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This thesis introduces the development of team strategy for Botnia RoboCup 

Small Size League (SSL) Robot Team. It aims to optimize the strategy software 

and apply STP architecture for team strategy development to obtain satisfactory 

performance. Meanwhile, introduction to several important algorithms, such as 

ERRT, safe navigation and STP architecture is another target. 

 

The main contribution of this thesis is that it optimizes the strategy software, 

thereby providing more stable and convenient platform for testing and research. 

Also, it applies STP architecture in the team strategy, for the control of both over-

all team and single robots behaviors, and thus obtains good performance as ex-

pected and our system can make appropriate strategy according to different cir-

cumstances. Moreover, it successfully utilizes probability theory to scientifically 

evaluate the actual field situation for decision making based on mathematical 

model. 

 

The thesis mainly develops on Qt at Linux platform and simulates by Matlab at 

Windows platform.  The implementation methods in this thesis are typical soft-

ware engineering approaches, which is planning, developing, debugging and test-

ing. For sake of debugging convenience, the algorithm was firstly simulated on 

Matlab and then implemented in the software. 

 

It can be concluded that STP architecture is very useful for team behavior control 

and mathematical theory support is very important and necessary for a system.  
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1  INTRODUCTION 

1.1 Purpose of Thesis 

This thesis introduces the development of team strategy in detail for Botnia Ro-

boCup Small Size League (SSL) Robot Team. The main thesis is the optimization 

of strategy software and the development of STP architecture for team strategy. 

1.2 Overview Structure of Thesis 

The whole thesis is divided into eight chapters. The first chapter introduces the 

background information of this thesis, RoboCup, Botnia SSL Robot Team, moti-

vation of this thesis and terminology. The second chapter illustrates the structure 

of Botnia Team System, including the overall structure and the precise introduc-

tion to every main component. The third chapter presents the strategy software. 

The fourth chapter focuses on the development of STP architecture for multi-robot 

control. The fifth chapter shows the future to-do list and the sixth chapter suggests 

some expectation of research direction in the future. Finally, the seventh chapter 

summarizes the whole thesis and the eighth chapter, as appendix, lists the men-

tioned source code of the thesis. 

1.3 Background of RoboCup 

RoboCup is an international scientific organization, a tournament field designed to 

improve the state of the art of robotics and AI research. Since 1997, the year of 

establishment, RoboCup still retains its ultimate goal that is to, set up a team of 

humanoid robot, obeying FIFA official rules, capable of winning against the win-

ner of World Cup by the middle of 21
st
 century./1/ Until now, five different types 

of league comprise RoboCup Competition, which are Humanoid, Middle-Size, 

Simulation, Small-Size, and Standard-Platform separately. 

As a part of RoboCup divisions, Small Size robot soccer aims to solve the prob-

lem of smart multi-robot cooperation and control in a greatly confrontational do-

main with a hybrid centralized/distributed system. A Small Size robot soccer 

match consists of two teams with six robots each and each robot has to conform to 



 

 

the size specified in the official rules./2/ The following figure illustrates a Ro-

boCup kickoff scene in a match. 

 

Figure 1. RoboCup SSL kickoff in a match/2/ 

The general dataflow and structure of RoboCup SSL are shown in Figure 2. More 

precisely, a standardized vision system with two cameras tracks the robots and 

ball on the field and transmits the vision data to off-field computer, strategy server. 

The strategy server communicates with the referee box and the robots for coordi-

nation and control. 

 

 

Figure 2. RoboCup SSL dataflow /2/ 

RoboCup SSL has a standard field shown in Figure 3 and each participating robot 

must operate while complying with the official rules such us the limit of the time 

holding the ball, the limit of defense method. To achieve the goal of zero human 

input when a foul happens, the referee box is created and it can send the com-
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mands from the referee directly to each team through a network. In addition, the 

referee box can also help tack game time, scoring etc. 

 

Figure 3. RoboCup SSL standard field /2/ 

Obviously, to build a powerful team, dedicated design and implementation of both 

hardware and software is required. Inevitably, RoboCup SSL is a very amazing 

and challenging field for education and research. 

1.4 Background of Botnia SSL Robot Team 

Our Botnia SSL Robot Team has participated RoboCup world competition several 

times and achieved high grades. Until now, we are the only qualified RoboCup 

SSL team among the Nordic area. /3/ 

Currently, we have high performance devices containing all necessary compo-

nents, like the camera of the vision system, standard field, several outstanding ro-

bots and powerful strategy server.  

We have second generation of Windows-based strategy software system with full 

function and third generation of Linux-based strategy software system in progress. 

The third generation enhances the instantaneity and optimizes the code. The topic 

in this thesis is based on the third generation and the field simulator. 



 

 

 

Figure 4. Full view of Botnia SSL Robot Team/3/ 

 

Figure 5. Strategy software system of Botnia SSL Robot Team 
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Figure 6. Field simulator of Botnia SSL Robot Team 

1.5 Motivation 

There is no doubt of the importance of team strategy for the autonomous multi-

agent teams operating in confrontational environment. To win the game, the team 

must be able not only to coordinate together towards long-term goals, but also 

quickly to respond to sudden changes in conditions and appropriately adjust its 

actions according to the current situation of opponent, which at least should be as 

fast as the opponent./4/ Therefore, I chose this topic based on this great research 

platform. 

In addition, my previous classmates, Feng Bin, Gao Yuan and Liu Dong, super-

vised by Liu Yang, have done a lot of significant work, setting valid foundation 

for our Botnia SSL Robot Team. Thus, it is highly necessary and adequate to con-

tinue the work on this topic and advance our team to higher level. 

