

Jukka Korva

Developing a web application with Angular 2

Graphical editor for Happywise’s Cove Trainer

Developing a web application with Angular 2

Graphical editor for Happywise’s Cove Trainer

Jukka Korva
Thesis
Autumn 2016
Business Information Technology
Oulu University of Applied Sciences

ABSTRACT

Oulu University of Applied Sciences
Business Information Technology

Author(s): Jukka Korva
Title of Bachelor´s thesis: Developing a web application with Angular 2
Supervisor(s): Jouni Juntunen
Term and year of completion: Autumn 2016 Number of pages: 35

The purpose of this thesis is to develop a web application using Angular 2 for Happywise.
Happywise has a cloud based training tool for organizations which purpose is to train employees
in exceptional situations. These situations can for example be abnormal operating conditions in
factories and power plants.

These conditions are simulated in the training tool using scripts, which are partly JSON based. By
nature, JSON is not very human friendly, and the creation of these files is tedious. A graphical
interface for editing the JSON files would substantially decrease the time needed to create a
scenario. It would also remove the possibility of human error regarding errors in JSON syntax.

The theoretical background revolves around Angular 2. Its main features are introduced and
discussed. The main source for the theoretical background is Angular 2’s own documentation. In
the implementation part, a general idea on how an Angular 2 application can be created based on
the given theoretical information is given.

The main result of the work done is a working editor application which meets its development
targets. Happywise has also stated that they will be using the editor in a future project and will
continue developing it. A secondary result of this thesis is a rough guide on the main features of
Angular 2 and how an application can be developed with the framework.

Keywords: Web application, Angular 2, framework

CONTENTS

1 INTRODUCTION ... 5

2 THE ANGULAR 2 FRAMEWORK .. 7

2.1 Basic information .. 7

2.2 Basic building blocks .. 8

2.3 Directives and data binding .. 9

2.4 Dependency injection ... 11

2.5 Decorators and lifecycle hooks ... 11

2.6 HTTP library ... 12

3 IMPLEMENTATION PROCESS .. 14

3.1 Setting up the development environment ... 14

3.2 Scenario parsing functionality ... 16

3.3 User interface ... 19

3.4 Editing functionality .. 24

3.5 Communicating with the server .. 29

4 CONCLUSIONS .. 32

5 DISCUSSION .. 33

REFERENCES .. 35

1 INTRODUCTION

Frameworks are used extensively in websites of all sizes nowadays. They can arguably be said to

be essential in building a more complicated site, such as a single page application, as HTML was

not originally meant to be used for such purposes. The task of writing code to handle just the basic

navigation features of a single page application can be bothersome and a waste of good

development time. Fortunately, there are many capable JavaScript frameworks in existence that

remove the need to write that kind of boilerplate code. One of the more notable ones is AngularJS,

which has transitioned to a new version.

The purpose of the thesis is to create a graphical scenario editor for Happywise’s Cove Trainer

exceptional situation training tool using Angular 2. Cove Trainer is intended for companies to train

new employees in exceptional situations which need specific actions. An example training situation

could involve a power plant boiler and its malfunction. The system can simulate this and employees

would then train to correctly respond to the situation. The editor would be capable of reading

scenarios stored as JavaScript Object Notation (JSON), a textual object-oriented data storage

format. Happywise is an IT company offering cloud based products as services as well as IT

solutions tailored per the customer’s wishes.

Currently, the scenarios are created and edited by hand. As the system and the scenarios are quite

complex, it is a cumbersome task. It is not made any easier by the fact that JSON is not very easy

to read even when formatted in a way to maximize readability. Mistakes are easy to make even

when the text editor used can check for incorrect JSON syntax. Given these limitations, a graphical

editor would greatly simplify scenario creation and editing by removing the most time-consuming

step in the process.

The primary main goal of the thesis is to develop an editor that can read the JSON scenario data,

displaying the read data correctly and being able to edit and create new scenarios. The secondary

main goal is to design the editor to resemble the actual application output as closely as possible.

This is to ensure that what the scenario designer sees is what the user sees. The editor system

should also allow one scenario be edited by multiple users, but it is not a main concern for this

thesis however.

Considering the project’s goals, the development tasks are straightforward. The editor needs a user

interface, the actual editor logic which makes everything possible and the server logic which

handles the scenario data saving and loading. Happywise has said that the editor should be web

based, so the user interface will be built with HTML and CSS. It will make it easier to re-create a

similar user interface as the actual application, as Cove Trainer itself is web based. Bootstrap CSS

will be used when creating the user interface. This will allow easier prototyping and consistent user

experience between different browsers.

As the editor will be created using Angular 2, the development language will be TypeScript. Angular

2 was chosen because it was new territory, and therefore a great opportunity to learn to use it. The

previous version of the framework became very popular and made developing web applications

easier. Google has claimed the new version will be even better. Another reason for choosing

Angular 2 was its DOM manipulation features, which will simplify the interactions between the code

and user interface, which are plentiful and potentially complicated considering the application’s

intended use. Angular 2 is also modular which should code reuse easier.

The server side logic of the editor will be written with PHP. The use of a framework in this case is

not strictly necessary, but for convenience’s sake Slim will be used. The Slim framework has

powerful REST features and can easily work with JSON. The file operations on the other hand will

be done with PHP’s built-in functionality, as they are not expected to be complicated.

