
 

 

 
 
 
 
 
 
 
 
 
 
 

 

Joachim Meyer 
 

Solar Electricity Utilization in Finland  

An Hourly Comparison of Photovoltaic System Output Data 

and Simulated Building Electricity Load Profiles  

 

 

 

Helsinki Metropolia University of Applied Sciences  

Bachelor of Engineering 

Building Services Engineering 

Thesis 

October 11, 2015 



 Tiivistelmä 

  

Tekijä 
Otsikko 
 
Sivumäärä 
Aika 

Joachim Meyer 
Aurinkosähkön hyödyntäminen Suomessa: aurinkosäh-
köjärjestelmän tuntikohtaisen tuoton ja rakennusten käyt-
töprofiilien vertailu 
49 sivua + 4 liitettä 
11.10.2015 

Tutkinto insinööri (AMK) 

Tutkinto-ohjelma talotekniikka 

Suuntautumisvaihtoehto LVI, tuotantopainotteinen 

Ohjaajat 
 

lehtori Hanna Stammeier 
projekti-insinööri Harri Hahkala 

 
Tämän insinöörityön tavoitteena on painottaa aurinkosähköjärjestelmän tuottoprofiilin ja raken-
nuksen käyttöprofiilin tuntikohtaisen yhteensopivuuden tarkastelun tärkeyttä sen kannattavuu-
den määrittelyssä sekä tarkastella aurinkosähköjärjestelmien mitoitustapoja elinkaarilaskennan 
avulla. Syy tutkimukselle oli Suomessa koettu epätietoisuus aurinkosähköjärjestelmien tämän-
hetkisestä kannattavuuden potentiaalista. 
 
Insinöörityö alkaa kirjallisuusselvityksellä, jossa kuvataan aurinkosähköä ilmiönä sekä sen hyö-
dyntämisen edellytyksiä Suomessa. Lisäksi työssä on selvitetty aurinkosähköjärjestelmän kan-
nattavuuteen vaikuttavia tekijöitä sekä määritelty niiden lähtötiedot elinkaarilaskentaa varten. 
Aurinkosähkön tuntikohtaiset tuottotiedot kerättiin MetroSol-aurinkoenergia-laboratoriosta vuo-
delta 2014. Kahden eri rakennustyypin sähkönkulutusprofiilia simuloitiin dynaamisella energia-
laskentasovelluksella FINVAC:in tarkennettuja käyttöprofiileja hyödyntäen. Tämän jälkeen teh-
tiin sekä tuntikohtaiset että kuukausikohtaiset tarkastelut, joiden pohjalta pohdittiin niiden tark-
kuutta. Kannattavuuslaskennan avuksi kehitettiin mitoituksen optimointityökalua sisäisen kor-
kokannan menetelmällä.  
 
Tutkimustuloksista päätellen aurinkosähkön kannattavuuslaskelmia pitäisi ehdottomasti suorit-
taa tuntikohtaisella tasolla, sillä kuukausikohtaisen tarkastelun tulokset olivat hyvinkin epätark-
koja. Lisäksi todettiin, että investointikustannusten määrittely oli tärkeässä roolissa kannatta-
vuuslaskelmissa. Sisäisen korkokannan optimointityökalua todettiin kelpoiseksi työkaluksi, 
kunhan lähtötiedot olivat riittävän tarkat. Kohteen profiilien yhteensopivuudesta riippuen opti-
moitu aurinkosähkönjärjestelmän mitoitus saattoi sallia pienen määrän ylijäämäsähköä, kunhan 
korvatun ostosähkön hyöty oli suhteessa suurempi. 
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The goal of this thesis was to emphasize the importance of comparing photovoltaic (PV)   elec-
tricity production and building electricity load profiles on an hourly basis in order to assess the 
feasibility of grid-connected PV systems in Finland. The thesis also examined PV system sizing 
methods through the use of life-cycle cost (LCC) analysis. The main reason for conducting this 
study was the perceived lack of knowledge of the PV electricity utilization potential in Finland.  
 
In the theoretical part of the study, solar electricity is reviewed as a science and the utilization 
potential in Finland is assessed. The main factors of PV system feasibility calculation are fur-
ther discussed and LCC analysis parameters are determined.  
 
The solar PV electricity production data of 2014 was gathered from the MetroSol laboratory. 
The electricity load profiles of two building types were simulated using dynamic energy calcula-
tion software and improved user profiles from a study conducted by FINVAC. Hourly and 
monthly comparisons of the profiles were carried out and an internal rate of return (IRR) optimi-
zation tool was developed for feasibility calculation. 
 
The study results confirm that PV electricity and building electricity load profiles should be 
compared on an hourly basis in order to achieve sufficient simulation accuracy. The IRR opti-
mization tool was proven to be useful, as long as the calculation parameters were carefully 
determined. In some cases, the optimal sizing of a grid-connected PV system in Finland seems 
to allow a portion of PV electricity to be fed into the grid. However, the benefits of increasing 
the amount of replaced purchased electricity has to outweigh the negative effects of selling 
generated PV electricity into the grid. 
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 Introduction   1

Solar energy produced by photovoltaics, long known as one of the most expensive 

renewable energy technologies, is rapidly becoming a viable source of electricity 

worldwide. Advancements in photovoltaic (PV) technology, production processes and 

industry development, as well as government involvement, have contributed to signifi-

cant cost reductions of photovoltaic systems over the last decade. Many countries have 

implemented policy mechanisms as a way to “jumpstart” renewable technologies such 

as solar electricity, often in a quest to meet the climate strategy targets set by interna-

tional agreements. The steady escalation of electricity market prices has also strength-

ened the position of photovoltaics as a cost-competitive alternative to fossil fuels. This 

trend can be assumed to continue in the future, further increasing the value of utilized 

free solar electricity. [1.] 

Micro-scale grid-connected PV systems are on the verge of a breakthrough in many 

countries with sufficient solar potential and favorable regulatory environments. In Fin-

land, solar electricity is widely considered to be economically unprofitable due to mini-

mal financial incentives from the government. As a general rule, feeding excessively 

produced PV electricity into the grid without compensation through feed-in tariffs is to 

be avoided [2]. In other words, the feasibility of a PV system in Finland relies on replac-

ing purchased electricity with produced solar electricity. A building’s electricity load and 

PV production are, however, inconsistent, making it challenging to avoid excess pro-

duction. Thus, in order to size an economically feasible PV system, it is necessary to 

carefully analyse the building’s electricity load and PV production profiles. 

This study concentrates on micro-scale grid-connected PV systems, designed primarily 

to produce electricity for a building’s own use. The data consists of simulated electricity 

load profiles of two different building types, a kindergarten and a residential building, as 

well as the measured PV output data for the year 2014, generated by the MetroSol 

solar energy laboratory in Espoo, Finland. The main focus of this paper is to emphasize 

the importance of accurately comparing the relation between electricity production and 

consumption on an hourly basis in order to portray a realistic view of the performance 

of grid-connected PV systems. This study will also explore photovoltaic system sizing 

optimization through life-cycle cost (LCC) analysis. 
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 Solar Energy 2

Solar energy is the source of nearly all energy on earth. Plants use the process of pho-

tosynthesis to transform solar energy into growth. When this so called biomass breaks 

down, the embodied energy can be used as fuel for heating and electricity generation 

purposes. Fossil fuels, such as oil and natural gas, are essentially old plant matter with 

stored solar energy from millions of years ago. Wind energy is the result of the dynamic 

process of air movement caused by temperature differences created by the sun’s heat-

ing effect. Similarly, hydro energy is created when the sun evaporates water that sub-

sequently rains down onto higher ground. Solar energy can also be harnessed directly 

into thermal energy or electricity by utilizing incident solar radiation i.e. sunlight. The 

potential of solar energy is enormous, as the amount of energy reaching the surface of 

the Earth every hour is greater than the annual energy needs of our entire population. 

