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1 INTRODUCTION 

1.1 Background 

Differential scanning calorimetry is a technique which combines the ease of measure-

ment of heating and cooling curves with the quantitative features of caloreimetry. The 

fundamentals of the method were first explored in the early 1960s in Perkin-Elemer cal-

orimeters [11]. Recently, many articles related to DSC have been published. Together 

with X-ray diffraction, DSC has become the principal methods of studying and control-

ling the state of polymeric materials.  

 

DSC is an analysis method that combines traditional equilibrium calorimetry with the 

dynamic analysis of thermal processes. Hence, DSC offers possibilities to determine 

both thermodynamic parameters of substances, i.e. heat capacity, its changes, tempera-

ture, enthalpy, entropy of phase transitions, and the kinetic characteristic of processes 

and relaxation transition under linear temperature change. 

 

The macromolecules studied are star-shape block copolymers with calixarene core and 

eight block copolymer arms. The [1n]metacyclophanes are known as calixarene exhibit 

unique properties in host-guest complex chemistry. In molecular scale, the conformation 

forms internal cavities of different size by a belt of phenyl ring. These cavities have the 

ability to accommodate guest molecules of a certain size. This feature helps calixarene 

to be considered in molecular recognition application [4]. On the other hand, due to the 

trend to form micelles with narrow molecular weight distribution, calixarene is a sub-

stance under intensive research in drug delivery. 

 

The synthesized copolymers were prepared by Prof. A.V. Tenkovtsev’s research group 

at the Institute of Macromolecular Compounds of Russian Academy of Science in Rus-

sia. Star-shaped macromolecules with calixarene core synthesized to neutral am-

phiphilic block copolymer arms, i.e. brij 58 and thermo-responsive poly(2-isopropyl-2-

oxazoline) arms were two of the studied substances. 
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1.2 Statement of objective 

The objective of this thesis is to characterizing thermal behavior of studied polymers. 

The experiments were conducted by Differential scanning calorimetry (Mettler Toledo 

DSC 822). The glass transition temperatures, melting point, enthalpy at phase transition 

are the main studied objectives. 

 

1.3 Scopes and limitations 

The DSC results are necessary values in order to be aware of thermal behavior of oli-

gomer arms as well as star-shaped copolymers. The physical, mechanical properties of 

macromolecules are influenced by thermal condition and thermal history.  

 

The limitation of this thesis is studying method just only focused on DSC, excluding 

other analysis methods such as NMR, TGA, etc.  
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2 LITERATURE REVIEW 

2.1 Definition of terms 

2.1.1 Glass transition temperature, Tg 

Glass transition temperature, Tg, is temperature point where below it, materials behave 

like glassy material, hard and brittle, polymer chains are frozen. Above Tg,  the  amor-

phous segment of polymer chain network start to vibrate at certain degree, materials ex-

hibit rubbery properties.    

2.1.2 Melting point, Tm 

The melting temperature, Tm, derived from crystalline segment in polymer network. 

When sample’s temperature reach to Tm, small crystalline segment start to melt first, 

then as temperature increasing more, larger segment melt until largest one.  

 
The melting temperature is characterized by the top of endotherm peak of experimental 

DSC curve. As observed polymer’s temperature reach to melting point, the small crys-

tals start to melt by absorbing thermal energy. Next, larger to largest crystals were also 

melting when thermal energy absorption grows up. This process was detected by heat 

flux curve drop down to forming endotherm peak. On the other hand, the crystal crea-

tion is an exothermic process which release energy from investigated system. 

2.1.3  Enthalpy change, H; maximum enthalpy change, Hm
0 

Enthalpy change, H, is the change of energy transfer between investigated system and 

surrounding environment. If the system releases energy, it’s called exothermic process. 

And if the system absorbs energy, it is called endothermic process. In DSC, the enthalpy 

is determined by the area of endotherm peaks or exothermic peaks. 

Maximum enthalpy change, Hm
0, is the maximum energy transfer of a specified pure 

crystal material which the crystallinity degree reaches to maximum point.  
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2.1.4 Surfactant 

A substance is called surfactant when it contains both hydrophilic (aqueous soluble) and 

hydrophobic groups (oil soluble), i.e. amphiphilic, in its molecular structure. In aqueous 

solution, surfactants tend to create micelles, colloid in which hydrophobic groups form 

inner core and hydrophilic groups form outer layer. The micelles structure forms oppo-

sitely in inorganic solution. 

