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Dye-sensitized solar cells are an attractive technology emerging on the market because
of the advantages with respect to the traditional inorganic silicon based cells, such as
low-cost materials and fabrication processes, flexibility, light weight. Some challenges
still remain in the field of research before the cells can be further commercialized, such
as the optimization of the fabrication processes to enhance the overall cell performance,
the long-term stability, the upscaling from laboratory-size to large-scale modules.

Aim of  this Thesis  was to  analyze the performance of solar  cells  based on a novel
organic  dye  compounds  synthesized  at  Tampere  University  of  Technology  (TUT),
Department of Chemistry and Bioengineering. Experimental work and measurements
were done during training period on spring 2016, while  the devices were  fabricated
earlier in summer 2015.

Solar cells were manufactured with a commercially available ruthenium dye, and were
compared  to  devices  including  the  perylene-based  dye  synthesized  at  TUT.  The
photovoltaic devices were measured regularly over  half year  period under simulated
illumination to investigate their ability to provide electricity through an external circuit.
From the I-V characteristics of the solar cells, the power conversion efficiencies and
other important parameters could be calculated in order to compare their performance
and the aging of the devices stored in darkness in ambient conditions. In the end, results
were very promising for the home-made compound to be studied even more.
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Väriaineherkisteyt aurinkokennotovat houkutteleva uusi teknologia johtuen sen eduista
perinteisiin silikonipohjaisiin aurinkokennoihin verrattuna, kuten halvemmat materiaalit
sekä valmistusprosessit, joustavuus sekä kevytrakenteisuus. Joitakin haasteita kuitenkin
on  vielä  tutkittavana  ennenkuin  näitä  aurinkokennoja  pystytään  hyödyntämään
eteenpäin,  kuten  valmistusprosessin  optimointi,  pitkäkestoisuus,  sekä  skaalaus
laboratoriokoosta suuremman koon kennoihin.

Opinnäytetyön  tavoitteena  oli  analysoida  TTY:llä  valmistettujen  orgaanisten
väriainemolekyylien  suorituskykyä  aurinkokennoissa.  Työn  kokeellinen  osuus  sekä
mittaukset tehtiin keväällä 2016 aurinkokennoilla jotka oli valmistettu aiemmin kesällä
2015.

Aurinkokennoja  valmistettiin  yleisesti  käytössä  olevalla  rutenium  –väriaineella
herkistettynä  sekä  omatekoisella  peryleenipohjaisella  väriaineella  herkistettynä  ja
näiden suorituskykyä  ja  elinkaarta  verrattiin  toisiinsa.  Kennoja  mitattiin  säännöllisin
väliajoin puolen vuoden ajalla  simuloidulla  auringonvalolla  ja  niistä  tutkittiin niiden
kykyä  antaa  sähköä  virtapiiriin.  Virta-jännitekäyristä  laskettiin  kennojen  hyötysuhde
sekä  muita  tärkeitä  parametreja  ja  niitä  verrattiin  toisiinsa.  Tulokset  vaikuttivat
lupaavilta omatekoisen väriaineen kannalta ja sitä on aihetta tutkia lisää. 
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ABBREVIATIONS AND TERMS 

DSSC Dye-sensitized solar cell 

eV Electron volt 

FF Fill factor

FTO Fluorine-doped tin oxide

HOMO Highest occupied molecular orbital

HTM Hole transporting material

I Electric current 

Isc Short circuit current 

J Current density 

Jsc Short circuit current  density

LUMO Lowest unoccupied molecular orbital 

N719 Ruthenizer 535-bisTBA

OPV Organic photovoltaic

PMI perylene monoimide

P3HT Poly(3-hexylthiophene-2,5-diyl)

PCBM Phenyl-C61-butyric acid methyl ester

Pin Input power

Pmax power at maximum power point

ssDSSC Solid-state dye-sensitized solar cell

TAMK Tampere University of Applied Sciences 

TUT Tampere University of Technology

Voc Open circuit voltage 

ZA96 9-octyl-5,13-di(pyrrolidin-1-yl)-1Hisochromeno[6’,5’,4’:10,-

5,6]anthra[2,1,9-def]isoquinoline-1,3,8,10(9H)-tetraone



1 INTRODUCTION

Solar  cells  are  intensively and  widely researched,  since  they represent  an attractive

technology to meet the energy needs.   In  fact,  the world demand for  energy grows

rapidly and continuously, and at the same time fossil fuels resources are running out.

