables us to write these statements in two ways. The first way is to use HQL

(Hibernate Query Language). This language is very similar to SQL, however, it works

with the mapped Java POJO classes. The second way Hibernate enables is to use

native SQL queries for certain database systems. There is one disadvantage of using

native SQL queries, it is a portability, because this statements needs certain DB

system for running correctly in comparison with HQL. HQL and POJO classes are

independent of the database system. Hibernate supports all most popular database

systems, e.g. Oracle DB, IBM DB2, PostgreSQL, MS SQL, MySQL and others. So

this system can be switched to use different database systems on the condition that

native SQL queries were not used. (Ottinger, Linwood, & Minter, 2014)

To sum up, Hibernate offers Object Relational Mapping, reverse and forward

engineering and independence of the database queries from used database system.

This is the way how the work with database can proceed in object oriented style

independently of the platform. If some changes were made in database server or in

35

POJO classes, forward or reverse engineer could be used to move on all changes to the

database model or to the model classes without the need for doing the same process

twice (in the database model and also in the model classes).

36

4 Implementation

As mentioned before this solution is based on Java EE and the described technologies

(Weld CDI, Hibernate, HighCharts, JasperReports…). All necessary information, such

as basic terms, requirement gathering, analysis phase, design phase, decisions and

used technologies, have already been provided and described earlier in this paper,

therefore now the concrete implementation phase with description of interconnection

can be described.

4.1 Project structure

Information about the project structure is provided in this chapter. Project structure is

described via text and using images. The whole information system is quite extensive,

therefore it is divided into the several packages. A package is a mechanism for

organizing all files (Java classes, resources, other files) into some namespaces. Only

some packages, the most important and directly or indirectly used in the scope of this

thesis, are described.

All packages are stored under one namespace - sk.fri. Java package naming

conventions were used for creating unique namespaces. The list off necessary

packages contains this packages:

 controller

 controller.util

 highcharts

 jasper

 jasper.cust

 model

 model.types

 parser

 parser.interfaces

 service

 util

 resources.

37

It is not enough to name all used packages, but also it is necessary to provide some

short information about them, like what can be found in this package, why this

package is necessary and what is the purpose.

Controller – all controllers are stored in this package, these controllers are used by

PrimeFaces to communicate with database, application services and resources.

Therefore all controller classes located in these packages interconnected with resource

and service package.

Controller.util – only one class can be found in this package so far, methods for

showing status messages are stored in this class. Status messages contains

information, e.g. successfully proceeded, some error has occurred, printing exceptions

and more

Highcharts – In this package classes are stored that are used among HighCharts

library, for example, in this package class series was created. All necessary

information about one series (name of the series, data, boolean value if series is shown

and more) can be found in this class. These classes are described later more in detail.

Jasper – all classes closely used with JasperReports library can be found here. These

classes are sent to the JasperReports library during the report generating phase. These

classes are described later more in detail.

Jasper.util – some utilities are stored in this package that are used in Jasper package.

So far there is only one utility stored for setting logarithmic axis with minimal and

maximal value for axis x.

Model – contains classes mapped from database by hibernate. These classes are

simple POJOs classes and they are also annotated by JPA annotations. Basic

principles were described before in chapter 3.2.2.

Model.types – in this package one class containing the logic for newly implemented

database type – array.

38

Parser – Only one class can be found in this package. Data parsing logic for one

certain type of CSV file (produced by measurement device from Doble company) is

implemented in this class. These classes are described later more in detail.

Parser.interfaces – This system processes and obtains all necessary data from any

CSV file. For creation a support for new CSV file type it is necessary to create a new

class to be implemented for all interfaces stored in this package. Methods, like read

file, process file, create measurement can be found in these interfaces.

Service – is the main service package. This package’s classes are used by

sk.fri.controller and sk.fri.ws (in other words GUI controllers and web services).

Generally service package classes are main database stubs, which means they provide

the main bridge between the world and the database.

Util - Definitions and initializations of frequently used objects like EntityManager,

Logger, LanguageBean and more other can be found here.