[3.] 

 Solar radiation 2.1

Solar radiation is electromagnetic radiation emitted by the sun. This radiation covers a 

wide spectrum of wavelengths, of which only a small portion can be picked up by our 

eyes as visible light (see figure 1). The spectrum of light contains small “packets” of 

energy, called photons. Each photon has a unique energy value depending on its 

wavelength. [4.] 

 

Figure 1.  The spectrum of solar radiation outside the Earth’s atmosphere. [5] 
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The intensity of solar radiation, the so called solar constant, is determined by integrat-

ing this solar spectrum. It describes the amount of solar energy just outside the Earth’s 

atmosphere, i.e. extraterrestrial solar radiation. The value of the solar constant varies 

slightly depending on the time of the year and the activity of the sun, but is generally 

considered to be 1370 W/m2. [6.] 

 Direct, diffuse and reflected irradiance 2.2

As solar radiation penetrates the atmosphere of the Earth, it comes into contact with 

molecules that interact with the photons. A portion of the radiation is absorbed or re-

flected back into space and the rest is split into diffuse and direct light. As a result, the 

intensity of the radiation that eventually reaches a surface on Earth is less than the 

extraterrestrial radiation entering the atmosphere (see figure 3). [6.] The radiation that 

remains after the interaction with the atmosphere is called solar irradiance and is 

measured in W/m2 [7]. 

The main factors that determine the amount of incident solar irradiance are [6]:  

 local conditions; such as clouds, water vapour and pollution 

 atmospheric effects; such as absorption, scattering and reflection 

 air mass 

 landscape (reflective surfaces).  

The total incident solar irradiance on a surface, i.e. global solar irradiance, is deter-

mined by three solar components; direct, diffuse and reflected irradiance (see figure 2).  

Gg = Gb + Gd  + Gr      , where 

Gg = Global irradiance, W/m2 

Gb = Direct (Beam) irradiance, W/m2 

Gd = Diffused solar irradiance, W/m2 

Gr = Reflected solar irradiance, W/m2 

 

(1) 
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Figure 2.  The three components of incident solar irradiance.  

Direct irradiance, also called beam irradiance, is sunlight that reaches the surface at a 

direct path, only being slightly affected by the atmosphere. Diffuse irradiance, on the 

other hand, indirectly reaches the surface after being scattered by molecules in the 

atmosphere. Diffuse irradiance comes from many directions simultaneously and, unlike 

direct radiation, does not cast a shadow. On a sunny day with the sun high in the sky, 

most of the incident solar irradiance is direct. However, there is always a component of 

diffuse irradiance since the atmosphere still contains molecules and particles that scat-

ter the solar beams. On a cloudy day the amount of direct irradiance is reduced and 

most of the incident solar irradiance is in the form of diffuse irradiance. [6.] 

 

Figure 3.  The atmospheric effects on solar radiation in clear sky conditions. [8] 
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Reflected irradiance is radiation that has reflected off other surfaces, such as the sur-

rounding landscape and constructions. Certain materials and matters reflect more radi-

ation than others. Snow can reflect up to 90% of incident solar radiation, whereas water 

only reflects 10% (see table 1). [9.]   

Table 1. Absorption and reflection of materials. [9] 

Material Absorption % Reflection % 

Snow 10-20 80-90 
Water 90 10 

Dirt 80 20 
Sand 80 20 
Grass 70 30 

Asphalt 90 10 
Concrete 60 40 

This phenomenon should be taken into consideration when designing a solar energy 

plant. In certain situations, PV panels can yield significantly more solar electricity 

through utilization of highly reflective surfaces. 

 Air Mass 2.3

As mentioned, the Earth’s atmosphere has a reducing impact on the incident solar irra-

diance. Consequently, the reduction in intensity is relative to the distance that the solar 

radiation has to travel through the atmosphere (see figure 4). The overall effect the 

atmosphere has on the incoming solar radiation is determined by the Air Mass (AM) 

coefficient.  

When the sun is in zenith, i.e. directly above the point of reference, the radiation path is 

normalized to the Earth’s surface and the AM coefficient is 1. As the solar angle (θz) 

increases, the solar radiation penetrates a thicker layer of atmosphere and the AM co-

efficient is increased. [10.] 
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              Air mass (AM) = “0” 
         atmosphere 
 
    θz 
  

 = 1/cos θz                     = “1” 
 
 
         ground level 

 

 

 

Figure 4.  Air mass as a function of the solar radiation path length. 

 Position of the sun 2.4

As the Earth rotates around the sun and the Earth’s own axis, the position of the sun in 

the sky at a given location is constantly changing as a function of time. The Earth’s axis 

of rotation is tilted at a 23.5 degree angle, which in combination with the ecliptic path 

around the sun causes day length variations. The same phenomenon also determines 

the seasonal changes in the northern and southern hemisphere (see figure 5). [11.] 

 

Figure 5.  The Earth’s rotates around its own axis and around the sun [12]. 

As a result, the path on which the sun moves across the sky changes depending on the 

location and time of year (see figure 6). The solar elevation angle, the angle between 

the sun’s position in the sky at solar noon and the horizon, is highest at summer sol-

stice and respectively lowest at winter solstice. [13.] 

http://www.google.fi/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCNf_5tnAtMcCFYepcgodskgDyQ&url=http://mcensustainableenergy.pbworks.com/The-Solar-Resource&ei=YyDUVZfCLIfTygOykY3IDA&bvm=bv.99804247,d.bGQ&psig=AFQjCNHZuBwnvy_GQB6uwKn4fePZTLtCeQ&ust=1440051599348977
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Figure 6.  The sun’s path changes throughout the year. [14] 

In the northern hemisphere, the sun is located in the south when it reaches the highest 

point in the sky. In the southern hemisphere, the highest point is reaches when the sun 

is located in the north. 

 PV Technology  3

Solar PV electricity is an emerging technology with undisputed advantages compared 

to its fossil alternatives. Solar electricity is a free, non-polluting, renewable and practi-

cally inexhaustible source of energy. PV devices are quiet, reliable and long lasting, 

thanks to their simple construction with no or few moving parts. [3.] Furthermore, PV 

devices require minimal maintenance and are expected to produce a stable yield for 

more than 25 years of operation [15]. Perhaps the most attractive feature of PV sys-

tems is the increased energy self-sufficiency; independently generated PV electricity 

offers financial protection against fluctuations in market electricity prices.  

The production of solar panels requires some energy, but with the technical improve-

ments in manufacturing, today’s PV systems only need between two and five years to 

produce the amount of energy used in the manufacturing of components. [15.] 

On the down side, PV electricity production is dependent on weather conditions and is 

therefore not able to supply a steady delivery of electricity. It is possible to store gener-

ated PV electricity in batteries for later use and thus even out the fluctuations in pro-

duction capacity, but battery technologies are far from being cost-efficient enough. 

http://www.google.fi/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCNW4spnBtMcCFYP0cgodt_MIYg&url=http://www.naturephotographers.net/articles1209/ab1209-1.html&ei=6SDUVZWgBYPpywO356OQBg&bvm=bv.99804247,d.bGQ&psig=AFQjCNHZuBwnvy_GQB6uwKn4fePZTLtCeQ&ust=1440051599348977
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They are mainly used in situations where self-sustainability is prioritized on the ex-

pense of economic feasibility.  