1.6 Terminology 

The abbreviations introduced in this thesis all have corresponding full word. Also, 

grey highlights are used to emphasize the important source code in present context. 



 

 

Finally, three types of code representations will appear in this thesis, pseudo-code, 

code list and API programming example./5/ 

In addition, as this thesis is based on the work by my previous classmates, to 

avoid the repetition with their work as much as possible, to the work that they fin-

ished or had described in their thesis in detail, this thesis will just make brief in-

troduction.  
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2 STRUCTURE OF TEAM SYSTEM 

This chapter will introduce the overall structure of our Botnia SSL Robot Team 

system and also the brief illustration of each component at different extent. The 

next chapter will focus on the strategy module.  

2.1 Overall Structure 

The whole system consists of several independent but interrelated modules in a 

closed loop. Figure 7 illustrates the overall structure of Botnia SSL Robot Team. 

Obviously, the whole system can be divided into five parts, Vision Module, Strat-

egy Module, Referee Module, Wireless Telecommunication Module and Multi-

agent Module. 

 

Figure 7. Overall Structure of Botnia SSL Robot Team /6/ 

The following will briefly introduce the each part of the whole system. 

 Vision Module 

 



 

 

Consisting of two cameras and one vision server, this module collects processes 

and transmits the raw data of game field to the strategy module, including the po-

sition and velocity of robots and the ball. In 2010, RoboCup responsible commit-

tees made a decision that all teams must use the standardized vision module, a 

shared vision system (including the hardware) /2/. That is also what our Botnia 

SSL Robot Team uses, called SSL-Vision. 

 Strategy Module 

 

Based on the field data from the Vision Module, the Strategy Module can evaluate 

current situation, generate proper strategy and further commands for each of our 

own side robots and finally transmit these commands to the Telecommunication 

Module. 

 Telecommunication Module 

 

This module is responsible for the communication between the Strategy Module 

and the Multi-agent Module. It consists of the transceivers on the Strategy Module 

side and the Multi-agent Module side. 

 Referee Module 

 

As mentioned above, when a foul happens during the match, the Referee Module 

can send the commands from the referee directly to each team through a network 

and can also help tack game time, scoring etc. Like the Vision Module, this mod-

ule is also standardized. 

 Multi-agent Module 

 

Obviously, as the final performers of the whole system, this module aims to accu-

rately and effectively execute the commands from the Strategy Module. Every the 

agent should automatically adjust itself according to its own situation. Also, 

agents should also send their own information like the quality of electricity of bat-

tery, operating conditions back to the Strategy Module through the Telecommuni-

cation Module. This function is currently under development. 
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2.2 Vision Module 

As mentioned above, the two standardized cameras, controlled by the Vision 

Server, are responsible for collecting raw data from the game field. The connec-

tion between the server and cameras is FireWire cable with IEEE 1394 interface, 

whose transmission speed can be 50-400 MB/s for high-speed and real-time data 

transfer./7/ Figure 8 shows the High Speed Camera.  

 

Figure 8. High Speed Camera 

The Vision Server (SSL-Vision), running on Linux PC, processes and transmits 

the raw data from the camera to Strategy Module. The sampling rate is 61.50-

61.70 fps. Figure 9 illustrates the UI of Vision Server, with the parameter config-

uration tree on the left, respective live image of the cameras on the center and col-

or threshold on the right./8/  

The user must adjust the parameters on the UI according to current situation 

thereby transmitting optimizing data to the Strategy Module. Inevitably, influ-

enced by ambient noise, the data after processing cannot accurately represent the 

actual condition, therefore, the Strategy Module must further optimize the vision 

data. 



 

 

 

Figure 9. UI of Vision Server 

2.3 Telecommunication Module 

The Telecommunication Module applies DECT (Digital Enhanced Cordless Tele-

communications) and Transparent/DHCP protocol to implement the data trans-

mission from the Strategy Module side to the Multi-agent Module side. More pre-

cisely, in our Botnia SSL Robot Team, the DECT protocol connects the layer be-

low Application Layer and Transparent/DHCP protocol connects the Application 

Layer. 

DECT is a ETSI short-range wireless communication standard, which dominates 

both the wireless residential market and the enterprise PABX market./9/ 

The transparent protocol loads all the commands for each robot and after receiv-

ing the Transparent protocol frames, each robot selects their own particular com-

mands while filtering others redundant information. Because of the outstanding 

coding scheme of DHCP, originally used for network device configuration, this 

protocol is also implemented in our system by Gao Yuan./5/  Figure 11 shows the 

general communication structure from the Strategy Module side to the Multi-

agent Module side. 
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Figure 10. Transceiver on the Strategy Module side and the Multi-agent Module 

side respectively/5/ 

 

 

Figure 11. General communication structure from the Strategy Module side to the 

Multi-agent Module side /5/ 

2.4 Multi-agent Module 

This module consists of several independent robots in the game field and also the 

embedded software inside. To achieve the high performance in a game, each of 

our robots has four omni-wheels and one dribbler as well as the transceiver men-

tioned above. The whole control process is that, firstly, the transceiver side re-

ceives the command signal from the Strategy Module, and then selects its dedicat-

ed command and starts to execute. For the dribbling command, the embedded 



 

 

software activates the rotation of dribbler. For the kicking command, the sensor at 

the front side is activated so that once it detects the ball, the kicking ejector will be 

triggered to kick in specific power. For the position command, the target velocity 

will be resolved thereby arranging to each wheel motor separately. To accurately 

and effectively execute the position commands from the Strategy Module, the ro-

bot has a prominent control mechanism, PID control. With this approach, the ac-

tual velocity, variation tendency and target velocity all decide the control to the 

motor. Figure 13 clarifies the working process of the robot in Botnia SSL Robot 

Team.  