Resource – all resources that are used in this project are stored in this package. These

resources can be images, CSS files, compiled files for jasper reports, JavaScript files

and other.

The project structure should be clear for everybody at this point, therefore now the

next paragraphs focus on the implementation phase. The questions such as what was

the problem, how was the problem solved, what was necessary to do, what is the final

solution and any other questions of certain parts were answered in the next

paragraphs.

4.2 Data processing

Several important facts were revealed by analysis of the CSV file structure. One of

this fact was that each CSV file can contain different measured values (measurement

columns), denoted in the header of the CSV file. To be able to import the CSV file

correctly it is necessary to store the header information as well. Only then it is lately

possible to identify, which values were measured in some particular measurement.

39

Because of this feature, special attention was paid to the design of the structure of the

database. (Grondžák, Grigeľ, Polakovič, & Remenec, 2014)

To store such polymorph data it was necessary to use dynamic database model, also

called Entity Attribute Value (EAV) database model. It is not necessary to give a

general description of this type of database model, however, what is the necessary is

to define how the data are recorded. (Grondžák, Grigeľ, Polakovič, & Remenec, 2014)

Data is recorded in three columns:

 The entity: the item that contains several attributes and going to be

described (table measurement).

 The attribute: a foreign key into a table of attribute definitions. The

attribute definitions table contains the following columns: an attribute

ID, attribute name, description, data type, and columns (table

column_data).

 The value of the attribute (table measurement_column and measurand).

The measurement part of the database scope can be seen in the Figure 3. This database

part will also be used later during the description of the generating and charting part.

Figure 3. Measurement part database model (EAV)

40

Applied to the described case, each measurement column name is stored in a row of a

single common table. This kind of model allows easy extensibility and maintenance. It

does not require any modification of the application code, when new types of

measured values are imported from CVS file. Thus, when new kind of data is stored in

the database, it is not necessary to modify the application. (Grondžák, Grigeľ,

Polakovič, & Remenec, 2014)

Related information about used database model with EAV database model was

provided, therefore, now the whole process of implementation phase can be described.

Even prior to describing the whole process it is necessary to acquaint the reader with

one type of input CSV file structure. CSV file structure, generated by measurement

device created by Doble company can be seen in the Code example 8.

Line 1: [FRA Data v2.0],,,,,,,,,,,,,,,,,,,,,,,

Line 2:

temp,NaN,RH,NaN,temp,NaN,RH,NaN,temp,NaN,RH,NaN,temp,NaN,RH,

NaN,temp,NaN,RH,NaN,temp,NaN,RH,NaN

Line 3: A-Nssek freq,A-Nssek RMS,A-Nssek Peaks,A-Nssek

Phase,B-Nssek freq,B-Nssek RMS,B-Nssek Peaks,B-Nssek

Phase,C-Nssek freq,C-Nssek RMS,C-Nssek Peaks,C-Nssek

Phase,a-nsprim freq,a-nsprim RMS,a-nsprim Peaks,a-nsprim

Phase,b-nsprim freq,b-nsprim RMS,b-nsprim Peaks,b-nsprim

Phase,c-nsprim freq,c-nsprim RMS,c-nsprim Peaks,c-nsprim

Phase

Line 4: 20.074,-79.737,-79.759,97.306,20.074,-0.302,-0.302,-

4.337,20.074,-0.978,-0.978,-4.076,20.074.…………

Line 1255: [nameplate ZU_BB T XX nakratko_Skoda_xxxxx_24-12-

2014.csv]

Line 1256: Company, Žilinská univerzita

Line 1282: [nameplate end]

Line 1283: [Plot Names]

Line 1293: end of file

Code example 8. Example of CSV structure

41

Before starting the implementation of CSV parser it was necessary to explore the CSV

structure. On the first look this CSV structure does not follow any of the commonly

used definitions, however the structure of this file is defined by the measurement

device, is always the same (no changes) and is divided into six parts. These parts are

shown in the previous figure and are highlighted using numbered lines. It is possible

to find the type of the CSV file in the first part/line. In the second row some units are

defined, however, these units are not used anywhere. The next two parts are very

important. Line number 3 contains the header of the CSV file. Header contains the

names of the measured variables. The values of these variables are stored as a record

(one record per line) in several lines (approximately from line 4 to line 1255).

