

Samir Kumar Paudel

VULNERABLE WEB APPLICATIONS AND HOW TO AUDIT THEM

Use of OWASP Zed Attack Proxy effectively to find the vulnerabilities of web applications

VULNERABLE WEB APPLICATIONS AND HOW TO AUDIT THEM

Use of OWASP Zed Attack Proxy effectively to find the vulnerabilities of web applications

 Samir Kumar Paudel
 Bachelor’s Thesis
 Spring 2016
 Degree Program in Information Technology
 Oulu University of Applied Sciences

 3

ABSTRACT

Oulu University of Applied Sciences
Degree programme in Information Technology

Author: Samir Kumar Paudel
Title of the bachelor’s thesis: Vulnerable Web Applications and How to Audit
Them
Supervisor: Lauri Pirttiaho
Term and year of completion: Spring 2016 Number of pages: 59

This thesis work was done as a private project for completing a Bachelor’s De-
gree in Information Technology. The main objective of this work was to find out
the effectiveness of OWASP Zed Attack Proxy, an open source and free inte-
grated penetration testing tool for finding vulnerabilities in web applications. Be-
sides that, the secondary objectives were to learn how to make web applications
and try to find out the security loopholes of them.

For this project, Notepad++, Localhost, and OWASP Zed Attack Proxy were used
as tools, PHP, HTML, JavaScript, and CSS as languages, and MySQL Database
for making a prototype web application. Notepad++ is a text editor and it supports
various programming languages for writing programs or edit files. Localhost was
used as a web host. And OWASP Zed Attack Proxy was used as a testing tool.
The reason for using OWASP ZAP is that it is an open source and free application
and it is a very popular tool among all available web application penetration test-
ing tools either commercial or open source.

Some vulnerabilities were successfully found by the application (OWASP Zed
Attack Proxy). Besides that, the developed prototype web application is a simple
one. To test the effectiveness of OWASP Zed Attack Proxy in more detail, the
web application should be more complex with various features. Being a prototype,
it has limitations regarding its full intended features. As only few features were
implemented in the prototype, there is a possibility to add more features to the
web application as well as testing it in the future.

Keywords: PHP, MySQL, JavaScript, HTML, CSS, Web Application, Security

 4

PREFACE

This Bachelor’s Thesis was submitted to Oulu University of Applied Sciences,

School of Engineering, Kotkantie Campus, as a part of study, necessary to com-

plete a bachelor’s degree in IT engineering, during the fall of 2016. The thesis

work was carried out as a private project with the main objective to find out the

effectiveness of OWASP ZAP, an open source web application security testing

tool. Other objectives were to gain some knowledge in the area of web applica-

tions development and testing web applications to find out the security loopholes.

I would like to express my sincere gratitude to my thesis supervisor, Mr. Lauri

Pirttiaho for his constructive criticisms, patience and support. Big thanks to Mrs.

Riitta Rontu, for approving the thesis topic, Mrs. Kaija Posio, for the language

checking and the staff and respected teachers of the Oulu University of Applied

Sciences, School of Engineering, Raahe Campus, and Kotkantie Campus for

their support during my study in Raahe and in Oulu.

I would also like to thank Raahe Municipal Library for providing me a working

environment during my thesis work.

Last, but not least, I would to like to thank my family and friends for motivating

me throughout this whole process.

Raahe, May 2016

Samir Kumar Paudel

 5

CONTENTS

ABSTRACT 3

PREFACE 4

TABLE OF CONTENTS 5

VOCABULARY 7

1 INTRODUCTION 8

2 DEVELOPMENT OF THE SAMPLE WEB APPLICATION 10

2.1 Web Application 10

2.2 Components used for developing the application 12

2.2.1 Web Server 12

2.2.2 Language and Scripts 12

2.2.3 Database 16

3 VULNERABILITIES AND ASSOCIATED RISKS 17

3.1 Injection Flaws 18

3.2 Lack of Proper Authentication and Weak Session Management 19

3.3 Cross Site Scripting (XSS) 20

3.4 Insecure Direct Object References 20

3.5 Security Misconfiguration 21

3.6 Sensitive Data Exposure 22

3.7 Missing Function Level Access Control 22

3.8 Cross Site Request Forgery (CSRF) 23

3.9 Using Known Vulnerable Components 24

3.10 Unvalidated Redirects and Forwards 24

4 PENETRATION TESTING 26

4.1 Definition 26

4.2 Objective 26

4.3 Testing Needs and Benefits 26

4.4 Testing Frequency 27

4.5 Steps or Process of Penetration Testing 28

5 OWASP ZED ATTACK PROXY (ZAP) 29

 6

5.1 Principles behind ZAP 29

5.2 Main Features 30

5.3 Developer Features 32

5.4 Simple Penetration Test Procedure 33

5.5 Finding Issues 33

6 SECURITY TESTING OF THE SAMPLE APPLICATION 37

6.1 CSRF 38

6.2 XSS 41

6.3 SQL Injection 48

7 CONCLUSION 52

 7

VOCABULARY

Terms and Abbreviations Explanation

OWASP The Open Web Application Security Project

HTML Hyper Text Markup Language

ZAP Zed Attack Proxy

PHP Hypertext Preprocessor

CSS Cascading Style Sheet

HTTP Hyper Text Transfer Protocol

SQL Structured Query Language

XSS Cross Site Scripting

CRUD Create, Read, Update, and Delete

 8

1 INTRODUCTION

Over the past few decades, information technology has made a big leap. If we

see the scenario of past 10 years, information technology has been gradually

making a significant positive impact on human life. The Internet and web applica-

tions are one of the most rapidly developed sector of information technology. Be-

cause the bandwidth costs are significantly getting lower, and developments of

new technologies are continuously growing over the years, Internet services are

widely accessible around the globe and so is the use of Internet services. The

chart presented below shows that the global Internet users in 1997 were just

around 2 percent of human population which has been increased to around 40

percent in 2014.

Nowadays, web applications are playing a significant role towards making a hu-

man’s life easier. They are making a noble presence in the areas such as educa-

tion, banking, entertainment, marketing, and communication. Some notable ex-

amples are online shopping, online banking, social networking, online document

editing, online media editing, online maps services, online dictionaries, online

search services, and gaming. These applications provide services to people ac-

cording to their needs both efficiently and cost effectively. However, only being

FIGURE 1. Internet users per 100 inhabitants (1)

 9

efficient and cost effective is not enough. These applications should be secure

and reliable too. The usage of unsecure and unreliable applications may always

have serious impacts as they can make a company out of business.

Along with the increasing dependency of human life on web services, security

issues are becoming more challenging. Over the past decade, along with the de-

velopment of web technologies, new attacking techniques are also emerging.

“Two of the most widely spread and dangerous vulnerabilities in web applications

are SQL injection and Cross Site Scripting (XSS), because of the damage they

may cause to the victim business” (2). Before attacking, attackers first try to find

out vulnerabilities in the application they want to attack, and then use the vulner-

abilities they found to perform desired attacks. The usage of a vulnerable appli-

cation is always dangerous for all stakeholders. So, before making available for

practical use, the application should always be tested thoroughly for any kind of

possible vulnerabilities.

Many tools are available for testing vulnerabilities in web applications. Some of

them are free, and others are commercial. They scan the applications by both

automatic and manual ways. The topic of this thesis is also related to finding

vulnerabilities in web applications using one of such tools. For the thesis, a sam-

ple web application will be developed, a web application penetration testing tool

from OWASP, called Zed Attack Proxy, will be used for testing the application to

find different kinds of vulnerabilities, and the final results will be summarized to

see its effectiveness. HTML, PHP, JavaScript, and MySQL database will be used

to develop the application. The application is about a grading system for a school.

It can perform some tasks, for example, the admin can register new students and

teachers in the database, teachers can insert grades, students can view their

grades.

 10

2 DEVELOPMENT OF THE SAMPLE WEB APPLICATION

This chapter is a summary of brief introductions of the tools and techniques that

were used to carry out the thesis. In Section 2.1, an overview of the web applica-

tion is described. Section 2.2 presents a short description of the web server, lan-

guage, and scripts that were used to develop the application. Section 2.3 de-

scribes the database that was used for the web application. There is a different

Chapter for thoroughly describing Zed Attack Proxy.

2.1 Web Application

Acunetix.com defines Web applications as:

Computer programs allowing website visitors to submit and retrieve
data to/from a database over the Internet using their preferred web
browser. The data is then presented to the user within their browser
as information is generated dynamically (in a specific format, e.g. in
HTML using CSS) by the web application through a web server. (3)

According to the definition, web applications have certain characteristics. They

are computer programs, which are used to perfom intended tasks. Users of web

applications can both send and receive data through Internet browsers. Mostly,

the Internet is required to use web applications. Data is dynamically generated in

a web format and displayed through the browser. The application accomplishes

its tasks through a web server. Web applications cannot run outside a web server.

A web application is a software application which utilizes web and web technolo-

gies to perform certain tasks. Generally, it requires the Internet to run and accom-

plish tasks. But it can also be used on local networks, for example intranet. It

works on a client - server model. A server is a web server and a client is a web

browser. The user sends HTTP requests through the browser (client) to the web

server and the web server accomplishes the requested tasks and sends the re-

quired information back to the browser. To allow support by all kinds of browsers,

it uses HTML or XHTML as a format to generate documents. A combination of

 11

both the server-side scripts (e.g. PHP, asp.net) and client-side script (e.g. JavaS-

cript, html) are used to develop web applications. Server-side scripts are used to

interact with the database server while client-side scripts are used for dynamically

presenting of information in the browser.