 

Figure 12. One robot of Multi-agent Module/10/ 

 

 

Figure 13. Working process of the robot 
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3 STRATEGY SOFTWARE 

This chapter will introduce the strategy software, including the general introduc-

tion, IDE, architecture and overall software structure and after that it focuses on 

two modules. 

3.1.1 Strategy Software Introduction 

The strategy software of the Strategy Module is the core component of our system 

intelligence and implements the high automation of our system. 

Influenced by the RoboCup team of CMU and University of Cornell, our latest 

strategy software develops and runs on the Linux platform based on the second 

generation of strategy software. Feng Bin and Gao Yuan did the foundation work 

of this software and the reason that they chose the Linux platform is that it can 

provide accurate time functions which is necessary for our system which is sensi-

tive to communication environment. More precisely, the Vision Server transmits 

vision frame every certain short period (61.50-61.70 fps), thus in such case, to re-

spond in real-time, our strategy software must at least make decision within the 

frame interval time (1/61.70 – 1/61.50 second)./5/ 

3.1.2 IDE Introduction 

Our strategy software system is developed on Qt IDE (Integrated Development 

Environment). Qt is a cross-platform application and UI development framework 

for C++ developers which supports the major desktop platforms such as Windows, 

Linux and some of the mobile platforms such as Windows Phone, Android, as 

well as embedded platform. In addition, Qt even has the features for most of the 

common application, including SQL database access, XML parsing, thread man-

agement, network support, file handling and so on./16/ 

The signal-slot construct is its one of the important feature, which enables the 

communication between objects. For example, in case the GUI widget is triggered, 

it can send signals containing event information and receive by other objects with 

special functions known as slots. 



 

 

 

Figure 14. Qt Signals and Slots Mechanism /16/ 

Another important tool is Qt Designer which can design and build GUI by Qt 

widgets. It can also integrate programming code to signals and slots mechanism. 

3.2 Overall Structure 

3.2.1 Overall Architecture 

Cyclically, our strategy software completes the whole process from receiving a 

vision frame for the analysis and finally decision-making. Figure 15 shows the 

whole architecture of our strategy software. 
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Figure 15. Overview of strategy software of Botnia SSL Robot Team/4/ 

 Data Processing 

The image processing algorithm in the Vision Server cannot effectively process 

the vision information which results in the relatively high instability. Therefore, it 

is essential to further process the vision frame and Extended Kalman-Bucy Filters 

(EKBF) algorithm is applied in our Strategy Software. EKBF can not only de-

crease the influence of ambient noise and intermittency but can also overcome 

latency by predicting the parameters (velocity, orientation) of the objects in the 

field. /11/ Details of algorithms can be found in /5/ and /11/. 

 World Modelling 

This step utilizes all the available information of the game field world from the 

previous state to establish a game field world model, reflecting the current situa-

tion.  All the evaluation and analysis for the game is based on this model. More 

precisely, the model contains: 

1. The fundamental parameters of the objects in the field, like ball velocity, ro-

bot orientation, etc 

2. Game state information from the referee box, such as game start, game stop 

and so on 



 

 

3. Opponent modelling information based on its behavior 

4. Advanced predicates based on the above information, e.g. the whether our 

team is in defense, whether the ball is in our possession, etc./4/ 

 STP Architecture 

Taking advantage of the world model, STP (Skills, Tactics and Plays) architecture 

provides a competent mechanism for strategy software to make strategy decision 

from overall tactic to single robot skills. Skills are the set of independent robot 

fundamental activities, such as drive the ball, face to the ball as so on. Tactics are 

the combination of skills that can complete a certain relatively complex task, such 

as pass, steal the ball, etc. Plays are the combination of tactics that can complete a 

certain long-term task and normally, the task is to get score or defense. As the 

main part of this thesis, STP Architecture will be illustrated in the next chapter. 

 Motion Planning and Safe Navigation 

Based on the strategy decision from the previous stage, this stage generates con-

trol command for individual robot control. Motion planning consists of path plan-

ning and speed planning. The former part helps to find optimal path to the target 

and the latter part helps to plan the speed in the path. On the other hand, safe nav-

igation helps to avoid collision with obstacles. Figure 16 clarifies the control ar-

chitecture of strategy software. 

As seen in the figure, three possible sub-stages are involved in control planning. 

The Strategy Making sub-stage calculates the Final Target for each robot derived 

from the current state. The path planning and safe navigation sub-stage generates 

a near-optimal and no obstacle path and short-term target Waypoint while the 

speed planning sub-stage plans the speed in the short-term path.  

Also, if there is no obstacle, the strategy software will directly jump to speed 

planning. Also, strategy software allows direct control by skipping the sub-stage 

of Strategy-Making. /4/ /12/ /13/ /14/ /15/ 
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Figure 16. Control architecture of strategy software/4/ 

3.2.2 Overall Strategy Software Structure 

Based on the architecture above, we designed the strategy software whose struc-

ture and corresponding class is shown in Figure 17. Compared with the overall 

architecture, Vision Data Processing Module implements the Data Processing 

stage and World Modelling stage. The Internet Module is used to clearly show the 

game field parameter. The Control hub Module implements the STP architecture 

and the Motion Planning & Safe Navigation. The Wireless Module implements 

the function that sends a command to the multi-agent system. Obviously, the UI 

module provides an interface for the user to control the whole strategy software. 