Development work will focus on the editor itself, which means that third-party libraries will be used

for features that would otherwise need a more extensive amount of coding. Cases where this might

apply are dialog windows and the user interface itself. Bootstrap CSS was mentioned as a useful

framework which covers both use cases. The thesis will focus on Angular 2 and its use with the

development of the editor. Its main features will be introduced and the implementation process will

focus on giving a general idea on how an Angular 2 application can be developed.

2 THE ANGULAR 2 FRAMEWORK

Frameworks are intended to simplify the development of an application. They generally implement

common features which are integral to an application, like authentication, security and user

interface components. When a framework is used properly, the time taken to develop a web site

or web application can be reduced, because it is not necessary to re-implement the features a

framework offers for every new project. (Srinivasan 2014, chapter 15.5, cited 1.12.2016.)

2.1 Basic information

Angular 2 is a framework for building web applications in HTML and a language that compiles into

JavaScript such as TypeScript, although a framework version for plain JavaScript also exists.

Applications created with Angular 2 are separated into HTML templates, component classes written

to manage the templates and services that contain the business logic of the application.

(Architecture overview 2016, cited 5.9.2016.) This modular approach, also illustrated in figure 1,

enables rapid and logical development of applications and eases their testing. In a properly

designed Angular 2 app, the different parts of the application should not be aware of the

implementation details of other parts. Should the development guidelines of the framework be

followed, it will be noticeably easier to follow this paradigm.

FIGURE 1. Angular 2 application architectural overview (Architecture overview, cited 15.11.2016)

The preferred language for Angular 2 is TypeScript. It is a superset of JavaScript developed by

Microsoft to ease the development of large JavaScript projects. One of its features include an

optional type system. (TypeScript Language Specification 2016, cited 12.9.2016.) The type system

brings the language closer to other typed languages like Java or C# and it is perhaps the biggest

advantage TypeScript can offer compared to JavaScript. The ability to define types helps in

maintaining the structure of a large codebase and reduces ambiguity of what a function expects as

input and what should be expected as output. Code written in TypeScript is transformed into

JavaScript that resembles the source as closely as possible to make debugging easier. The

compilation is done on every file save to match the usual development cycle of JavaScript.

(TypeScript Language Specification 2016, cited 12.9.2016.) In this sense, the speed of JavaScript

development is kept.

2.2 Basic building blocks

The most important building block in an Angular 2 app is the module, which are used to group

together related component classes and services (Angular modules 2016, cited 5.9.2016). In this

sense, they could loosely be compared to namespaces in C# applications, which have the same

functionality of grouping together related code elements. Angular modules are still distinctly

different from namespaces as they can be divided into two types. Every Angular 2 app has a root

module, which is used to launch the app and feature modules which extend the capabilities of the

root module (Angular modules 2016, cited 5.9.2016). Namespaces on the other hand cannot be

differentiated like this as their distinction comes from the contents of the namespace.

Component classes interact with templates and services, which contain the app business logic.

They are bundled together with related services in modules. They have properties and event

handlers that the framework binds to the view declared in the component. (Architecture overview

2016, cited 10.9.2016.) The automatic binding done by the framework ensures that little to no time

must be wasted writing code to make user interaction possible. Another advantage of this is that

services only need to concern themselves with returning output the component expects.

Services are another building block which are needed to build an app with Angular 2. Their function

is to provide the application with specific functionality which would not fit into a component class,

such as logic to retrieve data from a server or logic to log messages to the browser console.

(Architecture overview 2016, cited 12.9.2016.) Services reinforce Angular’s ideology about

modularity. Components are not intended to do anything else but enable the interactions between

the user and the application logic. While nothing stops the developer from implementing the

application without services, it is not recommended.

Component HTML templates tell Angular how to render a specific component’s view. In addition to

normal HTML markup, a template has Angular template syntax, which the framework parses when

the view is rendered. (Architecture overview 2016, cited 10.9.2016.) This compartmentalization

means that the user interface of an Angular 2 app can be made up of several different HTML files

in addition to the ‘index.html’ file. It also means that reuse of user interface components is very

simple as all that is needed is a single HTML tag which identifies the template and component to

insert.

2.3 Directives and data binding

The Angular 2 template syntax includes support for directives. These are referred to as structural

or attribute directives and their purpose is to transform the HTML document based on user input or

supplied code expression. Structural directives for example allow to easily repeat a collection of

objects into the document or to hide or show an element based on the value of a component

property. (Architecture overview 2016, cited 14.11.2016.) Structural directives make developing the

user interface easier and more expressive, when it is obvious where a list of elements for example

will be when the application is running and a certain property becomes true. Figure 2 is an example

of two structural directives. Attribute directives on the other hand look like normal HTML attributes

and only affect the element they are found in. The most notable example of an attribute directive is

‘ngModel’, which is used for data binding. (Architecture overview 2016, cited 14.11.2016.)

FIGURE 2. Angular 2 template syntax

Data binding is a central feature of Angular 2 and it is made to be convenient and easy to use. The

data binding is done through Angular template syntax. Square brackets mean binding from the

component to the document and parentheses mean binding from the document to the component.

The bound properties are updated every time a change is detected in the HTML document.

(Architecture overview 2016, cited 14.11.2016.) This means that there is no need to create logic

for writing to, and reading values from, the HTML document. The amount of boilerplate code is

reduced and the application suffers less potential bugs as well. There is also a third method of data

binding, called interpolation. This is identified in Angular template syntax as double curly brackets.