There are some advantages of web applications over desktop applications. Un-

like desktop applications, web applications are universal. They can run on any

device or operating system. It is easy and cost effective to maintain and update

the web applications. As web applications use internet browsers to interact with

users, in most of the cases, no installations are required at the client side. The

centralized data and its accessibility over the web from any platform at any time

allows users worry-free usage of applications. Users do not need to pay any se-

rious attention to backup and security while using the application.

To understand how web applications work, Acunetix has given a simple example

of a web application model, which consists of a client, the Internet, and a server.

The client consists of a PC with a browser. All HTTP/S requests and responses

pass through the Internet. And the Server side system consists of web servers, a

web application server and database servers.

FIGURE 2. Client-Server web application model (3).

In the above figure, the client’s web browser sends an HTTP request to the web

server over the Internet. The web server handles the request, and interacts with

 12

the web application server. The web application server then interacts with the

database server and prepares the requested document and returns an HTTP re-

sponse back to the client through the web server.

2.2 Components used for developing the application

As it was mentioned above, web applications are developed using server side

and client side scripting languages and they require a web server to run and a

database server to function. The following components were used to develop the

sample web application.

2.2.1 Web Server

A Web Server is a host server for web applications and is necessary to run them.

Uniform Server was used as a host server to run the sample application. It is a

free and open source WAMP server. WAMP is a web server for Windows Oper-

ating System which basically consists of Apache, MySQL, and PHP. It stands for

Windows, Apache, MySQL, and PHP. There are many free WAMP servers avail-

able. Different servers may have different features and support for scripts and

database. For example, some are portable and can be installed on a portable

drive. Some support other database and server side script too, apart from just

MySQL and PHP. Different features of server make developers easy to choose

one according to their need. Uniform Server supports Perl as a server side script-

ing language along with PHP. It is easy to use, portable, and light. It only takes

about less than 30MB space. The main reason why Uniform Server was chosen

is its portability. The portability feature is very useful at the development phase,

as the developer might frequently need to carry it. Figure 3 shows the control

panel of a running Uniform Server.

2.2.2 Language and Scripts

Computer programs are a set of organized instructions (4) and in simple terms,

those instructions are codes which can be written in different programming or

scripting languages. In that sense, web applications are also created with lan-

guages, and, or scripts. For the development of the sample web application,

HTML and CSS, PHP, and JavaScript were used.

 13

FIGURE 3. Control Panel of Uniform Web Server running on local host.

HTML

HTML stands for HyperText Markup Language. It is used along with CSS and

JavaScript to create web pages as well as to make a user interface for web ap-

plications (5). HTML sets the layout and structure of a web page. To do so, it has

various elements and for each element there may have several attributes. Each

element starts up and ends with tags and also describes a different component

of a web page. The following figure gives a glimpse of html elements and attrib-

utes.

FIGURE 4. HTML Element and its component (6)

 14

CSS

CSS stands for Cascade Style Sheet. It is a language which describes how a

document written in a markup language is presented. In HTML, it is used to style

the content of an HTML Element or of a whole HTML document. Mozilla Devel-

oper Network describes CSS in the following way:

Cascading Style Sheets (CSS) is a stylesheet language used to de-
scribe the presentation of a document written in HTML or other
markup languages such as Scalable Vector Graphics (SVG). CSS
describes how the structured elements in the document are to be
rendered on screen, on paper, in speech, or on other media. The
ability to adjust the document's presentation depending on the output
medium is a key feature of CSS. (7.)

CSS can be used in two ways. Either it is embedded with an HTML file or placed

as a separate file in the web server. In later case, a link to it is given in the HTML

file. Sometimes both ways can be used at the same time. The following figures

(Figure 5 – 8) clarify the different ways of using CSS in HTML.

FIGURE 5. Example of CSS embedded in HTML (8)

FIGURE 6. Example of a link to a CSS file in HTML (8)

https://developer.mozilla.org/en-US/docs/Web/SVG

 15

FIGURE 7. Example of a CSS file (8)

FIGURE 8. Example of a mixed way of using CSS (8)

JavaScript

JavaScript is the most popular client side scripting language. It is a light weight,

interpreted, prototype-based object-oriented language with a first class function,

mainly used for web pages (9). It can change the web page behavior according

to an event change thus making the page dynamic. But it can also be used in a

non-web environment such as pdf documents and desktop widgets (10). The

ways of using JavaScript in web applications are same as using CSS. Either it

can be embedded with HTML, or it can be linked to a separate JavaScript file

located in the web server, or sometimes both ways can be applied at the same

time.

PHP

“PHP (recursive acronym for PHP: Hypertext Preprocessor) is a widely-used

open source general-purpose scripting language that is especially suited for web

 16

development and can be embedded into HTML” (11). “PHP code may be embed-

ded into HTML code, or it can be used in combination with various web template

systems, web content management system and web frameworks” (12). In a file,

PHP starts with a ‘<?php’ tag and ends with a ‘?>’ tag. The PHP processor only

processes codes inside those tags.

Unlike JavaScript, PHP codes are executed in the server. It generates outputs in

the server and sends them to the client browser. Because the browser receives

responses as documents, it can never know the actual PHP codes used to gen-

erate the document. Apart from HTML output, it can output many kinds of files

including images and pdf files.

The main use of the PHP is to develop dynamically generated web pages. It has

a wide scope of use. It can be used for different major operating systems and it

has support for many database systems and web servers. It can be used both for

procedural programming and object oriented programming.

2.2.3 Database

Database is a collection of data in a structured way. But generally in computer

terms, the word ‘database’ is used to refer Database Management System, or

DBMS in short. “A database management system (DBMS) is a computer software

application that interacts with the user, other applications, and the database itself

to capture and analyze data” (13). Basically, there are 2 types of databases –

Relational, and –Non Relational. Most of the relational databases use the SQL

query language. MySQL and MongoDB are examples of the relational and non-

relational database management systems. In the relational database, data is or-

ganized in one or more tables of unique rows and columns and each table may

have a connection to others by some common attribute. All relational databases

including MySQL use SQL queries for querying and maintaining data.

A database is an essential part of web applications. It is needed to store different

kind of information necessary to interact with users. For the sample application,

the MySQL database was used. “MySQL is the world’s most popular open source

database” (14).

 17

3 VULNERABILITIES AND ASSOCIATED RISKS

In this section, some common types of web application vulnerabilities and risks

associated with them are briefly described. The term “vulnerability” is used here

to refer to weak points in web applications. They can be used to attack easily by

attackers.

Vulnerability is a weakness in a computer security which allows attackers to re-

duce a system’s information assurance (15). From security point of view, it is a

kind of hole in the web application system. So, it serves as a gateway for attack-

ers to fulfill their interests in the system. There might be more than one type of

vulnerabilities in the system. Attackers can use one or a combination of more

than one of such vulnerabilities to attack. Each vulnerability is associated with

some kind of risk or threat to the application. Based on the impact of damage on

the application, the degree of risk associated with vulnerabilities is different. The

impact of damage depends upon the nature of the application and also the nature

of business which owns that application. Some damages are more serious than

the other ones.

Ron Lepofsky (16) has classified vulnerabilities in a web application as follows:

 authentication

 session management

 access control

 input validation

 redirects and forwards

 injection flaws

 unauthorized view of data

 error handling

 cross-site scripting

 security misconfigurations

 denial of service

 related security issues

 18

OWASP has released a document called OWASP Top 10 2013. The document

is about the most critical web applications vulnerabilities and was produced with

the help of different kinds of security experts around the world (17). The top 10

most critical vulnerabilities, mentioned in the document, are as follows (18):

 Injection

 Broken Authentication and Session Management

 Cross-Site Scripting (XSS)

 Insecure Direct Object References

 Security Misconfiguration

 Sensitive Data Exposure

 Missing Function Level Access Control

 Cross-Site Request Forgery (CSRF)

 Using Known Vulnerable Components

 Unvalidated Redirects and Forwards

It should be noted that both of these lists are not a complete set of vulnerabilities.

These are the vulnerabilities, only prevalent for a particular time. Along with the

development of new web technologies, new types of vulnerabilities may also

emerge and the degree of their harmful effect may change.

If we look at the both lists of vulnerabilities, many of them are common and few

others are different with each other. Brief descriptions of the common ones are

being presented here.

3.1 Injection Flaws

On its website, University of Pennsylvania, Information Systems and Computing

defines:

Injection flaws allow attackers to relay malicious code through a web
application to another system. These attacks include calls to the op-
erating system via system calls, the use of external programs via
shell commands, as well as calls to backend databases via SQL (i.e.,
SQL injection). (19.)

 19

Injection is a kind of weak point in the web application through which attackers

can inject some sort of malicious code of their interest. Malicious code is embed-

ded with the user input data and passed to the application. If user input data is

not properly filtered in the system, in that case, the interpreter processes the ma-

licious code as a normal legitimate user input and the system outputs accordingly.

The level of risk associated with the Injection flaw is very high. An attacker can

severely damage the application or steal confidential information. For example,

they can get access to the confidential data, delete data, change the content, and

destroy the whole system of the application. Some examples of injection flaws

are the SQL injection, OS injection, and LDAP injection.

3.2 Lack of Proper Authentication and Weak Session Management

Authentication is an act of “verifying the identity of a user, process, or device,

often as a prerequisite to allowing access to resources in an information system”

(20). It refers to the process of verifying either a user, or a process, or a device,

which requests to communicate with either the whole application or with a part of

it in order to make sure that only the intended user, process, or device can get

access to the application and its resources.