Moreover,  the  combustion  of  fossil  fuels  pollutes  the  environment  with  harmful

substances. The working principle of solar cells is based on the conversion of the energy

coming from sun as photons into electrons that can be injected to an electrical circuit.

The first commercial applications of photovoltaics, namely the inorganic Silicon-based

solar cells, date back to 1970’s and the dye-sensitized solar cell research was  begun in

the 1990’s (Figure 1). The need for cheaper and more environmental friendly starting

materials has led to interest in researching alternative technologies for producing solar

cells. Currently an enormous focus is on hybrid inorganic-organic solar cell, which have

proven to show interesting performances and to be at the same time the most convenient

in terms of materials and fabrication costs. (IEA 2014)

FIGURE 1. Development of dye-sensitized solar cells technologies 



There  is  much  more  solar  energy  reaching  the  earth’s  surface  than  the  humankind

currently uses. To convert solar energy into electricity it is not always needed to have

highly efficient  devices,  but  sometimes it  is  more convenient  to  connect  in  parallel

many  solar  cells  with  lower  efficiencies,  such  as  organic  solar  cells.  Commercial

inorganic silicon cells suffer from huge power losses if even one cell in the parallel

series is dusty or clouded from sun, leading up to 90 % efficiency loss (DTU 2016). On

the other hand, organic cells connected in parallel perform at almost full power, even

when a big portion of light is blocked for some of the cells (Figures 2 and 3).

FIGURE 2. Comparison of inorganic solar cell performance when part of the cell

battery is clouded (Technical University of Denmark 2016, edited)

FIGURE 3. Comparison of organic solar cell performance when part of the cell battery

is clouded (Technical University of Denmark 2016, edited)



Such  advantages  of  organic  solar  cells  explain  the  interest  on  this  technology.

Moreover, the growing number of publications per year shows that lots of effort is made

to optimize these new cell types, with the final goal of strengthening and widening their

place in  the  market.  All  work  in  this  Thesis  was  carried  out  at  the  Department  of

Chemistry  and  Bioengineering,  Tampere  University  of  Technology,  under  the

supervision of Academy post-doctoral researcher Paola Vivo.



2 THEORY BACKGROUND

2.1. Photovoltaic effect

Photovoltaic  effect  is  the  phenomenon  behind  the  solar  cells  functioning,  i.e.  the

conversion  of  sunlight  into  electricity.  A molecule  absorbs  the  energy  of  a  photon

coming from sun, which excites an electron of its outer electron shell. With this energy

the electron is capable of moving from its normal position into an electrical circuit and

generate current (Halls 2001, 377–445) (Figure 4).

FIGURE 4: Generation of current from solar power 

If  the powered circuit  is open, the electrons under sunlight  illumination cannot pass

through and only voltage can be observed from the cell, namely the open circuit voltage,

VOC. In case of closed circuit with zero ohmic load the maximal circuit current can be

measured,  which  is  termed  as  short  circuit  current,  ISC.  These  are  only  theoretical

parameters used for comparison of cell characteristics, since neither condition is able to

provide power to an external device.



Fill factor (FF) is the ratio of the maximum power that can be drawn from the device

(PMAX) and the theoretical power, as in Eq. 1:

(1)

FF is directly related to the series and shunt resistance of the cell. Higher fill factors are

achieved  by  increasing  the  shunt  resistance  and  decreasing  the  series  resistance.  A

larger FF is desirable, and corresponds to a more “square-like” shape of the I–V curve.

The power conversion efficiency of the device () can be calculated from the defined

parameters.   is  the  ratio  of  the  maximum generated  power  (PMAX)  to  the  incident

optical power reaching the solar cell (P0). Hence,  can be expressed as follows (Eq. 2).