(Architecture overview 2016, cited 14.11.2016.) Interpolation is useful for outputting component

properties to the document and it is arguably more descriptive than using square brackets.

One feature of the Angular 2 framework ties in to data binding. This feature is a data transformation

capability which can be applied to interpolated expressions and directive expressions in a

component template. The framework offers built-in pipes for common scenarios, such as dates or

changing text to uppercase. It is also possible to create custom pipes by using the ‘@Pipe’

decorator, as illustrated in figure 3. The pipes are used by appending a vertical bar to an expression

followed by the wanted transformation. (Pipes 2016, cited 16.11.2016.) This feature makes it very

easy to transform data retrieved from the server. The date transform for example removes the need

to manually transform a date in its database representation prior to displaying it to the user. The

behavior can also be guaranteed to be constant.

FIGURE 3. Custom pipe transform example

2.4 Dependency injection

Services are inserted into components when they are created through a mechanism called

dependency injection. It is a central feature in Angular and designed to make using the component

and service pattern as convenient as possible. The services a component needs are declared in

its constructor function. (Architecture overview 2016, cited 12.9.2016.) This means that only a

glance at the constructor of a component is needed to know which services it needs to function

properly. Dependency injection makes testing and development easier, because the component

does not care about what the service truly does. This allows the usage of a placeholder function

which can return predefined data for the component to process.

Dependency injection also means that the services the Angular framework creates are singletons,

meaning that there is always only one instance of them available. This pattern can be broken by

using the ‘providers’ property available in the decorator that declares that a class is a component.

If the ‘providers’ property is found, the framework creates a new instance of the services found in

the property. (Architecture overview 2016, cited 15.11.2016.) This is an important feature to take

into consideration, as it has implications on how an application should be developed. Components

by nature are isolated from each other, and sometimes they must be able to transfer information

between each other. Singleton services are one way of achieving this. Injecting the same service

instance to two different components means they both have access to the same data.

2.5 Decorators and lifecycle hooks

Before Angular can use a component, the framework must be told what to do with it. This is done

through a TypeScript feature known as decorators. Angular 2 uses decorators for different

purposes and the main one is to specify that a class is a component class. The ‘@Component’

decorator tells Angular which tag the component represents and which template to use among

other configuration information. (Architecture overview 2016, cited 10.9.2016.) Separating this

configuration from the actual class definition makes reading the code easier and simplifies the

implementation process. Like components, services have their own decorator. If a service depends

on other services, it must be decorated with ‘@Injectable’. If the aforementioned is true and the

decorator is missing, the framework will throw an error. It is still recommended to apply the

decorator to every service that the app uses, even those that do not have dependencies to other

services. (Dependency injection 2016, cited 7.10.2016.) This removes the possibility of the error

occurring, as it can potentially be annoying to troubleshoot, especially when the application grows.

The Angular 2 framework also includes hooks into its internal processes. These are so called life-

cycle hooks, which can be used to initiate actions during specific points of the framework’s

execution cycle. These are exposed to the framework’s consumer as TypeScript interfaces, and

using them is as simple as importing the wanted life-cycle hooks and specifying that a component

class uses those interfaces. (Lifecycle hooks 2016, cited 16.11.2016.) The possibility to tap into

these events give more power to developers to control the application how they want. Another

reason might be to initialize certain data only after a specific point in the framework’s execution

cycle has passed.

2.6 HTTP library

The Angular 2 HTTP library is built on JavaScript’s built-in ‘XMLHttpRequest’. The library is included

in its own module, which must be imported before the ‘Http’ service can be used in any component

or service. The service itself supports all general HTTP requests, with the most common ones being

get and post. (HTTP client 2016, cited 16.11.2016.) The point of building the library on the

‘XMLHttpRequest’ feature is the ability to make asynchronous requests, which will not lock the

application while they are in flight. This results in a more pleasant user experience, when the

application will not freeze while it retrieves data from the server, or sends data to it.

Another part of the HTTP library is RXJS observables. RXJS is a 3rd party library which the Angular

2 framework makes extensive use of. The observables are used in other parts of Angular 2 in

addition to the HTTP library. An observable can be likened to an event handler. For example, the

HTTP library request functions all return an observable, which can be subscribed to. This

subscription is usually done in component classes, which are generally where the HTTP requests

are initiated. Subscribing to an observable is basically the same as attaching a handler function for

an event. When a subscription is attached to an HTTP observable, the request is sent. To avoid

this behavior, but still attach a handler to the observable, ‘map’ can be used. (HTTP client 2016,

cited 16.11.2016.) This observable chaining can potentially yield great benefit to an application that

communicates with a server. Extraneous code in the function that starts the HTTP request can be

avoided by using the ‘map’ functionality of the observables to do the required work in the service

function itself. A simple example of observable chaining is illustrated in figure 4.

FIGURE 4. Example of Angular 2's usage of Observable

3 IMPLEMENTATION PROCESS

3.1 Setting up the development environment

The development process was started with the installation of the Angular 2 environment. The quick

start page of the Angular 2 documentation included the necessary information for setting up an

Angular 2 application. Node.js and npm were mentioned as requirements for development with the

framework, so they had to be installed first. The reason for this is that the recommended way to

install Angular 2 is through npm. (2016, cited 1.11.2016.) The easiest way to do this was to use a

package manager. In this case, Chocolatey for Windows was installed and used. Alternatively, a

separate installer could have been obtained from the Node.js homepage.