 Global PV Market Outlook  3.1

Industry experts have differing opinions about the future of solar PV technology. Some 

expect an arrival of a “solar age” that will revolutionize the way power systems work, 

others foresee an end to the steady decline of PV system costs leading to a burst of 

the “solar bubble”. [1.] 

The price of PV modules has been on a steady decrease since the introduction of the 

technology. The historic trend shows that PV module prices have decreased by 20% 

for each duplication of the total amount of modules produced worldwide. [1.] In many 

countries, solar PV electricity has reached grid parity, i.e. the cost of solar PV electricity 

is equal to the cost of electricity produced by traditional technologies.  

The main factors that drive the solar PV market are [16]: 

 concerns about energy security  

 climate change 

 energy prices 

 cost of carbon 

 increased demand of electricity 

 replacement of existing electricity generation capacity.  

 

The solar PV market is still a highly volatile sector, but even the most conservative 

long-term forecasts suggest that solar PV will be among the dominating electricity re-

sources once the fossil fuel reserves are exhausted. [1.] 
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 Solar panels 3.2

Solar panels are capable of converting sunlight into direct current (DC) electricity via 

the photovoltaic process. When the photons from the sun reach the solar panel materi-

al with properties of a semiconductor, electrons in the material are freed and channeled 

into an electric current. This current is then either used to power electric devices or fed 

into the grid. [17.] 

A solar panel consists of several small, commonly 156 x 156 mm, solar cells connected 

in series and/or in parallel. The most common material used in solar cells is crystalline 

silicon (c-Si). Crystalline silicon cells are available as monocrystalline or polycrystalline, 

depending in the manufacturing process used (see figure 7). Monocrystalline cells are 

thin slices of a single silicon crystal, whereas polycrystalline cells contain of mix of sili-

con crystals.  

Monocrystalline cells convert sunlight into electricity more efficiently than polycrystalline 

cells, but polycrystalline cells are cheaper to manufacture. Both cells are about as cost-

efficient, but the cheaper price of polycrystalline cells has made them slightly more 

common on the market. [18.] 

  

Figure 7.  Mono- and polycrystalline cells. [18] 

The total solar panel voltage is the sum of the voltage of each solar cell connected in 

series. The total electric current is the sum of the current of each solar cell connected 

in parallel. By altering the setup, it is possible to achieve the desired voltage and elec-

tric current of a solar panel. [19.] 
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The DC electricity produced by the solar panels can be used by devices that run on DC 

electricity. These appliances are often used in off-grid households. Alternatively, by the 

use of an inverter, the produced DC electricity can be converted into alternating current 

(AC) electricity. This is necessary in grid-connected buildings as the electric equipment 

will run on AC electricity provided by the electric grid. [19.] 

 PV System orientation  3.3

The sun’s position in the sky changes constantly throughout the day and varies de-

pending on the time of the year. The maximum amount of global irradiation is har-

nessed when the sun’s rays hit the surface at an angle perpendicular to the surface 

normal. As the angle of incidence increases, less incident solar irradiation will reach the 

surface and therefore a larger area is required to receive the same solar energy as the 

cross section of the sunbeam (see figure 8). [5.]  

 

Figure 8.  A perpendicular angle between the receiving surface and the incident solar 
irradiation is ideal for PV electricity production. [5] 

In other words, for maximum PV generation it is desirable to orientate a PV system so 

that it can receive as much solar irradiation over the course of a year as possible. The 

sun constantly moves in the sky and so the angle of incidence changes. For fixed sys-

tems, this means finding the optimal compromised panel tilt angle for the given loca-

tion. By altering the tilt angle, it is also possible to optimize the PV system performance 

for seasonal production (see figure 9). For example, a steep panel tilt angle improves 

the harnessing of low winter-time solar angle irradiation while a shallow panel tilt angle 

shifts the peak of PV electricity generation towards the summer months. 
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Figure 9.  Solar panel installation tilt angles optimized for seasonal PV generation. [20] 

Alternatively, a tracking system can be used to ensure that the panel surface is always 

facing the sun, maximizing the utilization of direct solar irradiation. In locations with a 

high amount of direct irradiation, the use of tracking systems can greatly improve the 

performance of a panel array. On the downside, a tracking system is more expensive 

than a fixed system and higher operation & maintenance (O&M) costs can be ex-

pected. [21.] 

 PV Electricity Generation Conditions in Southern Finland 3.4

A general misconception is that Finland is not suitable for solar electricity harnessing 

due to lack of solar irradiation, but the annual amount of global solar irradiation in Fin-

land seems to suggest the opposite. In fact, as figure 10 shows, the yearly global solar 

irradiation in Southern Finland is close to that of Northern Germany, where solar elec-

tricity has successfully been implemented as an integral part of the area’s electricity 

production. [22.]  

http://www.google.fi/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCNjflOiy2scCFeKecgodGEEAWw&url=http://howtousesolar.com/how-to-power-your-home-with-solar-part-4-solar-array-tilt-angles/&psig=AFQjCNHeFqThso7UlCyh6uekMue1dmdJTQ&ust=1441353621159752
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Figure 10. Yearly solar irradiation in Europe. Helsinki receives around 1000 kWh/m2 on a 
  horizontal surface. [23] 

However, at the latitude of 60° N, the seasonal changes in daylight conditions in 

Southern Finland have a significant impact on available solar irradiation. PV electricity 

production is heavily concentrated towards the summer months, whilst wintertime pro-

duction is non-existent (see figure 11). This imbalance makes utilization of PV electrici-

ty challenging and often results in undesired excess production in the summer when 

the electricity consumption in buildings generally is decreased. 
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Figure 11. Solar altitude curves at 60° N latitude. The solar altitude angle, the angle be-
tween the sun and the horizon, varies between 6,5° on December 21

st
 and 53.5° 

on June 21
st 

. [24] 

In Southern Finland, about half of the yearly solar irradiation is diffused. This doesn’t 

necessarily affect the performance of the photovoltaic panels themselves, but discour-

ages the use of tracking systems. [22.] Also, tracking systems consist of moving parts, 

which are prone to mechanical failure in harsh arctic environments. 

From a solar irradiation perspective, Southern Finland has potential for solar electricity 

utilization. However, with the severe seasonal changes, the solar conditions do not 

allow for a steady production of solar energy throughout the year. For grid-connected 

building integrated PV systems, a surplus of PV electricity will easily be generated in 

the summer and forcefully fed into the grid, while the system will be unable to signifi-

cantly contribute to energy savings for the remaining part of the year. These character-

istics emphasize the importance of matching PV generation to the building’s electricity 

needs on an hourly basis. 
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 Sizing methods    3.5

The Finnish state owned Motiva Oy, a consultant company that provides information on 

energy resource efficiency for both the public and private sector, states that PV sys-

tems in Finland are generally sized based on one of the following objectives [25]: 

 Base electricity consumption load 

 Peak electricity consumption load (summertime) 

 Average consumption load (summertime) 

 Annual consumption (net zero energy goal) 

 Electricity self-sufficiency 

 Full utilization of available non-shaded roof or wall surface area 

 Available financial resources. 

 

Of these sizing methods, the most common ones are base load sizing, average sum-

mertime load sizing and peak load sizing. Figure 12 (translated) illustrates how these 

load levels are determined by analyzing the daily electricity consumption. 

 

Figure 12  Sizing methods based on the building’s electricity consumption. [25] 
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Base load sizing dimensions the PV system according to the building’s base electricity 

consumption load to ensure that the PV system will not produce electricity in excess at 

any time [26]. This is based on the assumption that feeding electricity into the grid is 

unprofitable without incentives and should therefore be avoided.  

