
 

 

  

 
 
 
 
 
 
 
 
 
Samir Kumar Paudel 

VULNERABLE WEB APPLICATIONS AND HOW TO AUDIT THEM 

Use of OWASP Zed Attack Proxy effectively to find the vulnerabilities of web applications 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VULNERABLE WEB APPLICATIONS AND HOW TO AUDIT THEM 

Use of OWASP Zed Attack Proxy effectively to find the vulnerabilities of web applications 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Samir Kumar Paudel 
 Bachelor’s Thesis 
 Spring 2016 
 Degree Program in Information Technology  
  Oulu University of Applied Sciences 
 



 

 3 

ABSTRACT 

Oulu University of Applied Sciences 
Degree programme in Information Technology 
 
 
Author: Samir Kumar Paudel 
Title of the bachelor’s thesis: Vulnerable Web Applications and How to Audit 
Them 
Supervisor: Lauri Pirttiaho 
Term and year of completion: Spring 2016 Number of pages: 59  
 
 
This thesis work was done as a private project for completing a Bachelor’s De-
gree in Information Technology. The main objective of this work was to find out 
the effectiveness of OWASP Zed Attack Proxy, an open source and free inte-
grated penetration testing tool for finding vulnerabilities in web applications.  Be-
sides that, the secondary objectives were to learn how to make web applications 
and try to find out the security loopholes of them.  

For this project, Notepad++, Localhost, and OWASP Zed Attack Proxy were used 
as tools, PHP, HTML, JavaScript, and CSS as languages, and MySQL Database 
for making a prototype web application. Notepad++ is a text editor and it supports 
various programming languages for writing programs or edit files. Localhost was 
used as a web host. And OWASP Zed Attack Proxy was used as a testing tool. 
The reason for using OWASP ZAP is that it is an open source and free application 
and it is a very popular tool among all available web application penetration test-
ing tools either commercial or open source.  

Some vulnerabilities were successfully found by the application (OWASP Zed 
Attack Proxy). Besides that, the developed prototype web application is a simple 
one. To test the effectiveness of OWASP Zed Attack Proxy in more detail, the 
web application should be more complex with various features. Being a prototype, 
it has limitations regarding its full intended features. As only few features were 
implemented in the prototype, there is a possibility to add more features to the 
web application as well as testing it in the future. 
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1 INTRODUCTION 

Over the past few decades, information technology has made a big leap. If we 

see the scenario of past 10 years, information technology has been gradually 

making a significant positive impact on human life. The Internet and web applica-

tions are one of the most rapidly developed sector of information technology. Be-

cause the bandwidth costs are significantly getting lower, and developments of 

new technologies are continuously growing over the years, Internet services are 

widely accessible around the globe and so is the use of Internet services. The 

chart presented below shows that the global Internet users in 1997 were just 

around 2 percent of human population which has been increased to around 40 

percent in 2014.  

Nowadays, web applications are playing a significant role towards making a hu-

man’s life easier. They are making a noble presence in the areas such as educa-

tion, banking, entertainment, marketing, and communication. Some notable ex-

amples are online shopping, online banking, social networking, online document 

editing, online media editing, online maps services, online dictionaries, online 

search services, and gaming. These applications provide services to people ac-

cording to their needs both efficiently and cost effectively. However, only being 

FIGURE 1. Internet users per 100 inhabitants (1) 
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efficient and cost effective is not enough. These applications should be secure 

and reliable too. The usage of unsecure and unreliable applications may always 

have serious impacts as they can make a company out of business. 

Along with the increasing dependency of human life on web services, security 

issues are becoming more challenging. Over the past decade, along with the de-

velopment of web technologies, new attacking techniques are also emerging. 

“Two of the most widely spread and dangerous vulnerabilities in web applications 

are SQL injection and Cross Site Scripting (XSS), because of the damage they 

may cause to the victim business” (2). Before attacking, attackers first try to find 

out vulnerabilities in the application they want to attack, and then use the vulner-

abilities they found to perform desired attacks. The usage of a vulnerable appli-

cation is always dangerous for all stakeholders. So, before making available for 

practical use, the application should always be tested thoroughly for any kind of 

possible vulnerabilities. 

Many tools are available for testing vulnerabilities in web applications. Some of 

them are free, and others are commercial. They scan the applications by both 

automatic and manual ways. The topic of this thesis is also related to finding 

vulnerabilities in web applications using one of such tools. For the thesis, a sam-

ple web application will be developed, a web application penetration testing tool 

from OWASP, called Zed Attack Proxy, will be used for testing the application to 

find different kinds of vulnerabilities, and the final results will be summarized to 

see its effectiveness. HTML, PHP, JavaScript, and MySQL database will be used 

to develop the application. The application is about a grading system for a school. 

It can perform some tasks, for example, the admin can register new students and 

teachers in the database, teachers can insert grades, students can view their 

grades.   
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2 DEVELOPMENT OF THE SAMPLE WEB APPLICATION  

This chapter is a summary of brief introductions of the tools and techniques that 

were used to carry out the thesis. In Section 2.1, an overview of the web applica-

tion is described. Section 2.2 presents a short description of the web server, lan-

guage, and scripts that were used to develop the application. Section 2.3 de-

scribes the database that was used for the web application. There is a different 

Chapter for thoroughly describing Zed Attack Proxy.   

2.1 Web Application  

Acunetix.com defines Web applications as: 

 
Computer programs allowing website visitors to submit and retrieve 
data to/from a database over the Internet using their preferred web 
browser. The data is then presented to the user within their browser 
as information is generated dynamically (in a specific format, e.g. in 
HTML using CSS) by the web application through a web server. (3) 
 

According to the definition, web applications have certain characteristics. They 

are computer programs, which are used to perfom intended tasks. Users of web 

applications can both send and receive data through Internet browsers. Mostly, 

the Internet is required to use web applications. Data is dynamically generated in 

a web format and displayed through the browser. The application accomplishes 

its tasks through a web server. Web applications cannot run outside a web server.  

A web application is a software application which utilizes web and web technolo-

gies to perform certain tasks. Generally, it requires the Internet to run and accom-

plish tasks. But it can also be used on local networks, for example intranet. It 

works on a client - server model. A server is a web server and a client is a web 

browser. The user sends HTTP requests through the browser (client) to the web 

server and the web server accomplishes the requested tasks and sends the re-

quired information back to the browser. To allow support by all kinds of browsers, 

it uses HTML or XHTML as a format to generate documents. A combination of 
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both the server-side scripts (e.g. PHP, asp.net) and client-side script (e.g. JavaS-

cript, html) are used to develop web applications. Server-side scripts are used to 

interact with the database server while client-side scripts are used for dynamically 

presenting of information in the browser. 

There are some advantages of web applications over desktop applications. Un-

like desktop applications, web applications are universal. They can run on any 

device or operating system. It is easy and cost effective to maintain and update 

the web applications. As web applications use internet browsers to interact with 

users, in most of the cases, no installations are required at the client side. The 

centralized data and its accessibility over the web from any platform at any time 

allows users worry-free usage of applications. Users do not need to pay any se-

rious attention to backup and security while using the application.     

To understand how web applications work, Acunetix has given a simple example 

of a web application model, which consists of a client, the Internet, and a server. 

The client consists of a PC with a browser. All HTTP/S requests and responses 

pass through the Internet. And the Server side system consists of web servers, a 

web application server and database servers. 

 
FIGURE 2. Client-Server web application model (3). 

In the above figure, the client’s web browser sends an HTTP request to the web 

server over the Internet. The web server handles the request, and interacts with 
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the web application server. The web application server then interacts with the 

database server and prepares the requested document and returns an HTTP re-

sponse back to the client through the web server.   