A session is a sequence of all the activities between a client (web browser) and

a web server for a particular log in and log out period. The activities are generally

associated to within the log in and log out period of the same user. (21.) So, there

is a different session for each different user. For a number of different reasons, a

web application requires to hold session information. For example, there may be

different contents to deal with according to the user’s preference, or the type of

user; or there may be security issues.

Effective authentication and proper session management are vital for a web ap-

plication to be secure. The level of risk associated with the authentication and

session management is high. Attackers usually gain access to the system

through hijacking a username and a password or session IDs. They can access

secret information and data while pretending that they are the legitimate user of

the application.

 20

3.3 Cross Site Scripting (XSS)

“Cross-site Scripting (XSS) refers to client-side code injection attack wherein an

attacker can execute malicious scripts (also commonly referred to as a malicious

payload) into a legitimate website or web application” (22). In Cross-Site Script-

ing, attackers exploit the user’s trust over a vulnerable web application. In this

attack, they insert malicious JavaScript or html codes through user input fields to

a page. It generally occurs when the application sends user input data as a part

of a webpage, without properly validating to the user’s browser.

The risks associated with Cross-Site Scripting include a hijacking session, an un-

authorized changing of the contents of application, redirecting the application to

another website, and insertion of some malicious codes or links. The level of risks

is high. By the hijacking session, attackers can get secret and important infor-

mation.

3.4 Insecure Direct Object References

“The threat of insecure direct object reference flaws has become commonplace

with the increased complexity of web applications that provide varying levels of

access to enable users to gain entry to some components, but not others” (23).

It refers to a provision in the web application where references to internal objects

are directly exposed. According to OWASP,

“A direct object reference occurs when a developer exposes a refer-
ence to an internal implementation object, such as a file, directory,
or database key. Without an access control check or other protection,
attackers can manipulate these references to access unauthorized
data.” (18.)

Vulnerability comes from the direct reference of an object that is used to get ac-

cess to that object. Objects can be a file, or a directory, or a database key. Appli-

cations provide direct access to those objects based on a user supplied input

value. For example, a user who has certain authorities to the application can alter

the reference value of an object to get access to it even they are not authorized.

 21

If the application does not have a mechanism to verify the user for each of such

objects, then the application is vulnerable.

This vulnerability allows attackers to bypass authorization and access resources

in the system directly, for example database records or files. To protect from at-

tacks, direct references should be avoided. Instead of using direct references,

easy to validate indirect methods should be used, such as index, and indirect

reference map. If the direct exposure of objects and references is necessary,

users should be verified to see if they are authentic to use before giving access

to such objects. (24.) The risk associated with insecure direct object references

is that an attacker can compromise confidential data. The degree of risk depends

upon the nature of accessed resources. The following figure clarifies how the

parameter can be altered to get access to an unauthorized resource.

FIGURE 9. Insecure direct reference of database key (25)

3.5 Security Misconfiguration

A good security configuration is always essential for secured web applications as

the misconfiguration exposes the application to a risk of attack. The components

of the web applications such as database, libraries, platform, servers, and soft-

ware modules should be configured properly. Unless necessary, no components

should be given access with full privileges and they should always be up-to-date.

According to OWASP, “Security misconfiguration can happen at any level of an

application stack, including the platform, web server, application server, data-

base, framework, and custom code” (26).

 22

The risk associated with the security misconfiguration is that attackers may ex-

ploit components and compromise the database and web servers. To protect

from this attack, both developers and system administrators need to work to-

gether to properly configure each component.

3.6 Sensitive Data Exposure

“Sensitive data exposure vulnerabilities can occur when an application does not

adequately protect sensitive information from being disclosed to attackers” (27).

Sensitive data is the data that should be kept secret and protected from outsiders.

The data related to a personal identity such as Name, Address, Personal ID, and

Tax ID and confidential data such as Bank Account Number, Credit Card Number,

session ID, and authentication credentials are examples of sensitive data. This

kind of data should be protected with extra security. If the application does not

have a provision for enough protection to such data either in a rest mode or in a

transit mode, it is dangerous to use the application. Data is exposed if it is not

encrypted. Or even if it is encrypted, a weak key generation or algorithm may

have been used.

The risks associated with a sensitive data exposure are that attackers can steal

the personal identity and credit card information or modify other sensitive data as

their interest. So, to protect the sensitive data exposure from prospective attack-

ers, sensitive data should be properly encrypted and it should not be stored if not

necessary. Auto fill options for forms with sensitive data should be disabled (28).

3.7 Missing Function Level Access Control

In most of the instances, the applications only show the functionality in their UI

based on the user. For example, if the user is a teacher, then only functionalities

for the teacher are appeared in it and if the user is a student, then only function-

alities for the student are appeared. The reason to do so is to prevent users to

view data or resources to which they are not authorized. But this approach is just

hiding functionalities and it is not enough to make the application secure. A user

may somehow know the link to get unauthorized resources, or the link to the

unauthorized resources might be on the page but just not visible in the UI. They

 23

can simply guess the parameter and change it in the browser address bar. In the

above mentioned case, for a hacker, it is easy to get unauthorized resources. If

they can get it, then this is an example of the Missing Function Level Access

Control vulnerability. (29.)

This vulnerability has little difference with the Insecure Direct Object Reference

vulnerability. The Insecure Direct Object Reference vulnerability allows an at-

tacker to get access to unauthorized data whereas the Missing Function Level

Access Control provides unauthorized access to the functionalities. But the final

outcome of both vulnerabilities is the same: data is stolen. (29.) This can have

serious consequences. The company may suffer a financial loss as well as loose

its reputation and its customers’ trust. The users on the other hand may have

their identity stolen.

Sensitive functional requests should be protected so that outsiders, or general

users who are not allowed, cannot get access to those functionalities. Function-

alities, which are in the UI, should be verified upon each request. Giving an equal

privilege to all users should be avoided. Instead, a privilege should be given ac-

cording to users’ need.

3.8 Cross Site Request Forgery (CSRF)

Cross-Site Request Forgery is an attack which tricks to the victim’s browser and

does undesirable things which the application considers has been done by an

authentic user but the user does not have any knowledge about it. So, it actually

exploits the trust of the application to the user. GitHub Security describes:

Cross-site request forgery, or CSRF, takes advantage of a user’s au-
thenticated browser state to make requests on their behalf from a
malicious website. For request handlers that do not require an addi-
tional piece of authenticating information (e.g. a CSRF token) this
could lead to the unauthorized modification of a user’s data or set-
tings. (30.)

An attacker can perform this kind of attack only when the user has opened and

is logged on to the vulnerable application and also has open the attacker’s page.

Attackers use a scripting language like JavaScript to perform such undesirable

activities. They trick the victim (user) to click on a link. The link is generally not

 24

shown in the text but it is embedded in an image or other elements. If the victim

has a valid session on the target application, and if they click the attacker’s link,

the code will then be executed by the server and the victim does not know it

immediately.

To prevent a CSRF attack, the use of anti CSRF Tokens, strictly to apply a re-

verification provision in the server when performing activities that have a signifi-

cant impact on database, are recommended. The risk associated with Cross-Site

Request Forgery can be minor to major, depending upon the type of user (victim).

If an attacker can attack with an admin credential, then the damage might be

severe.

3.9 Using Known Vulnerable Components

“Vulnerabilities in third-party libraries and software are extremely common and

could be used to compromise the security of systems using the software” (31).

Web Applications have been built using different kinds of third-party libraries and

frameworks. In many applications, while at the developing phase, developers

usually do not pay enough attention to using up-to-date components such as li-

braries, frameworks, or modules, which makes it easy for attackers to attack the

application. To prevent this vulnerability, developers should pay enough attention

while choosing such libraries and framework. They should be confirmed that the

components they are going to use are updated and secure.

3.10 Unvalidated Redirects and Forwards

“Unvalidated redirect vulnerabilities could allow an attacker to redirect a user to

an untrusted site using functionality in a trusted site” (32). During a session, the

web application may need to redirect and forward to other pages or websites

several times for different purposes. And while doing so, they use untrusted and

unvalidated data to determine those pages and websites. That untrusted and un-

validated data can be used by attackers to redirect to phishing and malicious

sites. The malicious site can easily gain the user’s trust because in the malicious

site’s URL, the original site’s name, from which the user has been redirected, also

 25

appears (33). To prevent this vulnerability, OWASP (34) has given the following

suggestions to follow:

a. Simply avoid using redirects and forwards.

b. If used, do not involve user parameters in calculating the destination. This

can usually be done.

c. If destination parameters cannot be avoided, ensure that the supplied

value is valid and authorized for the user.

 26

4 PENETRATION TESTING

4.1 Definition

Kevin M Henry defines “Penetration testing is the simulation of an attack on a

system, network, piece of equipment or other facility, with the objective of proving

how vulnerable that system or "target" would be to a real attack” (35). For this

thesis context, Penetration Testing is an attack to a web application. It is done

intentionally and with the permission of the owner of that application, in order to

find vulnerabilities in it. It helps developers to determine the areas where they are

strong enough for defending outside attacks and also flaws in their codes that

they need to improve in order to make the application secure. It is a part of a

security audit. It not only identifies the vulnerabilities but also suggests remedies.

4.2 Objective

The main objective of Penetration Testing is to help making an application secure

by finding vulnerabilities so that the developers can fix them before it is attacked

in real. But it also depends on the goal of the company regarding Penetration

Testing. For example, it can be done to test the organization's security policy

compliance, its employees' security awareness and the organization's ability to

identify and respond to security incidents (36). It also helps to access the possible

loss or other consequences on resources or data in case of attack. Some general

objectives include to prevent a data breach, to test an application’s security con-

trol, to ensure that the application is secure before making available for a real use

and to get a baseline information about overall security strengths and weak-

nesses for making security policies.