Peak load sizing dimensions the PV system according to the building’s peak electricity 

consumption load in order to cover all the electricity needs with generated PV electrici-

ty. However, a large portion of the generated PV electricity is produced in excess and 

consequently fed into the grid. Peak load sizing in Finland is seldom a feasible option 

and is generally used for increasing the level of self-sufficiency. [27.] 

Average summertime load sizing aims to cover a balanced portion of the electricity 

consumption in the summer, when solar electricity is available. It is an attempt to find a 

compromise between PV electricity utilization and excessively produced PV electricity. 

[27.] 

 Solar Energy Incentives 3.6

The PV market is tied to the price of fossil fuels, mainly crude oil. As long as the in-

vestment costs of PV systems are too high to compete with conventional fossil tech-

nologies, there is a lack of internal market pressure to bring forth this alternative energy 

source. Thus, the PV market growth is heavily dependent on regulatory frameworks in 

the form of incentive mechanisms. [16.] 

These incentive mechanisms stimulate PV market growth by making PV investments 

feasible in a situation where PV technology in itself is still not cost-efficient enough. 

Common ways to subsidize PV markets are by the use of feed-in tariffs and investment 

support. 

 Feed-in Tariffs 3.6.1

A feed-in tariff (FIT) system is a governmentally implemented policy mechanism aiming 

to accelerate renewable energy technology deployment in a region. A FIT program 

typically guarantees that customers will receive a set price for the generated electricity 
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they provide to the grid. The specified rates can be well above the retail price of elec-

tricity, as in the German model. [28.] These purchase agreements are designed to 

drive market growth by making renewable energy investments cost-efficient for devel-

opers. A FIT is often offered as a long-term contract, usually from 10 to 25 years. The 

payment levels can also be designed to decline during the contract period to encour-

age technological development. Depending on the policy goals, these payment levels 

can be differentiated by technology type, project size, resource quality, and project lo-

cation. [29.] 

The production tax incentive is another performance-based policy tool, which contrib-

utes to enable renewable energy investments to become profitable. Tax incentives of-

fer tax reliefs on the generated PV electricity that the producer feeds into the grid. [28.] 

Net metering tariffs, on the other hand, enable customers to “use the electricity they 

generate in excess of their consumption at certain times to offset their use of electricity 

from the grid at other times.” These tariffs are especially designed to encourage dis-

tributed renewable energy generation and they differ from other FITs in one key aspect: 

the value of the excessively generated PV electricity is tied to the current electricity 

consumer price, whereas other tariff incentives are not following the development of 

the energy market. [28.] 

 Investment Support 3.6.2

Governments can also encourage the development of new renewable capacity by 

granting subsidies for purchasing renewable generation equipment. This support 

mechanism aims to enhance the profitability of early-stage investments, as well as min-

imalize the risks associated with the introduction of new technology. 

This is currently the only subsidy available for solar electricity in Finland. The Centres 

for Economic Development, Transport and the Environment (ELY-centre) can grant a 

maximum of 30% of the acceptable investment costs for solar projects undertaken by 

companies, communities and other organisations [30]. 
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 Life-cycle Cost Analysis 4

LCC analysis is a method for assessing whether an investment is economically feasible 

over the duration of its life-cycle. It takes into account the initial investment costs, as 

well as the costs of owning and disposing a building services system. It is especially 

useful when comparing different building upgrade options with the same performance 

requirements but different cost structures. [31.] Depending on financial objectives, 

there is a range of suitable LCC methods to be used for project evaluation. The most 

commonly used methods for PV investment analysis is net present value (NPV) analy-

sis, period payback (PBP) analysis and the analysis of the investment’s internal rate of 

return (IRR). 

In a NPV analysis, all the life-cycle profits and expenses at set times are discounted to 

a present value using a pre-set discount rate. The investment is considered to be fea-

sible if the sum of the calculated present value is positive. In this case, all the discount-

ed net profits of the investment, including the residual value, is greater than the total 

investment cost. [32.] 

The present value of future payments and revenues is calculated using the following 

discount formula [33]:  

PV =
FV

(1 + i)n
     , where 

 

PV = Present value  

FV = Future value 

i = discount factor 

n = year 

 

 

 

 

(2) 
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When all the project costs are identified by year and amount, and discounted to present 

value, the total LCC is calculated using the following formula [31]:  

LCC = I + Rrepl − Rres + E + OM&R     , where 

 

LCC = Life⎼cycle cost in present value   

  I = present value investment costs   

 Rrepl = present value of replacement costs  

 Rres = present value of residual value   

 E = present value of energy costs   

 OM&R = present value of operating, maintenance and repair costs 

 

A PBP analysis measures the amount of time it takes for the total cost of a system 

upgrade to be recovered due to lower operating costs. [34.] The method does not take 

into account the monetary benefits acquired after the recovery timeline, and therefore 

does not illustrate the overall life-cycle feasibility of the investment. Since a PV system 

has a long service period with accumulating savings, the PBP method is not suitable 

for assessing the feasibility of PV projects.  

IRR calculation is a method that measures the overall profitability of a project. It de-

termines the discount rate needed to make a project profitable during its service period. 

In other words, the internal rate of return of an investment is the discount rate at which 

the net present value costs equal the net present value benefits. [35.] 

The IRR is calculated using the following formula: 

IRR =
(NPVreturns − NPVcosts)

NPVcosts
     , where 

IRR =    Internal rate of return 

NPVreturns = Net present value of total life⎼cycle returns  

NPVcosts = Net present value of total life⎼cycle costs 

 

(4) 

(3) 
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A PV installation is often a stand-alone system with the sole objective of accumulating 

savings by replacing purchased electricity over an extended period of time. A PV instal-

lation can also be considered a low-risk investment with monetary benefits, at the same 

time providing a form of insurance against escalating future electricity prices. It is there-

fore appropriate to focus on the overall profitability of PV systems by evaluating the 

possible IRR in different energy market development scenarios. 

The future always involves uncertainty and the same goes for calculation models trying 

to predict it. By conducting a sensitivity analysis, we can identify the impact of uncer-

tain input values on the overall feasibility evaluation. A sensitivity analysis points out 

which uncertainty factors have the greatest influence on the evaluation results and 

should therefore be carefully and critically assessed. It is a great tool for testing differ-

ent scenarios of future development of unknown factors. [31.] 

 Methods of Investigation    5

In this study, the measured PV production data and simulated building electricity load 

profiles are compared on an hourly and monthly basis. The results are then analyzed 

and the required level of data accuracy for LCC analysis purposes is determined. The 

study results will also be used in the development of a PV system sizing tool. 

The solar electricity yield of the MetroSol solar energy laboratory is collected in an 

hourly format, creating 8760 data points corresponding to each hour of the year. The 

production data is then made scalable by establishing the ratio of hourly produced solar 

electricity to rated array peak capacity. This is known as the performance factor 

(kWh/kWp) of a PV system.  

The electricity load profile of a kindergarten and a residential building are simulated 

using the dynamic simulation software RIUSKA. The user profiles are based on a re-

port made by The Finnish Association of HVAC Societies, FINVAC. The PV production 

profile and building electricity load profiles are then compared on an hourly and month-

ly basis. The aim of the comparison is to point out the importance of analysing the pro-

files with appropriate precision. An LCC analysis will further explore methods of PV 
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Solar collectors 
 
90° Polycrystalline panel array 
 
60° Monocrystalline panel array 
 
5°   Polycrystalline panel array 
 
30° Monocrystalline panel array 
 

 

system sizing optimization and evaluate potential weaknesses involved in simulations 

with speculative LCC parameters.   

 PV Production and Building Electricity Load Profile Data 6

The collected PV electricity production data and the simulated load profiles of the kin-

dergarten and the residential building are presented and analyzed in this section of the 

paper. 