2.2 Components used for developing the application  

As it was mentioned above, web applications are developed using server side 

and client side scripting languages and they require a web server to run and a 

database server to function. The following components were used to develop the 

sample web application. 

2.2.1 Web Server 

A Web Server is a host server for web applications and is necessary to run them. 

Uniform Server was used as a host server to run the sample application. It is a 

free and open source WAMP server. WAMP is a web server for Windows Oper-

ating System which basically consists of Apache, MySQL, and PHP. It stands for 

Windows, Apache, MySQL, and PHP. There are many free WAMP servers avail-

able. Different servers may have different features and support for scripts and 

database. For example, some are portable and can be installed on a portable 

drive. Some support other database and server side script too, apart from just 

MySQL and PHP. Different features of server make developers easy to choose 

one according to their need. Uniform Server supports Perl as a server side script-

ing language along with PHP. It is easy to use, portable, and light. It only takes 

about less than 30MB space. The main reason why Uniform Server was chosen 

is its portability. The portability feature is very useful at the development phase, 

as the developer might frequently need to carry it. Figure 3 shows the control 

panel of a running Uniform Server. 

2.2.2 Language and Scripts 

Computer programs are a set of organized instructions (4) and in simple terms, 

those instructions are codes which can be written in different programming or 

scripting languages. In that sense, web applications are also created with lan-

guages, and, or scripts. For the development of the sample web application, 

HTML and CSS, PHP, and JavaScript were used.  
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FIGURE 3. Control Panel of Uniform Web Server running on local host. 

HTML 

HTML stands for HyperText Markup Language. It is used along with CSS and 

JavaScript to create web pages as well as to make a user interface for web ap-

plications (5). HTML sets the layout and structure of a web page. To do so, it has 

various elements and for each element there may have several attributes. Each 

element starts up and ends with tags and also describes a different component 

of a web page. The following figure gives a glimpse of html elements and attrib-

utes.  

 

FIGURE 4. HTML Element and its component (6) 
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CSS 

CSS stands for Cascade Style Sheet. It is a language which describes how a 

document written in a markup language is presented. In HTML, it is used to style 

the content of an HTML Element or of a whole HTML document. Mozilla Devel-

oper Network describes CSS in the following way: 

 
Cascading Style Sheets (CSS) is a stylesheet language used to de-
scribe the presentation of a document written in HTML or other 
markup languages such as Scalable Vector Graphics (SVG). CSS 
describes how the structured elements in the document are to be 
rendered on screen, on paper, in speech, or on other media. The 
ability to adjust the document's presentation depending on the output 
medium is a key feature of CSS. (7.) 
  

CSS can be used in two ways. Either it is embedded with an HTML file or placed 

as a separate file in the web server. In later case, a link to it is given in the HTML 

file. Sometimes both ways can be used at the same time. The following figures 

(Figure 5 – 8) clarify the different ways of using CSS in HTML. 

 

FIGURE 5. Example of CSS embedded in HTML (8) 

 

FIGURE 6. Example of a link to a CSS file in HTML (8) 

https://developer.mozilla.org/en-US/docs/Web/SVG
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FIGURE 7. Example of a CSS file (8) 

 

FIGURE 8. Example of a mixed way of using CSS (8) 

JavaScript 

JavaScript is the most popular client side scripting language. It is a light weight, 

interpreted, prototype-based object-oriented language with a first class function, 

mainly used for web pages (9). It can change the web page behavior according 

to an event change thus making the page dynamic. But it can also be used in a 

non-web environment such as pdf documents and desktop widgets (10). The 

ways of using JavaScript in web applications are same as using CSS. Either it 

can be embedded with HTML, or it can be linked to a separate JavaScript file 

located in the web server, or sometimes both ways can be applied at the same 

time.   

PHP 

“PHP (recursive acronym for PHP: Hypertext Preprocessor) is a widely-used 

open source general-purpose scripting language that is especially suited for web 
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development and can be embedded into HTML” (11). “PHP code may be embed-

ded into HTML code, or it can be used in combination with various web template 

systems, web content management system and web frameworks” (12). In a file, 

PHP starts with a ‘<?php’ tag and ends with a ‘?>’ tag. The PHP processor only 

processes codes inside those tags.  

Unlike JavaScript, PHP codes are executed in the server. It generates outputs in 

the server and sends them to the client browser. Because the browser receives 

responses as documents, it can never know the actual PHP codes used to gen-

erate the document. Apart from HTML output, it can output many kinds of files 

including images and pdf files.  

The main use of the PHP is to develop dynamically generated web pages. It has 

a wide scope of use. It can be used for different major operating systems and it 

has support for many database systems and web servers. It can be used both for 

procedural programming and object oriented programming.   

2.2.3 Database 

Database is a collection of data in a structured way. But generally in computer 

terms, the word ‘database’ is used to refer Database Management System, or 

DBMS in short. “A database management system (DBMS) is a computer software 

application that interacts with the user, other applications, and the database itself 

to capture and analyze data” (13). Basically, there are 2 types of databases –

Relational, and –Non Relational. Most of the relational databases use the SQL 

query language. MySQL and MongoDB are examples of the relational and non-

relational database management systems. In the relational database, data is or-

ganized in one or more tables of unique rows and columns and each table may 

have a connection to others by some common attribute. All relational databases 

including MySQL use SQL queries for querying and maintaining data.  

A database is an essential part of web applications. It is needed to store different 

kind of information necessary to interact with users. For the sample application, 

the MySQL database was used. “MySQL is the world’s most popular open source 

database” (14).  
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3 VULNERABILITIES AND ASSOCIATED RISKS  

In this section, some common types of web application vulnerabilities and risks 

associated with them are briefly described. The term “vulnerability” is used here 

to refer to weak points in web applications. They can be used to attack easily by 

attackers.  

Vulnerability is a weakness in a computer security which allows attackers to re-

duce a system’s information assurance (15). From security point of view, it is a 

kind of hole in the web application system. So, it serves as a gateway for attack-

ers to fulfill their interests in the system. There might be more than one type of 

vulnerabilities in the system. Attackers can use one or a combination of more 

than one of such vulnerabilities to attack. Each vulnerability is associated with 

some kind of risk or threat to the application. Based on the impact of damage on 

the application, the degree of risk associated with vulnerabilities is different. The 

impact of damage depends upon the nature of the application and also the nature 

of business which owns that application. Some damages are more serious than 

the other ones. 

Ron Lepofsky (16) has classified vulnerabilities in a web application as follows: 

 authentication 

 session management 

 access control  

 input validation  

 redirects and forwards  

 injection flaws  

 unauthorized view of data  

 error handling  

 cross-site scripting  

 security misconfigurations  

 denial of service  

 related security issues 
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OWASP has released a document called OWASP Top 10 2013. The document 

is about the most critical web applications vulnerabilities and was produced with 

the help of different kinds of security experts around the world (17). The top 10 

most critical vulnerabilities, mentioned in the document, are as follows (18):  

 Injection 

 Broken Authentication and Session Management 

 Cross-Site Scripting (XSS) 

 Insecure Direct Object References 

 Security Misconfiguration 

 Sensitive Data Exposure 

 Missing Function Level Access Control 

 Cross-Site Request Forgery (CSRF) 

 Using Known Vulnerable Components 

 Unvalidated Redirects and Forwards 

It should be noted that both of these lists are not a complete set of vulnerabilities. 

These are the vulnerabilities, only prevalent for a particular time. Along with the 

development of new web technologies, new types of vulnerabilities may also 

emerge and the degree of their harmful effect may change.   