The following will focus on the GUI Module and the Control Hub Module. For 

the detail of other module about this software, please see 

https://www.theseus.fi/handle/10024/59312. 



 

 

 

Figure 17. Overall strategy software structure /5/ 

 

Figure 18. Overall file structure of strategy software 

3.3 GUI Module 

The GUI Module is a very important part of strategy software. With the GUI 

Module, we can monitor and control the whole system. This thesis has optimized 

and modified the function of the GUI Module, therefore it is necessary to illustrate 

the newer version here. The following part will briefly introduce the development 

IDE at first and then separately show the details of design and implementation. 
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3.3.1 Development IDE 

The GUI of strategy software is designed by Qt Designer, shown in Figure 19. As 

mentioned previously, Qt Designer can design and build GUI by Qt widgets and 

can also integrate programming code. Area 1 is the widgets section where the user 

can drag necessary widgets to design a customized GUI. Area 2 is the design sec-

tion where the user designs the GUI. Area 3 is the programming section where the 

user can program the object of GUI. Area 4 is the widget configuration section. 

The development of GUI also utilizes QSS (Qt Style Sheet) which is a powerful 

tool enabling the user to more accurately design their GUI. 

 

Figure 19. Screenshot of Qt Designer 

3.3.2 Design 

Figure 20 and Figure 21 as well as Figure 5 above show the GUI of our strategy 

software. The GUI can be divided into two main parts, the control part on the left 

and monitor part on the right.  

 Control Part 

 



 

 

For the control part, Area 1 is the master control of the whole strategy software. 

As our system can be controlled by the automatic intelligence system, or keyboard 

and joystick for test, Area 2 allows the user to choose the control source. Area 3 is 

the general system status section, indicating the current system execution status 

(run, pause or stop), current debug tactic and current control source. Area 4 can 

show the coordinate of the cursor in the Area 5, which simulates the current game 

field. Area 8, the group box section, provides more functions. In the first box, the 

General Box, the user can choose the controlled team and team side at Area 6 and 

Area 7 respectively. 

 

Figure 20. Screenshot 1 of GUI of Strategy Software 

In the third box, the Computer Box, if the control course is set as the Server, the 

user can choose the system in the Run Strategy mode or the Test Strategy mode. 

In the former mode, the system runs automatically which decides its strategy 

based on current situation. On the other hand, in the latter mode, the system exe-

cutes the specific strategy which is chosen in Area 2. 
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Figure 21. Screenshot 2 of GUI of Strategy Software 

 Simulation Part 

Simulation part simulates the current game field in top view and proper scale 

based on the data from the World Model. Figure 22 shows a screenshot of the 

simulation animations. Each robot attaches a rectangle bar (Mark NO. 7), indicat-

ing its vision instability, and its current tactic (Mark NO. 6). Mark NO. 1 is the 

moving trajectory with its direction. Mark NO. 2, the dotted line, connect the cur-

rent position to the target position. Mark NO. 3, the red point, is the next waypoint 

to the target position. Mark NO.4, the two dotted lines, is the maximal tolerance 

angle if the task is kicking, while Mark NO. 5 is the best angle. All these func-

tions are designed to help to develop strategy. 



 

 

 

Figure 22. Screenshot 3 of GUI of Strategy Software 

3.3.3 Implementation 

CPP file strategy_control_window.cpp and its header file implement most of the 

GUI functions. The whole GUI is defined as a class MainWindow in strate-

gy_control_window.h, shown in Figure 23. The Class MainWindow contains all 

the objects in the customized GUI and defines some corresponding functions. As 

mentioned above, most of the functions are implemented based on the signals and 

slots mechanism, shown in Figure 24.  

 

Figure 23. Screenshot of GUI implementation file 
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Figure 24. The application of Signals and Slots mechanism 

Moreover, as the GUI is the only way to control the strategy software, the Class 

MainWindow also has some functions that set up the threads of other modules 

mentioned in Figure 17. Figure 25 shows the code example. 

 

Figure 25. Set up of other modules in Class MainWindow 

3.4 Control Hub Module 

The Control Hub Module is the main Module of strategy software which imple-

ments the control mechanism for the multi-agents system. The following will 

firstly introduce the overall design architecture and then introduces the implemen-

tation software structure according to the design. 

3.4.1 Overall Architecture 

The Control Hub Module aims to appropriately control the whole multi-agent sys-

tem, thereby beating the opponents, according to the current situations. Figure 26 

shows the overall architecture of this module. The key point of this architecture is 

to scientifically subdivide the whole process to relative independent sub-stage. 