4.3 Testing Needs and Benefits

Depending on the types of data or resources an application holds, the vulnerabil-

ity in the application, and the service interruption associated with it, might be cost-

lier to the company. The security status of an application will not always remain

the same. An application, which is considered to be secure at a particular point

of time, might turn to vulnerable in near future. It is impossible to always protect

 27

all the data and resources. So, a company continuously needs to identify, moni-

tor, and prioritize security risks for its application. The following paragraphs de-

scribe the benefits of Penetration Testing (see (37)).

One of the benefit of Penetration Testing is that it helps wisely manage vulnera-

bilities. It provides detail information on all feasible threats, so that the company

can group the threats by their possible impact and make a security policy accord-

ingly.

It also helps minimize the possible loss of service interruption of the application.

Once the application is attacked, it can be costlier in terms of both time and

money to retrieve data and resources again. Penetration Testing lets the author-

ities know in advance about the possible attack so that they can be well prepared

to tackle it. In this way the company can minimize the chances of heavy loss due

to a service interruption.

Penetration Testing can help preserve the company reputation and maintain cus-

tomer loyalty. Compromised confidential data results losing reputation and cus-

tomer loyalty. Penetration Testing lets the authorities know the vulnerabilities be-

forehand so that they can take preventive actions to protect confidential data and

other resources from attackers.

4.4 Testing Frequency

Penetration Testing should be performed on a regular basis to ensure con-

sistency, security, and smooth running of the application. It helps find out the new

and emerging security threats that attackers may exploit so that preventive ac-

tions can be taken before attackers do their job. But apart from regular testing,

the following are some specific instances when it is necessary to perform Pene-

tration Testing (see (37)):

 Before starting the real use of the application

 If new applications are added to the system

 When significant upgrades or modifications are applied to the application

 After security patches are applied

 If end user policies are modified

 28

4.5 Steps or Process of Penetration Testing

The Process or Steps are all the activities that are involved from the beginning to the end

of Penetration Testing. The following are only a brief description of steps involved in the

testing. Further information can be acquired from SANS Institute InfoSec Reading Room

(see (38)).

 Determine the immediate goal of the test, for example to breach a personal infor-

mation database

 Collect information about the way to get to the target, for example to the database

 Discover or identify the entry points to the network, for example performing port scan-

ning

 Start exploitation of vulnerabilities using different techniques, for example brute forcing

or phishing

 Take control of the application, for example doing things which are not allowed to do

 Evidence collecting, for example evidence collection of things done while taking con-

trol of the app

 Reporting, it involves writing a report about everything from the beginning to the end

of testing

 Suggesting remedies for the vulnerabilities found while testing

 29

5 OWASP ZED ATTACK PROXY (ZAP)

OWASP Foundation is a non-profit organization. “OWASP is an international or-

ganization and the OWASP Foundation supports OWASP efforts around the

world” (39). OWASP is working in the field of web application security. ZED Attack

Proxy is an OWASP flagship project, also known as ZAP. It is a tool used to find

vulnerabilities in web applications. OWASP defines ZAP as an easy to use inte-

grated web application penetration testing tool to find vulnerabilities (40). It is a

free and open source software designed to use both by beginners and profes-

sional penetration testers. It is ideal for developers and functional testers for au-

tomated security test. But it should be used either by own applications or the ones

which have been authorized to test “(ibid.)”

FIGURE 10. User Interface of ZAP

5.1 Principles behind ZAP

According to OWASP, there are some key principles behind ZAP. It is a free and

an open source software. It does not have and will never have a commercial or

pro version. It is a Cross Platform software, i.e. it can be used in different Oper-

ating Systems. It is easy to install and use. It requires Java pre-installed to install

ZAP. Nothing else is needed. There are some videos available in the youtube.

They help installing the software and learning how to use it. It has a full set of

 30

documentations to get help with. It can work well with other tools. Tools can be

found from add-ons. It has supports many languages. Involvement is actively

encouraged. It can reuse well regarded components. (41.)

5.2 Main Features

Intercepting Proxy

ZAP is an intercepting proxy. This means that all the requests from the user to

the web application and all the responses from the web application to the user

browser can be seen through ZAP. It operates as a man-in-the-middle between

the browser and the target application. It can intercept or modify any http/s traffic

passing in both directions.

Active and Passive Scanners

Active Scanner actively attacks to the target application to find vulnerabilities

while Passive Scanner only scans the responses from the application to the

browser. So active scanning is riskier as it can make damage to the application.

Therefore, it cannot be used without the permission of the owner of the applica-

tion. And before starting Active Scanner for scanning the application, a backup of

all data is strongly recommended. Passive Scanner is safe to use as it does not

modify the responses received from the application.

Traditional and Ajax Spiders

The Spider is used to search for new pages (URLs), and links of other websites

on a particular website. First, when the application is browsed manually, ZAP lists

some URLs found on the manually visited pages. When Spider starts, it first looks

those listed URLs to find new links or URLs. If found any, it adds the URLs on the

list and again visits those newly found URLs. And this process will continue until

it finds new URLs or links. Both Traditional and Ajax Spiders are for the same

purpose. The first one is used for finding other than Ajax rich resources while the

second one is to find Ajax rich web pages because they are more effective than

Traditional Spiders.

 31

WebSockets Support

WebSocket is a protocol that provides a two-way communication (full duplex)

channel through a single TCP socket over the web (42). ZAP is able to provide

WebSocket support. ZAP can see, intercept, change, and even fuzz all the Web-

Socket communications, or it can send new WebSocket messages. Detail infor-

mation can be found from github zaproxy article (see (43)).

Forced Browsing (using OWASP DirBuster code)

Forced Browsing is a kind of attack where the attacker tries to enumerate or ac-

cess the restricted resources which have no reference or any link in the applica-

tion but exist and can be accessible (44). Brute Force techniques are used for a

Forced Browsing attack in which the attackers either guess or use automated

tools to find unlinked URLs within the application (45). The OWASP Forced

Browsing attack is based on their DirBuster project (46). It is a multi-threaded

Java application which is designed to brute force the unlinked directories in the

application. For further reading, please refer to OWASP (47).

Fuzzing (using fuzzdb and OWASP JBroFuzz)

Fuzzing or Fuzz Testing is a software testing technique to find implementation

bugs and coding errors. In Fuzz Testing, an attempt is made to make the appli-

cation (software) crash by delivering a random, invalid or unexpected user inputs

value to the application (software) and then monitoring to see if it crashes. If the

application crashes or fails with the random user input value, then there may be

a security issue. ZAP performs Fuzzing through the JBroFuzz project code which

includes files from the fuzzdb projects (48).

Online Add-ons Marketplace (Extensibility)

ZAP is an open source project of OWASP. One of the ZAP principle is involve-

ment of people as much as possible. It helps ZAP grow in terms of its usage and

also extend the services it provides. To make active participation and contribution

to a further development easier, there is an online marketplace provision for add-

 32

ons in ZAP, where one can write and upload (through Google code project),

download, and install add-ons dynamically. Add-ons extend ZAP functionality.

5.3 Developer Features

As OWASP mentioned (49), there are so many developer features in ZAP. It has

an easy-to-use quick start tab. One just needs to enter the URL and click the

attack button and attack the application. There is a provision of REST API which

allows to interact with ZAP programmatically. It is useful for security regression

tests (50). It can be accessed directly or via one of the client implementations. It

has Java and Python API Clients support. When using ZAP UI, if one wants to

use API, it should be enabled in the options API screen in the UI. ZAP can also

be run in Headless Mode. If it runs in Headless Mode, API is automatically ena-

bled.

ZAP has an Anti CFRS Token Handling mechanism. ”Anti CSRF tokens are

(pseudo) random parameters used to protect against Cross Site Request Forgery

(CSRF) attacks” (51). ZAP has provision for different kinds of authentication to

use in the web application. Authentication methods have been defined in the

context according to which authentication is handled. It has an Auto Updating

feature for its add-ons. Add-ons can be updated even if ZAP is running. One does

not even need to restart ZAP. It is always a good idea to check for updates for

different add-ons before testing the application.

The latest version of ZAP (ZAP 2.4.3) has 4 different modes of operation, namely

safe mode, protected mode, standard mode and attack mode. Safe mode can be

used with any web application as no harmful actions are allowed in safe mode.

But it is not useful for security testers. It is only useful for passive scanning. In

protected mode, only the URLs in the scope can be attacked. It is safe to use with

URLs outside of scope. Anything can be done in standard mode. So one should

be careful while using ZAP in standard mode. In attack mode, if new nodes are

found in scope, ZAP starts active scanning of the nodes immediately.

 33

5.4 Simple Penetration Test Procedure

Simple Penetration Testing is easy to perform. The first thing is to configure the

browser to proxy via ZAP. Then the application is explored manually. While ex-

ploring the application manually, Passive Scanning runs automatically. Then Spi-

ders are used to find hidden contents of the application. After Spider scanning

completes, Active Scanner is run to find the vulnerabilities. Before starting the

test, or during the test, ZAP tools can be tuned according to the need of testing,

depending upon the Web Application. After all the automated testing has been

done, Manual Testing can be performed.

An easier way to start testing, after setting a browser proxy via ZAP, is to go to

the quick start tab, type the address of the web application, and then click the

attack button. It automatically starts Spider first and then an active scan. But this

will not be a complete assessment of a web application. It can only find basic

issues. For example, the logical vulnerabilities cannot be found with active scan-

ners. Manual testing should also be performed to find vulnerabilities. And there

are many tools available for manual testing within the ZAP. ZAP is a framework

for combining other tools in a more robust way. So adding more functionality to

ZAP is easier by either developing tools by own or downloading from online mar-

ket place.