At this point all measured data were obtained and now it is necessary to obtain the

other values, such as nameplate data. Nameplate data are stored between starting and

ending tag – [nameplate] (Line 1255 - 1282) and they are stored as name – value pair

(one example is shown in line 1256). Nameplate data could be a company that owns

the power transformer, location, serial number, manufacturer, manufacturer year,

number of windings/phases with their values and units and so on.

The last part of this file is plot names. This section contains information what the

names of the measured columns are. Each name of a column is stored in a new line as

a new record.

As soon as the file structure was known the implementation phase could begin. The

implementation phase for obtaining all data from CSV file was quite easy if the file

structure was already known. For parsing CSV file Opencsv library is used. This

library is very simple CSV parser for Java. It supports arbitrary numbers of values per

record, ignoring commas that are quoted, reading gradually line per line or reading all

the entries at once, and finally creating an array of a string that contains the obtained

values for each line. (Opencsv)

Now all data are parsed and stored in MeasurementParsed object (from package

parser). This object contains all obtained information that are stored in several

collections (hash map or arraylist). This object implements ParsedMeasurment the

interface that is stored in parser.interfaces. At this point the newly created part of the

42

application is able to process the input file, so now the whole process can be described

from the user’s scope of view.

Processing the new file via Graphical User Interface (GUI) has four steps. Each step

should be done and user is pushed to do the whole process step by step. This approach

was chosen because all necessary information is to be filled in without any

complications (forget to fill in/check some values and so on). The first step is to

upload the measured CSV files to the server (See Figure 4). This can be done with

drag-and-drop feature or by choosing file component. The file should be dropped to

the white space on step 1. After choosing the data file, this file is checked, if it

contains the correct data and it is a CSV file.

Figure 4. Upload - Upload data file

If the first step was done correctly (e.g. file is not corrupted, contains needed

information, file is CSV file), step 2 will be shown. On the next figure (See Figure 5)

are shown 2 block of data. The first block contains information that file was

successfully uploaded and handled. The second block contains the table with the list

of founded transformers. In this case the application was able to identify the correct

transformer directly, however if the application is not able to identify the correct

transformer directly it offers a bigger set of transformers. The application is always

trying to minimize this set – it tries to select transformers with certain information

(e.g. city, location, serial number or company) obtained from the CSV file. If no

matches found the whole database set of transformers is shown and the user is pushed

to find the correct transformer manually.

43

Figure 5. Upload - Choose related transformer

After successfully choosing transformer in step 2, step 3 is shown. In this step is

necessary to select measurement type, measurement operator and if the measurement

is reference (See Figure 6). For choosing measurement type or operator select one

menu element was used. There is a possibility to create a new measurement operator,

if the measurement operator was not found in the select one menu element, by

choosing the value other from the combo box. Reference measurement is such as

measurement that all other measurements are compared against this one. Usually it is

the first measurement of the power transformer.

Figure 6. Upload - Choose measurement type and operator

Now, in this state, when all these described steps were done there is the possibility to

save the measurement to the database. This can be proceeded by pressing the upload

button. This process take a few of seconds, because plenty of data should be stored

44

into database, so that is why the loading bar is shown during this process. When the

process is ended the final dialog is shown (See Figure 7). This dialog contains

information whether the import was successful or unsuccessful and it also contains

two extra buttons. One button is used for uploading another measurement and the

other one is used for showing imported data in another view. More detailed

information about view for showing all uploaded data is described in Chapter 4.3.

Figure 7. Upload - Final dialog

When the final notice is shown this file process ends and the user can continue with

other tasks.

4.3 Charting library – HighCharts

In this situation some measurements are already stored in the database, so it is

possible to see and draw uploaded data. To show correct data it is necessary to provide

two or three steps.

The first step is to choose power transformer. The power transformer can be chosen

by using table (See Figure 8). It was necessary to implement some filters for certain

columns, because of the fact that the number of power transformers can be very high.