If we look at the both lists of vulnerabilities, many of them are common and few 

others are different with each other. Brief descriptions of the common ones are 

being presented here.  

3.1 Injection Flaws  

On its website, University of Pennsylvania, Information Systems and Computing 

defines: 

 
Injection flaws allow attackers to relay malicious code through a web 
application to another system. These attacks include calls to the op-
erating system via system calls, the use of external programs via 
shell commands, as well as calls to backend databases via SQL (i.e., 
SQL injection). (19.) 
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Injection is a kind of weak point in the web application through which attackers 

can inject some sort of malicious code of their interest. Malicious code is embed-

ded with the user input data and passed to the application. If user input data is 

not properly filtered in the system, in that case, the interpreter processes the ma-

licious code as a normal legitimate user input and the system outputs accordingly.  

The level of risk associated with the Injection flaw is very high. An attacker can 

severely damage the application or steal confidential information. For example, 

they can get access to the confidential data, delete data, change the content, and 

destroy the whole system of the application. Some examples of injection flaws 

are the SQL injection, OS injection, and LDAP injection. 

3.2 Lack of Proper Authentication and Weak Session Management  

Authentication is an act of “verifying the identity of a user, process, or device, 

often as a prerequisite to allowing access to resources in an information system” 

(20). It refers to the process of verifying either a user, or a process, or a device, 

which requests to communicate with either the whole application or with a part of 

it in order to make sure that only the intended user, process, or device can get 

access to the application and its resources.  

A session is a sequence of all the activities between a client (web browser) and 

a web server for a particular log in and log out period. The activities are generally 

associated to within the log in and log out period of the same user. (21.) So, there 

is a different session for each different user. For a number of different reasons, a 

web application requires to hold session information. For example, there may be 

different contents to deal with according to the user’s preference, or the type of 

user; or there may be security issues.  

Effective authentication and proper session management are vital for a web ap-

plication to be secure. The level of risk associated with the authentication and 

session management is high. Attackers usually gain access to the system 

through hijacking a username and a password or session IDs. They can access 

secret information and data while pretending that they are the legitimate user of 

the application. 
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3.3 Cross Site Scripting (XSS) 

“Cross-site Scripting (XSS) refers to client-side code injection attack wherein an 

attacker can execute malicious scripts (also commonly referred to as a malicious 

payload) into a legitimate website or web application” (22). In Cross-Site Script-

ing, attackers exploit the user’s trust over a vulnerable web application. In this 

attack, they insert malicious JavaScript or html codes through user input fields to 

a page. It generally occurs when the application sends user input data as a part 

of a webpage, without properly validating to the user’s browser.  

The risks associated with Cross-Site Scripting include a hijacking session, an un-

authorized changing of the contents of application, redirecting the application to 

another website, and insertion of some malicious codes or links. The level of risks 

is high. By the hijacking session, attackers can get secret and important infor-

mation.  

3.4 Insecure Direct Object References 

“The threat of insecure direct object reference flaws has become commonplace 

with the increased complexity of web applications that provide varying levels of 

access to enable users to gain entry to some components, but not others” (23). 

It refers to a provision in the web application where references to internal objects 

are directly exposed. According to OWASP,  

 
“A direct object reference occurs when a developer exposes a refer-
ence to an internal implementation object, such as a file, directory, 
or database key. Without an access control check or other protection, 
attackers can manipulate these references to access unauthorized 
data.” (18.) 
   

Vulnerability comes from the direct reference of an object that is used to get ac-

cess to that object. Objects can be a file, or a directory, or a database key. Appli-

cations provide direct access to those objects based on a user supplied input 

value. For example, a user who has certain authorities to the application can alter 

the reference value of an object to get access to it even they are not authorized. 
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If the application does not have a mechanism to verify the user for each of such 

objects, then the application is vulnerable.  

This vulnerability allows attackers to bypass authorization and access resources 

in the system directly, for example database records or files. To protect from at-

tacks, direct references should be avoided. Instead of using direct references, 

easy to validate indirect methods should be used, such as index, and indirect 

reference map. If the direct exposure of objects and references is necessary, 

users should be verified to see if they are authentic to use before giving access 

to such objects. (24.) The risk associated with insecure direct object references 

is that an attacker can compromise confidential data. The degree of risk depends 

upon the nature of accessed resources. The following figure clarifies how the 

parameter can be altered to get access to an unauthorized resource.  

 

FIGURE 9. Insecure direct reference of database key (25)  

3.5 Security Misconfiguration 

A good security configuration is always essential for secured web applications as 

the misconfiguration exposes the application to a risk of attack. The components 

of the web applications such as database, libraries, platform, servers, and soft-

ware modules should be configured properly. Unless necessary, no components 

should be given access with full privileges and they should always be up-to-date. 

According to OWASP, “Security misconfiguration can happen at any level of an 

application stack, including the platform, web server, application server, data-

base, framework, and custom code” (26).  
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The risk associated with the security misconfiguration is that attackers may ex-

ploit components and compromise the database and web servers. To protect 

from this attack, both developers and system administrators need to work to-

gether to properly configure each component.  

3.6 Sensitive Data Exposure 

“Sensitive data exposure vulnerabilities can occur when an application does not 

adequately protect sensitive information from being disclosed to attackers” (27). 

Sensitive data is the data that should be kept secret and protected from outsiders.  

The data related to a personal identity such as Name, Address, Personal ID, and 

Tax ID and confidential data such as Bank Account Number, Credit Card Number, 

session ID, and authentication credentials are examples of sensitive data. This 

kind of data should be protected with extra security. If the application does not 

have a provision for enough protection to such data either in a rest mode or in a 

transit mode, it is dangerous to use the application. Data is exposed if it is not 

encrypted. Or even if it is encrypted, a weak key generation or algorithm may 

have been used.   

The risks associated with a sensitive data exposure are that attackers can steal 

the personal identity and credit card information or modify other sensitive data as 

their interest. So, to protect the sensitive data exposure from prospective attack-

ers, sensitive data should be properly encrypted and it should not be stored if not 

necessary. Auto fill options for forms with sensitive data should be disabled (28).    

3.7 Missing Function Level Access Control 

In most of the instances, the applications only show the functionality in their UI 

based on the user. For example, if the user is a teacher, then only functionalities 

for the teacher are appeared in it and if the user is a student, then only function-

alities for the student are appeared. The reason to do so is to prevent users to 

view data or resources to which they are not authorized. But this approach is just 

hiding functionalities and it is not enough to make the application secure. A user 

may somehow know the link to get unauthorized resources, or the link to the 

unauthorized resources might be on the page but just not visible in the UI. They 
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can simply guess the parameter and change it in the browser address bar. In the 

above mentioned case, for a hacker, it is easy to get unauthorized resources. If 

they can get it, then this is an example of the Missing Function Level Access 

Control vulnerability. (29.) 

This vulnerability has little difference with the Insecure Direct Object Reference 

vulnerability. The Insecure Direct Object Reference vulnerability allows an at-

tacker to get access to unauthorized data whereas the Missing Function Level 

Access Control provides unauthorized access to the functionalities. But the final 

outcome of both vulnerabilities is the same: data is stolen. (29.) This can have 

serious consequences. The company may suffer a financial loss as well as loose 

its reputation and its customers’ trust. The users on the other hand may have 

their identity stolen.  

Sensitive functional requests should be protected so that outsiders, or general 

users who are not allowed, cannot get access to those functionalities. Function-

alities, which are in the UI, should be verified upon each request. Giving an equal 

privilege to all users should be avoided. Instead, a privilege should be given ac-

cording to users’ need.   