5.5 Finding Issues

After Scanning completes, ZAP shows the result summary in the form of different

categories of alerts. Basically, alerts are potential vulnerabilities and have been

categorized as high priority, medium priority, low priority, and informational prior-

ity, which indicates the degree of associated risks. A high priority alert means that

an issue under this category is more serious than other priority alerts. Likewise,

medium priority alerts, low priority alerts, and informational priority alerts are con-

secutively less and less serious. Alerts categories are indicated by different col-

our flags. As in the figure 11, alerts flags can be seen in the bottom left of ZAP

window with numbers. The number beside the flags indicate the number of po-

tential issues within that category. Starting from the left most flag and consecutive

flags indicate high, medium, low, and informational priority alerts.

 34

One notable thing regarding these alerts is that ZAP provides full detail of each

issue it finds. It includes attack, evidence, description, other information and ref-

erence. It also suggests the solution of the issues. One can edit the alert details

via the Edit Alert dialogue by double clicking an alert, saving it in an html or xml

format and also comparing it with another session via Report Tab in the main

menu. This can really help developers to make their application more secure. In

figure 12, an edit alert dialogue and in figure 13, an html report of an alert gener-

ated by ZAP can be seen.

FIGURE 11. Alerts and Categories

 35

FIGURE 12. Alert in detail

 36

FIGURE 13. HTML Report on Alerts

 37

6 SECURITY TESTING OF THE SAMPLE APPLICATION

For testing the application, the Firefox browser was used and simple steps that

ZAP tutorial suggests for starting the test were followed. ZAP was set to protec-

tive mode to prevent any possible mistake of attacking real websites which there

is no authority to test. The browser was configured to proxy via ZAP, the applica-

tion was set in a context, and the application was explored manually, almost every

pages. After that, ZAP normal Spider first and then AJAX Spider was started to

crawl the application. And finally Active Scanner was run. The results of those

scans are presented in the following tables.

TABLE 1. High priority alerts

S.N. Name of Vulnerability Number of Vulnerabili-

ties found

1 Anti CSRF Tokens Scanner 10

2 Cross Site Scripting (Persistent) 3

3 Cross Site Scripting (Reflected) 6

4 SQL Injection – MySQL 24

TABLE 2. Medium priority alerts

S.N. Name of Vulnerability Number of Vulnerabili-

ties found

1 Backup File Disclosure 14

2 Insecure HTTP Method – TRACE 9

3 X-Frame Option Header Not Set 83

TABLE 3. Low priority alerts

S.N. Name of Vulnerability Number of Vulnerabili-

ties found

1 Cookies Set without HTTP Only Flags 1

2 Cross-Domain JavaScript Source File In-

clusion

2

 38

3 Password Autocomplete in browser 5

4 Web Browser XSS Protection Not enabled 83

5 X-Content-Type-Options Header Missing 83

TABLE 4. Informational priority alerts

S.N. Name of Vulnerability Number of Vulnerabili-

ties found

1 Possible Username Enumeration 3

To include all kinds of issues in this thesis is not practical as it takes too much

time and space. So, I would like to go through in detail each issue on high priority

alerts that ZAP found on the sample application. Basically, there are 3 types of

issues found in the application. The first one is CSRF, the next one is XSS, and

the third one is the SQL injection.

6.1 CSRF

Description

As already has been described briefly in the vulnerability chapter, CSRF is an

attack where an attacker tricks a valid user (a user with an active session) to

perform a certain action, intended by the attacker but not intended by the user.

The user does not have any prior knowledge about that. Sometimes there might

not be any visible response of the action. So, in that case the user does not even

know immediately which action was performed. To perform a CSRF attack effec-

tively, certain conditions should be met. For example, the user should actively be

using the application at the moment. In other words, they should have a valid user

session. Along with the target application, they should have opened the hacker’s

site, or email, or chat window. And in the application server side, if there is no re-

authentication provision before performing certain tasks, then it is more prone to

CSRF vulnerability.

Generally, a piece of JavaScript code is used for a CSRF attack but not always

necessarily. The code is embedded into the attacker’s own page or is sent as a

 39

link through an email or a chat application. While the user has an active session

on the targeted web application, if they click on the link, their browser sends a

request to the server. Because the user has a valid session, the server takes the

request as a valid one and executes it. In this way the attacker’s intended action

is performed.

In a CSRF attack, the attacker tries to exploit the application server’s trust for the

users. Whenever a request comes, the server checks whether it is coming from

a valid session or not. If it finds that the session is valid, then it executes the code,

no matter whether it is forgery or valid. To prevent it to some extent, developers

should develop an application in a way that it should not trust a user for actions

which have a severe impact on the database, even if the user has a valid session.

Next, they should always use POST instead of GET or REQUEST for any kind of

request that performs an action. But these are not a complete and effective solu-

tions. A more effective way to prevent a CSRF attack is to use Anti CSRF Tokens.

FIGURE 14. CFRS example (52)

 40

Anti CSRF Tokens are usually implemented through a random token and gener-

ated each time when a form is submitted by the user. It is embedded in the form

as a hidden field. Whenever a request is sent to the server, it compares the token

with the value stored in the session. The server only executes the request if the

token matches. Below is one example of how token is set.

FIGURE 15. Example of using random Token (53)

Manifestation in sample application

According to the testing result, there are 10 different files which are vulnerable

for a CSRF attack. Each of them was examined manually and it was found that

each of those files is associated with some kind of database editing functions.

Some of them are creating new fields and others are either deleting or updating

existing fields of data. Considering the nature of the sample application, the risk

seems severe as the attacker can manipulate the database according to their will.

One of the things that was mentioned earlier applies in the sample application.

There is no provision of re-authenticate for activities that are directly related to

database editing. This facilitates a CSRF attack. Apart from this, there are few

situations which help a CSRF attack more effectively. For example, if the victim

has an active session on the target site, or if the victim is authenticated via HTTP

 41

auth on the target site, or if the victim is on the same local network as the target

site, then it will be easy for attackers to attack. And the most obvious thing in the

application is that no anti CFRS token has been used to prevent a CSRF attack.

Fixing the Problems

To fix CSRF vulnerability, the ZAP testing report suggests the following preven-

tions:

To prevent a CSRF attack usually requires to include an unpredictable random

token in each HTTP request by the user. The token should be unique per each

user session and placed in a hidden field. This causes the value to be sent in the

body of the HTTP request avoid its inclusion in the URL, which is more prone to

exposure ((16), 74).

Anti-CSRF packages such as the OWASP CSRF Guard for the Java Application,

and the CSRF Protector Project for the PHP Application can be used (54).

“OWASP CSRF Guard is a library that implements a variant of the synchronizer

token pattern to mitigate the risk of Cross-Site Request Forgery (CSRF) attacks”

(55).

A re-authentication mechanism can be utilized if the request coming from a user

is for a risky kind of operation, such as payment or purchasing online. Instead of

using a GET method for any request that triggers a state change, a POST method

should be used.

6.2 XSS

Description

A Cross-site scripting (XSS) attack is a kind of injection which attackers use to

inject their malicious code into a website so that it appears to be a part of that

particular page of that website to the user’s browser. When a visitor visits the

infected page, their browser considers the malicious code as valid code from the

website, and executes it. To perform an XSS attack, generally 3 parties are in-

volved, namely the attacker, the victim, and the website where the malicious code

is injected. The following figure is an example of how an XSS attack is performed.

 42

FIGURE 16. Example of XSS Attack (56)

Basically, there are 2 types of XSS attacks: Persistent and Non Persistent. A

Persistent attack, also known as Stored or Type-I XSS, is an attack in which the

attacker is successfully able to store their malicious codes into the database of a

web application through user input fields. For example, in a web application there

may be user input fields on pages such as change profile, make comments, mes-

sage forums where the user can insert any kind of text inputs they want. When a

victim visits the web application and requests a page in which the malicious code

has been stored, the malicious code is downloaded to their browser and the

browser executes the code. There is no need to click on some links or visit mali-

cious websites.

In a Non-Persistent Attack on the other hand, nothing is stored into the web ap-

plication database. Instead, attackers make a link and send it to the victims, for

example through an email. The link is embedded with malicious codes. When the

victim clicks on the link, their browser requests the server and gets a response

from the server. If the server does not have any provision of filtering the parame-

ters of user requests, then it responses the request as it is. It means that if the

request contains malicious codes, the response will also contain them. And when

the victim’s browser gets the response with the malicious codes, it executes ac-

cordingly. A Non Persistent attack is also called Reflected, or Type-II. The follow-

ing figures clarify more about a Persistent and a Non Persistent XSS attack.

 43

FIGURE 17. Persistent XSS attack (57)

FFIGURE 18. Non Persistent XSS attack (57)

The difference between CSRF and XSS is the way of attack. In a CSRF attack,

the user or a victim clicks on the malicious link in the attacker’s website or email.

By clicking the link, the victim unknowingly performs a particular activity which the

attacker intends to perform. So, only one user is affected at a time, but is directly

affected. That means that the attacker is certain about the victim before a real

attack is performed. But in XSS, the number of visitors affected depends upon

how many of them visited the malicious code injected website at the same time

 44

and also the attacker does not know beforehand who will be going to suffer from

it.

To perform an XSS attack, attackers generally use vulnerable but popular web-

sites which many people are likely to visit. An XSS attack is done with the help of

a client side scripting language. Because the injected code is not going to be

executed in the web application server but in the user’s browser, they inject some

JavaScript code inside the vulnerable website. This is only possible if the vulner-

able website takes the user input without validating or filtering it and keeps it on

the web page. For example, in a blog or a social networking site, there are user

input fields. If the website does not have a provision to validate and filter those

input fields, one can successfully inject JavaScript codes through them.