 

Figure 1Micelles structure [Carlota Oliveira Rangel-Yagui1, Adalberto Pessoa Junior, Leoberto Costa Tavares] 

2.1.5 Amorphous, crystalline, degree of crystallinity 

Solid macromolecules consist of two ordinary regions, crystals and amorphous region. 

In crystalline, polymer chains arrange in one direction. On the other hand, in amorphous 

regions, polymer chains are organized randomly. In practical, there are no 100% crystal-

line polymeric materials; most of them are semi-crystalline polymers.  

The ratio of H and Hm0 determine the crystallinity degree (  DSC) of the investigated 

sample.  

 DSC = % 
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2.1.6 Thermo-responsive polymer, poly(2-propyl-2-oxazoline) 

Poly(2-isopropyl-2-oxazoline) is one of common thermo-responsive polymer. In aque-

ous solution, if the temperature below the LCST (~40 0C), the amide group of this pol-

ymer are dramatically hydrated resulting in macromolecules turn out to be hydrophilic.  

Above the LCST, the degree of hydration declines and intermolecular hydrogen forms a 

bond between amide fragments. The macromolecules transform to globular confor-

mation resulting in hydrophobic and precipitate in aqueous solution [7]. 

N O

CH3 CH3

 

 

2.2 Differential Scanning Calorimetry 

2.2.1 DSC principles 

DSC belongs to physical and physcico-chemical methods of thermal analysis which are 

used to detecting thermal energy (enthalpy) changes in observed substances. Primarily, 

thermometry (temperature measuring method) includes differential thermal analysis 

(DTA).  

DTA’s principle is measuring the temperature difference between studied substance and 

reference sample during transition phase. The studied substance and reference are sup-

plied with the same amount of thermal energy from heater and the temperature is rec-

orded by thermal e.m.f of a thermocouple contacting the sample at one point. This is a 

weakness of DTA, and can be eliminated by accurate calorimetric measurement. 



15 

 

 

Figure 2 Diagrammatic view of calorimeter chambers in DTA 

 

DSC is based on heating and, cooling one sample and one reference at a certain rate and 

measuring the compensating heat flux that keep the temperature of both substances the 

same. To keep the same temperature of sample and reference, two individual heaters are 

used to supply heat.  

The experimental DSC curve shows the heat flux (mJ/s) or specific heat capacity Cp 

(J/gK) versus temperature. The compensating heat flux between the sample and the ref-

erence is directly proportional to the change in the internal energy (enthalpy). Conse-

quently, when determining the internal energy, there is no need to convert recorded data 

by mathematic models as in quantitative DTA. 
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Figure 3 Diagrammatic view of calorimeter chambers in DSC 

 

In both DTA and DSC, thermal resistance R includes Rs and R0 component. Rs is ther-

mal resistance detected by the sample itself and is influenced by thermal contact of the 

surface of the sample with its capsule (holder), i.e. the shape of the sample, and how it 

is manipulated and pressed into the capsule.  

= +  

2.2.2 Component 

Mainly, Mettler Toledo DSC 822 machine includes liquid nitrogen tanks, automatic 

furnace, and robot sample. DSC is controlled by an installed program,  

DSC experiment is a series of heating and cooling processes in which electrical resistors 

respond to heating; and nitrogen liquid to cooling. To keep the temperature precisely 

following the programmed temperature rate, cooling work is conducted by two separate 

nitrogen liquid tanks. One main nitrogen tank may be refilled after several experiment 

runs. The other one just provides a small amount of nitrogen liquid when temperature 

almost reaches to ending temperature. This tank may be refilled only by an authorized 

person annually.  
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The function of a sample robot is to take the capsule from a sample dish to the furnace 

with reasonable force in the attempt to avoid over-force applying which may deform the 

capsule.  

One essential accessory of DSC is a capsule press. The capsules include an aluminium 

pan and a cap which must be sealed together.  

 

Figure 4 Nitrogen liquid tank 
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Figure 5 Capsule press and milligram scale. 

 

 

Figure 6 Automatic furnace 
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Figure 7 Automatic Robot hand and samples dish. 