3.8 Cross Site Request Forgery (CSRF) 

Cross-Site Request Forgery is an attack which tricks to the victim’s browser and 

does undesirable things which the application considers has been done by an 

authentic user but the user does not have any knowledge about it. So, it actually 

exploits the trust of the application to the user. GitHub Security describes:  

 
Cross-site request forgery, or CSRF, takes advantage of a user’s au-
thenticated browser state to make requests on their behalf from a 
malicious website. For request handlers that do not require an addi-
tional piece of authenticating information (e.g. a CSRF token) this 
could lead to the unauthorized modification of a user’s data or set-
tings. (30.)  

 
An attacker can perform this kind of attack only when the user has opened and 

is logged on to the vulnerable application and also has open the attacker’s page. 

Attackers use a scripting language like JavaScript to perform such undesirable 

activities. They trick the victim (user) to click on a link. The link is generally not 
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shown in the text but it is embedded in an image or other elements. If the victim 

has a valid session on the target application, and if they click the attacker’s link, 

the code will then be executed by the server and the victim does not know it 

immediately.  

To prevent a CSRF attack, the use of anti CSRF Tokens, strictly to apply a re-

verification provision in the server when performing activities that have a signifi-

cant impact on database, are recommended. The risk associated with Cross-Site 

Request Forgery can be minor to major, depending upon the type of user (victim). 

If an attacker can attack with an admin credential, then the damage might be 

severe.  

3.9 Using Known Vulnerable Components 

“Vulnerabilities in third-party libraries and software are extremely common and 

could be used to compromise the security of systems using the software” (31). 

Web Applications have been built using different kinds of third-party libraries and 

frameworks. In many applications, while at the developing phase, developers 

usually do not pay enough attention to using up-to-date components such as li-

braries, frameworks, or modules, which makes it easy for attackers to attack the 

application. To prevent this vulnerability, developers should pay enough attention 

while choosing such libraries and framework. They should be confirmed that the 

components they are going to use are updated and secure.   

3.10 Unvalidated Redirects and Forwards  

“Unvalidated redirect vulnerabilities could allow an attacker to redirect a user to 

an untrusted site using functionality in a trusted site” (32). During a session, the 

web application may need to redirect and forward to other pages or websites 

several times for different purposes. And while doing so, they use untrusted and 

unvalidated data to determine those pages and websites. That untrusted and un-

validated data can be used by attackers to redirect to phishing and malicious 

sites. The malicious site can easily gain the user’s trust because in the malicious 

site’s URL, the original site’s name, from which the user has been redirected, also 
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appears (33). To prevent this vulnerability, OWASP (34) has given the following 

suggestions to follow: 

a. Simply avoid using redirects and forwards. 

b. If used, do not involve user parameters in calculating the destination. This 

can usually be done. 

c. If destination parameters cannot be avoided, ensure that the supplied 

value is valid and authorized for the user. 
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4 PENETRATION TESTING 

4.1 Definition 

Kevin M Henry defines “Penetration testing is the simulation of an attack on a 

system, network, piece of equipment or other facility, with the objective of proving 

how vulnerable that system or "target" would be to a real attack” (35). For this 

thesis context, Penetration Testing is an attack to a web application. It is done 

intentionally and with the permission of the owner of that application, in order to 

find vulnerabilities in it. It helps developers to determine the areas where they are 

strong enough for defending outside attacks and also flaws in their codes that 

they need to improve in order to make the application secure. It is a part of a 

security audit. It not only identifies the vulnerabilities but also suggests remedies. 

4.2 Objective 

The main objective of Penetration Testing is to help making an application secure 

by finding vulnerabilities so that the developers can fix them before it is attacked 

in real. But it also depends on the goal of the company regarding Penetration 

Testing. For example, it can be done to test the organization's security policy 

compliance, its employees' security awareness and the organization's ability to 

identify and respond to security incidents (36). It also helps to access the possible 

loss or other consequences on resources or data in case of attack. Some general 

objectives include to prevent a data breach, to test an application’s security con-

trol, to ensure that the application is secure before making available for a real use 

and to get a baseline information about overall security strengths and weak-

nesses for making security policies. 

4.3 Testing Needs and Benefits 

Depending on the types of data or resources an application holds, the vulnerabil-

ity in the application, and the service interruption associated with it, might be cost-

lier to the company. The security status of an application will not always remain 

the same. An application, which is considered to be secure at a particular point 

of time, might turn to vulnerable in near future. It is impossible to always protect 
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all the data and resources. So, a company continuously needs to identify, moni-

tor, and prioritize security risks for its application. The following paragraphs de-

scribe the benefits of Penetration Testing (see (37)).  

One of the benefit of Penetration Testing is that it helps wisely manage vulnera-

bilities. It provides detail information on all feasible threats, so that the company 

can group the threats by their possible impact and make a security policy accord-

ingly. 

It also helps minimize the possible loss of service interruption of the application. 

Once the application is attacked, it can be costlier in terms of both time and 

money to retrieve data and resources again. Penetration Testing lets the author-

ities know in advance about the possible attack so that they can be well prepared 

to tackle it. In this way the company can minimize the chances of heavy loss due 

to a service interruption.  

Penetration Testing can help preserve the company reputation and maintain cus-

tomer loyalty. Compromised confidential data results losing reputation and cus-

tomer loyalty. Penetration Testing lets the authorities know the vulnerabilities be-

forehand so that they can take preventive actions to protect confidential data and 

other resources from attackers. 

4.4 Testing Frequency 

Penetration Testing should be performed on a regular basis to ensure con-

sistency, security, and smooth running of the application. It helps find out the new 

and emerging security threats that attackers may exploit so that preventive ac-

tions can be taken before attackers do their job. But apart from regular testing, 

the following are some specific instances when it is necessary to perform Pene-

tration Testing (see (37)):  

 Before starting the real use of the application  

 If new applications are added to the system 

 When significant upgrades or modifications are applied to the application  

 After security patches are applied 

 If end user policies are modified 
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4.5 Steps or Process of Penetration Testing 

The Process or Steps are all the activities that are involved from the beginning to the end 

of Penetration Testing. The following are only a brief description of steps involved in the 

testing. Further information can be acquired from SANS Institute InfoSec Reading Room 

(see (38)). 

 Determine the immediate goal of the test, for example to breach a personal infor-

mation database 

 Collect information about the way to get to the target, for example to the database 

 Discover or identify the entry points to the network, for example performing port scan-

ning 

 Start exploitation of vulnerabilities using different techniques, for example brute forcing 

or phishing 

 Take control of the application, for example doing things which are not allowed to do 

 Evidence collecting, for example evidence collection of things done while taking con-

trol of the app 

 Reporting, it involves writing a report about everything from the beginning to the end 

of testing 

 Suggesting remedies for the vulnerabilities found while testing  
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5 OWASP ZED ATTACK PROXY (ZAP) 

OWASP Foundation is a non-profit organization. “OWASP is an international or-

ganization and the OWASP Foundation supports OWASP efforts around the 

world” (39). OWASP is working in the field of web application security. ZED Attack 

Proxy is an OWASP flagship project, also known as ZAP. It is a tool used to find 

vulnerabilities in web applications. OWASP defines ZAP as an easy to use inte-

grated web application penetration testing tool to find vulnerabilities (40). It is a 

free and open source software designed to use both by beginners and profes-

sional penetration testers. It is ideal for developers and functional testers for au-

tomated security test. But it should be used either by own applications or the ones 

which have been authorized to test “(ibid.)” 