 MetroSol Solar Energy Laboratory 6.1

The MetroSol Solar Energy Laboratory is a micro-scale solar energy production plant 

situated on the rooftop of the Metropolia University campus building in Espoo, Finland. 

The solar energy laboratory is designed for educational and developmental purposes 

and serves as a test platform for solar energy studies. With a high degree of configura-

bility and equipped with accurate measuring equipment, the laboratory is ideal for stud-

ying the performance of solar energy installations in various weather conditions. 

 

Figure 13. Google Earth picture of the MetroSol PV System installation. [36] 
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The MetroSol Solar Energy Laboratory consists of 20 solar panels with 4 inverters, 6 

solar collectors and a 1200 liter storage tank. The PV panel arrays are installed in two 

rows facing south. Located on the rooftop of a three-storey building and at a distance 

from surrounding buildings, there is minimal shading from surrounding objects. Only 

self-shading, i.e. panels being shaded by other panels, is a concern (see figure 13).  

The MetroSol PV system is divided into 4 arrays of both monocrystalline and polycrys-

talline solar panels. Each of the four panel arrays consists of 5 solar panels connected 

in series and an inverter that converts the DC electricity produced by the panels into 

AC electricity. The total output of the system is 4900 Wp. 

Polycrystalline solar panels: 

Installation angles:  5 and 30 degrees 

Panel model:  5 x INNOTECH SOLAR EcoPlus 240W 

Nominal output / panel: 240 Wp 

Panel array output:  1.2 kWp 

Panel array area:  8.25 m² 

 
 
Monocrystalline solar panels: 
 
 

Installation angles in 2014: 60 and 90 degrees 

Panel model:  5 x SolarWATT M250-60 AC 05 

Nominal output / panel: 250 Wp 

Panel array output:  1.25 kWp 

Panel array area:  8.3 m² 

The laboratory is equipped with measuring equipment, such as pyranometers, that 

measure the intensity of the incident solar irradiance (W/m2) from a field of view of 180 

degrees. A Vaisala WTX520- weather station measures the wind speed and direction, 

outside air temperature, relative humidity, air pressure levels and precipitation condi-

tions on site. 
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The PV yield and weather data of the MetroSol Solar energy laboratory is uploaded in 

real-time to the SunnyPortal online server though a wireless internet connection. The 

recorded data enables accurate analysing of the PV system performance in different 

weather conditions throughout the entire service period of the system. 

 PV System Output Profiles 6.2

For this study, the hourly PV electricity yield data of all panel arrays was collected for 

the entire year 2014. Table 2 presents the monthly electricity yield of each panel array. 

The performance factor is between 580 and 820 kWh/kWp, which is slightly below the 

local average potential for such PV system. 

Table 2. MetroSol PV System total electricity yield for year 2014 [kWh/kWp]. 

 

The optimal tilt angle in Espoo is between 35 and 45 degrees, but PV arrays installed 

at 30 and 60 degree tilt angles produce almost the same amount of electricity [37]. In 

the MetroSol laboratory, the panel array installed with a 30 degree tilt angle produced 

more energy compared to the other panel arrays. This was to be expected, as the 30 

degree angle is able to harness the biggest amount of summertime solar irradiance. 

However, the 60 degree tilt angle panel array did not produce as much as could be 

have been expected. A closer look at a sunny day in September (see figure 14) clearly 

shows that the 60 degree tilt angle panel array suffers from self-shading. Before 2 pm 

the 60 degree tilt angle generates the highest amount of electricity out of all the panel 

05 deg 30 deg 60 deg 90 deg System

January 1.9 2.6 10.0 9.5 24.0

February 7.9 6.2 9.3 7.4 30.8

March 48.8 49.5 70.3 61.4 230.1

April 102.1 104.0 96.5 72.5 375.1

May 109.4 110.9 87.8 67.7 375.8

June 101.9 118.5 83.1 59.1 362.6

July 134.0 166.9 109.4 90.7 501.1

August 96.2 125.6 92.7 81.7 396.2

September 64.8 99.2 82.2 87.5 333.7

October 15.8 28.5 27.9 32.4 104.5

November 1.6 3.7 5.8 6.7 17.8

December 0.7 2.3 1.6 2.2 6.8

Year total 685.1 818.0 676.6 578.8 2758.4
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arrays, in line with the fact that the 60 degree tilt angle is the most advantageous for 

the solar path in September, when the maximum solar elevation is around 30 degrees. 

At 3 pm, the curve graph of the panel array is cut down to roughly 75% of its potential. 

After 4 pm the generation curve is restored to its expected trend path. 

 

Figure 14. The production of the 30 degree tilt angle panel array suffers from self-shading in 
the afternoon. [38] 

The self-shading is caused by the 90 degree tilt angle panel array installed to the west 

of the 60 degree tilt angle array. The two arrays are too close together. However, the 

problem could be fixed by altering the tilt angles or by increasing the distance between 

the arrays. 

To put the yield data of 2014 into perspective, it is compared to a yield profile simulated 

with the PVGis (Photovoltaic Geographical Information System) photovoltaic energy 

calculator (see figure 15). The PVGis calculator is a tool for estimating the yearly elec-

tricity generation potential of defined PV systems. The calculator’s solar irradiation pro-

file is based on historical irradiation statistics and is well suited as a test reference year 

(TRY) profile for simulation use. [39.] 
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Figure 15. PV electricity production data from MetroSol in 2014 with comparable simulated 
production estimates of a similar setup.   

As shown in figure 16, the MetroSol PV plant heavily underperformed up until June, 

after which the yield was far greater than average for the late summer and fall months. 

This was due to the irregular weather conditions in southern Finland in 2014. The first 

half of the year was cold and rainy with significant cloud cover for extended periods of 

time. The late summer on the contrary was very sunny. The late months of 2014 (Oc-

tober - December) were also cloudier than usual.  

 

Figure 16.  MetroSol PV yield for year 2014 compared to simulated PVGIS data [%]. 

Table 3 illustrates the difference between the monthly generated yield of the MetroSol 

PV plant and the simulated PV data of PVGis. During the winter months the PV plant 

produced up to 80% less electricity than the average potential. In September, the 30 

and 90 degree tilt angle arrays produced over 50% more than the average potential, 

-20

30

80

130

180

k
W

h
/k

W
p

 

MetroSol Yield vs PV GIS 

PVGIS 5 deg PVGIS 30 deg PVGIS 60 deg
PVGIS 90 deg MetroSol 5 deg MetroSol 30 deg
MetroSol 60 deg MetroSol 90 deg

-100%

-50%

0%

50%

100%

MetroSol Yield vs PV GIS 

5 deg 30 deg 60 deg 90 deg



 

  25 (49) 

 

  

whereas the 60 degree tilt angle only produced 23% more than the average potential. 

The same situation can be observed in May, June and July. 

Table 3. MetroSol PV yield for year 2014 compared to simulated PVGIS data [%]. Positive 

values represent months when the MetroSol PV plant outperformed the average 

potential of such a system. 

 

It is clear that the PV electricity generation data from the MetroSol laboratory is not 

suitable for neither dimensioning nor feasibility calculation purposes. The data could, 

however, be corrected to achieve a fairly realistic PV generation profile. The goal of this 

study is to analyse the yield and load profiles on an hourly versus monthly basis with-

out taking a stand on the feasibility of PV systems in Finland, and, therefore, this cor-

rection is not necessary. For dimensioning and feasibility purposes, it is more suitable 

to use PV electricity generation profiles based on average historical irradiation records. 