 

2.2.3 Calibration 

Calibration is an essential requirement for every thermal analytical study. Calibration is 

the establishment of a defined relationship between a value of a quantity indicated by 

measuring instrument and the true value (E. Gmelin, St.M. Sarge). Indium is the most 

common calibration substance in DSC due to its well identified heat of fusion and melt-

ing point.  

2.3 Techniques 

2.3.1 Blank curve subtraction 

In practical, it is not possible to obtain perfect zero-line heat flux curve even between 

empty sample system and empty reference system over entire temperature range. To 

obtain the real heat flow rate into the sample, the blank curve is essentially subtracted 
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from the actually measured curve. Initially, the blank curve is detected by two empty 

capsules at reference and sample positions. 

Each experimental method has a specific temperature range, cycle, rate which makes its 

blank curve become unique. Hence, when changing to a new experimental method, new 

blank curve must be determined. 

2.3.2 Temperature rate 

Obviously, temperature rate influences experimental DSC curves. At low rate, the stud-

ied substance has more time to re-arrange network structure which may alter initial state 

of substance, resulting in high crystallization degree. On the other hand, accurate results 

might be achieved at high temperature rate, however if thermal conducting coefficient 

of studied substance was high, unequal temperature at different layers could affect final 

results.   

2.3.3 Sample weight 

Normally the sample’s weight for DSC varies from 2 mg to 4 mg. If the sample was too 

little, less than 1mg, the enthalpy change would also be very small, it’s difficult for DSC 

detect.  On the other hand, too much sample is neither good due to thermal gradient. 

The temperature is not homogenous at every point, the deepest point where contact to 

pan is hotter than others. If the sample has high thermal resistance, it takes more time to 

transfer heat from outer surface to inner area. 

2.3.4 Self-nucleation 

The crystals rise up from pre-existing nuclei, left over by the prior small crystals in pri-

or, incomplete melting or dissolution is called self-nucleation (B. Wunderlich, et al).  In 

self-nucleation, crystallinity degree increase due to more amorphous chains involving in 

nucleation process. 

For instance, Polypropylene (PP) is measured by two different methods to study thermal 

history effect of polymeric materials. In first measurement method, PP is heated over 

melting temperature without any interruption, the crystallinity from 32.35% to 38.25%. 
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However, at the same heating rate of 10 0C/min, the second method with interruption at 

1600C obtains a significantly higher degree of crystallinity, i.e. 49.23%. PP is heated to 

1600C, then cooled down to room temperature before heated up again over melting 

point.  

 

3 Method 

3.1 Materials 

3.1.1 Brij 58 and Brij 58 star-shaped polymer. 

Brij 58 is a trademark name of polyoxyethylene-20-cetyl-ether, a non-ionic surfactant 

which is commonly used in biochemical applications. In brij 58 molecular structure, 

there are both water soluble (polyoxyethylene) and organic soluble (alkyl chain) seg-

ments. 

CH3 O
OH

20  

Figure 9 Brij 58 molecular structure 

The following synthesis process was presented by A.V Tenkovtsev, et al [***]  

mW
10

°C40 60 80 100 120 140 160 180 200

^ex o

S TA Re S W 10.00Lab:  M E TTLE R  

mW
10

°C40 60 80 100 120 140 160 180 200

^ex o

STA Re S W 10.00Lab:  M E TTLE R  

Figure 8 DSC curves of Polypropylene. With self-nucleation effect (right). Without self-nucleation effect (left) 
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(I) (II)

(III) (IV)  

Figure 10 the synthetic route to star-shape block copolymer with brij 58 arms 

5,11,17,23,35,41,47-Octa-tert-butyl-9,50,51,52,53,54,55,56-

octakis(carbomethoxy)calix[8]arene octamethyl ester (I) 

A mixture of dried sodium iodide (3 g, 20 mmol) and methyl chloroacetate (2 g, 18 

mmol) in 50 ml of dry acetone was stirred for 20 min, and then NaCl was filtered off. A 

suspension of potassium carbonate (5 g, 36 mmol) and octa-tert-butylcalix[8]arene (1.3 

g, 1 mmol) in 100 ml of acetone solvent was added to stirred filtrate. Whole mixture 

was heated up for 6 hour and was recrystallized from ethanol.  