 

FIGURE 10. User Interface of ZAP 

5.1 Principles behind ZAP 

According to OWASP, there are some key principles behind ZAP. It is a free and 

an open source software. It does not have and will never have a commercial or 

pro version. It is a Cross Platform software, i.e. it can be used in different Oper-

ating Systems. It is easy to install and use. It requires Java pre-installed to install 

ZAP. Nothing else is needed. There are some videos available in the youtube. 

They help installing the software and learning how to use it. It has a full set of 
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documentations to get help with. It can work well with other tools. Tools can be 

found from add-ons. It has supports many languages. Involvement is actively 

encouraged. It can reuse well regarded components. (41.)  

5.2 Main Features 

Intercepting Proxy 

ZAP is an intercepting proxy. This means that all the requests from the user to 

the web application and all the responses from the web application to the user 

browser can be seen through ZAP. It operates as a man-in-the-middle between 

the browser and the target application. It can intercept or modify any http/s traffic 

passing in both directions. 

Active and Passive Scanners 

Active Scanner actively attacks to the target application to find vulnerabilities 

while Passive Scanner only scans the responses from the application to the 

browser. So active scanning is riskier as it can make damage to the application. 

Therefore, it cannot be used without the permission of the owner of the applica-

tion. And before starting Active Scanner for scanning the application, a backup of 

all data is strongly recommended. Passive Scanner is safe to use as it does not 

modify the responses received from the application. 

Traditional and Ajax Spiders 

The Spider is used to search for new pages (URLs), and links of other websites 

on a particular website. First, when the application is browsed manually, ZAP lists 

some URLs found on the manually visited pages. When Spider starts, it first looks 

those listed URLs to find new links or URLs. If found any, it adds the URLs on the 

list and again visits those newly found URLs. And this process will continue until 

it finds new URLs or links. Both Traditional and Ajax Spiders are for the same 

purpose. The first one is used for finding other than Ajax rich resources while the 

second one is to find Ajax rich web pages because they are more effective than 

Traditional Spiders. 
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WebSockets Support 

WebSocket is a protocol that provides a two-way communication (full duplex) 

channel through a single TCP socket over the web (42). ZAP is able to provide 

WebSocket support. ZAP can see, intercept, change, and even fuzz all the Web-

Socket communications, or it can send new WebSocket messages. Detail infor-

mation can be found from github zaproxy article (see (43)). 

Forced Browsing (using OWASP DirBuster code) 

Forced Browsing is a kind of attack where the attacker tries to enumerate or ac-

cess the restricted resources which have no reference or any link in the applica-

tion but exist and can be accessible (44). Brute Force techniques are used for a 

Forced Browsing attack in which the attackers either guess or use automated 

tools to find unlinked URLs within the application (45). The OWASP Forced 

Browsing attack is based on their DirBuster project (46). It is a multi-threaded 

Java application which is designed to brute force the unlinked directories in the 

application. For further reading, please refer to OWASP (47). 

Fuzzing (using fuzzdb and OWASP JBroFuzz) 

Fuzzing or Fuzz Testing is a software testing technique to find implementation 

bugs and coding errors. In Fuzz Testing, an attempt is made to make the appli-

cation (software) crash by delivering a random, invalid or unexpected user inputs 

value to the application (software) and then monitoring to see if it crashes. If the 

application crashes or fails with the random user input value, then there may be 

a security issue. ZAP performs Fuzzing through the JBroFuzz project code which 

includes files from the fuzzdb projects (48). 

Online Add-ons Marketplace (Extensibility)  

ZAP is an open source project of OWASP. One of the ZAP principle is involve-

ment of people as much as possible. It helps ZAP grow in terms of its usage and 

also extend the services it provides. To make active participation and contribution 

to a further development easier, there is an online marketplace provision for add-
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ons in ZAP, where one can write and upload (through Google code project), 

download, and install add-ons dynamically. Add-ons extend ZAP functionality. 

5.3 Developer Features 

As OWASP mentioned (49), there are so many developer features in ZAP. It has 

an easy-to-use quick start tab. One just needs to enter the URL and click the 

attack button and attack the application. There is a provision of REST API which 

allows to interact with ZAP programmatically. It is useful for security regression 

tests (50). It can be accessed directly or via one of the client implementations. It 

has Java and Python API Clients support. When using ZAP UI, if one wants to 

use API, it should be enabled in the options API screen in the UI. ZAP can also 

be run in Headless Mode. If it runs in Headless Mode, API is automatically ena-

bled.  

ZAP has an Anti CFRS Token Handling mechanism. ”Anti CSRF tokens are 

(pseudo) random parameters used to protect against Cross Site Request Forgery 

(CSRF) attacks” (51). ZAP has provision for different kinds of authentication to 

use in the web application. Authentication methods have been defined in the 

context according to which authentication is handled. It has an Auto Updating 

feature for its add-ons. Add-ons can be updated even if ZAP is running. One does 

not even need to restart ZAP. It is always a good idea to check for updates for 

different add-ons before testing the application. 

The latest version of ZAP (ZAP 2.4.3) has 4 different modes of operation, namely 

safe mode, protected mode, standard mode and attack mode. Safe mode can be 

used with any web application as no harmful actions are allowed in safe mode. 

But it is not useful for security testers. It is only useful for passive scanning. In 

protected mode, only the URLs in the scope can be attacked. It is safe to use with 

URLs outside of scope. Anything can be done in standard mode. So one should 

be careful while using ZAP in standard mode. In attack mode, if new nodes are 

found in scope, ZAP starts active scanning of the nodes immediately. 
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5.4 Simple Penetration Test Procedure 

Simple Penetration Testing is easy to perform. The first thing is to configure the 

browser to proxy via ZAP. Then the application is explored manually. While ex-

ploring the application manually, Passive Scanning runs automatically. Then Spi-

ders are used to find hidden contents of the application. After Spider scanning 

completes, Active Scanner is run to find the vulnerabilities. Before starting the 

test, or during the test, ZAP tools can be tuned according to the need of testing, 

depending upon the Web Application. After all the automated testing has been 

done, Manual Testing can be performed.  

An easier way to start testing, after setting a browser proxy via ZAP, is to go to 

the quick start tab, type the address of the web application, and then click the 

attack button. It automatically starts Spider first and then an active scan. But this 

will not be a complete assessment of a web application. It can only find basic 

issues. For example, the logical vulnerabilities cannot be found with active scan-

ners. Manual testing should also be performed to find vulnerabilities. And there 

are many tools available for manual testing within the ZAP. ZAP is a framework 

for combining other tools in a more robust way. So adding more functionality to 

ZAP is easier by either developing tools by own or downloading from online mar-

ket place. 

5.5 Finding Issues 

After Scanning completes, ZAP shows the result summary in the form of different 

categories of alerts. Basically, alerts are potential vulnerabilities and have been 

categorized as high priority, medium priority, low priority, and informational prior-

ity, which indicates the degree of associated risks. A high priority alert means that 

an issue under this category is more serious than other priority alerts. Likewise, 

medium priority alerts, low priority alerts, and informational priority alerts are con-

secutively less and less serious. Alerts categories are indicated by different col-

our flags. As in the figure 11, alerts flags can be seen in the bottom left of ZAP 

window with numbers. The number beside the flags indicate the number of po-

tential issues within that category. Starting from the left most flag and consecutive 

flags indicate high, medium, low, and informational priority alerts.   
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One notable thing regarding these alerts is that ZAP provides full detail of each 

issue it finds. It includes attack, evidence, description, other information and ref-

erence. It also suggests the solution of the issues. One can edit the alert details 

via the Edit Alert dialogue by double clicking an alert, saving it in an html or xml 

format and also comparing it with another session via Report Tab in the main 

menu. This can really help developers to make their application more secure. In 

figure 12, an edit alert dialogue and in figure 13, an html report of an alert gener-

ated by ZAP can be seen. 