(Vivo 2010)

   (2)

2.2. Different types of solar cells technologies

Solar cell technologies mostly revolve around semiconductor material properties, both

organic and inorganic.  Photovoltaic  cells  can be classified as first,  second and third

generation. First generation are the traditional thick wafer-based silicon solar cells, with

crystalline  silicon  being  the  light  absorbing  and  charge  separating  material.  Second

generation consists of thin-film based technologies which are cheaper, much thinner and

lower weight, flexible but less efficient than first generation. Examples of this type are

amorphous  silicon  and  Cd-Se  cells  (DTU  2016).  Third  generation  cells  are  further

explained in the next chapter.

The first two generations have the largest commercial applications, but some expamples

of organic or dye-sensitized modules have also already appeared on the market. This so-

called third generation of photovoltaics promise to combine the best  parts of earlier

generations’  cells,  i.e.  the  low  cost  and  high  efficiency.  The  third  generation

photovoltaics are based on hybrid organic-inorganic technologies such as perovskite and

dye-sensitized cells, which use organometallic compounds and also fully organic dyes.



Since they are an emerging technology and haven’t had so many years of investigation

as older technologies, many problems are still to be solved, such as the stability of the

cells.  In fact, most of the new cells which have been developed with high performance

as priority,  e.g.  perovskite-based solar cells,  usually suffer from very poor lifetimes

which makes them unconvenient for any real-life applications. A very few of the novel

cell types can last even days under solar illumination. It is thus necessary to search for

new materials with improved photostability and which are able to tolerate moisture and

oxygen  without major  worsening of  their  performances.  Alternatively,  encapsulation

solutions for the devices should be developed (DTU 2016).

2.3. Solid state dye sensitized solar cell

Solid state dye sensitized solar cells (ssDSSC) are a low-cost  emerging technology with

many potential applications in the solar energy field because of their advantages in cost-

effectiveness and stability properties compared to dye-sensitized solar cells. In fact, the

lifetime of  DSSCs  is  limited  by the  encapsulation  of  the  liquid  electrolyte,  and  its

inertness towards the iodine of which both problems are solved in the newer solid state

model (Merhari 2009, 305-306).

A  ssDSSC   differs  from  a  traditional  DSSC  in  the  hole  conductor  for  the  dye

regeneration: a solid-state hole transporting material (HTM) is here employed instead of

the  liquid  electrolyte  of  DSSC.  This  leads  to  enhanced  durability  in  terms  of

degradation and performance over time. The main advantage of ssDSSC is their robust

efficiency: they can operate for even thousands of hours without significant losses in

terms of efficiency according to measurements  performed.  Compared to many other

cells technologies and some novel research cells this is a rare feature and it motivates

further current study of this technology.

This Thesis aims to investigate a novel  metal-free dye  compound synthesized at  the

Department  of  Chemistry  and  Bioengineering  (KEB),  Tampere  University  of

Technology (TUT), as a possible sensitizer for solid-state dye sensitized solar cells. A

comparison  of  its  characteristics  with  the  well-known and  widely used  commercial

Ruthenium-dye molecule available was done, with a special focus on the aging of the

solar cells in time.



2.3.1 Different layers in solid state dye-sensitized solar cells

Solid state dye-sensitized solar cells comprise several different layers (Figure 5), which

can be described as follows: one of the two cell  electrodes is the fluorine-doped tin

oxide (FTO) layer, which acts as conducting layer for electrons; on top of that there is

the compact  titania layer,  i.e.  the electron  transporting layer  in which electrons  can

move but holes cannot; after which comes the dye sensitized mesoporous titania layer

which is responsible of the photoinduced separation of electron and holes upon light

excitation. Electron and holes travel in opposite directions. Electrons travel towards the

compact titania layer and are collected at the FTO layer, while holes are transported

through the HTM, unless the charge is recombined before. Finally, holes are collected at

the cell cathode, which is typically a silver electrode thermally evaporated on top of the

HTM. Electrons and holes that are successfully separated generate voltage between the

electrodes of solar cell, i.e. FTO and silver. 

FIGURE 5. Different layers of ssDSSC

In order to increase the efficiency over the 2nd generation solar cells, it has been shown

that by arranging the light absorbing dye on a FTO-coated “mesoporous” titania layer,

the efficiency of the cell will increase dramatically by increasing the absorbing surface

area and number of molecules capable of donating electrons. Most of the novel solar



cells  architectures  have  been  developed  in  this  way,  although  their  mass-scale

production is not so easy to achieve (DTU 2016).