 Electricity Load Profile Simulation 6.3

Electricity is used for various purposes in a building. HVAC equipment, such as ventila-

tion fans, circulation pumps, heating coils and air-conditioning units designed to provide 

a controlled indoor environment and produce sufficient building services for the resi-

dents, require electricity to operate. Building users, on the other hand, need electricity 

for lighting and technical appliances.  

05 deg 30 deg 60 deg 90 deg System

January -70% -80% -43% -53% -58%

February -66% -85% -82% -85% -81%

March -12% -33% -14% -14% -19%

April 9% -4% -9% -12% -4%

May -15% -17% -27% -18% -19%

June -20% -7% -24% -17% -17%

July 5% 28% -4% 19% 12%

August 5% 26% 0% 19% 12%

September 22% 52% 23% 57% 39%

October -39% -23% -34% -16% -27%

November -80% -72% -64% -57% -66%

December -80% -69% -83% -78% -78%

Year total -8% -4% -18% -10% -10%
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A building electricity load profile is created by estimating the use of electricity in a build-

ing on an hourly basis. In order to perform accurate dynamic building energy simula-

tions, it is very important to establish accurate and realistic electricity load profiles. 

These profiles help to achieve a balance between energy supply and demand, and 

serve as a platform for feasibility studies of technical improvements. [40.] 

Hourly electricity loads can be determined by the user profile of a building. A user pro-

file consists of hourly load factors, i.e. a percentage factor of the maximum estimated 

load, unique for the space and the type of activity conducted in it. User profiles are 

needed to accurately determine the user schedules of different building types, taking 

seasonal factors such as weekends and holidays into account. [40.] 

The electricity loads of a building can vary greatly in a relatively short period of time, 

from base load to momentary peaks. Base load is a term used to describe the average 

minimum electricity load when the building is not being used, e.g. at night and during 

holidays. The peaks are caused by an increased presence of people requiring lighting, 

sufficient ventilation and electricity for their technical appliances.  

 

Figure 17.  Simulated electricity load profile of a commercial building. 

Different building types have different load profile characteristics. A commercial build-

ing (see figure 17) has a load profile where the electricity use is high during business 

hours.  
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Figure 18.  Simulated electricity load profile of a residential building. 

A residential building load profile (see figure 18) usually consists of two peaks, in the 

morning and the evening, when the residents are at home. During the day the electrici-

ty use is reduced as the residents are at work. [40.] 

 Building Electricity Load Profiles    6.4

The following building electricity load profiles are simulated using the RIUSKA energy 

simulation software. The BIM models used in the simulations represent typical build-

ings of respective building types. The initial profile data used in these simulations is 

based on a rapport created as the result of a survey conducted by The Finnish Associ-

ation of HVAC Societies FINVAC. The survey project, initiated by the Finnish Ministry 

of Environment, aims to provide improved user profile data especially for simulating the 

cooling needs in various building spaces.  

RIUSKA is a dynamic energy simulation software developed by the Finnish engineering 

consulting firm Granlund Oy. It is based on the internationally acclaimed DOE 2.1E 

building energy analysis software. The software utilizes an imported building infor-

mation model (BIM) to calculate a building’s thermal conditions and energy consump-

tion on an hourly basis. [41.] 

RIUSKA is a useful tool for examining the energy efficiency of different HVAC solutions 

in existing buildings or design projects. It shows how different HVAC systems, energy 

costs, insulation, windows, geographical orientation, local climate etc. will affect the 
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building’s energy efficiency and indoor climate. [41.] RIUSKA is approved as a dynamic 

energy simulation tool for BREEAM, the world’s foremost environmental assessment 

method and rating system for buildings [42].  

 
Case 1: Kindergarten 

The daily schedules of lighting, equipment consumption and user presence of the kin-

dergarten are shown in table 4. The table also presents the daily operation cycles of 

the building’s air-conditioning (A-C) units, as well as the electricity consumption of aux-

iliary building services devices. 

Table 4. Electricity load profile specifications of the kindergarten. [40] 

 

Space Load W/m2 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24

Lighting 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Entrance Equipment 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Presence 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0

Lighting 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Class room Equipment 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 1.0 0.0 0.5 0.5 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Presence 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 1.0 0.0 0.5 0.5 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Lighting 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Hall Equipment 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Presence 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Lighting 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Staff room Equipment 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Presence 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Lighting 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Dining room Equipment 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Presence 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Lighting 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Kitchen Equipment 56000 W (1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Presence 4 persons 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 1.0 1.0 1.0 0.5 1.0 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Lighting 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Bathroom Equipment 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Presence 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Lighting 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Locker room Equipment 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Presence 37.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.5 0.0 0.0 0.0 0.0 0.5 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HVAC equipment

A-C Unit Type η, heat recovery 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24

Primary CAV (2 50% 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0

Kitchen CAV (3 60% 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Bathrrooms CAV (2 79% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

hot water circulation pump [W] 80

Heating auxiliary devices [W] 370

(1 1100 W constant load (refridgeration etc.)

(2 Night ventilation: 3 °C offset, minimum 21 °C

(3 Always on
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Building electricity load profiles of the kindergarten is presented on a daily, weekly and 

yearly basis in figure 19.  

 

Figure 19.  Electricity load profiles of the Kindergarten.  

As the yearly load profile indicates, the kindergarten is not in operation in July due to 

summer holidays.   
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Case 2: Residential Building 
 

The daily schedules of lighting, equipment consumption and user presence of the resi-

dential building are shown in table 5. The table also presents the daily operation cycles 

of the building’s A-C units, as well as the electricity consumption of auxiliary building 

services devices. 

Table 5. Electricity load profile specifications of the residential building. [40] 

 

 

Space Load W/m2 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24

Lighting 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0

Equipment 4.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Presence 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0

Lighting 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 1.0 1.0 1.0 1.0 0.5 0.0

Equipment 14.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 1.0 1.0 1.0 1.0 0.5 0.0

Presence 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 1.0 1.0 1.0 1.0 0.5 0.0

Lighting 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.0 0.0

Equipment 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Presence 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.0 0.0

Lighting 8.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

Equipment 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Presence 12.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0

Lighting 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0

Equipment 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Presence 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Lighting 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Equipment 200.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0

Presence 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Lighting (1 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0

Equipment 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Presence 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HVAC equipment

A-C Unit Type η, heat recovery 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24

Apartments CAV (2 75% 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Hallway CAV (2 57% 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Sauna CAV (3 50% 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

hot water circulation pump [W] 400

Heating auxiliary devices [W] 300

Yard lighting, automatic [W] 200

(1 Weekend schedule 9 AM- 8 PM

(2 Always on

(3 Monday - Sunday

Winter

Spring

Summer

Autumn

Residene presence 

100%

80%

60%

80%

Storage

Entrance

Apartment 

(living room + 

kitchen + 

entrance)

Apartment 

(Bathroom)

Apartment 

(Bedroom)

Hallway

Drying room
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Building electricity load profiles of the residential building is presented on a daily, week-

ly and yearly basis in figure 20.  

 

Figure 20.  Electricity load profile the residential building.  

As shown in the yearly load profile, the user profile takes the decreased residence in 

the summer months into account.  
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 LCC analysis parameters  6.5

The investment costs of a PV system are generally relative to the size of the installa-

tion, with a decreasing price per peak Watt (€/Wp) as the system peak output increas-

es. The investment costs of PV systems in this study are estimated to range from 3 

€/Wp for small-scale installations to 2 €/Wp for big-scale installations (see figure 21).  

 

Figure 21.  Investment costs as a function of PV system output. 