Two types of filters are used. One type uses a combo box element and the other one

input text element. There is only a small set of cities, companies and manufactures, so

that is why this filter uses combo box in comparison with the other fields. For

implementing filters for other fields, such as locations, labels or serial numbers input

text was used. This element is better for these fields, because of the fact that these

45

fields can contain various distinct item values, e.g. the serial number should be unique

among all transformers. Filter method assigned to the columns containing filter with

input box is set to contains, which means that as soon as the value in the filter has

changed this method starts to search for entered value in certain column.

Figure 8. Charting - Choose transformer

It is possible to select more transformers as shown in Figure 8, because sometimes it is

necessary to compare their measurements. If one or more transformers are selected it

is possible to select theirs measurements – step two (See Figure 9). To see related

measurements is necessary to choose certain transformer from the tab. Each tab

represents data of one transformer that was chosen before in step 1. Also, only

measurements belonging to the selected transformer are shown.

Figure 9. Charting - Choose measurement

46

If there is some misunderstanding of which transformer is chosen, it is possible to

display all its details. These details can be shown by clicking on the button that is

located below the tab with the transformers. The rolled up details can be seen in

Figure 10.

Figure 10. Charting - Transfomer details

As can be seen in Figure 9 only one measurement was selected, which means for

charting library that it should be able to print all its data. In this example only one

measurement was selected. This measurement contains seven columns that can be

printed out (See Figure 11). If the measurement data was downloaded suddenly, this

data is cached. In this case it means that the bean that stores this data is annotated as a

ViewScoped.

Figure 11. Charting - Chart example

47

There are two tabs: Frequency – Phase and Frequency – RMS above the chart, see

Figure 11. These tabs represent what type of chart is shown. When the first tab is

selected the chart displays the frequency (in Hz) plotted against the phase (in dB). On

the other hand, when the second tab is selected the chart displays the frequency (in

Hz) plotted against the RMS.

All series loaded into chart are not visible by default, so they should be selected

manually by clicking on theirs names. The loaded data related to the certain

measurements are stored with other attributes in class - Series. This approach was

chosen, because many series can be loaded there and after adding all these series into

the chart, the chart becomes complicated and disarranged.

Because of the fact that each chart contains much data, it was necessary to arrange

axis x. Axis x was set up to logarithmic axis and also only some key values (100 Hz, 1

kHz, 10 kHz…) are shown. There is also a possibility to zoom certain areas of the

chart and to export the current state of the chart as image in several formats (at least

png and svg).

Finally, if the chart is plotted correctly and all values are checked by measurement

analyst it is possible to generate final report. This part is described in the next chapter.

4.4 Reporting – JasperReports

The first step in generation of the final report was to design JRML files. These files

were designed in JasperSoft studio. Jasper library enables to use several sub-reports,

so the final report includes several smaller sub-reports. Each part of the final report is

a sub-report. Using sub-reports is very useful, because it is much easier to design sub-

reports and all related Java classes that contain all data. The final JRXML report

contains seven sub-reports. One example of a generated report is shown in Appendix

(See Appendix 1).

All final report data are allusive in one object – the instance of class

TransformerDetailReport. (See Figure 12)

48

Figure 12. Objects used for Jasper 1

The first sub-report is designed for the title page. All necessary information (like

subject, related company, logos and name of the person who elaborated this protocol)

that are shown in the report should be stored in the IntroPageReport class (See Figure

13).

49

Figure 13. Objects used for Jasper 2

The second sub-report is used for printing nameplate data. This data is stored in

TransformerDetailRowReport as a key-value pair (See Figure 14). Some data were

deleted because of the security issue.

Figure 14 Report - nameplate data

The third and fourth sub-report were used for creating a table that contains

information about the measurement’s columns, windings and frequency (See Figure

15). This table is quite complex and it was quite difficult to design it. The most

50

difficult was to ensure that this table should always has the same view, however, all

data that are shown are dynamical. For example, it means that the measurement can

have only two windings and four tests. The full dimension of this table is to have three

windings and each winding has three tests. These information are stored in

MeasurementTestInfoReport.