 

FIGURE 11. Alerts and Categories 
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FIGURE 12. Alert in detail 
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FIGURE 13. HTML Report on Alerts 
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6 SECURITY TESTING OF THE SAMPLE APPLICATION 

For testing the application, the Firefox browser was used and simple steps that 

ZAP tutorial suggests for starting the test were followed. ZAP was set to protec-

tive mode to prevent any possible mistake of attacking real websites which there 

is no authority to test. The browser was configured to proxy via ZAP, the applica-

tion was set in a context, and the application was explored manually, almost every 

pages. After that, ZAP normal Spider first and then AJAX Spider was started to 

crawl the application. And finally Active Scanner was run. The results of those 

scans are presented in the following tables.  

TABLE 1. High priority alerts 

S.N. Name of Vulnerability Number of Vulnerabili-

ties found 

1 Anti CSRF Tokens Scanner 10 

2 Cross Site Scripting (Persistent) 3 

3 Cross Site Scripting (Reflected) 6 

4 SQL Injection – MySQL 24 

 

TABLE 2. Medium priority alerts 

S.N. Name of Vulnerability Number of Vulnerabili-

ties found 

1 Backup File Disclosure 14 

2 Insecure HTTP Method – TRACE 9 

3 X-Frame Option Header Not Set 83 

 

TABLE 3. Low priority alerts 

S.N. Name of Vulnerability Number of Vulnerabili-

ties found 

1 Cookies Set without HTTP Only Flags 1 

2 Cross-Domain JavaScript Source File In-

clusion 

2 
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3 Password Autocomplete in browser 5 

4 Web Browser XSS Protection Not enabled 83 

5 X-Content-Type-Options Header Missing 83 

  

TABLE 4. Informational priority alerts 

S.N. Name of Vulnerability Number of Vulnerabili-

ties found 

1 Possible Username Enumeration 3 

 

To include all kinds of issues in this thesis is not practical as it takes too much 

time and space. So, I would like to go through in detail each issue on high priority 

alerts that ZAP found on the sample application. Basically, there are 3 types of 

issues found in the application. The first one is CSRF, the next one is XSS, and 

the third one is the SQL injection. 

6.1 CSRF 

Description 

As already has been described briefly in the vulnerability chapter, CSRF is an 

attack where an attacker tricks a valid user (a user with an active session) to 

perform a certain action, intended by the attacker but not intended by the user. 

The user does not have any prior knowledge about that. Sometimes there might 

not be any visible response of the action. So, in that case the user does not even 

know immediately which action was performed. To perform a CSRF attack effec-

tively, certain conditions should be met. For example, the user should actively be 

using the application at the moment. In other words, they should have a valid user 

session. Along with the target application, they should have opened the hacker’s 

site, or email, or chat window. And in the application server side, if there is no re-

authentication provision before performing certain tasks, then it is more prone to 

CSRF vulnerability.  

Generally, a piece of JavaScript code is used for a CSRF attack but not always 

necessarily. The code is embedded into the attacker’s own page or is sent as a 
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link through an email or a chat application. While the user has an active session 

on the targeted web application, if they click on the link, their browser sends a 

request to the server. Because the user has a valid session, the server takes the 

request as a valid one and executes it. In this way the attacker’s intended action 

is performed.   

In a CSRF attack, the attacker tries to exploit the application server’s trust for the 

users. Whenever a request comes, the server checks whether it is coming from 

a valid session or not. If it finds that the session is valid, then it executes the code, 

no matter whether it is forgery or valid. To prevent it to some extent, developers 

should develop an application in a way that it should not trust a user for actions 

which have a severe impact on the database, even if the user has a valid session. 

Next, they should always use POST instead of GET or REQUEST for any kind of 

request that performs an action. But these are not a complete and effective solu-

tions. A more effective way to prevent a CSRF attack is to use Anti CSRF Tokens.  

 

FIGURE 14. CFRS example (52) 
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Anti CSRF Tokens are usually implemented through a random token and gener-

ated each time when a form is submitted by the user. It is embedded in the form 

as a hidden field. Whenever a request is sent to the server, it compares the token 

with the value stored in the session. The server only executes the request if the 

token matches. Below is one example of how token is set. 

 

FIGURE 15. Example of using random Token (53) 

Manifestation in sample application 

According to the testing result, there are 10 different files which are vulnerable 

for a CSRF attack. Each of them was examined manually and it was found that 

each of those files is associated with some kind of database editing functions. 

Some of them are creating new fields and others are either deleting or updating 

existing fields of data. Considering the nature of the sample application, the risk 

seems severe as the attacker can manipulate the database according to their will.  

One of the things that was mentioned earlier applies in the sample application. 

There is no provision of re-authenticate for activities that are directly related to 

database editing. This facilitates a CSRF attack. Apart from this, there are few 

situations which help a CSRF attack more effectively. For example, if the victim 

has an active session on the target site, or if the victim is authenticated via HTTP 
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auth on the target site, or if the victim is on the same local network as the target 

site, then it will be easy for attackers to attack. And the most obvious thing in the 

application is that no anti CFRS token has been used to prevent a CSRF attack.  

Fixing the Problems 

To fix CSRF vulnerability, the ZAP testing report suggests the following preven-

tions:  

To prevent a CSRF attack usually requires to include an unpredictable random 

token in each HTTP request by the user. The token should be unique per each 

user session and placed in a hidden field. This causes the value to be sent in the 

body of the HTTP request avoid its inclusion in the URL, which is more prone to 

exposure ((16), 74).  

Anti-CSRF packages such as the OWASP CSRF Guard for the Java Application, 

and the CSRF Protector Project for the PHP Application can be used (54). 

“OWASP CSRF Guard is a library that implements a variant of the synchronizer 

token pattern to mitigate the risk of Cross-Site Request Forgery (CSRF) attacks” 

(55).  

A re-authentication mechanism can be utilized if the request coming from a user 

is for a risky kind of operation, such as payment or purchasing online. Instead of 

using a GET method for any request that triggers a state change, a POST method 

should be used. 

6.2 XSS 

Description 

A Cross-site scripting (XSS) attack is a kind of injection which attackers use to 

inject their malicious code into a website so that it appears to be a part of that 

particular page of that website to the user’s browser. When a visitor visits the 

infected page, their browser considers the malicious code as valid code from the 

website, and executes it. To perform an XSS attack, generally 3 parties are in-

volved, namely the attacker, the victim, and the website where the malicious code 

is injected. The following figure is an example of how an XSS attack is performed.  
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FIGURE 16. Example of XSS Attack (56) 

Basically, there are 2 types of XSS attacks: Persistent and Non Persistent. A 

Persistent attack, also known as Stored or Type-I XSS, is an attack in which the 

attacker is successfully able to store their malicious codes into the database of a 

web application through user input fields. For example, in a web application there 

may be user input fields on pages such as change profile, make comments, mes-

sage forums where the user can insert any kind of text inputs they want. When a 

victim visits the web application and requests a page in which the malicious code 

has been stored, the malicious code is downloaded to their browser and the 

browser executes the code. There is no need to click on some links or visit mali-

cious websites. 