PV systems have relatively high up-front investment costs, making the cost of capital 

an important factor in the overall feasibility of such an investment. Interest rates on 

loans can significantly decrease the IRR on an investment of this nature. [34.] This 

study aims to solely examine the economic prospects of PV system dimensioning op-

timization. Thus, for the sake of simplicity, the investment costs in this study are con-

sidered to be up-front single payments without additional expenses. 

The simulated kindergarten is considered to be eligible for a grant of 30% of the in-

vestment cost under the governmental renewable energy support scheme issued by 

the ELY-centre. The simulated residential building receives no financial support for its 

PV system installation. 

O&M costs are minimal for PV systems. The technology is simple, reliable and easy to 

maintain. O&M mainly consists of administration and monitoring, minor repairs of sys-

tem components and preventative maintenance, such as snow, leaf and dust removal. 

[43] The O&M costs are estimated to be 0.5% for large PV systems and 1% of system 

initial cost per year for small systems. 
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Apart from the initial investment costs at the start of the PV system’s life-cycle and the 

annual O&M costs, the only other expense of the PV systems in this study is the re-

placement of the inverters after 15 years of operation. The price of the inverter re-

placements are estimated to be 0.2 €/Wp, including installation costs. [1.] 

The electricity market in Finland is an open market, meaning that private suppliers can 

sell electricity into the existing distribution grid. This allows for a competitive market 

where the end-consumer has the possibility to choose their electricity supplier. Finland 

has a broad selection of power companies offering a wide range of electricity contracts. 

Companies often adjust their electricity prices according to the real-time Nord Pool 

market spot-price. Additionally, electricity prices also include delivery charges, taxes 

and the supplier’s profit margin. Prices typically vary for residential, commercial and 

industrial customers. [44] 

 

 

 

 

Figure 22. Components of market spot-price based electricity prices. 

When replacing purchased electricity with generated PV electricity, the monetary bene-

fit equals the purchasing price of the electricity that was replaced. When generating a 

surplus of PV electricity that is fed into the grid, the producer is compensated by the 

contracted buyer, i.e. the power company. However, with the lack of tariffs, the private 

producer only receives the real-time market spot-price reduced by transaction fees 

(see figure 22). 
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Figure 23.  Hourly Nord Pool market spot-prices during July 8, 2014. [45] 

Since the real-time market spot-price fluctuates over time, it is appropriate to take this 

into account when examining the monetary effects of replaced and grid-fed electricity 

on an hourly basis. In this study we use the Finnish electricity market spot-price for 

each hour of the year 2014 to calculate the realistic value of the building’s electricity 

balance for each hour (see figure 23 and 24). 

 

Figure 24.  Nord Pool market spot-prices for year 2014. [45] 

The electricity prices for the Kindergarten in Case 1 are estimated to consist of the 

market spot-price plus 57% of additional expenses (incl. 24% tax,) while the additional 

expenses for the residential building in case 2 are estimated to be 68% of the total 

electricity costs.  

  

0

2

4

6

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

c
/k

W
h

 

Hour 

July 8, 2015 

0

5

10

15

c
/k

W
h

 

Year 2014 



 

  35 (49) 

 

  

The levelized cost of energy (LCOE) for purchased electricity in year 2014 based on 

hourly market spot-prices are: 

 0.091 €/kWh for the kindergarten (commercial customer) 

 0.123 €/kWh for the residential building (private customers). 

A PV system’s ability to convert solar irradiance into electricity decreases over time due 

to component wear. The performance degradation of PV panels has a negative effect 

on the overall feasibility of PV installations and needs to be taken into account in an 

LCC analysis. A field test report by U.S. National Renewable Energy Laboratory 

(NREL) estimates a degradation rate of 0.5% per year for crystalline panels [46].  

Additional LCC analysis parameters used in this study are as follows: 

 Service period = 30 years 

 Discount rate = 1.5% 

 Electricity price escalation = 2% / p.a. 

 Residual value after 30 years = 0 € 

The electricity price escalation is a highly speculative parameter and should always be 

subject to sensitivity analysis. The rate of electricity price escalation has a big impact 

on the length of the payback period. Since this study focuses on comparing different 

sized PV systems with similar LCC parameters a set electricity price escalation value at 

2% / p.a. is being used. 

 Study Results 7

 Case 1: Kindergarten 7.1

In case 1, the kindergarten, the PV production profile of a 20 kWp PV system installed 

at a 30 degree tilt angle is compared to the kindergarten’s electricity load profile on 

both an hourly and monthly basis (see table 6). 
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Table 6. Hourly and monthly comparison of the overall electricity balance of PV and elec-

tricity load profiles of the kindergarten. 

 

Although the total monthly electricity consumption and PV electricity production is equal 

in both calculations, the amount of excessively generated PV electricity fed into the 

grid, at a ratio of 74% of PV utilization versus 97% in the monthly comparison, is signif-

icantly higher in the hourly comparison. 

 

Figure 25. Excessively produced PV electricity in case 1 during 2014. 

Hourly Comparison

Electricity Load 104262 kWh Electricity Load 104262 kWh

PV Output 16359 kWh Pv Output 16359 kWh

Utilized PV Electricity 12035 kWh Utilized PV Electricity 15873 kWh

Excess PV Electricity 4324 kWh Excess PV Electricity 486 kWh

Ratio 74 % Ratio 97 %

January 9599 52 9548 0 January 9599 52 9548 0

February 8413 124 8289 4 February 8413 124 8289 0

March 9240 991 8249 114 March 9240 991 8249 0

April 8778 2080 6698 387 April 8778 2080 6698 0

May 9459 2218 7241 399 May 9459 2218 7241 0

June 9486 2371 7116 421 June 9486 2371 7116 0

July 2853 3339 -486 2154 July 2853 3339 -486 486

August 10293 2512 7781 456 August 10293 2512 7781 0

September 8478 1983 6495 387 September 8478 1983 6495 0

October 9537 570 8968 3 October 9537 570 8968 0

November 9167 73 9094 0 November 9167 73 9094 0

December 8958 46 8911 0 December 8958 46 8911 0

Month
Electricity 

Load [kWh]

PV Output 

[kWh]

Balance 

[kWh]

Sold Energy 

[kWh]

PV Output 

[kWh]
Month

Electricity 

Load [kWh]

Balance 

[kWh]

Sold Energy 

[kWh]

Monthly Comparison
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A closer look at February and onwards in the hourly comparison chart shows that alt-

hough the produced PV electricity is very limited in wintertime, there is still a small 

amount of excessively generated PV electricity being fed into the grid with a PV system 

of this size. In July, when the kindergarten is non-operational during holidays, the build-

ing is unable to utilize the excellent solar irradiation conditions. This results in a surge 

of PV electricity being fed into the grid (see figure 25). 

 

Figure 26. PV electricity and building electricity load profiles of the kindergarten. 

By breaking down the profile structures of days when the building is in standard opera-

tion and days when the building is empty, i.e. during weekends and holidays, the mis-

match of momentary PV electricity production and building electricity consumption can 

be identified. Figure 26 shows the profiles of Friday, June 15, and Saturday, June 16. 

On Friday evening after closing time, the PV system produces excess electricity from 

between 5pm and 8pm. This happens every sunny weekday during summer. In week-

ends, the building is consumes electricity at base load and can therefore only utilize a 

small portion of the generated PV electricity. 

 Case 2: Residential building 7.2

The PV production and electricity load profiles of the residential building further accen-

tuate the effects of hourly profile mismatches. In this comparison, the residential build-

ing is equipped with a 30 kWp PV system installed at a 30 degree tilt angle (see table 

7). 
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Table 7. Hourly and monthly comparison of the overall energy balance of PV and electrici-

ty load profiles of the residential building.  