As can be seen from figure 5, after executing ‘choco install node’ in a command prompt the

installation process was very straightforward. Npm did not need a separate installation as it is

included with Node.js. It was time to create a folder for the editor project and copy configuration

information from the Angular 2 quick start page after the prerequisites had been met. It should

however be mentioned that at this point there was still no Angular 2 framework anywhere in the

project folder. The framework files and their dependencies were obtained through npm, which is

the Node.js package manager. One of the configuration files copied from the quick start page was

a list of packages for npm to acquire. This list included the Angular 2 framework itself and other

required libraries.

FIGURE 5. Installing Node.js

The installation was once more simple with only one step, which was to execute ‘npm install’ in the

editor’s project folder. This installation procedure in figure 6 resulted in a folder called

‘node_modules’ inside the project folder which contained all packages defined in the

‘packages.json’ file. At this point the setup was almost complete. The remaining steps were to

create the application’s root module and component and copy the ‘index.html’ file contents from

the quick start page so the application could be loaded in a browser. After this was done, the

TypeScript compiler and the web server used to serve the application during development were

started by executing ‘npm start’ in the project folder.

FIGURE 6. Npm installing packages

3.2 Scenario parsing functionality

It was decided that the best way to begin the actual development was to implement JSON file

parsing. With a working implementation, it would be easier to design the other parts that were

dependent on it. The first step in this was to look at the JSON file itself. It was necessary to know

what kind of structure the file had, so that similar data structures could be created for the editor.

The data structures were created as classes like in figure 7, as TypeScript can use them like other

typed languages. The ‘Scenario’ class is akin to the whole JSON file and the properties listed in it

are the different parts of the file. This way it was easy to create the functionality that would parse

the scenario file.

FIGURE 7. Scenario class definition

In line with Angular philosophy, the parsing functionality was implemented as a service. Figure 8

depicts a function inside ‘JSONReaderService’ service which is called every time JSON data is

received. At this point a demo scenario was loaded from a JSON file in the editor’s project folder,

because there was no server functionality implemented yet. The actual scenario parsing was

implemented in their own classes, with one parser class for each property defined in the ‘Scenario’

class. This was done to make the code more readable and easier to maintain, as there would be

no need to look through a monolithic block of code for a single line.

FIGURE 8. JSON parsing function

Figure 9 is an example of how the parsing was implemented. This decoder is for the ‘scene’

property in the ‘Scenario’ class and it contains the interface elements which form the visible

graphical user interface of the scenario in Cove Trainer. The decoders for the other properties in

the scenario file were created following the same principle; one public and static function which

was used to start the parsing, with the parsing performed in private and static functions. This

function signature was chosen because it removed the need to instantiate the decoders every time

they were needed.

FIGURE 9. Scene parser

While not strictly related to the parsing functionality itself, the service class for the scenario editor

was created at this point. The reasoning was that there was not a lot of code written yet, removing

the need to refactor the code later down the line. It would also help to solidify the structure of the

code. The service’s purpose was to provide the scenario editor component with data loading,

saving and editing functionality.

With the first implementation of the decoding functionality done, it was time to see if it worked. This

was done by importing the ‘JSONReaderService’ in the scenario editor service class and referring

to it in its constructor, like in figure 10. When starting the application, Angular 2 looks at the

constructors of component classes and services, and inserts references to the services it finds in

them. Performing the load test was as simple as calling the placeholder JSON load function, which

tried to parse the demo scenario. On success, it would output what it parsed into the browser

developer console. If an error occurred, the whole application would stop as bugs in the scenario

parsing could be considered show-stopping errors.

FIGURE 10. Service import and reference in service class

When it was clear that the scenario parsing worked as expected, the editor still needed a way to

encode its data structures back to JSON. This was achieved simply by re-implementing the

decoders, but in reverse order. Instead of assigning values from JSON to class properties, the

encoders assign class properties to a simple JavaScript object. Another service,

‘JSONWriterService’ was created for this purpose.

Because there was not any server functionality at this point, some other method was needed to

test the encoding functionality. After some googling, one possible solution was found on Stack

Overflow. The idea was to create a binary large object from the JSON string and open it in a new

browser tab, which is illustrated in figure 11. (2014, cited 12.11.2016.) From the tab, it could be

copy-pasted into a source code editor and formatted for an easier inspection experience. A

successfully implemented decoder and encoder meant that the scenario could be decoded and

encoded without a problem, with the original scenario file contents then replaced with the test’s

output and the test repeated successfully.

FIGURE 11. JSON output test function

3.3 User interface

The user interface of the editor was tackled next. Because a user interface like in the Cove Trainer

player was desired, the first step was to examine its existing user interface HTML. This additionally

allowed to get a general idea how the player generated the user interface elements contained in

the ‘scene’ property of the scenario file. Because the player was done with Angular 1, the HTML

could easily be translated to Angular 2 for use in the editor. This translation included re-structuring

the HTML to make accommodations for differences in Angular 2’s component creation and

differences in directive names. The finished user interface of the editor is represented in figure 12.