5,11,17,23,29,35,41,47-OCta-tert-butyl-9,50,51,52,53,54,55,56-

octakis(carboxymethoxy)calix[8]arene (II) 

A 30 ml of 5% NaOH (ethanol/water 1/1 v/v solution) and 0.9 g (0.48 mmol) of (I) was 

boiled for 2 hour. The precipitate formed was filtered off, dried, and recrystallized by 

methanol. 
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5,11,17,23,29,35,41,47-OCta-tert-butyl-9,50,51,52,53,54,55,56-

octakis(chlorocarbonloxymethoxy)calix[8]arene (III) 

A suspension of (II) (0.42 g, 0.24 mmol), SOCl2 (5 ml) and bezene (20 ml) was stirred 

under reflux for 2 hour. And then the suspension was dried and recrystallized by hex-

ane. 

5,11,17,23,29,35,41,47-OCta-tert-butyl-9,50,51,52,53,54,55,56-

octakis(carboxymethoxy)calix[8]arene octa(eicosaethylene glycol hexadecyl ether) 

ester (IV) 

 solution of -cetyl- -hydroxyoligoethylene oxide (Mw=1000 g/mol, Brij 58) and 

(III) (0.27 g, 0.14 mmol) in 2 ml of dodecane was heated at 180 oC during 2 h under ar-

gon atmosphere. Methylene chloride (1 ml) and hexane (50 ml) were used to recrystal-

lize solution. 

3.1.2 Thermo-responsive oligomner 2-isopropyl-2-oxazoline and its star-
shaped polymer. 

The thermo-responsive oligomer and its polymer were synthesized by A.V. Tenkovtsev, 

et al. The synthesis processes was published at Polymer Science in 2011.  
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*
*
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*
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O
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O
CH3

CH3
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m

 

Figure 11 the synthetic route to star-shape block copolymer with thermo-reponsive oligomer arms 

 

A solution of octa-tert-butylcalix[8]arene (1 g, 0.77 mmol) and anhydrous pyridine (1 

mL) was prepared and cooled to 0 0C. A solution of -bromoalkanoic chloride( 3.5 g) 

was adder under intense stirring. After 3 three day staying at room temperature, the mix-

ture was washed with 0.1 M hydrochloric acid, a saturated solution of sodium bicar-

bonate, and water. The precipitated layer was dyried under vacuum condition and mag-

nesium sulfate. 

Polymerization of 2-isopropyl-2-oxazoline initiated by octa-ter-butylcalix[8]arene 

octa(11-bromoindecanoate) 

A desired amount of initiator and mixture of 2-isopropyl-2-oxazoline and octa-ter-

butylcalix[8]arene octa(11-bromoindecanoate) was frozen to -196 0C in an ampoule in 

an  atmosphere  of  argon.  And then,  the  ampoule  was  sealed  and  heated  at  70  0C for  a  

certain time. After heating period, aqueous ethanol (1 ML, 50 %) was added to ampoule 

and stay at room temperature for 24 hour. The solvent and the unreacted monomer were 

removed by heating (100 0C) in vacuum. Last, the polymer was dissolved in water, dia-

lyzed against water for 24 hour, and lyophilized. 
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3.2 Experimental 

A tiny amount of observed sample, 2-4 milligrams, was weighted by milligram scale. 

Tolerance was to be accurate up to 0.01 milligram. Then the capsule was sealed by 

sample  press,  and  placed  on  a  sample  dish.  One  empty  capsule  also  was  prepared  to  

measure the blank curve. 

Before preparing sample capsules, the liquid nitrogen tank had to be filled to ensure that 

there was enough liquid nitrogen during the whole measurement.  

The sample capsules were put into a furnace automatically by a robot hand. The meas-

urement was started when initial temperature had been reached. Usually, the initial tem-

perature is set at room temperature.  

As mentioned above, the temperature rate is a vital parameter which influences the DSC 

results. In this study, the heating rate may differ from cooling rate in order to save ex-

perimental time. 

3.2.1 Brij 58 

The experimental method for brij 58 and its polymers had five segments. The tempera-

ture range is from -150 0C to 50 0C with 20 0C/min or 10 0C/min rate. 

Table 1 DSC method for brij 58 and its polymer 

Order Temperature range (0C) Temperature rate (0C/min) 

1 25 …-150 -20 

2 -150…50 10 

3 50…-150 -20 

4 -150…50 10 

5 50..25 -20 
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3.2.2 Thermo-responsive polymer 

For thermo-responsive polymer, temperature rate remained at one certain temperature 

rate. If the rate changed, the studied polymers responded another way. These substances 

were studied under two separate methods with 10 0C/min and 20 0C/min temperature 

rates. 