2.3.2 Perylene imides

Perylene  imides  are  a  class  of  organic  compounds  with  a  very  high  visible  light

absorption, high stability and electron pair accepting capability.  They act as antenna,

similarly to chrolophyll (Figure 6) in plants: they absorb the energy of photons from sun

at different wavelengths corresponding to their color. The skeleton of the molecule is

large,  thus  there  is  much  space  for  substitution  to  modify  the  properties  of  the

compound for different needs such as absorption and solubility (Saarinen 2015).

FIGURE 6. Chlorophyll-a molecular structure

In  solar  cells,  perylene  imides  are  used as  sensitizer  molecules  for  the mesoporous

titanium dioxide layer, facilitating the movement of electrons within the cell towards the

FTO-electrode and thus increasing the final  efficiency.  Earlier experiments made for

comparison show that  with the perylene  coating of  titania layer  the efficiency is  20

times greater than without the dye molecule in ssDSSC cells (Saarinen 2015).

FIGURE 7. ZA96 molecular structure



Perylene compound ZA96, blue in color and named after its creator Dr. Zafar Ahmed of

TTY, (Figure 7) was chosen in this Thesis as one promising candidate among several

dyes  with different substitutions. By taking into account the previous experiments at

KEB  on  several  perylene  dyes,  i.e.  the  voltammetry  experiments  to  determine  the

HOMO/LUMO  energy  levels  of  the  compounds,  the  fundamental  spectroscopic

characterization and also some previous solar cell experiments, it was concluded that

ZA96 is the best option, among the perylene monoimides available at TUT, to compete

with the high performance industrial standard ruthernium red color dye, N719.

FIGURE 8. N719 molecular structure (ChemicalBook Inc. 2016)

Ruthenium element used in N719 (Figure 8) is a very rare and expensive (Bentor 2016)

element like platinum so there is great need for finding alternative replacements for it,

metal-containing and metal-free. Ruthenium-dyes show as well very good stability in

ambient air conditions, and are widely used in highly efficient solar cells. In this Thesis,

the aim is to introduce a much cheaper fully organic dye molecule, ZA96, and compare

its properties in solar cells with those of the commercial ruthenium dye, N719.



3 EXPERIMENTAL

3.1. Materials and methods

All solar cells were fabricated onto 2x2 cm substrates consisting of glass slides, with

one  side  fully  covered  with  conducting  fluorine-doped  tin  oxide,  the  work  was

conducted  in  a  cleanroom.  The  FTO  substrates  were  commercially  available  and

supplied by Solems. The dye  was either the perylene (ZA96) or the Ru-dye (N719).

Compact and mesoporous layer were fabricated immediately after each other in order to

reduce particle contamination and to make sure the interface between these layers is

clean as possible to avoid short circuiting.

 The basic structures for the cells were: 

FTO|Compact TiO2|Mesoporous TiO2|ZA96| P3HT |Ag

FTO|Compact TiO2|Mesoporous TiO2|N719| P3HT |Ag

3.1.1 Acid etching

In  order to avoid short-circuiting when contacting the top-electrode, FTO was partly

removed from the substrates by acid etching treatment. The areas where FTO is desired

were protected by kapton tape. The parts where the removal of FTO is aimed had to be

etched by dropping zinc powder and spreading 4M hydrochloric acid on top (Picture 1).

The acid was brushed with toothbrush for  a  more uniform distribution.  Finally,  the

substrate was rinsed with ethanol to neutralize the acidity.



PICTURE 1. Acid etching in action

3.1.2 Cleaning of substrates

After etching,  the substrates were thoroughly cleaned in multiple ultrasonic baths in

glass containers by following a well-know procedure. The cleaning steps are listed as

follows:

1. Brushing  the  substrates  with Hellmanex  solution  2  % in  milli-Q water  with
toothbrush

2. Ultrasonic bath with Hellmanex 2% solution for 15 minutes
3. Rinsing the plates with abundant milli-Q water and ethanol
4. Ultrasonic bath with isopropanol (IPA) solution for 15 minutes
5. Drying the substrates under nitrogen flow

Finally,  the glass substrates were placed in UV-ozone cleaner for 10 minutes before

fabrication of the layers, to remove any organic contaminant.