FIGURE 12. Editor user interface

Components in Angular 2 are identified by the framework through a name specified in the

‘@Component’ directive, which it matches with component tags it finds in HTML. Figure 13 includes

the HTML tag which the editor’s root component is identified with in ‘index.html’ and the tag the

scenario editor canvas is identified with in the root component’s HTML file. A slight downside to

this approach is that the tags are not block elements by default, which is generally undesirable in

HTML container elements. This was fixed with an inline display style definition like in figure 13. The

rest of the user interface would be included in the scenario editor’s HTML template.

FIGURE 13. AppComponent tag and the scenario editor tag in app.component.html

Figure 14 is an example how the user interface elements found in the ‘scene’ property are

generated. This follows the same principle as in the player, which is to use the built-in repeater

directive. In Angular 2, this directive is ‘ngFor’. The usage of the ‘ngFor’ directive is simple, because

it uses similar syntax as ‘foreach’ loop constructs found in well-known programming languages.

FIGURE 14. User interface element repeater

There are also other important Angular 2 features in figure 14, which are the square bracketed

HTML tag attributes and the ‘click’ attribute, which is in parentheses. The square bracketed

attributes define one-way binding from the component class to its view, and in this case, they are

used to define an element’s CSS styling and image source URL. The CSS styles were constructed

dynamically because the editor’s working area had to resemble the Cove Trainer player as closely

as possible. Due to this it was very important for the elements to be precisely positioned. Otherwise

the designed scenario could look different in the player, which was undesirable. The parentheses

on the other hand define a one-way binding from the component view to the component class. In

this case, when a user clicks on the element image, the framework calls the function defined in the

‘click’ attribute. The function sets the clicked element to be the active element, which could then be

edited.

Figure 15 illustrates the principle how the style creation was done. The function creates an empty

object, assigns properties to it which are recognized as valid CSS attributes. It then fills them with

the proper values from the element that was supplied to it as a function parameter and finally returns

the filled object. This follows the way the player itself positions the elements, and allowed the editor

to achieve an identical look. Because the style creation is not strictly related to enabling the user

experience, services were created for each of the element types which would hold these style

creation and other related functions.

FIGURE 15. Element style creation

As a Cove Trainer scenario very likely has more than one operator display, the editor needed a

way to change the active operator display. Two methods were created for navigation, simple

buttons which would retrieve the next or previous operator display, and a list which could be used

to jump to a particular display. Figure 16 depicts these features. The ‘ngModel’ and ‘change’

attributes inside the ‘select’ tag together form a two-way binding. This separation allows for more

control over the process of changing the value of the property bound to ‘ngModel’. Every time a

new value is picked from the list, the Angular 2 framework calls the function defined in the ‘change’

attribute.

FIGURE 16. Operator display list and buttons to change the current one

Creating the player user interface view in the editor was however not enough. The actual editing

interface was still missing. There was a part of the screen free for this purpose, which was normally

occupied by a Cove Trainer player feature. The first task was to decide how the editing interface

would be best to implement. After some consideration, a tab based system was decided to be best,

because the free part was relatively narrow at 570 pixels in width. It also had to be always visible

and editing functionality grouping had to be done somehow.

In figure 17 are the buttons used by the editing interface tabs and an example how the active tab

is determined. The ‘ngIf’ directive works like an ‘if’ construct; if the statement it evaluates is true, it

displays the HTML element it is declared in, and all its child elements. If the statement is false, the

Angular 2 framework deletes the element and its children from the document until the statement is

true again. The statement inside the curly brackets in ‘ngClass’ evaluates the same ‘EditorState’

property, and if it is found to be true, the ‘tabbuttonselected’ class is added to the element’s CSS

classes. This allowed to highlight the tab that was currently selected.

FIGURE 17. Edit interface tabs

Another part of the editing interface was the list of scenarios in existence. However, this functionality

could not be added to the scenario editor component without changing the HTML too drastically.

The solution was to create an additional component and service to handle the scenario list. This

division did create one issue. Because components are isolated from each other, there was no way

for the scenario editor component to know when a scenario had been loaded.

The Angular 2 documentation on component interaction had an answer to the problem, with figure

18 illustrating this solution. By creating a service to handle communication between components

and injecting it in the application’s root component it was possible to get its child components to

share the same service. The ‘providers’ property of the ‘@Component’ decorator is responsible for

this behavior. If used outside the root component, the framework would create a new service

instance for that component instead of using the existing one. (2016, cited 12.11.2016.)

FIGURE 18. Shared service declaration in AppComponent

The service created for component communication required three parts to work properly. A private

property to hold the message source, a public property which components could attach to receive

a notification when a function that changes the source is called. Figure 19 depicts the properties

and function for the message that means a new scenario has been loaded from the server, which

at this point were only hard-coded values as there was no back-end work yet done.

FIGURE 19. Parts needed for component communication

While the scenario list component could now broadcast a message by calling the

'LoadNewScenario’ function, the scenario editor component could not receive it. For that purpose,

the component had to ‘subscribe’ to the message. In other words, an event handler was created

for the message, which is illustrated in figure 20. Every time a new scenario would be loaded, the

event handler would be invoked, making the scenario editor component reset its state and refresh

its properties from the scenario editor service. This event handler is created in the ‘ngOnInit’ life-

cycle hook. If the hook is found, it is called by the framework every time the particular component

is initialized. This ensures that the process happens as it should and it is recommended by

developer guidelines.