Figure 15. Report - measurement table

The next sub-report was used for plotting charts into a final report. This report

contains only data for printing charts and the related title (See Figure 16). All data are

stored in two objects – ChartReport and ChartDataReport. (See Figure 12) One

problem was found during printing charts. This problem was about the quality of the

image. These printed images were unreadable and within poor quality, so it was

necessary to increase the dpi (dots per inch) of image. This approach was done by

setting the value for net.sf.jasperreports.image.dpi parameter to 600 dpi (default value

was set to 20 dpi).

Figure 16. Report - chart

51

The last three sub-reports are used for printing analysis results. One example of the

analysis result can be seen in Figure 17. The first of these sub-reports is used for

printing the header of the table, the second for printing the combination with analysis

result and the last one is used for printing certain intervals with CCF values. The

reason why a new sub-report is used for intervals is that the number of intervals is not

static (usually there are three or four intervals, however, there can be even more or

less). The structure of data object has been already mentioned and described in the

paragraphs above.

Figure 17. Report – analysis

After all JRXML files were defined they were moved to the related place in the

project structure. Subsequently, all these files were compiled and copied to the public

directory (directory containing web pages in this application).

If all files were in right place the application is able to fill in correct and actual data to

the related objects. This step is done every time when the user calls an action for

generating a report (Create measurement report) by clicking on menu item PDF or

DOCX (See Figure 18). If a user clicks on the PDF item the document will be

generated as a PDF document, otherwise the document will be generated as a DOCX

document.

52

Figure 18. Report - menu

There is one extra menu item as shown on the figure above. After clicking on this

menu item the settings window is shown (See Figure 19). It is possible to choose

what parts are to be generated in the final report. The user can then decide whether the

analysis results are to be included or which series are to be included in the report.

 Figure 19. Report – settings

This process took some time, because much data should be processed by jasper

library, so it was necessary to implement the loading bar. Generating the whole report

took approximately 10 seconds, mainly because of the fact that the final report is quite

complicated and contains a lot of data (e.g. measurement information, data for

plotting, analysis and so on).

Therefore, the whole newly implemented parts were done and the testing phase could

be started. To see how the results were confirmed and how the application was tested

the reader is invited to continue reading.

53

5 Confirmation of results and testing

The host company was also involved in the development phase. All fully developed

parts were step by step deployed at the host company for the host company to be able

to test them. It was necessary to communicate with the representative of the host

company frequently in this phase because of the fact that the application should be

validated, confirmed, robust and bug free.

Several tests were done by the host company. One of these tests was to upload several

sample data (correct data and also wrong data with same errors) from the measured

power transformers. If all sample data were uploaded it was necessary to check them.

The first check was done by reviewing measurement management parts. If all data

was shown correctly, the second phase could be started. The second phase was to

check the column data. These data could be checked by using charts. Several uploaded

columns from measurement were selected and printed out into charts. After that this

chart could be reviewed and compared to the old ones (created by using the old

process that means not using this IS) by an analyst. If no errors had occurred during

these phases the last test could be started. The last test was to generate a sample report

into docx or PDF file. Subsequently, these files were checked and compared to the old

protocols created manually. It was necessary to test the generating phase by using

several combinations, such as to generate report with one measurement, with more

measurements, with the chart part, in English/Slovak language and further.

All reported issues, bugs and suggestions were fixed. By using this process it was

achieved that the application was confirmed, usable and valuable for them.

54

6 Discussion

The main goal of this bachelor’s thesis was to analyse and develop an information

system for storing, managing and analysing transformer measurement data. Basically,

these goals were necessary to achieve: design and develop multiple parts of an

information system, such as data processing, reporting and charting part. The

requirements for this information system were presented in Chapter 2.1.