 

Table 2 DSC method for thermo-responsive oligomer and its polymers. Temperature rate 10 0C/min 

Order Temperature range (0C) Temperature rate (0C/min) 

1 25 …-50 -10 

2 -50…250 10 

3 250 0 (*) 

4 250…-50 -10 

5 -50…250 10 

6 250 0 (*) 

7 250…25 -10 

(*) Isothermal segments, i.e. temperature remained at 250 0C for 10 min. 

 

Table 3 DSC method for thermo-responsive oligomer and its polymers. Temperature rate 20 0C/min 

Order Temperature range (0C) Temperature rate (0C/min) 

1 25 …280 10 

2 280…25 -10 

3 25…280 10 

4 280…25 -10 
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4 RESULTS AND DISCUSSION 

4.1 Brij 58 

Brij 58 was purchased from Sigma-Aldrich, has homogeneous length with narrow mo-

lecular weight distribution, polymer dispersion (PD), 1.087. According to Fig. 12, glass 

transition temperature was observed at -137 0C in the second heating run.  

The first and second heating-cooling cycle gave quite similar heat flux curves, hence the 

second cycle was chosen to analyse. From 37 0C, sample absorbed heat to melt crystal 

regions, experimental DSC curve create endotherm melting peak. The area of melting 

peak determines directly the enthalpy of melting of the polymer, Hm, i.e. 147 J/g.  

In cooling turn, a clear exothermal peak formed at 23 0C with correlative enthalpy re-

leased, 150 J/g. The polymer sample release heat energy to form crystal regions. 

 

Figure 12 DSC curves of brij 58. Cooling curve (top), first heating curve (middle), second heating curve (bottom). 

 

mW
50

°C-140 -120 -100 -80 -60 -40 -20 0 20

^exo

S TA Re S W 10.00Lab: M E TTLE R  
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4.2 Brij 58 star-shaped polymer 

The synthesized Brij 58 star-shaped polymer displayed multi-melting peaks in the first 

cycle. The multiplicity of endotherm melting peaks could be caused by various reasons. 

For instance, reorganization of metastable crystals from folded chains; recrystallization 

of folded chain crystals; phase transition in solid polymers preceding melting; melting 

and isotropization of liquid-crystalline polymers; the appearance of inter- and intermo-

lecular melting steps in a highly oriented polymer, etc 11 . However, there are two re-

markable possibilities, the presence of crystal with two or more sizes, and the presence 

of crystal varying in structure in polymer. 

Star-shaped polymerization was a complex process with many reactions and purification 

steps resulting in several average molecular weights of synthesized polymers. Accord-

ing to SEC results, there were two major molar mass peaks, one had Mw 10 049 g/mol, 

another had 1 899 g/mol. Those with different molar mass formed different size crystal 

leading to multiplicity in observed DSC curves. 

 

Figure 13 DSC curves of star-shape block copolymer with calixaren core and Brij 58 arms. Cooling curve (top), first 
heating curve (middle), second heating curve (bottom). 

mW
20
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The glass transition of star-shaped copolymer was also determined at very low tempera-

ture, i.e. -136 0C, as same as polymer arms. The melting point was similar to brij 58, 36 
0C.  Nevertheless,  the  enthalpy  of  star-shape  polymer  (83  J/g)  was  much  smaller  than  

arm polymer, brij 58, (147 J/g). The star-shaped molecular structure may influence crys-

tallinity of brij 58, prevent brij 58 to form crystals. The arms were grown up from ca-

lixarene core, hence arms were not able to orientate in one direction to form crystals.  

 

4.3 Oligomer 2-isopropyl-2-oxazoline-(CH2)10COOC2H5 

Obviously, thermal history, also called prehistory, of oligomer sample influenced the 

first experimental cycle curve. The glass transition was not detected well in the first cy-

cle.  

 

Figure 14 DSC curves of thermo-responsive oligomer. Temperature rate 10 0C/min. First cycle run (left). Second 
cycle run (right) 

 

A remarkable difference between the first and second cycle was endotherm peak ap-

peared only on the first heating segment. The endotherm peak may correspond to crystal 

melting or polymer degradation. In case of degradation, the glass transition was sup-

ported to disappear from the second heating cycle, since the material was already 

“burned off”. However, glass transition temperature was clearly determined at 56 0C. 