FIGURE 20. Attaching an event handler for a component communication message

3.4 Editing functionality

Once the editor user interface was in good shape, it was time to implement the editing functionality

itself. The process itself was quite straightforward, as there was already a well-defined data

structure and an existing location on the interface where the user manipulatable elements would

be placed in.

Figure 21 is an example of how the editing functionality was fundamentally implemented. Angular

2’s powerful data-binding features required very little actual code for it to possible to change the

properties of editable elements. The changes made could also be instantly seen in the user

interface, as changing a value in an input element meant that the document had changed. The

procedure for properties which were not a simple primitive value was a bit different however.

FIGURE 21. Two-way binding of editable properties

In figure 22, the ‘ngFor’ directive was unable to process the ‘variables’ property, as it was not a

conventional JavaScript array. Instead, it was defined as a more advanced JavaScript object called

a ‘Map’, which has features comparable to a ‘Dictionary’ in C# for example. This meant that it had

built-in functionality to retrieve an object by its key. This was problematic, as changing the data

structure at this point would have needed re-writing in many places. It was not an uncommon

problem however, and a Stack Overflow answer offered the needed information. A conversion

process was needed to transform the ‘Map’ to a format the directive understood. (2016, cited

15.11.2016.) Figure 22 also illustrates how the transformation was specified through an Angular

feature called ‘pipes’. The syntax needed a vertical bar followed by the name of the transform

identifier. In this case, the used transform was ‘map’.

FIGURE 22. Binding object property

The transform function for a pipe is illustrated in figure 23. The class implements the

‘PipeTransform’ interface, with the actual transformation process happening in the ‘transform’

function. The answer was adapted for the editor’s use by changing the pipe’s name to ‘map’, which

is more descriptive considering its use. The ‘for’ loop was changed to a ‘foreach’ loop. The ‘Map’

was passed in as a parameter, and an array of objects is created from the ‘Map’. The array was

then returned to the ‘ngFor’ directive, with the key and value pair being available in each ‘variable’.

FIGURE 23. Transform function (Stack Overflow 2016, cited 15.11.2016)

One desired feature for the editor was the ability to change the position of the editable elements

with arrow keys. For this purpose, an event handler for keyboard presses was needed. A standard

‘document.getElementById’ was used to hook into the key down event which happens every time

the browser registers a keyboard press. Like the message event handler, the key down handler

was included in the ‘ngOnInit’ life-cycle hook for the same reason, to keep within development

guidelines.

The event handler for the key down event is depicted in figure 24. The handler function calls a

separate function defined in the class itself to avoid cluttering the ‘ngOnInit’ function needlessly.

The ‘OnKeyDown’ function itself first checks if any of the editable element size or position inputs

have focus, because in that case the up and down arrows can be used to adjust the number. The

key down check itself is a switch, which determines the pressed key by the keycode supplied in the

‘e’ parameter. It differentiates between the size and position changes by checking whether the shift

key is held down.

FIGURE 24. Event hook in life-cycle hook function

While elements could now be selected, and modified, a way to add new elements and operator

displays was needed. Buttons were an obvious choice for this. They were specified in the HTML

with button tags and a one-way binding was assigned to the ‘click’ property. The binding would call

an event handler which would then handle the element or display creation. There was still the

question that how the type of the new element could be specified. The answer was to use a

TypeScript feature called ‘enum’, which is a common feature in object oriented languages, like Java

or C#. An ‘enum’ is basically a list of constant values which can be used to reliably and descriptively

control logic flow.

In figure 25 is the ‘enum’ for the element types and the drop-down list in the scenario editor

component template. A property containing the numeric value of the type of the new element is

one-way bound to select element. The ‘click’ handler for the new element button takes the current

value of the ‘NewElementType’ property and creates a new instance of the corresponding element

class. It then calls a function in the scenario editor service to add the element into the scenario

container, finally setting the new element to be the active element. The handler to add a new

operator display simply created a new ‘OperatorDisplay’ class instance, called a service function

to add it to the operator display list and changed the new display to be the current one.

FIGURE 25. Enum declaration and corresponding HTML

The editing interfaces for the other properties found in a Cove Trainer scenario were created in the

same way under their respective tabs, except there was no need to bother with visible interface

elements. The remaining properties in the scenario container were ‘events’ and ‘variables’. Of these

two, only the ‘variables’ property had elements in it that would affect the user interface of the editor.

Their values would be displayed by the operator display elements. Events on the other hand had

no visible impact on the editor user interface. They only needed proper two-way bindings. Adding

new events, their sub-objects and variables were implemented in the same way as the operator

display elements.

Removing existing operator displays, their elements, events and variables was however a bit

trickier. The requirements for the editor stated that events and variables had to have restrictions on

their deletion. More specifically, it should not be possible to remove an event or variable if certain

conditions were not met. A way to enforce these restraints was needed to implement the deletion

correctly. The condition for deleting a variable was that it should not be used by any element

capable of having a variable reference. The event constraint on the other hand was that no watcher

should refer to the event about to be deleted.

These constraints were enforced by simply going through the editor data structures and checking

whether a constraint violation was occurring. An example is illustrated in figure 26, which is the

function used to check whether an event is safe to remove. If there was no violation, the function

would return a true value. In case one or more violations had occurred, it would prepare an error

message to show to the user.

FIGURE 26. Function to check if an event can removed

With the removal constraints in place, it was safe to implement the deletion functionality. For

operator display elements, events and variables simple handlers were enough. They only had to

deal with the currently active object. Operator displays themselves however required a bit more.