The parts of the information system that are the output of this paper were to facilitate

the work of technicians and to improve the outcome of the power transformer

analysis, powered by the technician. These parts of information system allow the

technician to upload new measurements including mapping this measurement to the

certain power transformer with other additional data (note, temperature, outdoor

conditions during measuring) and are described in Chapter 4. All uploaded data are

processed and stored in common database, therefore the measurement data are shared

easily. Subsequently, it offers technicians a possibility to review this measurement

data considering the related power transformer. The technician is able to compare the

selected measurement along the others if more measurements were performed and

uploaded into the information system. This comparison was done via interactive

charts, which means that the measurement expert can focus only on parts that look

different. After this phase the technician is able to generate the final report that will

contain power transformer plate information with the measurements details and the

result of the analyses. The measurement details contains several information, e.g. date

of performing measurement, measurement combinations and finally printed out

measurement data via charts.

These parts of system do not substitute any technician or measurement operators,

however, each of these parts offers to them a wider range of information for making

decisions and analysis. These parts are able to show theoretically an unlimited number

of measurements in one chart, therefore it allows to explore much more measurements

in a short time. From an analytics point of view, the software makes the technician’s

work easier and faster. It stores a whole database of power transformers with related

55

measurements and allows to share this data without any extra work (e.g. copy and

send all needed files to another person).

Generally, the creation of an information system is quite common topic. This

information system is used for storing, processing, managing and analysing data

obtained from modern measurement devices. The implementation of this type of

system is not so common, however, it is very rare. The information system is still

being developed and it has been presented to various people working with power

transformers. Currently the system works in majority of web browsers.

By using this software the technician is able to obtain and produce all needed

information in a short time and that is why all technician’s work time can be aimed at

analysing all stored data, thus it saves a large amount of working hours of the host

company. From another perspective these results can be also used for designing and

implementing similar information systems or modules.

Generally, there was only one limitation. This limitations was related to the process of

obtaining the correct data from the CSV files and information about the power

transformers. Currently, the system supports only one structure of the input file. This

is one of the areas that can be used for further development in the future. Another area

can be developed in the future is implementation of 3D simulation with 3D analysis of

power transformers. These methods are currently under development and test by the

Faculty of Electrical Engineering.

The most difficult part of this thesis was to gather and properly understand all

requirements. This was carried out in many sessions with the representative of the host

company and it took plenty of time. Another quite difficult part was to explore all

possibilities how set up goals can be achieved. On the other hand during the whole

process I gained plenty new information regarding to the developing process, and in

that sense increased my professional knowledge and experience.

Many technologies were used during the implementation phase of the solution. The

reader has the opportunity to find basic principles, information and use of these

technologies in this paper. The justification of their use, a description of ways how

56

they are used and advantages / disadvantages of using certain technology can also be

found in this thesis (See Chapter 3). The technologies included in the solution are Java

EE 7, EJB 3.x (implementation of business logic), WeldCDI (Context and

Dependency Injection), Hibernate ORM (manipulating with database systems),

PrimeFaces / JSF (developing the UI), Apache Maven (dependency and build

management), JasperReports (generating text reports), HighCharts (working with

interactive charts), OpenCSV (parsing CSV files) and other.

Considering the fact that all implemented parts solved all the defined objects –

creation of plugins/modules for processing and storing measurement data, comparing

obtained data among several measurements and generating final reports, this

application and paper meet all goals that were specified by the host company, and

finally, it is very helpful for the company.

57

References

Finnigan, Ken. 2013. JBoss Weld CDI for Java Platform. Birmingham: Pack

Publishing.

The Apache Software Foundation. n.d. Maven. Accessed on 12.04.2015, retrieved

from https://maven.apache.org/.

Gibson, Andy. n.d. Comparing JSF Beans, CDI Beans and EJBs. Accessed on

26.04.2015, retrieved from http://www.andygibson.net/blog/article/comparing-jsf-

beans-cdi-beans-and-ejbs/.

Goncalves, Antonio. 2009. Beginning Java EE 6 platform with GlassFish 3: From

Novice to Professional. USA: Apress.

Grondžák, Karol, Rudolf Grigeľ, Marek Polakovič, and Jakub Remenec. 2014. “The

architecture of an information system for storing the transformer measurement data.”

DESAM 2014. Žilina: University of Zilina. 12-15.