 

 

Firstly, once the system starts, the Control Hub Module decides the control source, 

Joystick or Computer, according to the set at GUI Module. If the Computer is set 

as the control source, the system then decides how to execute the STP architecture, 

according to the strategy mode, TEST or RUN. The difference is that in the TEST 

mode, the Control Hub Module will directly execute the special tactic which is set 

in the GUI Module. On the other hand, if the RUN mode is set, the system will 

choose the proper Play after the analysis and evaluation and then execute the tac-

tics of that Play. 
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Figure 26. Overall Architecture of Control Hub Module 

After the Tactics and Skills execution, the Final Target is generated, 

                     
           (1) 

xt, yt is the horizontal and vertical axis of the target point 

θt is the direction of the robot at the target point 

Vt is the Velocity of robot at the target point, Vx, Vy, ω 



 

 

After that, the path planning and safe navigation sub-stage generates a near-

optimal and no obstacle path and short-term target Waypoint, 

                                   
                                                (2) 

Finally, the speed planning sub-stage plans the speed in the short-term path and 

generates the single robot command for each robot, 

  [  
   

 
 
   

   
 
 ]

 
                                                                       (3) 

x,y is the speed on horizontal and vertical axis of the target point 

ω is the angular velocity 

The reason that divides the target to Final Target and Waypoint is that in such 

confrontational environment, it is necessary to check the target status and ap-

proach the final target waypoint by waypoint every short period for security and 

flexibility reason. 

Furthermore, because of the limited calculation resource of the robot body em-

bedded system, the strategy software undertakes most of the calculation load so 

that the robot embedded software can focus on the accurate control given special 

speed parameter. 

3.4.2 Software Structure 

Based on the architecture above, we implement the Control Hub Module. The fol-

lowing part will firstly introduce the technical background and then illustrate the 

software structure. 

3.4.2.1 Technical Background 

 Inheritance 

 

Inheritance is a very important feature in C++, OOP (Object Oriented Program-

ming), which allows the programmer to define a class based on another class. 

More precisely, it means that, for example, a class can inherit the data and func-

tions from multiple base classes. This feature makes it easier to create and main-
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tain the source code. Because of this reason, our strategy software including the 

Control Hub Module has applied this technology. 

 Virtual Method 

 

In C++, the method in the class with the keyword virtual in the front is virtual 

method. Virtual method allows method with the same name of inheriting class to 

override its virtual method of the base class. 

 Polymorphism 

 

Polymorphism is another important feature in C++, based on the feature of inher-

itance and virtual method. Polymorphism can provide a single interface of various 

different types, which means that the interface can behave differently according to 

the contexts. In other words, whether a virtual method is overridden depends on 

the contexts. /17/ 

 QThread 

 

The QThread class belongs to QT framework, providing a platform-independent 

way to manage threads. In QT, the programmer can inherit QThread to develop 

customized thread program. The QThread start to execute in void QThread::run () 

function which should be triggered by void QThread::start(Priority priority = 

InheritPriority) function. As our software is a multi-thread concurrent program, 

we have applied this technology./18/ 

3.4.2.2 File Structure 

Figure 27 shows the file structure of the Control Hub Module and its correspond-

ing brief introduction. From the name of the file, it is clear that folder comput-

er_control and human_control implement the control source. Under comput-

er_control folder, intelligence folder is responsible for the strategy analysis and 

execute, while knowledge_base folder is responsible for recording the current 

world status and providing necessary algorithms. In the intelligence folder, strate-

gy_extutor folder implements the STP architecture and the world_analysor folder 

provides some basic algorithms and functions. 



 

 

 

 

Figure 27. File Structure of Control Hub Module 

3.4.2.3 Logic Structure 

As shown in Figure 26, we implemented each sub-stage with multiple methods 

shown in Figure 28. The whole process is executed in class StrategyThead, de-

fined in strategy_thread.h. Play selection in the STP architecture is implemented 

in class Strategy, defined in strategy.h, which will be illustrated in the next chap-

ter.  
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Figure 28. Overall Structure of Control Hub Module 

3.4.3 Implementation of Tactic execution and polymorphism 

Function StrategyThread::DoTactics() starts to execute the tactics given by class 

Strategy, shown in Figure 29. The Class Tactic is a base class which provides 

some fundamental method and data and all the tactic classes need to inherit it, so 

this is a typical example of polymorphism. As the tactics[i] is a Tactic pointer, it 

can point to the object of Tactic and its inheriting class. For example, the appen-



 

 

dix gives the definition of a tactic class TShoot which indirectly inherit the Tactic 

class and its inheritance relationship is shown in Figure 30. Once the object of 

TShoot is assigned to the pointer, the program in Figure 29 will call the virtual 

method void RobotTactic::run(World &world, int me). This exactly reflects the 

essence of polymorphism, which is that the interface can behave differently ac-

cording to the contexts. 

 

Figure 29. Execute the tactics in StrategyThread 

 

Figure 30. Tactic Class Inheritance Diagram 

In the method RobotTactic::makeCommand of void RobotTactic::run(World 

&world, int me), virtual method command generates the command for the robot, 

including the target robot position, the target ball position, etc. Similarly, because 

of polymorphism, as shown in Figure 30, class TShoot overrides the virtual func-

//StrategyThread::DoTactics() 

case STRATEGY_TEST: 

          if (gui_tactics[i]) 

            {gui_tactics[i]->run(world, i);  } 

            break; 

        case STRATEGY_RUN: 

            if (tactics[i]) 

            {tactics[i]->run(world, i); } 

            break; 

//Definition: 

Tactic *tactics[MAX_TEAM_ROBOTS]; 
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tion command of class RobotTactic, thus in this case, the program will call the 

TShoot::command(World &world, int me, Robot::RobotCommand 

&command,bool debug). This is a very powerful feature, as the tactic becomes 

easier to develop and maintain. When it is necessary to add new tactics, we can 

just inherit the Class RobotTactic and implement the corresponding interface. 

Figure 31 shows a new tactic class definition example, which allows two robots 

to pass and receive ball. 