Because each of the elements in an operator display had a reference to some variable in the

variable list, the element reference counters for those variables had to be decremented somehow.

The solution was to create a service function which would use existing element deletion code to

remove every element in the supplied operator display. Only after that the function would delete

the display itself. This ensured that the reference counters got decremented even when deleting a

whole display.

Some of the element types used in the operator displays had images. With the editing interface

being quite narrow, it was not possible to include the image selection in it. An alternative way was

needed. The solution was to create an overlay that would appear on top of the interface. This was

a convenient way because the editor user interface was built on absolute CSS positioning.

The image overlay HTML is depicted in figure 27. The visibility of the overlay is controlled with an

‘ngIf’ directive, which evaluates the ‘ShowImagesOverlay’ property. This property in turn is toggled

through a button placed in the editing interface. This way, the images could be easily changed and

they would not take up precious screen estate when not needed. The same principle was applied

to the operator display background images and to an overlay for operator display selection

elements. These elements have a drop-down list of possible values from which one could be set

as active.

FIGURE 27. Image overlay HTML

3.5 Communicating with the server

The only remaining thing to do was implementing the server communication functionality. The

application had been built from the beginning to support this, as all data related functions already

existed in service classes. The only thing that needed to be done was to exchange hard-coded

values with real data from the server.

All server interactions were started due to user input, with the exclusion of the scenario list retrieval

happening on application start. Thus, the HTTP requests were started in component class ‘click’

handlers by calling the appropriate service functions. An example of how the HTTP requests were

done is illustrated in figure 28. This ‘click’ handler found in the scenario list component class is

called when a scenario is selected from the scenario list. The function executes a

‘ScenarioListData’ service function and subscribes to it. The service function in turn calls another

function belonging to the scenario editor’s service class, which finally triggers an HTTP get request

in the ‘JSONReaderService’.

FIGURE 28. Click handler which starts an HTTP request

This function chaining had a purpose. For some server interactions, every class involved in the

chain needed to do some work after the data had been received from the server. Because the

Angular 2 HTTP request functions return an RXJS observable, it was possible to do the required

work through the observables themselves. Figure 29 illustrates how this observable chaining was

done in practice. The function returns an object that is of type ‘Observable’ and attaches two

handlers to it. Because the handlers were essentially anonymous functions, it was possible to do

any kind of work within them. The ‘map’ function attached a handler that was called when the

request was successful. The response parameter had the returned data from the server, which the

service used to fill its component class facing properties. Finally, the handler returned the response

down the chain to the ‘click’ handler which started the request. The ‘catch’ handler on the other

hand simply returned the error message if the request failed.

FIGURE 29. Service function for loading a new scenario

Figure 30 depicts the function in ‘JSONReaderService’ which performed the communication with

the server, which could take in two parameters. The request type parameter is used to specify

which server URL the data should be retrieved from, with the second parameter being optional. It

was used to further define the request URL. The retrieved data was transformed to a friendlier

format before it was returned down the chain depending on the request type used. If the request

was to load a scenario JSON file, the parser function would create a scenario container from the

response, but in all other cases it was simply transformed into an array of strings.

FIGURE 30. HTTP request function

The same principle was applied to the ‘JSONWriterService’, which handled sending data to the

server. There was however a slight difference, because it was not very easy to write data to the

filesystem by using JavaScript. Due to this there was no need to change any function calls in

component classes and the data writing functionality could be directly implemented. Like in the

service responsible for retrieving data from the server, a function was created to orchestrate the

data sending operations. In figure 31 is a part of this function in ‘JSONWriterService’, which

illustrates the principle how the function was created. The requests are differentiated by the request

type parameter. The scenario name parameter tells the server which scenario it should work on,

and for HTTP requests which needed a request body, the scenario file parameter was used.

Depending on the request, a server compatible simple JavaScript object was created on the spot,

or parsed into one as had to be done for scenario containers.

FIGURE 31. Excerpt of data sending function

4 CONCLUSIONS

As Angular 2 is a complete rework of the framework, many of the earlier version’s principles do not

apply anymore. The Cove Trainer editor works as an example of how a more complex application

can be designed and implemented with Angular 2. The editor follows the Angular developer

guidelines and documentation for best practices to a level it was practical to do so. The code is

partitioned as outlined into HTML templates, component classes and service classes. This makes

code maintenance and feature implementation easier, as the code is split into well-defined and

independent blocks.

The biggest change however is the preferred language for the framework. TypeScript’s optional

type system can be a welcome addition to any project, as it prevents many bugs which arise from

the fact that JavaScript is not a strongly typed language. The use of classes for all parts of the

application is also a welcome change compared to the function based system used with Angular 1.

Based on this project, TypeScript is certainly a more pleasant language to work with than pure

JavaScript. Its main downside is that it needs a source code editor which has support for the

language. Microsoft’s Visual Studio 2015 and Visual Studio Code are a few examples of editors

which can understand TypeScript. The language itself might look intimidating at first to those not

familiar with statically typed languages, but even a little experience in Java or C# goes a long way.