Gupta, Arun. 2013. Java EE7 Essentials. United States of America: O'Reilly Media.

Heffelfinger, David R. n.d. Getting Started With JasperReports. Accessed on

27.04.2015, retrieved from http://ensode.net/jasperreports_intro.html.

Highcharts. n.d. Highcharts. Accessed on 27.04.2015, retrieved from

http://www.highcharts.com/.

Jaspersoft Community. n.d. JasperReports Library - Samples. Accessed on

26.04.2015, retrieved from http://community.jaspersoft.com/wiki/jasperreports-

library-samples#Jasper_Sample.

Jaspersoft Community. n.d. JasperReports Library. Accessed on 26.04.2015, retrieved

from http://community.jaspersoft.com/project/jasperreports-library.

JavaWorld. n.d. Reports made easy with JasperReports. Accessed on 26.04.2015,

retrieved from http://www.javaworld.com/article/2074594/java-security/reports-made-

easy-with-jasperreports.html.

58

Mastertheboss.com. n.d. PrimeFaces vs RichFaces vs IceFaces. Accessed on

21.04.2015, retrieved from http://www.mastertheboss.com/jboss-

web/richfaces/primefaces-vs-richfaces-vs-icefaces.

Matiaško, Karol, Monika Vajsová, Michal Zábovský, and Matúš Chochlík. 208.

Databázové systémy - Databázové technológie a aplikácie. Žilina: EDIS.

Microsoft. n.d. ADO .NET Overview MSDN. Accessed on 05.04.2015, retrieved from

https://msdn.microsoft.com/en-us/library/h43ks021%28v=vs.110%29.aspx.

Microsoft. n.d. ASP .NET. Accessed on 04 06 2015, retrieved from

http://www.asp.net/.

NHibernate Community. 2014. NHibernate Official Site. Accessed on 23.04.2015,

retrieved from http://nhibernate.info/.

Opencsv. n.d. opencsv - General. Accessed on 03.05.2015, retrieved from

http://opencsv.sourceforge.net/.

Ottinger, Joseph, Jeff Linwood, and Dave Minter. 2014. Beginning Hibernate. New

York: Apress.

PrimeTek. n.d. PrimeFaces. Accessed on 19.04.2015, retrieved from

http://www.primefaces.org/.

RedHat, Jboss by. n.d. Weld - CDI Reference Implementation. Accessed on 04 13

2015, retrieved from http://docs.jboss.org/weld/reference/latest-2.2/en-US/html/.

Rubinger, Andrew Lee, and Bill Burke. 2010. Enterprise JavaBeans 3.1. United States

of America: O'Reilly Media.

Sonatype Company. 2008. Maven: The Definitive Guide. Fulton: Sonatype Company.

The Hibernate Team. n.d. Hibernate Developer Guide. Accessed on 22.04.2015,

retrieved from http://docs.jboss.org/hibernate/orm/4.2/devguide/en-US/html/.

59

Tutorials Point. n.d. Hibernate Tutorial. Accessed on 25.04.2015, retrieved from

http://www.tutorialspoint.com/hibernate/index.htm.

Tutorials Point. n.d. JSP Standard Tag Library (JSTL) Tutorial. Accessed on

18.04.2015, retrieved from

http://www.tutorialspoint.com/jsp/jsp_standard_tag_library.htm.

Tutorials Point. 2014. Maven Tutorial. Accessed on 21.04.2015, retrieved from

http://www.tutorialspoint.com/maven/.

Uribe, Leonardo. n.d. JSF and MyFaces Hints and Tips. Accessed on 26.04.2015,

retrieved from http://lu4242.blogspot.fi/2012/05/understandingjsf-2-and-wicket.html.

Wikipedia. n.d. Entity-attribute-value mode: Accessed on 11.05.2015, retrieved from

http://en.wikipedia.org/wiki/Entity%E2%80%93attribute%E2%80%93value_model.

Zikopoulos, Paul, Dirk Deroo, Krishnan Parasuraman, Thomas Deutsch, David

Corrigan, and James Giles. 2013. Harness the Power of Big Data. USA: McGraw Gill.