In a Non-Persistent Attack on the other hand, nothing is stored into the web ap-

plication database. Instead, attackers make a link and send it to the victims, for 

example through an email. The link is embedded with malicious codes. When the 

victim clicks on the link, their browser requests the server and gets a response 

from the server. If the server does not have any provision of filtering the parame-

ters of user requests, then it responses the request as it is. It means that if the 

request contains malicious codes, the response will also contain them. And when 

the victim’s browser gets the response with the malicious codes, it executes ac-

cordingly. A Non Persistent attack is also called Reflected, or Type-II. The follow-

ing figures clarify more about a Persistent and a Non Persistent XSS attack. 
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FIGURE 17. Persistent XSS attack (57) 

 

FFIGURE 18. Non Persistent XSS attack (57) 

The difference between CSRF and XSS is the way of attack. In a CSRF attack, 

the user or a victim clicks on the malicious link in the attacker’s website or email. 

By clicking the link, the victim unknowingly performs a particular activity which the 

attacker intends to perform. So, only one user is affected at a time, but is directly 

affected. That means that the attacker is certain about the victim before a real 

attack is performed. But in XSS, the number of visitors affected depends upon 

how many of them visited the malicious code injected website at the same time 
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and also the attacker does not know beforehand who will be going to suffer from 

it.   

To perform an XSS attack, attackers generally use vulnerable but popular web-

sites which many people are likely to visit. An XSS attack is done with the help of 

a client side scripting language. Because the injected code is not going to be 

executed in the web application server but in the user’s browser, they inject some 

JavaScript code inside the vulnerable website. This is only possible if the vulner-

able website takes the user input without validating or filtering it and keeps it on 

the web page. For example, in a blog or a social networking site, there are user 

input fields. If the website does not have a provision to validate and filter those 

input fields, one can successfully inject JavaScript codes through them.  

Attackers may have different reasons for XSS attacks. For example, they may 

want to access cookies, session tokens, or other sensitive information retained 

by the browser in order to hijack the session, change the contents of the website, 

or redirect a website to another website. These scripts can even rewrite the con-

tent of the HTML page. “The attacker can register a keyboard event listener using 

addEventListener and then send all of the user's keystrokes to his own 

server, potentially recording sensitive information such as passwords and credit 

card numbers” (57). 

Manifestation in prototype application 

The testing result shows that there are a total of 6 instances of Reflected and 3 

instances of Persistent XSS vulnerabilities in the application. According to the 

result, the following are some sample URLs which are vulnerable: 

TABLE 5. Instances of Persistent XSS in the example application 

URL http://localhost/GradingSystem/admin/view_complains.php 

Parameter text  

Attack </td><script>alert(1);</script><td> 

 

http://localhost/GradingSystem/admin/view_complains.php
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TABLE 6. Instances of Reflected XSS in the example application  

URL http://localhost/GradingSystem/Teacher/class_grade.php?choiceclass=%3C%

2Fh1%3E%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E%3Ch1%3E 

Parameter Choiceclass 

Attack </h1><script>alert(1);</script><h1> 

Evidence </h1><script>alert(1);</script><h1> 

URL http://localhost/GradingSystem/Student/teacher_list.php?course=%27%22%3

Cscript%3Ealert%281%29%3B%3C%2Fscript%3E  

Parameter Course 

Attack '"<script>alert(1);</script> 

Evidence '"<script>alert(1);</script> 

URL http://localhost/GradingSystem/Teacher/studentListGrade.php?class=%27%2

2%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E  

Parameter Class 

Attack '"<script>alert(1);</script> 

Evidence '"<script>alert(1);</script> 

URL http://localhost/GradingSystem/Teacher/student_grade.php?choicestudent=%

27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E  

Parameter Choicestudent 

Attack '"<script>alert(1);</script> 

Evidence '"<script>alert(1);</script> 

 

All the vulnerable files were checked manually. As in the case of CSRF, an XSS 

vulnerability also lies on codes which are associated with some kinds of database 

functions.  The intensity of risk is always severe if an attacker is able to manipu-

late the database of the application. In the case of Reflected XSS, I tested with a 

JavaScript code to redirect to another website, which successfully redirected to 

an external website. Also I tried ZAP attack code which successfully created an 

alert window. One thing I noticed in my code is that I had not made any provision 

for filtering user inputs. As ZAP suggests, we should never use user inputs di-

rectly. Figure 19 shows an example code file which is vulnerable for an XSS at-

tack.  

Vulnerability lies on a ‘choiceclass’ parameter which directly comes from the user 

input. One can send malicious code through that parameter to the application. Or 

http://localhost/GradingSystem/Teacher/class_grade.php?choiceclass=%3C%2Fh1%3E%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E%3Ch1%3E
http://localhost/GradingSystem/Teacher/class_grade.php?choiceclass=%3C%2Fh1%3E%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E%3Ch1%3E
http://localhost/GradingSystem/Student/teacher_list.php?course=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E
http://localhost/GradingSystem/Student/teacher_list.php?course=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E
http://localhost/GradingSystem/Teacher/studentListGrade.php?class=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E
http://localhost/GradingSystem/Teacher/studentListGrade.php?class=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E
http://localhost/GradingSystem/Teacher/student_grade.php?choicestudent=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E
http://localhost/GradingSystem/Teacher/student_grade.php?choicestudent=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E
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one can directly type a URL with malicious JavaScript code in the address bar of 

the browser. While the session was active, I tested a URL with embedded JavaS-

cript code to redirect the page to an external website. The URL 

http://localhost/GradingSystem/Teacher/class_grade.php?choiceclass=<script>setTimeout(

function () { location.href = 'http://www.google.com'; }, 0);</script> successfully redirects 

the browser to the Google website.  

Fixing the Problems 

To prevent an XSS attack, both the user inputs and application outputs should be 

properly encoded. In the ZAP report, OWASP recommends to use libraries and 

frameworks to avoid XSS vulnerabilities. Examples of such libraries and frame-

works include Microsoft's Anti-XSS library (58), the OWASP ESAPI Encoding 

module (59), and Apache Wicket (60). These help properly encoding output or 

response as it is necessary to fix the XSS vulnerability. Html Sanitizer, OWASP 

Java HTML Sanitizer, Ruby on Rails SanitizeHelper and PHP Html Purifier are 

some examples of libraries which can be used for input encoding (61). Another 

recommended task to be performed is that all kinds of security checking and val-

idation should be done on the server side, no matter whether the client side pro-

vides such checking and validation. In most of the cases, attackers can easily 

bypass client side provisions. To make the application secure, security provisions 

on the client side should not be relied on. 

http://localhost/GradingSystem/Teacher/class_grade.php?choiceclass=%3cscript%3esetTimeout(function%20()%20%7b%20location.href%20=%20'http://www.google.com';%20%7d,%200);%3c/script%3e
http://localhost/GradingSystem/Teacher/class_grade.php?choiceclass=%3cscript%3esetTimeout(function%20()%20%7b%20location.href%20=%20'http://www.google.com';%20%7d,%200);%3c/script%3e
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FIGURE 19. Example of XSS vulnerable code 
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6.3 SQL Injection 

Description 

Among other kinds of Injections, SQL Injection is an attack where attackers use 

to inject or insert SQL queries through user supplied parameters into the data-

base. So, it means that “An SQL injection needs just two conditions to exist – a 

relational database that uses SQL, and a user controllable input which is directly 

used in an SQL query” (62).  

Modern web applications use database to interact with users. Users give some 

inputs in the form of parameters or database queries through user input fields to 

the application. In the application, the server processes the request and with the 

help of a database server, it gives the output to the user according to the request. 

When the database server receives the parameter, it compares the user supplied 

parameter to the actual database according to the query and then it gives output. 

Usually, attackers inject their own queries along with the user input parameter 

with the help of some SQL logical operators and a semi colon. By doing so they 

can easily trick the database server to take their queries as a valid request.  