 

Figure 31. New tactic example 

After generating commands, the following steps are to analyze the current situa-

tion and generate the target position with corresponding parameter, which is 

called skills. This part also belongs to the STP architecture and will be introduced 

in the next chapter in detail. 

  

class TPassandReceive: public RobotTactic 

{ 

private: 

    TPass  *PassRobot; 

    TReceivePass *ReceiveRobot; 

    SPosition *PositionRobot; 

public: 

    TPassandReceive(); 

    ~TPassandReceive(); 

    virtual const char *name() const; 

    static Tactic *parser(const char *param_string); 

    void LoadConfig(); 

    virtual Tactic *clone() const; 

    virtual int selectRobot(World &world, bool candidates[], double bias[]); 

    virtual void command(World &world, int me, Robot::RobotCommand 

&command,bool debug); 

}; 



 

 

4 PATH PLANNING AND SAFE NAVIGATION 

4.1 Introduction 

Path Planning and Safe Navigation aims to find an optimal and safe path to target 

position and returns to the next waypoint. It is very important in our dynamic and 

complicated RoboCup environment, thus many approaches are created to solve 

the problem. The following figure illustrates the comparison between some nota-

ble algorithms.  

Category Name Advantage Disadvantage 

Grid-Based  A* No polygons 

1. Memory usage 

grows with the size of 

the field 

2. Cannot work in 

narrow passages/33/ 

Geometry-

Based 

Visibility graphs 

Depends only on 

number of obstacles 

O(      )/31/ 

1. path is too close to 

the obstacles 

2. hard to get good 

polygons 

Trapezoidal De-

composi-

tion(Exact cell 

decomposition) 

Easy to implement 

O(     ) /34/ 

Not optimal path/35/ 

Potential 

Fields 
 

Easy to 

implement/35/ 

Local minima 

problem/35/ 

Sampling-

Based 

RRT(Rapidly-

exploring ran-

dom trees) 

efficient and suit 

high-dim 

Not optimal path 

PRM(Probabilis

tic Road Map) 

efficient and suit 

many problems/36/ 

 

Figure 32. Comparison between different path planning algorithms/27/ /28/ /29/ 

Among them, one of the popular path planning algorithms is RRT (Rapidly-

exploring random trees), which employ randomization to quickly search possible 
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path. /22/ Furthermore, ERRT (Expanded Rapidly-exploring Random Tree), as a 

kind of variant of RRT, enhances the efficiency and is utilized by our system in 

path planning. 

4.2 Path Planning 

4.2.1 Theory 

Path planning intends to find an optimal path from current position to the target 

position. Our Control Hub Module applies KD-tree (K dimensional tree) and 

ERRT (Expanded Rapidly-exploring Random Tree) algorithm to solve this prob-

lem.  

Figure 33 shows the ERRT algorithm, which aims to search for a path from an 

initial position or state to a goal position or state by expanding a search tree. The 

main function ERRTPlan iteratively chooses a random target state and expands 

the nearest part of the tree towards the target. The loop terminates when the dis-

tance from the tree to goal reaches a threshold.  

Function ChooseTarget generates specific point state (three probabilities) for 

function ERRTPlan to expand the tree. With probability P[goal], the goal is cho-

sen as a target. With probability P[waypoint], a random waypoint is chosen as a 

target and the remaining probability is for random state. Typical values for the 

probability is 0.1 for P[goal] and 0.6 for p[waypoint] respectively. This function is 

the significant difference with the basic RRT algorithm, as the latter choose target 

randomly. 

Function Nearest applies KD-tree algorithm to speed the nearest neighbor 

lookup./14/ 

Function Extend generates a new state which can be reached from the target state 

in incremental distance. Function Distance calculate the distance between two 

given state. Function RandomSate generates a random state in the given domain. 

Figure 34 gives an example about the application of ERRT algorithm. /14/ 



 

 

 

Figure 33. ERRT Algorithm/14/ 

function ERRTPlan (env:environment,initial:state,goal:state):rrt-tree 

 var nearest, extended,target:state; 

 var tree:errt-tree; 

 nearest := initial; 

 errt-tree := initial; 

 while(Distance (nearest,goal) < threshold) 

         target = ChooseTarget (goal); 

         nearest = Nearest (tree,target); 

         extended = Extend (env, nearest, target); 

         if extended ≠ EmpetyState 

                then AddNode (tree, extended); 

 return tree; 

function ChooseTarget (goal:state): state 

 var p:real; 

 var i:integer: 

 p = UniformRandom in [0.0 … 1.0]; 

 i = UniformRandom in [0 … NumWayPoints-1]; 

 if 0< p < GoalProb 

       then return goal; 

 else if GoalProb <p < GoalProb + WayPointProb then  

        return WayPointCache[i]; 

 else if GoalProb + WayPointProb < p < 1 then 

        return RandomState(); 

function Nearest (tree:rrt-tree, target:state):state 

 var nearest:state; 

 nearest := EmptyState; 

 foreach state s in current-tree 

               if  Distance (s,target) < Distance (nearest,target) 

                       then nearest := s; 

 return nearest; 

function Extend (env:environment,initial:state,goal:state):state; 

function Distance (current: state, target: state): real; 

function RandomState (): state; 
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Figure 34. Illustration of ERRT /14/ 

There are some others variants algorithm of RRT, such as RRT* (RRT star). 