60

Appendices

Appendix 1 - Example of final report.

University of Žilina

Faculty of Electrical Engineering

Univerzitná 8215/1, 010 26 Žilina

Protocol of measurement transformer T-102 in

substation Stredoslovenská energetika, a.s.

Dolné Vestenice using SFRA technique

APVV - 0703 – 10

Elaborated by: Marek Polakovic

61

Transformer nameplate data:

Substation, label Dolné Vestenice

Manufacturer Škoda, s.n.: 095xxx

Manufacturer year 1984

Type, hookup 6 ERH 29M-0, YNyn0/d

Frequency 0.0 Hz

Windings 110.0/23.0/110.0 kV

Power 16.0/16.0/16.0 MVA

Switch position 14

Measurements table

Measurement: 23.07.2014 open circuit. Transformer s.n.: 095xxx

110.0 kV primary 23.0 kV secondary 6.3 kV tertiary

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

A-N B-N C-N a-n b-n c-n A-

N2012

62

63

64

Analysis result

Combination CCF value on interval Analysis result

A-N

0 Hz - 2000 Hz 0.9988

 Movement of the main and
tap windings, ground
impedances variations, axial
displacement

2000 Hz - 20000 Hz 1.0

 20000 Hz - 400000 Hz 0.9993

400000 Hz - 2000000 Hz 0.9875

B-N

0 Hz - 2000 Hz 0.9994

Transformer is without error

2000 Hz - 20000 Hz 1.0

 20000 Hz - 400000 Hz 0.999

400000 Hz - 2000000 Hz 0.9917

C-N

0 Hz - 2000 Hz 0.9992

 Movement of the main and
tap windings, ground
impedances variations, axial
displacement

2000 Hz - 20000 Hz 1.0

 20000 Hz - 400000 Hz 0.999

400000 Hz - 2000000 Hz 0.9889

a-n

0 Hz - 2000 Hz 0.9979

Transformer is without error

2000 Hz - 20000 Hz 0.9999

 20000 Hz - 400000 Hz 0.9999

400000 Hz - 2000000 Hz 0.9998

65

b-n

0 Hz - 2000 Hz 0.9996

Transformer is without error

2000 Hz - 20000 Hz 1.0

20000 Hz - 400000 Hz 0.9999

 400000 Hz - 2000000 Hz 0.9999

c-n

0 Hz - 2000 Hz 0.9983

Transformer is without error

2000 Hz - 20000 Hz 0.9999

 20000 Hz - 400000 Hz 0.9999

400000 Hz - 2000000 Hz 0.9999

Measurement 27.06.2012 open circuit (transformer ID: 095xxx)

Measurement 23.07.2014 open circuit (transformer ID: 095xxx)

66

Analysis result

Combination CCF value on interval Analysis result

A-Nssek

20 Hz - 2000 Hz 1.0

Transformer is without error 2000 Hz - 20000 Hz 1.0

20000 Hz - 200000 Hz 0.9999

B-Nssek

20 Hz - 2000 Hz 1.0

Transformer is without error 2000 Hz - 20000 Hz 1.0

20000 Hz - 200000 Hz 0.9998

C-Nssek

20 Hz - 2000 Hz 1.0

Transformer is without error 2000 Hz - 20000 Hz 1.0

20000 Hz - 200000 Hz 0.9997

20 Hz - 2000 Hz
1.0

a-nsprim Transformer is without error

2000 Hz - 20000 Hz 1.0

20000 Hz - 20000 Hz 1.0

b-nsprim

20 Hz - 2000 Hz 1.0

Transformer is without error
2000 Hz - 20000 Hz 1.0

20000 Hz - 200000 Hz 1.0

c-nsprim

20 Hz - 2000 Hz 1.0

Transformer is without error 2000 Hz - 20000 Hz 1.0

20000 Hz - 200000 Hz 1.0

Measurement 27.06.2012 nakrátko (transformer ID: 095xxx)

Measurement 23.07.2014 nakrátko (transformer ID: 095xxx)