SQL Injection vulnerabilities are always risky. According to the OWASP (63), the 

loss of confidentiality and integrity of the database, and bypassing the authenti-

cation and changing authorization information are the main consequences of 

SQL Injection vulnerabilities. Based on users’ privileges on the database, attack-

ers can perform any of the CRUD (Create, Read, Update, and Delete) operation 

on the database. Example risks include that they can steal secret information 

from the database, create new fields or update fields with false data, or they can 

even delete fields, tables, or the whole database. These risks are associated with 

integrity and confidentiality and integrity of the database. “If poor SQL commands 

are used to check user names and passwords, it may be possible to connect to 

a system as another user with no previous knowledge of the password” (63). By 

bypassing the authentication, they can gain unauthorized access to the resources 

of the application. If authorization information is placed on the database, attack-

ers can alter or change the information through the SQL Injection. 
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Manifestation in the sample application  

The testing report shows that there are a total of 24 instances of SQL – MySQL 

vulnerabilities in the application. I studied those vulnerable files manually and 

found that most of them are files which are used to display the requested infor-

mation from the database dynamically by performing the READ operation on the 

database. One file is associated with the WRITE operation on the database. The 

following table contains some example vulnerable files reported by ZAP. 

TABLE 7. Instances of SQL Injection 

URL http://localhost/GradingSystem/Student/class_teachers.php?choiceclass=1 

Parameter Choiceclass 

Attack 1 UNION ALL select NULL -- 

Evidence The used SELECT statements have a different number of columns 

URL http://localhost/GradingSystem/Student/courses_list.php?class=1  

Parameter Class 

Attack 1 UNION ALL select NULL -- 

Evidence The used SELECT statements have a different number of columns 

URL http://localhost/GradingSystem/Student/teacher_list.php?course=cou001%27

+AND+%271%27%3B  

Parameter Course 

Attack cou001' AND '1'; 

Evidence SQLSTATE[HY 

URL http://localhost/GradingSystem/student/feed_comm.php  

Parameter courseID 

Attack cou004' / sleep(5) / ' 

URL http://localhost/GradingSystem/Teacher/studentList2.php?courseID=cou003  

Parameter courseID 

Attack cou003' / sleep(5) / ' 

URL http://localhost/GradingSystem/Teacher/student_grade.php?choicestudent=st

ud_00001%27+AND+%271%27%3D%271%27+--+   

Parameter Choicestudent 

Attack stud_00001' AND '1'='1' -- 

 

http://localhost/GradingSystem/Student/class_teachers.php?choiceclass=1
http://localhost/GradingSystem/Student/courses_list.php?class=1
http://localhost/GradingSystem/Student/teacher_list.php?course=cou001%27+AND+%271%27%3B
http://localhost/GradingSystem/Student/teacher_list.php?course=cou001%27+AND+%271%27%3B
http://localhost/GradingSystem/student/feed_comm.php
http://localhost/GradingSystem/Teacher/studentList2.php?courseID=cou003
http://localhost/GradingSystem/Teacher/student_grade.php?choicestudent=stud_00001%27+AND+%271%27%3D%271%27+--
http://localhost/GradingSystem/Teacher/student_grade.php?choicestudent=stud_00001%27+AND+%271%27%3D%271%27+--
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A database functions as a backbone of the web application as it stores all kind of 

information from users’ personal and bank information to information required to 

run the application. It includes, but is not limited to, e.g. different kinds of cookies, 

usernames, passwords, personal records and bank records. This information is 

necessary to run the application and to provide services to users. That might be 

the reason that the SQL Injection is one of the most prevalent attack on web 

applications. The risk associated with the SLQ injection is always severe. The 

impact of an attack also depends upon given privileges into the database. Based 

on this fact, the sample application is extremely risky as it has provided all kinds 

of privileges to the database for all kinds of users.  

The next notable thing in the application is that in many instances no Parameter-

ized Queries have been used as it is essential to avoid the SQL Injection if the 

application dynamically performs database functions. Another general precaution 

includes not to directly use the data that is received from the user without escap-

ing and validating it on the server which has not been followed in the application.  

Because of all the above mentioned reasons, the sample application is extremely 

vulnerable for an SQL Injection attack. The next section will provide a brief sum-

mary of how to prevent an SQL Injection.  

Fixing the Problems 

To prevent an SQL Injection attack, OWASP recommends few simple steps to 

follow. The first thing is the user privilege on the database. It should always be 

as little as possible. In most of the cases, users do not actually need the privileges 

they are given. For easiness or simply a lack of awareness, developers generally 

do not mind providing equal privileges for all users. For the real application, de-

velopers should develop a mechanism where database privilege is based on the 

need of specific users.  

The next thing is an error displaying mechanism which provides certain infor-

mation to attackers. They can utilize that information for further attacking. Alt-

hough displaying an error with certain information is worthy for developers while 

developing the application, it should be avoided when the application goes live.    
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Another worth noting thing is user input mechanism in the web application. User 

inputs should always be validated before using it on the database functions. This 

applies also in the case of XSS. Validation should be done in the server. Client 

validation should never be trusted. There are many ways of validating user input 

data, which depends upon the logic of the input. For example, if the input field is 

for numbers, then inputs other than numbers should be discarded. HTML escap-

ing is also a kind of validation. It removes html tags from the user input.  

The most crucial thing is to always use Parameterized Queries while using user 

supplied data to perform database functions. In the PHP web application, it is 

done with the help of PDO and prepare statements. The following example shows 

how a Parameterized Query is used to verify a user while logging into the system.  

 

FIGURE 20. Example of Parameterized Query 

In the above example, the values of $user and $pass variables are coming from 

the user input. But instead of using that user supplied data directly into the data-

base query, a prepare statement has been created with an incomplete SQL 

Query. Later, the query is executed by passing that user input data as an array. 

This is the safe way of passing the user input data to a query.   
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7 CONCLUSION 

The main objective of this thesis work was to study the effectiveness of OWASP 

ZAP for finding vulnerabilities in a web application. For that purpose, a simple 

web application was developed and its vulnerabilities were tested using ZAP. It 

successfully found different kinds of vulnerabilities in the sample application. It is 

worth to mention that it not only finds the vulnerabilities but also suggests how to 

prevent such vulnerabilities.   

The thesis helped me learn quite many things about a web application and 

different aspects of security issues associated with it. For example, what are the 

current prevalent security threats in the market, what impact can a particular 

threat have on a web application, and how to tackle those threats to make web 

applications secure. Along with security issues, I also got a good knowledge 

about designing and using MySQL database in a web application. 

To use ZAP was totally new thing for me. When I started learning to use ZAP in 

the sample application, it was hard to understand. It has a wide scope for testing 

web applications. The only means to learn was watching videos from youtube. 

But learning is a process of acquiring knowledge, and it is not always effective by 

only studying the content but also by applying it to real use. With the regular 

guidance of my teacher, I think I have gained knowledge to some extent, although 

there are lots of things I still need to learn regarding a complete use of ZAP.  

Although I am fully satisfied with ZAP results in testing the sample application, I 

think the application is not complex enough to test the effectiveness of ZAP. It 

has many tools for advance testing. To use all kind of testing that ZAP provides 

and see its effectiveness, I feel that the application should be bigger and more 

complex one than the sample application. So in my opinion, there is an ample 

opportunity to gain expertise in the field of penetration testing of web applications 

using ZAP. In conclusion, as I already mentioned before, ZAP is effective in find-

ing vulnerabilities in the sample application but more than that it has successfully 

inspired me towards further testing of web applications and developing a secure 

database driven web application.   
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