It can be concluded that the editor meets the requirements set for it. The application can load a

scenario JSON file from the server and interpret it. It can transform the scenario back to the format

used by Cove Trainer and send it to the server to be saved. All properties within the scenario are

modifiable, it is possible to create new properties and remove existing ones. The editor view is

identical to the view presented by the Cove Trainer application itself, which was another important

consideration. Most importantly however, the editor removes the need to manually edit JSON files,

allowing the scenario designer to focus on the scenario itself. The client has also stated that they

will be taking the editor into use in their next project and will continue developing it.

5 DISCUSSION

The purpose of the thesis was to create a graphical editor for Happywise’s Cove Trainer web

application. The main requirement for the editor was that it should be capable of reading and saving

scenario files used by the Cove Trainer application. Another equally important target was to present

a view that was identical to the application user interface. Because the editor itself was speculated

to be quite complex, a framework was considered necessary to speed up development. Angular 2,

the newest iteration of the Angular framework, was chosen for this purpose.

The topic itself was quite interesting. Web application development knowledge is arguably quite

important nowadays, so it was a good opportunity to get more experience in that field. It was also

a very good opportunity to learn how Angular 2 works and how different it was from the earlier

version. It could even be said that it was enjoyable, as Angular’s documentation was good,

especially for a framework which was not fully released when this thesis was started in September.

All relevant information could be found from the documentation in a manner that was easily

understood. The take-away from this project was quite good; a solid grasp on how to build a fully

functioning Angular 2 application which communicates with a server and is able to manipulate data

according to user input.

Considering the whole process, the development task itself was quite straightforward. With a good

theoretical background, it was only a matter of employing the principles laid out in theory. I suspect

that TypeScript could have influenced this as well, as I feel more at home with strongly typed

languages. The improved IDE features also helped, as code completion was much more advanced

with TypeScript. The type system was an enormous help as well, because the editor relied on it

quite heavily.

It can be said that the result was satisfactory, as the editor does not seem to suffer from severe

bugs and the development targets were met. It was also a positive thing to know that Happywise

intends to use the editor in future projects. There are still some things which could be improved.

Currently, all of the scenario editing functionality resides in one component which is not necessarily

a good thing if the application grows in size too much. To alleviate this, separate feature

components could be created for events, variables and operator display elements. Another thing

to consider would be ahead-of-time (AoT) compilation, as the application is currently compiled in

the browser on page load. This is slower than AoT and has a higher request overhead. The

downside of this approach is that AoT has a different Node.js setup than the browser based

compiler and it can be slightly more complicated to set up.

REFERENCES

Angular. 2016. Angular modules. Cited 5.9.2016,

https://angular.io/docs/ts/latest/guide/ngmodule.html.

Angular. 2016. Architecture overview. Cited 5.9.2016,

https://angular.io/docs/ts/latest/guide/architecture.html.

Angular. 2016. Component Interaction. Cited 12.11.2016,

https://angular.io/docs/ts/latest/cookbook/component-communication.html#!#bidirectional-service.

Angular. 2016. Dependency injection. Cited 7.10.2016,

https://angular.io/docs/ts/latest/guide/dependency-injection.html.

Angular. 2016. HTTP client. Cited 16.11.2016,

https://angular.io/docs/ts/latest/guide/server-communication.html.

Angular. 2016. Lifecycle hooks. Cited 16.11.2016,

https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html.

Angular. 2016. Pipes. Cited 16.11.2016,

https://angular.io/docs/ts/latest/guide/pipes.html.

Angular. 2016. Quickstart. Cited 1.11.2016,

https://angular.io/docs/ts/latest/quickstart.html.

Microsoft. 2016. TypeScript Language Specification. Cited 12.9.2016,

https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md.

Srinivasan, A. 2014. Cloud Computing. Internal reference. Cited 1.2.2016,

http://proquest.safaribooksonline.com.ezp.oamk.fi:2048/book/operating-systems-and-server-

administration/virtualization/9789332537439/chapter-15-understanding-services-and-

applications-by-type/ch15sec5_html?uicode=ouluuas.

Stack Overflow. 2016. Access key and value of object using *ngFor. Cited 15.11.2016,

http://stackoverflow.com/a/39180582.

Stack Overflow. 2014. Javascript: Create and save a file. Cited 12.11.2016,

http://stackoverflow.com/a/29576427.

https://angular.io/docs/ts/latest/guide/ngmodule.html
https://angular.io/docs/ts/latest/guide/architecture.html
https://angular.io/docs/ts/latest/cookbook/component-communication.html#!
https://angular.io/docs/ts/latest/guide/dependency-injection.html
https://angular.io/docs/ts/latest/guide/server-communication.html
https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html
https://angular.io/docs/ts/latest/guide/pipes.html
https://angular.io/docs/ts/latest/quickstart.html
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
http://proquest.safaribooksonline.com.ezp.oamk.fi:2048/book/operating-systems-and-server-administration/virtualization/9789332537439/chapter-15-understanding-services-and-applications-by-type/ch15sec5_html?uicode=ouluuas
http://proquest.safaribooksonline.com.ezp.oamk.fi:2048/book/operating-systems-and-server-administration/virtualization/9789332537439/chapter-15-understanding-services-and-applications-by-type/ch15sec5_html?uicode=ouluuas
http://proquest.safaribooksonline.com.ezp.oamk.fi:2048/book/operating-systems-and-server-administration/virtualization/9789332537439/chapter-15-understanding-services-and-applications-by-type/ch15sec5_html?uicode=ouluuas
http://stackoverflow.com/a/39180582
http://stackoverflow.com/a/29576427