Similarly, the main difference is target choose method. Different from ERRT, 

RRT* can surely converge to an optimal solution, by the approaches of committed 

trajectories and branch-and-bound tree adaptation. /37/  

4.2.2 Simulation 

To verify the performance of this algorithm, we simulate its procedure as experi-

ments. Figure 35 shows one of the simulation results for ERRT algorithm. The 

blue point, coordinate (50, 10), is the initial state, while the red point, coordinate 

(750, 550) is the goal state. The simulated field is a rectangle whose width and 

length is 800 and 600 respectively while several obstacles scattered between the 

initial state and the goal state. The probability is 0.1 for P[goal], 0.6 for 

p[waypoint] and 0.3 for random generate respectively and the extend distance is 4 

every time. After simulation, the best path plan is shown in bold. 



 

 

 

Figure 35. ERRT Algorithm Simulation/20/ 

Similarly, the following figure also illustrates the simulation results of ERRT and 

RRT*. It can be seen from the figure that the path length of RRT* is smaller, so it 

is a better path plan compared to ERRT. 

 

Figure 36. Simulation Result of ERRT(down) and RRT*(up) 
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4.3 Safe Navigation 

4.3.1 Theory 

Safe navigation is applied to avoid collision with obstacles thereby guaranteeing 

the safety of robots. Field_world_obstacle.h defines class obstacle to describe the 

obstacles in the field, shown in Appendix. Clearly, Figure 37, for the sake of sim-

plicity, defines three types of obstacles with three macros respectively to repre-

sents all the obstacles, OBS_RECTANGLE represents the working area in the 

field according to the rules, such as defense field, OBS_CIRCLE represents the 

robots and balls in the field while OBS_HALF_PANE represents the field border. 

Correspondingly, class obstacle has a private integer type to save the obstacle type. 

Also, it has other data to save, for example, the location and speed, and method to 

check collision. The file also defines another class obstacles (see Appendix) to 

represent all the obstacles in the field for a given robot as well as some methods to 

detect collision. 

 

Figure 37. Field Obstacles 

For the method to check collision, Figure 38 illustrates different situations. Mark 

NO.2, NO.3, NO.4 respectively represent the robot collision check with 

OBS_CIRCLE, OBS_HALF_PANE and OBS_RECTANGLE type of obstacles. 

In addition, according to the ERRT algorithm, the program should check collision 

at every tree extension step (the reason will be explained in the next section), so it 



 

 

concerns another program, which is the collision check for the robot moving on a 

specific segment. Mark NO.1, NO.3, and NO.5 respectively represents the colli-

sion check with three types of obstacles.  

 

Figure 38. Illustration of Collision Check 

4.3.2 Example 

The key point of collision check is to calculate the shortest distance, d, between 

two objects. Take Mark NO.5 as example. This is the collision check for the robot 

moving on a specific segment and a half plane, which usually is to check whether 

the robot will be out of border. Figure 39 shows the collision check calculation. 

Obviously, the shortest distance is either the perpendicular line to plane a through 

two endpoints, 

b=   ⃗⃗⃗⃗  ⃗ -   ⃗⃗⃗⃗  ⃗     ⃗⃗⃗  
                                                                               (4) 

c=   ⃗⃗ ⃗⃗  ⃗ -   ⃗⃗⃗⃗  ⃗     ⃗⃗⃗  
                                                                               (5) 

where  

  ⃗⃗⃗                           of plane a, 
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  ⃗⃗⃗⃗  ⃗ is the center position vector 

Therefore, if both b and c are longer than the radius of the robot, there is no colli-

sion. 

 

Figure 39. Collision Check Example 

4.4 Combination of Path Planning and Safe Navigation 

4.4.1 Theory 

To reduce the time complexity, the program of this module combines the path 

planning and safe navigation together, thus safe staff is simultaneously considered 

when planning the path. More precisely, to avoid a collision with obstacles, before 

extending the tree to a generated new state in function extend, the program will 

apply the method in the previous section to check whether there is a collision. 

Figure 40 clarifies the mechanism. It should be noted that, when there is collision, 

the program will firstly try to avoid the collision by rotating this step vector. If the 

collision still exists, the tree will not extend to the generated new state. 



 

 

 

Figure 40. Function extend with Safe Navigation 

4.4.2 Simulation 

The following figure illustrates the execution of this algorithm, implemented by 

https://www.theseus.fi/handle/10024/59312. The upper figure shows the path 

searching situation. The green circle is the initial state while the red circle is the 

target state. The black circle is the obstacle. For the upper figure, the yellow rec-

tangles are the safe distance between the obstacle and the initial state to avoid a 

collision. 

function Extend (env:environment,initial:state,goal:state):state 

 var extended:state; 

 var step:vector; 

 var d:double;  

step = goal.pos – initial.pos; 

 d = step.length(); 

 if d < step_size 

  then return 0; 

 step *= step_size/d; 

 extended = initial.pos + step; 

 if Check (extended) 

  then return extended; 

 else if Check(extended.rotate()) 

  then return extended; 

 else 

  then return 0; 
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Figure 41. Safe ERRT Simulation /5/ 

The following figure shows the situation in the real game field. Obviously, our 

robot successfully goes through the obstacles without any collision. 

 

Figure 42. Real Situation in Game Field 

  



 

 

5 STP ARCHITECTURE FOR MULTI-ROBOT CONTROL 

Based on the discussion in the previous chapters, this chapter will particularly in-

troduce the STP architecture, including the skills, tactics and plays, and how they 

coordinate for a multi-robot system. 

5.1 Introduction 

The STP architecture is designed by the researchers of Carnegie Mellon Universi-

ty, to implement the aims of responsive and adversarial team control./4/ The key 

point of this architecture is that it divides the behavior of single robot and whole 

team, thus making it much easier and clearer to develop and maintain the system.  