Attackers may have different reasons for XSS attacks. For example, they may

want to access cookies, session tokens, or other sensitive information retained

by the browser in order to hijack the session, change the contents of the website,

or redirect a website to another website. These scripts can even rewrite the con-

tent of the HTML page. “The attacker can register a keyboard event listener using

addEventListener and then send all of the user's keystrokes to his own

server, potentially recording sensitive information such as passwords and credit

card numbers” (57).

Manifestation in prototype application

The testing result shows that there are a total of 6 instances of Reflected and 3

instances of Persistent XSS vulnerabilities in the application. According to the

result, the following are some sample URLs which are vulnerable:

TABLE 5. Instances of Persistent XSS in the example application

URL http://localhost/GradingSystem/admin/view_complains.php

Parameter text

Attack </td><script>alert(1);</script><td>

http://localhost/GradingSystem/admin/view_complains.php

 45

TABLE 6. Instances of Reflected XSS in the example application

URL http://localhost/GradingSystem/Teacher/class_grade.php?choiceclass=%3C%

2Fh1%3E%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E%3Ch1%3E

Parameter Choiceclass

Attack </h1><script>alert(1);</script><h1>

Evidence </h1><script>alert(1);</script><h1>

URL http://localhost/GradingSystem/Student/teacher_list.php?course=%27%22%3

Cscript%3Ealert%281%29%3B%3C%2Fscript%3E

Parameter Course

Attack '"<script>alert(1);</script>

Evidence '"<script>alert(1);</script>

URL http://localhost/GradingSystem/Teacher/studentListGrade.php?class=%27%2

2%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E

Parameter Class

Attack '"<script>alert(1);</script>

Evidence '"<script>alert(1);</script>

URL http://localhost/GradingSystem/Teacher/student_grade.php?choicestudent=%

27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E

Parameter Choicestudent

Attack '"<script>alert(1);</script>

Evidence '"<script>alert(1);</script>

All the vulnerable files were checked manually. As in the case of CSRF, an XSS

vulnerability also lies on codes which are associated with some kinds of database

functions. The intensity of risk is always severe if an attacker is able to manipu-

late the database of the application. In the case of Reflected XSS, I tested with a

JavaScript code to redirect to another website, which successfully redirected to

an external website. Also I tried ZAP attack code which successfully created an

alert window. One thing I noticed in my code is that I had not made any provision

for filtering user inputs. As ZAP suggests, we should never use user inputs di-

rectly. Figure 19 shows an example code file which is vulnerable for an XSS at-

tack.

Vulnerability lies on a ‘choiceclass’ parameter which directly comes from the user

input. One can send malicious code through that parameter to the application. Or

http://localhost/GradingSystem/Teacher/class_grade.php?choiceclass=%3C%2Fh1%3E%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E%3Ch1%3E
http://localhost/GradingSystem/Teacher/class_grade.php?choiceclass=%3C%2Fh1%3E%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E%3Ch1%3E
http://localhost/GradingSystem/Student/teacher_list.php?course=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E
http://localhost/GradingSystem/Student/teacher_list.php?course=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E
http://localhost/GradingSystem/Teacher/studentListGrade.php?class=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E
http://localhost/GradingSystem/Teacher/studentListGrade.php?class=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E
http://localhost/GradingSystem/Teacher/student_grade.php?choicestudent=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E
http://localhost/GradingSystem/Teacher/student_grade.php?choicestudent=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E

 46

one can directly type a URL with malicious JavaScript code in the address bar of

the browser. While the session was active, I tested a URL with embedded JavaS-

cript code to redirect the page to an external website. The URL

http://localhost/GradingSystem/Teacher/class_grade.php?choiceclass=<script>setTimeout(

function () { location.href = 'http://www.google.com'; }, 0);</script> successfully redirects

the browser to the Google website.

Fixing the Problems

To prevent an XSS attack, both the user inputs and application outputs should be

properly encoded. In the ZAP report, OWASP recommends to use libraries and

frameworks to avoid XSS vulnerabilities. Examples of such libraries and frame-

works include Microsoft's Anti-XSS library (58), the OWASP ESAPI Encoding

module (59), and Apache Wicket (60). These help properly encoding output or

response as it is necessary to fix the XSS vulnerability. Html Sanitizer, OWASP

Java HTML Sanitizer, Ruby on Rails SanitizeHelper and PHP Html Purifier are

some examples of libraries which can be used for input encoding (61). Another

recommended task to be performed is that all kinds of security checking and val-

idation should be done on the server side, no matter whether the client side pro-

vides such checking and validation. In most of the cases, attackers can easily

bypass client side provisions. To make the application secure, security provisions

on the client side should not be relied on.

http://localhost/GradingSystem/Teacher/class_grade.php?choiceclass=%3cscript%3esetTimeout(function%20()%20%7b%20location.href%20=%20'http://www.google.com';%20%7d,%200);%3c/script%3e
http://localhost/GradingSystem/Teacher/class_grade.php?choiceclass=%3cscript%3esetTimeout(function%20()%20%7b%20location.href%20=%20'http://www.google.com';%20%7d,%200);%3c/script%3e

 47

FIGURE 19. Example of XSS vulnerable code

 48

6.3 SQL Injection

Description

Among other kinds of Injections, SQL Injection is an attack where attackers use

to inject or insert SQL queries through user supplied parameters into the data-

base. So, it means that “An SQL injection needs just two conditions to exist – a

relational database that uses SQL, and a user controllable input which is directly

used in an SQL query” (62).

Modern web applications use database to interact with users. Users give some

inputs in the form of parameters or database queries through user input fields to

the application. In the application, the server processes the request and with the

help of a database server, it gives the output to the user according to the request.

When the database server receives the parameter, it compares the user supplied

parameter to the actual database according to the query and then it gives output.

Usually, attackers inject their own queries along with the user input parameter

with the help of some SQL logical operators and a semi colon. By doing so they

can easily trick the database server to take their queries as a valid request.

SQL Injection vulnerabilities are always risky. According to the OWASP (63), the

loss of confidentiality and integrity of the database, and bypassing the authenti-

cation and changing authorization information are the main consequences of

SQL Injection vulnerabilities. Based on users’ privileges on the database, attack-

ers can perform any of the CRUD (Create, Read, Update, and Delete) operation

on the database. Example risks include that they can steal secret information

from the database, create new fields or update fields with false data, or they can

even delete fields, tables, or the whole database. These risks are associated with

integrity and confidentiality and integrity of the database. “If poor SQL commands

are used to check user names and passwords, it may be possible to connect to

a system as another user with no previous knowledge of the password” (63). By

bypassing the authentication, they can gain unauthorized access to the resources

of the application. If authorization information is placed on the database, attack-

ers can alter or change the information through the SQL Injection.

 49

Manifestation in the sample application

The testing report shows that there are a total of 24 instances of SQL – MySQL

vulnerabilities in the application. I studied those vulnerable files manually and

found that most of them are files which are used to display the requested infor-

mation from the database dynamically by performing the READ operation on the

database. One file is associated with the WRITE operation on the database. The

following table contains some example vulnerable files reported by ZAP.

TABLE 7. Instances of SQL Injection

URL http://localhost/GradingSystem/Student/class_teachers.php?choiceclass=1

Parameter Choiceclass

Attack 1 UNION ALL select NULL --

Evidence The used SELECT statements have a different number of columns

URL http://localhost/GradingSystem/Student/courses_list.php?class=1

Parameter Class

Attack 1 UNION ALL select NULL --

Evidence The used SELECT statements have a different number of columns

URL http://localhost/GradingSystem/Student/teacher_list.php?course=cou001%27

+AND+%271%27%3B

Parameter Course

Attack cou001' AND '1';

Evidence SQLSTATE[HY

URL http://localhost/GradingSystem/student/feed_comm.php

Parameter courseID

Attack cou004' / sleep(5) / '

URL http://localhost/GradingSystem/Teacher/studentList2.php?courseID=cou003

Parameter courseID

Attack cou003' / sleep(5) / '

URL http://localhost/GradingSystem/Teacher/student_grade.php?choicestudent=st

ud_00001%27+AND+%271%27%3D%271%27+--+

Parameter Choicestudent

Attack stud_00001' AND '1'='1' --

http://localhost/GradingSystem/Student/class_teachers.php?choiceclass=1
http://localhost/GradingSystem/Student/courses_list.php?class=1
http://localhost/GradingSystem/Student/teacher_list.php?course=cou001%27+AND+%271%27%3B
http://localhost/GradingSystem/Student/teacher_list.php?course=cou001%27+AND+%271%27%3B
http://localhost/GradingSystem/student/feed_comm.php
http://localhost/GradingSystem/Teacher/studentList2.php?courseID=cou003
http://localhost/GradingSystem/Teacher/student_grade.php?choicestudent=stud_00001%27+AND+%271%27%3D%271%27+--
http://localhost/GradingSystem/Teacher/student_grade.php?choicestudent=stud_00001%27+AND+%271%27%3D%271%27+--

 50

A database functions as a backbone of the web application as it stores all kind of

information from users’ personal and bank information to information required to

run the application. It includes, but is not limited to, e.g. different kinds of cookies,

usernames, passwords, personal records and bank records. This information is

necessary to run the application and to provide services to users. That might be

the reason that the SQL Injection is one of the most prevalent attack on web

applications. The risk associated with the SLQ injection is always severe. The

impact of an attack also depends upon given privileges into the database. Based

on this fact, the sample application is extremely risky as it has provided all kinds

of privileges to the database for all kinds of users.