The gap between ratios of utilization obtained from the hourly and monthly compari-

sons of the residential building is even greater than that of the kindergarten. The hourly 

comparison shows that excess PV electricity will be produced during every month of 

the year with an overall utilization ratio of 61%. The monthly comparison does not de-

tect this and suggests that 100% of PV electricity will be utilized by the building (see 

figure 27). 

 

Figure 27. Excessively produced PV electricity in case 2 during 2014. 

Hourly Comparison

Electricity Load 98343 kWh Electricity Load 98343 kWh

PV Output 24539 kWh Pv Output 24539 kWh

Utilized PV Electricity 14949 kWh Utilized PV Electricity 24539 kWh

Excess PV Electricity 9590 kWh Excess PV Electricity 0 kWh

Ratio 61 % Ratio 100 %

January 9542 78 9464 9 January 9542 78 9464 0

February 8616 187 8430 5 February 8616 187 8430 0

March 8925 1486 7439 450 March 8925 1486 7439 0

April 7801 3120 4681 1087 April 7801 3120 4681 0

May 7212 3327 3885 1231 May 7212 3327 3885 0

June 6390 3556 2834 1456 June 6390 3556 2834 0

July 6602 5008 1593 2371 July 6602 5008 1593 0

August 7813 3768 4046 1558 August 7813 3768 4046 0

September 7810 2975 4836 1157 September 7810 2975 4836 0

October 8868 854 8014 255 October 8868 854 8014 0

November 9219 110 9109 12 November 9219 110 9109 0

December 9545 70 9475 0 December 9545 70 9475 0
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The system output is big enough to produce an amount of electricity that almost covers 

the building’s electricity peak load. The daily electricity load profile, however, consists 

of morning and evening peaks with a significant drop during the middle of the day (see 

figure 28). This is when PV electricity production peaks, resulting in a great amount of 

excessively generated PV electricity being fed into the grid. 

 

Figure 28.   PV electricity and building electricity load profiles of the residential building. 

 LCC analysis 7.3

The differences in simulation accuracy between the hourly and monthly comparisons 

are clearly illustrated by projecting a PV system’s IRR over the course of its service 

period is against the corresponding system output.  

Figure 29 shows the IRR of a PV system of selected size, installed at a 30 degree tilt 

angle on the rooftop of the kindergarten. The irradiation data is obtained from the 

MetroSol laboratory from year 2014 with minimal shading.  
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Figure 29. IRR of a PV system in case 1: Kindergarten. Hourly comparison. The green dot is 
the optimized IRR output. 

With the calculation parameters used, it is possible to determine a theoretical optimal 

size for a PV system in terms of maximum IRR.  In this case the optimal IRR is 10.2% 

at a nominal PV system output of 4.9 kWp. For reference, the three red dots represent 

the outcome of three commonly used sizing methods for grid-connected micro-scale 

PV systems in Finland.  

The reduced accuracy of a monthly comparison of the analysis results obtained from 

the kindergarten simulation is shown in figure 30. Since the monthly comparison is un-

able to detect the true ratio of utilized and excessively generated PV electricity, it takes 

the value of utilized PV electricity into account with little to no consideration of the ex-

cessively generated PV electricity that inevitably follows as the PV system output in-

creases. 
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Figure 30. IRR of a PV system in case 1: Kindergarten. Monthly comparison. The green dot 
is the optimized IRR output. 

The same mismatch is present with the different electricity load profile of the residential 

building. As figure 31 shows, there is an even larger gap between the base load sizing 

and optimal IRR sizing outputs. 

 

Figure 31. IRR of a PV system in case 2: Residential building. Hourly comparison. The 
green dot is the optimized IRR output. 

The monthly comparison of the residential building shows an even greater inaccuracy 

than the comparison of the kindergarten (see figure 32). 
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Figure 32. IRR of a PV system in case 2: Residential building. Monthly comparison. The 
green dot is the optimized IRR output. 

It is important to point out that LCC analyses of this nature are highly speculative with 

several unknown simulation factors at play. The factors that have the greatest impact 

on the results in this kind of evaluation are the ones that are tied to the system output 

size. As the investment cost is a major factor in overall feasibility, it is appropriate to 

investigate its effect on the IRR curve in these analyses. The investment cost parame-

ter used in the study follows the system price curve presented in chapter 6.5 (see fig-

ure 33). It illustrates the assumption that the €/Wp cost of a PV installation will be slight-

ly reduced as the system output increases.   

 

Figure 33.  PV system cost parameter used in the LCC analysis.  
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In order to determine the impact that the system price assumption has on the IRR 

curve, the same LCC analysis is done using a fixed 2.5 €/Wp PV system cost. Figure 

34 and 35 show the IRR curves of the hourly comparison calculations for each simula-

tion case.  

 

Figure 34. IRR of case 1: Kindergarten with a fixed 2,5 €/Wp PV system cost. 

 

Figure 35. IRR of case 2: Residential building with a fixed 2,5 €/Wp PV system cost. 

With a fixed 2.5 €/Wp PV system cost, the IRR curves of both cases promote a PV 

base load sizing, where all excessively produced PV electricity is avoided. In other 

words, with a fixed PV system cost parameter, feeding into the grid is never feasible in 

Finland.  
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 Conclusions  8

The study results strongly suggest that PV electricity and building electricity load pro-

files should be compared on an hourly basis in order to have sufficient accuracy for 

feasibility and sizing purposes in a region without tariff systems. It can further be dis-

cussed whether an hourly comparison is sufficient enough, since both PV production 

and building electricity loads can fluctuate heavily within an hour. The monthly compar-

ison completely fails to notice the momentary mismatches between PV production and 

building electricity load profiles, and severely underestimates the amount of excessive-

ly produced PV electricity. 

The analysis of the PV production data of 2014 for the MetroSol laboratory also indi-

cate that panel shading, in this case self-shading, has a significant impact on PV pro-

duction and should be avoided through careful site planning and monitoring. 

It can be concluded that the €/Wp PV system cost is an important LCC analysis param-

eter and that it should be carefully assessed in an attempt to reach a realistic case of 

optimal IRR sizing. The base load sizing recommendation for regions without grid feed-

in compensation is valid when assuming a fixed €/Wp PV system cost. It is a safe 

method of sizing a PV system in Finland. However, the IRR optimization tool seems to 

be useful in case-by-case PV system sizing. When estimating a  €/Wp PV system cost 

that declines as PV system output increases, the IRR tool suggests that a certain 

amount of excessively produced PV electricity is allowed, as long as the economic 

gains of a higher portion of building electricity consumption replaced by produced PV 

electricity outweighs the negative aspects of feeding into the grid. As a recommenda-

tion, thorough data analysis should be conducted when sizing a PV system. 

The LCC analysis made it evident that the investment cost of a PV system is the most 

critical parameter in feasibility calculations of PV systems. As the PV production can be 

expected to be relatively stable throughout the service period, it is possible to establish 

the LCE of PV projects, which in turn can act as a reliable factor in project decision-

making. The prediction of future electricity prices and inflation rates are highly specula-

tive and should therefore be subject to careful sensitivity analysis and risk assessment.  
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LCC analysis: Kindergarten, 4.9 kWp, 30 degree tilt angle, 2-3 €/Wp 
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LCC analysis: Kindergarten, 3.4 kWp, 30 degree tilt angle, set 2.5 €/Wp  
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LCC analysis: Residential building, 7.6 kWp, 30 degree tilt angle, 2-3 €/Wp  
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Appendix 4 

  1 (1) 

 

  

LCC analysis: Residential building, 5.7 kWp, 30 deg tilt angle, set 2.5 €/Wp  
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