3.1.3 Spin-coating

Spin-coater (Picture 2) works by holding the substrate under vacuum and dropping the

solution of the material wanted to be deposited in the middle of the plate. The substrate

is then spinned and the solution will spread evenly because of centrifugal forces. 



After taking out from UV-ozone cleaner, the clean glass substrates were masked with

kapton tape to limit the active area only to the central part of the plate. Both thin-film

titania layer and also the mesoporous titania layer were deposited by spin-coating and

the films where then sintered at high temperatures. The hole-transport material, P3HT,

was also spin-coated after deposition of the dye layer.

PICTURE 2. Spin-coater machine used in the experiments

Program used in the spin-coater was different for compact- and mesoporous-, and P3HT

layers,  since  the  solutions  were  of  different  viscosity,  concentration  and  required

different  temperatures afterprocessing. The parameters shown in following tables 1, 2

and 3 were programmed for each layer separately:

TABLE 1. Spin-coater program for compact TiO2 layer

Acceleration: 3000 rpm/s
Speed: 3000 rpm
Time: 30 s
Volume: 70 μl
Solvent: anhydrous IPA
Concentration: N/A

Precursor solution for compact layer was made by adding solution 1 prepared as below

to solution 2, also shown below, dropwise under stirring.



Solution 1:

1.25 ml of anhydrous 2-propanol

175 μl of titanium isopropoxide

Solution 2:

1.25 ml anhydrous 2-propanol

17.5 μl of 2 M HCl

After  spin-coating  the  compact  layer,  the  mesoporous  layer  was  spin-coated

immediately after 10 minutes of drying at 120 C and cooling down.

TABLE 2. Spin-coater program for mesoporous 30-NR-D type TiO2

Acceleration: 2000 rpm/s
Speed: 4000 rpm
Time: 10 s
Volume: 50 μl
Solvent: anhydrous IPA
Concentration: 0,8 g/ml

Mesoporous layer was dried at 100  C for 8 minutes after which the substrates were
placed in furnace and sintered.

P3HT layer  was  spin-coated only after  deposition of  the dye  layer,  program shown
below. 

TABLE 3. Spin-coater program for P3HT

Acceleration: N/A
Speed: 2000 rpm
Time: 30 sec
Volume: 60 ul
Solvent: Chlorobenzene
Concentration: 20 mg/mL

After spin-coating, the plates were annealed at 140  C for 20 minutes under vacuum.

Once the annealing was completed, the organic film was removed from the part of the

plates where the electric contacts will be placed.  This was done  by using cotton swabs

dipped in chloroform.



3.1.4 Sintering

In order to form the correct crystal structure, the titania films were placed in a furnace

and heated up to 450 C by following a strict temperature ramp. The temperatures and

the heating steps were as described in Table 4.

TABLE 4. Standard sintering procedure (for both mesoporous and compact TiO2)

Ramp (min) 5 15 5 5 60
Temp (°C) 125 325 375 450 150
Hold (min) 5 5 5 30

3.1.5 Dye deposition

After the mesoporous layer,  dyes were deposited by placing the substrates that were

heated to 150 C for 1 hour for moisture removal in advance and then cooled down to

room temperature  by  blowing  nitrogen,  in  the  dye  solution  (0,1mM)  that  was  also

heated to 80 C in order to improve solubility. The solution was left to 80 C heat block

for 24 hours and then dipped in the same solvent as the dye (1:1 toluene:ethanol v/v) 2

times.

3.1.6 Thermal evaporation of top electrode

Finally, the solar cell structures were completed with the top-electrode preparation, i.e. a

silver  (Ag)  electrode.  This  was  done  by  thermally  evaporating  silver  pellets  in  a

Edwards  high-vacuum chamber  (P =  10-6 mbar).  Before  the  evaporation,  they were

masked to limit the active area of each solar cell to 0.1 cm2. The thickness of the Ag

electrode was 150 nm.