The next notable thing in the application is that in many instances no Parameter-

ized Queries have been used as it is essential to avoid the SQL Injection if the

application dynamically performs database functions. Another general precaution

includes not to directly use the data that is received from the user without escap-

ing and validating it on the server which has not been followed in the application.

Because of all the above mentioned reasons, the sample application is extremely

vulnerable for an SQL Injection attack. The next section will provide a brief sum-

mary of how to prevent an SQL Injection.

Fixing the Problems

To prevent an SQL Injection attack, OWASP recommends few simple steps to

follow. The first thing is the user privilege on the database. It should always be

as little as possible. In most of the cases, users do not actually need the privileges

they are given. For easiness or simply a lack of awareness, developers generally

do not mind providing equal privileges for all users. For the real application, de-

velopers should develop a mechanism where database privilege is based on the

need of specific users.

The next thing is an error displaying mechanism which provides certain infor-

mation to attackers. They can utilize that information for further attacking. Alt-

hough displaying an error with certain information is worthy for developers while

developing the application, it should be avoided when the application goes live.

 51

Another worth noting thing is user input mechanism in the web application. User

inputs should always be validated before using it on the database functions. This

applies also in the case of XSS. Validation should be done in the server. Client

validation should never be trusted. There are many ways of validating user input

data, which depends upon the logic of the input. For example, if the input field is

for numbers, then inputs other than numbers should be discarded. HTML escap-

ing is also a kind of validation. It removes html tags from the user input.

The most crucial thing is to always use Parameterized Queries while using user

supplied data to perform database functions. In the PHP web application, it is

done with the help of PDO and prepare statements. The following example shows

how a Parameterized Query is used to verify a user while logging into the system.

FIGURE 20. Example of Parameterized Query

In the above example, the values of $user and $pass variables are coming from

the user input. But instead of using that user supplied data directly into the data-

base query, a prepare statement has been created with an incomplete SQL

Query. Later, the query is executed by passing that user input data as an array.

This is the safe way of passing the user input data to a query.

 52

7 CONCLUSION

The main objective of this thesis work was to study the effectiveness of OWASP

ZAP for finding vulnerabilities in a web application. For that purpose, a simple

web application was developed and its vulnerabilities were tested using ZAP. It

successfully found different kinds of vulnerabilities in the sample application. It is

worth to mention that it not only finds the vulnerabilities but also suggests how to

prevent such vulnerabilities.

The thesis helped me learn quite many things about a web application and

different aspects of security issues associated with it. For example, what are the

current prevalent security threats in the market, what impact can a particular

threat have on a web application, and how to tackle those threats to make web

applications secure. Along with security issues, I also got a good knowledge

about designing and using MySQL database in a web application.

To use ZAP was totally new thing for me. When I started learning to use ZAP in

the sample application, it was hard to understand. It has a wide scope for testing

web applications. The only means to learn was watching videos from youtube.

But learning is a process of acquiring knowledge, and it is not always effective by

only studying the content but also by applying it to real use. With the regular

guidance of my teacher, I think I have gained knowledge to some extent, although

there are lots of things I still need to learn regarding a complete use of ZAP.

Although I am fully satisfied with ZAP results in testing the sample application, I

think the application is not complex enough to test the effectiveness of ZAP. It

has many tools for advance testing. To use all kind of testing that ZAP provides

and see its effectiveness, I feel that the application should be bigger and more

complex one than the sample application. So in my opinion, there is an ample

opportunity to gain expertise in the field of penetration testing of web applications

using ZAP. In conclusion, as I already mentioned before, ZAP is effective in find-

ing vulnerabilities in the sample application but more than that it has successfully

inspired me towards further testing of web applications and developing a secure

database driven web application.

 53

REFERENCES

1. Ogden, J. 2015. File:Internet users per 100 inhabitants ITU.svg (CC BY-SA

3.0), Date of retrieval 21.04.2016

https://commons.wikimedia.org/w/index.php?curid=18972898

2. Fonseca, J., Vieira, M. & Madeira H. 2007. Testing and comparing web

vulnerability scanning tools for SQL injection and XSS attacks. 13th IEEE

International Symposium on Pacific Rim Dependable Computing, 365 – 372.

3. Acunetix. 2016. Web Applications: What are They? What of Them?. Date of

retrieval 16.03.2016

http://www.acunetix.com/websitesecurity/web-applications/

4. Rochkind, Marc J. 2004. Advanced Unix Programming, Second Edition.

Addison-Wesley. p. 1.1.2.

5. Wikipedia. 2016. HTML. Date of retrieval 30.04.2016

https://en.wikipedia.org/wiki/HTML

6. Computer Hope 2016. HTML. Date of retrieval 21.04.2016

http://www.computerhope.com/jargon/h/html.htm

7. MDN Mozilla Developer Network. 2016a. CSS. Date of retrieval 11.05.2016

https://developer.mozilla.org/en-US/docs/Web/CSS

8. w3schools.com. 2016. CSS How To... Date of retrieval 30.04.2016

http://www.w3schools.com/css/css_howto.asp

9. MDN Mozilla Developer Network. 2016b. JavaScript. Date of retrieval

11.05.2016

https://developer.mozilla.org/en-US/docs/Web/JavaScript

10. Wikipedia. 2016. JavaScript. Date of retrieval 30.04.2016

https://en.wikipedia.org/wiki/JavaScript

https://commons.wikimedia.org/w/index.php?curid=18972898
http://www.acunetix.com/websitesecurity/web-applications/
https://en.wikipedia.org/wiki/HTML
http://www.computerhope.com/jargon/h/html.htm
https://developer.mozilla.org/en-US/docs/Web/CSS
http://www.w3schools.com/css/css_howto.asp
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://en.wikipedia.org/wiki/JavaScript

 54

11. php.net. 2016. What is PHP?. Date of retrieval 16.03.2016

http://php.net/manual/en/intro-whatis.php

12. Wikipedia. 2016. PHP. Date of retrieval 05.05.2016

https://en.wikipedia.org/wiki/PHP

13. Wikipedia. 2016. Database. Date of retrieval 30.04.2016

https://en.wikipedia.org/wiki/Database

14. Oracle. 2016. MySQL. Date of retrieval 05.05.2016

http://www.oracle.com/us/products/mysql/overview/index.html

15. Wikipedia. 2016. Vulnerability (computing). Date of retrieval 16.03.2016

https://en.wikipedia.org/wiki/Vulnerability_(computing)

16. Lepofsky, R. 2014. The Manager’s Guide to Web Application Security: A

Concise Guide to the Weaker Side of the Web. New York: Apress. p. 21.

17. OWASP. 2015. OWASP Top Ten Project. Date of retrieval 16.03.2016

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

18. OWASP. 2013. OWASP Top 10 – 2013: The Ten Most Critical Web

Application Security Risks. Publication of OWASP 2013:6.

19. University of Pennsylvania, Information Systems and Computing. 2016. Top

10 Web Application Security Vulnerabilities: A6: Injection Flaws (Shell Com-

mands and SQL). Date of retrieval 30.04.2016

http://www.upenn.edu/computing/security/swat/SWAT_Top_Ten_A6.php

20. NIST. 2013. Security and Privacy Controls for Federal Information Systems

and Organizations. NIST Special Publication 800-53, B2.

21. OWASP. 2016. Session Management Cheat Sheet. Date of retrieval

01.05.2016

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

http://php.net/manual/en/intro-whatis.php
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Database
http://www.oracle.com/us/products/mysql/overview/index.html
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

 55

22. Acunetix. 2016. Cross-site Scripting (XSS) Attack. Date of retrieval

01.05.2016

http://www.acunetix.com/websitesecurity/cross-site-scripting/

23. CodeDX. 2016. Insecure Direct Object References. Date of retrieval

05.05.2015

http://codedx.com/insecure-direct-object-references/

24. OWASP. 2007. Top 10 2007-Insecure Direct Object Reference. Date of

retrieval 05.05.2016

https://www.owasp.org/index.php/Top_10_2007-

Insecure_Direct_Object_Reference

25. tutorialpoints. 2016. Security Testing - Insecure Direct Object References.

Date of retrieval 05.05.2016

http://www.tutorialspoint.com/security_testing/insecure_direct_object_refere

nce.htm

26. OWASP. 2013. Top 10 2013-A5-Security Misconfiguration. Date of retrieval

01.05.2016

https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfigura-

tion

27. GitHub. 2016. Sensitive Data Exposure. Date of retrieval 01.05.2016

https://bounty.github.com/classifications/sensitive-data-exposure.html

28. OWASP. 2013. Top 10 2013-A6-Sensitive Data Exposure. Date of retrieval

01.05.2016

https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Expo-

sure

29. McMullin, M. 2015. OWASP Top Ten Series: Missing Function Level Access

Control. Date of retrieval 06.05.2016

http://kemptechnologies.com/blog/owasp-top-ten-series-missing-function-

level-access-control/

http://www.acunetix.com/websitesecurity/cross-site-scripting/
http://codedx.com/insecure-direct-object-references/
https://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
https://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.tutorialspoint.com/security_testing/insecure_direct_object_reference.htm
http://www.tutorialspoint.com/security_testing/insecure_direct_object_reference.htm
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://bounty.github.com/classifications/sensitive-data-exposure.html
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
http://kemptechnologies.com/blog/owasp-top-ten-series-missing-function-level-access-control/
http://kemptechnologies.com/blog/owasp-top-ten-series-missing-function-level-access-control/

 56

30. GitHub. 2016. Cross-Site Request Forgery (CSRF). Date of retrieval

01.05.2016

https://bounty.github.com/classifications/cross-site-request-forgery.html

31. GitHub. 2016. Using Components with Known Vulnerabilities. Date of re-

trieval 01.05.2016

https://bounty.github.com/classifications/using-components-with-known-vul-

nerabilities.html

32. GitHub. 2016. Unvalidated Redirect or Forward. Date of retrieval 01.05.2016

https://bounty.github.com/classifications/unvalidated-redirect-or-forward.html

33. Gaskill, C. 2014. Top 10 Web Security Risks: Unvalidated Redirects and

Forwards (#10). Date of retrieval 07.05.2016

https://www.credera.com/blog/technology-insights/java/top-10-web-security-

risks-unvalidated-redirects-forwards-10/

34. OWASP. 2013. Top 10 2013-A10-Unvalidated Redirects and Forwards.

Date of retrieval 01.05.2016

https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redi-

rects_and_Forwards

35. Kevin M. Henry. 2012. Penetration Testing: Protecting Networks and Sys-

tems. IT Governance Ltd. ISBN 978-1-849-28371-7.