Thus endotherm peak could only represent for residual degradation. Some residuals may 

remain in product after synthesis processes.   
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On the other hand, endotherm peak may be raised by crystal melting, and was irreversi-

ble. The crystals were formed in synthesis processes as crystal melted by heat, they can-

not be recrystallized again. In POM’s observation, there was no crystalline in both oli-

gomer and polymer at room temperature (Appendix). 

 

Figure 15 DSC curves of oligomer 2-isopropyl-2-oxazoline-(CH2)10COOC2H5. Temperature rate at 20 0C/min. 
First cycle run (left). Second cycle run (right) 

 

The phenomenon of reversible glass transition and irreversible recrystallization were 

repeated in heating rate of 20 0C experiment.  

4.4 Thermo-responsive star-shaped block copolymer 

Star-shaped copolymer with thermo-responsive arms gave a similar glass transition 

temperature, 58 0C, 60 0C for 10 0C/min and 20 0C/min heating rate, respectively. How-

ever, during the first heating run, endotherm peak was not seen.  
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Figure 16 DSC curves of thermo-responsive star-shaped block copolymer. Temperature rate at 10 0C/min. First cy-
cle run (left). Second cycle run (right) 

 

 

 

Figure 17 DSC curves of thermo-responsive star-shaped block copolymer. Temperature rate at 20 0C/min. First cy-
cle run (left). Second cycle run (right) 
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5 CONCLUSION 

Each of the studied substances gave different thermal behaviors when they were meas-

ured by DSC. Their nature were the primary factors that shaped the results, followed by 

experimental parameters such as temperature rate, sample weight, sample form, and 

thermal history, etc.  

Generally, all substances show repeated DSC results at different temperature rates.  Brij 

58 oligomer and its polymer are semi-crystalline material which showed glass transition 

and endotherm peak in DSC curves. Thermo-responsive oligomer was quite special 

when it showed endotherm peak at the first heating run. However, the similar glass tran-

sition temperatures were determined in both oligomer and polymer. 

 To understand fully the behaviour of these substances, further analysis method must be 

conducted. For instance, Nuclear magnetic resonance is a powerful method to study mo-

lecular structure in order to detect residuals in the samples.   
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APPENDIX 

Polarized optical microscope (POM) 

 

Polarized optical microscope is designed to observe specimens that are visible primarily 

due to their optically anisotropic property. As illustrated in Figure 18, incident light 

from source comes through the first polarizer which transforms incident light to one 

plane polarized light. Since polarized light passes through birefringent specimen, two 

individual wave components (ordinary and extraordinary rays) are separately polarized 

in mutually perpendicular planes, are produced. Then the light components are recom-

bined with constructive and destructive interference when they pass through the analys-

er. 

 

 

Figure 18 Schematic of the principle of polarized optical microscopy. Nikon  
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Polarized optical microscope is able to study several parameters such as absorption col-

our, optical path boundaries between minerals of differing refractive indices, in a man-

ner similar to bright-field illumination, and also distinguish between crystalline and 

amorphous macromolecules. 

 

A supplementary of POM is hot-stage component which supplies heat to substance dur-

ing observation. Oligomer brij 58 and its star-shaped polymer were observed under heat 

providing condition. The temperature rate was adjust at slow rate, 1 0C/min, due to 

melting process was taken very quickly. The magnification of lens was chosen at 2 mm 

width. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 Photos from POM of oligomer brij 58 and its star-shaped polymer at various temperatures. 

 

At room temperature, both oligomer and polymer of brij 58 were detected with crystal-

line. The nature of crystals was different, which could be further studied to figure out 

their characteristics.  
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Figure 20 Photos from POM of oligomer brij 58 and its star-shaped polymer at room temperature after cooling. Brij 
58 oligomer on the left. Brij 58 star-shaped polymer on the right. 

 

After cooling to room temperature, crystalline also were detected in both oligomer and 

polymer. However, because when samples were at molten stage, they were moved to be 

taken out from POM, the profile of imagine changed.  

 

 

 

 

 

 

 

 

Figure 21 Photos from POM of thermo-responsive  oligomer and its star-shaped polymer at room temperature. Oli-
gomer on the left. Polymer on the rieght. 

On the other hand, thermo-responsive oligomer and its polymer did not give any crystal-

line in POM.  
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