3.2. Characterization of solar cells

Solar cells were characterized after their fabrication by measuring their current-voltage

(I-V) curves under simulated sunlight illumination (Picture 3) to calculate parameters



such  as  short-circuit  current,  open  circuit  voltage,  fill  factor  and  power  conversion

efficiency. The whole characterization, as well as the fabrication, took place in ambient

air, without any encapsulation of the devices. Size of the active areas were  accurately

evaluated by an optical Dino-Lite AM4113ZTL microscope  with 35X magnification.

The  I-V  characterization  was  recorded  over  a  half  year  period  and  the  data  were

collected into a table, as described in next chapter.

PICTURE 3: Solar simulator setup

Main error in the efficiency measurements derived from the lack of homogeneity of the

illumation source.  However,  the light  intensity was checked with a reference silicon

solar cell  before each set of measurements. Moreover,  the purpose of this work is a

relative comparison between the perylene dye-containing cells and those containing the

ruthenium-dye.  Thus,  the  error  resulting  from  the  unhomogeneous  light  source  is

negligible and not affecting the conclusions of this work. 



4 RESULTS AND DISCUSSION

Efficiencies, open circuit voltages and also short circuit currents and fill factors of the

best performing samples have been calculated from raw data of the I-V measurements

which is presented in Appendix 1. Cells with most suitable properties for long-term use

or which give the best responses still after a long time have been chosen for comparison

for future research and their results have been presented as tables and charts of results.

Highest efficiencies measured for each sample, calculated from Appendix 1:

ZA96 (Sample  1, week 27/2015),  highest   = 1,9 % (Sample  1, week 27/2015),

remaining efficiency at 16.5.2016: 0,64 %

N719 (Sample 2,  week 28/2015),   highest   = 2,2 % (Sample  2,  week 28/2015),

remaining efficiency at 16.5.2016:  = 0,84 %

I-V curves for the champions cells, i.e. the best performing devices, containing the two

compounds are depicted in Figure 9 and 10.
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FIGURE 9: ZA96 solar cell I-V curve (Sample 1, week 27/2015)
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FIGURE 10: N719 solar cell I-V curve (Sample 2, week 28/2015)

As mentioned in theory part of this Thesis, the more square-like the shape of the IV-

curve is, the better it performs in general. Both compounds have this property in their

illuminated curve and show a quick rise in the current density from plus to minus only

after 0,6 volts which indicates good open circuit voltage usually also leading to high

efficiencies.

Calculated degradation parameters showed similar shape for most samples, presented

below  is  the  sample  with  most  successful  and  highest  quality  measurements  for

degradation  analysis,  N719  (week  29,  sample  2).  All  following  results  have  been

calculated  from  raw  data  presented  in  the  end  of  Thesis  with  formulas  and  terms

introduced in Chapter 2.1.



TABLE 5: Calculated efficiencies for N719 (week 28, sample 2)

 time, h PCE, %
10.8.2015 1 1,98
13.8.2015 72 2,25
15.8.2015 120 1,91
17.7.2015 168 1,84
20.7.2015 240 1,94
27.7.2015 408 1,68
3.8.2015 576 1,87

10.8.2015 744 1,68
17.8.2015 912 1,42
25.8.2015 1104 1,34
31.8.2015 1255 1,33
15.9.2015 1615 1,40
10.3.2016 5857 1,06
5.4.2016 6481 0,96

16.5.2016 7489 0,84

FIGURE 11: Calculated efficiencies for N719 shown as chart (week 28, sample 2)

TABLE 6: N719 sample, calculated short circuit current density (week 28, sample 2)

 time, h JSC, mA/cm2 

10.7.2015 1 6,45
13.7.2015 72 7,38
15.7.2015 120 6,38
17.7.2015 168 5,91
20.7.2015 240 6,52
27.7.2015 408 5,73
3.8.2015 576 6,63

10.8.2015 744 5,90
17.8.2015 912 5,31
24.8.2015 1085 4,45
25.8.2015 1104 5,19
31.8.2015 1255 4,65
15.9.2015 1615 5,10
10.3.2016 5857 3,95
5.4.2016 6481 3,48

16.5.2016 7489 2,10



FIGURE 12: Calculated short circuit current density for N719 shown as chart (week 28,

sample 2)