36. Rouse, M. 2011. pen test (penetration testing). Date of retrieval 21.04.2016

http://searchsoftwarequality.techtarget.com/definition/penetration-testing

37. Core Security. 2015. Penetration Testing Overview. Date of retrieval

01.05.2016

https://www.coresecurity.com/penetration-testing-overview

38. Wai, C.T. 2002. Conducting a Penetration Test on an Organization. SANS

Institute InfoSec Reading Room, 3 – 9. Date of retrieval 02.05.2016

https://www.sans.org/reading-room/whitepapers/auditing/conducting-pene-

tration-test-organization-67

https://bounty.github.com/classifications/cross-site-request-forgery.html
https://bounty.github.com/classifications/using-components-with-known-vulnerabilities.html
https://bounty.github.com/classifications/using-components-with-known-vulnerabilities.html
https://bounty.github.com/classifications/unvalidated-redirect-or-forward.html
https://www.credera.com/blog/technology-insights/java/top-10-web-security-risks-unvalidated-redirects-forwards-10/
https://www.credera.com/blog/technology-insights/java/top-10-web-security-risks-unvalidated-redirects-forwards-10/
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-849-28371-7
http://searchsoftwarequality.techtarget.com/definition/penetration-testing
https://www.coresecurity.com/penetration-testing-overview
https://www.sans.org/reading-room/whitepapers/auditing/conducting-penetration-test-organization-67
https://www.sans.org/reading-room/whitepapers/auditing/conducting-penetration-test-organization-67

 57

39. OWASP. 2016. About The Open Web Application Security Project. Date of

retrieval 08.05.2016

https://www.owasp.org/index.php/About_OWASP

40. zaproxy/zap-core-help. 2015. OWASP ZAP User Guide. Date of retrieval

08.05.2016

https://github.com/zaproxy/zap-core-help/wiki/HelpIntro

41. psiinon. 2012. OWASP Zed Attack Proxy - official tutorial: Overview. Date of

retrieval 04.03.2016

https://www.youtube.com/watch?v=eH0RBI0nmww&list=PLEBitBW-

Hlsv8cEIUntAO8st2UGhmrjUB

42. Wikipedia. 2016. WebSocket. Date of retrieval 08.05.2016

https://en.wikipedia.org/wiki/WebSocket

43. zaproxy / zap-core-help. 2015. WebSocket. Date of retrieval 08.05.2016

https://github.com/zaproxy/zap-core-

help/wiki/HelpAddonsWebsocketIntroduction

44. Hackingheart. 2012. Forced Browsing Attack. Date of retrieval 08.05.2016

https://hackingheart.wordpress.com/2012/07/03/forced-browsing-attack/

45. OWASP. 2009. Forced browsing. Date of retrieval 08.05.2016

https://www.owasp.org/index.php/Forced_browsing

46. zaproxy / zap-core-help. 2015. Forced Browse. Date of retrieval 08.05.2016

https://github.com/zaproxy/zap-core-

help/wiki/HelpAddonsBruteforceConcepts

47. OWASP. 2015. Category:OWASP DirBuster Project. Date of retrieval

08.05.2016

https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project

48. zaproxy / zap-core-help. 2015. Fuzzing. Date of retrieval 08.05.2016

https://github.com/zaproxy/zap-core-help/wiki/HelpAddonsFuzzConcepts

https://www.owasp.org/index.php/About_OWASP
https://github.com/zaproxy/zap-core-help/wiki/HelpIntro
https://www.youtube.com/watch?v=eH0RBI0nmww&list=PLEBitBW-Hlsv8cEIUntAO8st2UGhmrjUB
https://www.youtube.com/watch?v=eH0RBI0nmww&list=PLEBitBW-Hlsv8cEIUntAO8st2UGhmrjUB
https://en.wikipedia.org/wiki/WebSocket
https://github.com/zaproxy/zap-core-help/wiki/HelpAddonsWebsocketIntroduction
https://github.com/zaproxy/zap-core-help/wiki/HelpAddonsWebsocketIntroduction
https://hackingheart.wordpress.com/2012/07/03/forced-browsing-attack/
https://www.owasp.org/index.php/Forced_browsing
https://github.com/zaproxy/zap-core-help/wiki/HelpAddonsBruteforceConcepts
https://github.com/zaproxy/zap-core-help/wiki/HelpAddonsBruteforceConcepts
https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
https://github.com/zaproxy/zap-core-help/wiki/HelpAddonsFuzzConcepts

 58

49. psiinon. 2013. FOSDEM 2013: Practical Security for developers using

OWASP ZAP. Date of retrieval 08.05.2016

https://www.youtube.com/watch?v=QG2RCZHMEkM&list=PLEBitBW-

Hlsv8cEIUntAO8st2UGhmrjUB&index=5

50. zaproxy / zaproxy. 2015. The ZAP API. Date of retrieval 08.05.2016

https://github.com/zaproxy/zaproxy/wiki/ApiDetails

51. zaproxy / zap-core-help. 2015. Anti CSRF Tokens. Date of retrieval

21.01.2016

https://github.com/zaproxy/zap-core-help/wiki/HelpStartConceptsAnticsrf

52. Paul, B. 2013. Oh, Wasp! Security Essentials for Web Apps. Date of re-

trieval 08.04.2016

http://www.slideshare.net/TechWellPresentations/bw8-paul

53. Shiflett, C. 2003. Foiling Cross-Site Attacks. Date of retrieval 10.04.2016

http://shiflett.org/articles/foiling-cross-site-attacks

54. OWASP. 2015. Cross-Site Request Forgery (CSRF). Date of retrieval

09.05.2016

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

55. Open Hub. 2016. OWASP CSRFGuard. Date of retrieval 09.05.2016

https://www.openhub.net/p/OWASP-CSRFGuard

56. Shanmuga Priya, S. 2014. Cross-Site Scripting. Date of retrieval 12.04.2016

http://www.pitsolutions.ch/blog/cross-site-scripting

57. Kallin, J & Valbuena, Irene L. 2013. Excess XSS: A comprehensive tutorial

on cross-site scripting. Date of retrieval 15.04.2016

http://excess-xss.com/

58. MSDN. 2015. Security: Anti-Cross Site Scripting Library. Date of retrieval

09.05.2016

https://msdn.microsoft.com/en-us/security/aa973814.aspx

https://www.youtube.com/watch?v=QG2RCZHMEkM&list=PLEBitBW-Hlsv8cEIUntAO8st2UGhmrjUB&index=5
https://www.youtube.com/watch?v=QG2RCZHMEkM&list=PLEBitBW-Hlsv8cEIUntAO8st2UGhmrjUB&index=5
https://github.com/zaproxy/zaproxy/wiki/ApiDetails
https://github.com/zaproxy/zap-core-help/wiki/HelpStartConceptsAnticsrf
http://www.slideshare.net/TechWellPresentations/bw8-paul
http://shiflett.org/articles/foiling-cross-site-attacks
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.openhub.net/p/OWASP-CSRFGuard
http://www.pitsolutions.ch/blog/cross-site-scripting
http://excess-xss.com/
https://msdn.microsoft.com/en-us/security/aa973814.aspx

 59

59. Williams, L. 2012. Input Validation Vulnerabilities. Computer Science, NC

State University. Date of retrieval 09.05.2016 http://agile.csc.ncsu.edu/SE-

Materials/3_InputValidation.pdf

60. Xu, J. 2016. Cross-Site Scripting Counter-Measures. Date of retrieval

09.05.2016

https://sites.google.com/site/jimmyxu101/design/cross-site-scripting-counter-

measures

61. OWASP. 2016. XSS (Cross Site Scripting) Prevention Cheat Sheet. Date of

retrieval 09.05.2016

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_

Cheat_Sheet

62. Acunetix. 2016. SQL Injection (SQLi). Date of retrieval 22.04.2016

http://www.acunetix.com/websitesecurity/sql-injection/

63. OWASP. 2016. SQL Injection. Date of retrieval 25.04.2016

https://www.owasp.org/index.php/SQL_injection

http://agile.csc.ncsu.edu/SEMaterials/3_InputValidation.pdf
http://agile.csc.ncsu.edu/SEMaterials/3_InputValidation.pdf
https://sites.google.com/site/jimmyxu101/design/cross-site-scripting-counter-measures
https://sites.google.com/site/jimmyxu101/design/cross-site-scripting-counter-measures
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.acunetix.com/websitesecurity/sql-injection/
https://www.owasp.org/index.php/SQL_injection