TABLE 7: N719 sample, calculated open circuit voltage (week 28, sample 2)

time, h UOC, V
10.7.2015 1 0,67
13.7.2015 72 0,69
15.7.2015 120 0,68
17.7.2015 168 0,69
20.7.2015 240 0,68
27.7.2015 408 0,67
3.8.2015 576 0,66

10.8.2015 744 0,66
17.8.2015 912 0,63
25.8.2015 1104 0,61
31.8.2015 1255 0,65
15..9.2015 1615 0,64
10.3.2016 5857 0,58
5.4.2016 6481 0,59

16.5.2016 7489 0,58

FIGURE 13: Calculated open circuit voltage for N719 shown as chart (week 28, sample

2)

TABLE 8: N719 sample, calculated Fill factor (week 28, sample 2)

time, h FF
10.7.2015 1 0,45
13.7.2015 72 0,43
15.7.2015 120 0,43
17.7.2015 168 0,45
20.7.2015 240 0,43
27.7.2015 408 0,43
3.8.2015 576 0,42

10.8.2015 744 0,43
17.8.2015 912 0,42
25.8.2015 1104 0,42
31.8.2015 1255 0,44
15.9.2015 1615 0,43
10.3.2016 5857 0,46
5.4.2016 6481 0,47

16.5.2016 7489 0,68



FIGURE 14: Calculated fill factor for N719 shown as chart (week 28, sample 2)

Results show a rise to peak efficiency only after 2 to 3 days of time which is expected

behavior for this type of cells. After this there can be observed a stable drop in every

parameter  over  time  which  indicates  the  cells  are  clearly  degrading  in  terms  of

efficiency and usability.  Only Fill factor  is showing higher numbers but this is only

because it usually does not change from original state except when there are changes or

defects forming in the cell inevitably leading to disfunction or short circuiting soon as is

the case with this cell after around 8000 hours of lifetime.

Altough the lifetime of  one year  with over  half  of  the maximum efficiency can be

considered very long for research cells, it is still not enough to be considered usable for

commercial purposes but it should be noted that in this case no kind of encapsulation of

cells was applied which could in best case even dramatically increase the lifetime. It

would be very interesting to see in future research how different kinds of transparent

encapsulation  materials  with  low  light  absorbtion  like  plastics  could  effect  the

degradation.



5 CONCLUSION

Aim of  this  Thesis  was  to  analyse  the  performance  of  a  novel  perylene-based  dye

synthesized  at  Tampere  University  of  Technology,  ZA96,  and  compare  it  to  the

commercial and widely used ruthenium-dye N719. The perylene imide compound was

found to  be  competitive  with  the  ruthenium dye  in  terms  of  device  efficiency  and

stability. 

This  may  allow  the  replacement  of  the  expensive  N719  with  cheaper  and  more

environmental  friendly  perylene  sensitizer  for  solid-state  dye  sensitized  solar  cells.

Results show that ZA96 was able to reach almost the same efficiency (1.9%) as the

commercial N719 dye, (2.2 %) which under optimization has been proven capable of

reaching performance over 10%. Important to notice is also that ZA96 showed a slower

degradation in most of the aging tests. The results are interesting since there has not

been  many  alternative  low-cost  compounds  capable  of  reaching  the  efficiency  and

stability of N719 standard dye. 

The efficiencies  achieved  in  this  work are still  modest.  However,  it  is  important  to

underline that  no optimization of  the different  solar  cell  layer  thicknesses  had been

carried out, and that the whole fabrication and characterization took place in ambient

air. In order to reach and possibly overcome the state-of-the-art performances of solid

state  dye  sensitized  solar  cells,  further  research  is  thus  needed  to  optimize  the

fabrication conditions of the solar cells, starting from the promising results presented in

this Thesis. 

Much was learned about the operation and production of solar cells and how they are

characterized and what laboratory work is involved in their research. Cleanroom work

was also involved with methods not yet  familiar from school like anhydrous solvent

usage and a lot of small tasks inside and outside laboratory,  including computer data

processing. 
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7 APPENDICES 

Appendix 1. Raw data examples from IV-measurements of 3 days used in calculation of

efficiency and degradation results of ZA96 and N719