 Play 

 

In STP architecture, play, P, is defined as a fixed plan, consisting of applicability 

and termination conditions, N participants. Each participant has a sequence of tac-

tics T
1
, T

2
 etc. and corresponding parameters. After the role assignment, each ro-

bot i has its tactic Ti from current step.  

 Tactic 

 

Tactic, T, contains behavior of a single robot. Each robot i executes its own set of 

tactics belonging to the current play P. A specific Ti with corresponding parame-

ters decides its own SSMi (skill state machine) which will be executed by the ro-

bot i. Tactic Ti can set parameters SParamsi for its containing skills Si.  

 Skill 

 

Skill, S, is a fundamental robot activity, such as kicking the ball. Each skill, S, be-

longs to one or more SSM and decides the next transiting skill S', based on current 

world state, continuous executing time, etc. To generate appropriate decisions, 

skills and tactics will evaluate the current world state.  

Therefore, in such hierarchy, the team is directly controlled by plays through tac-

tics which consists of its own SSM with sequences of skills. Figure 43 and Fig-

ure 44 show the STP execution respectively. /4/ 
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Figure 43. Illustration of STP Architecture 

 

Figure 44. Pseudo code of STP Architecture 

5.2 Tactics and Skills for Single Robot Control 

In the STP architecture, the mechanism to control a single robot needs tactics and 

skills. As mentioned above, through plays the former provides interface for whole 

team control while the latter forms SSM to achieve complex behavior for tactics. 

The following part will firstly introduce tactics and skills, followed by skills and 



 

 

evaluation module. The next section will take passing as an example to introduce 

the evaluation module in detail. /4/ 

5.2.1 Tactics 

In the STP architecture, Tactics is at the top level of single robot control, which 

contains behavior of a single robot. Different parameters for each tactic in a rela-

tively smaller set can result in a wider range of behavior. Figure 45 lists some of 

the tactic class we have developed now. It should be intuitive to know the function 

of each tactic through its name. /4/ 

 

Figure 45. List of Tactics 

During the game, each robot owns one tactic with corresponding parameters, de-

termined by the current play. The tactic will not terminate until the play transits to 

the next one of the tactic sequence. As mentioned in the introduction above, each 

tactic determines and sets parameters for the SSM to execute. Those parameters, 

generated by the evaluation process which will be introduced later, include a tar-

get position with specific direction and velocity, target points to shoot at with giv-

en kicking power. Because of the different parameters, although some different 

tactics contains many of the same skills, the tactics goals can also be quite differ-

ent. Take TShoot and TPass as an example, shown in the Figure 42. The skills in 

the corresponding SSM are quite similar, but the behaviors are much different due 

TShoot (Aim, NoAim, Deflect) 

TSteal 

TActiveDef 

TPass 

TReceivePass 

TDribbleToShoot 

TDribbleToRegion 

TDefendLine 

TBlock 



57 

 

to different parameter. Inevitably, to achieve satisfying behaviors, according to the 

actual need, the tactic may have local parameter. /4/ 

Figure 46 clarifies the pseudo code of algorithm for the TPass tactic class. In this 

example, the program firstly evaluates the current situation to ensure the target 

position, the ball target position shoot at and the shoot angle tolerance. After the 

evaluation, the tactic assigns corresponding parameters to the skills of SSM. The 

parameters MoveBall and BallShotPass belong to the command parameter set for 

SSM which will be introduced in the next section. 

 

Figure 46. Pseudo Code of TPass Tactic Class 

5.2.2 Skills 

Different combinations of skills form different SSM for tactics, whose state ma-

chine actual execution sequence obviously depends on the current world state. For 

example, if a robot attempts to dribble the ball to the opponent’s defense zone, it 

should possibly (a) go to the ball, (b) put the ball onto the dribbler, (c) push the 

ball with dribbler to the target position. Also, if the ball is closed to the border, the 

robot may firstly spin to get the ball which would lead to a different execution se-

quence. That is how the current world state influences the actual execution se-

quence of SSM. Figure 47 illustrates the tactics, skills and SSM in the STP archi-

tecture. As mentioned above, each tactic with different command parameter can 

lead to a specific SSM. 

Tactic TPass(i) 

{ 

(ball_target, target, angle_tolerance) ← evaluation.aim(position, 

position(i), ball_position,error); 

SParami ← setCommand(MoveBall, target, ball_target, angle_tolerance, 

BallShotPass) 

} 



 

 

 

Figure 47. Tactics, Skills and SSM in STP Architecture 

In our system, each skill is an independent behavior, forming a unique state in the 

SSM. Unlike the tactic, which will not terminate until the play transitions to the 

next tactic, at every time step, each skill will transit to itself or to another skill in 

the SSM based on the current world state.  

Three key components form each skill, evaluation, command generation and state 

transitions. The evaluation step aims to utilize or generate necessary predicates 

according to the current world model. As mentioned in the previous chapter, in the 

world modelling, every time after the vision update is complete, the program will 

accordingly update commonly used predicates, which can avoid redundant calcu-

lation duplication waste. The command generation step intends to generate proper 

parameters to control the robot for the path planning and safe navigation or speed 

planning, which has been introduced in previous chapter. The state transition step 

allows the current state to transit to the next proper skill in the SSM which can be 



59 

 

another skill or itself. The arrays in the Figure 47 show the transition conditions, 

set by the tactics or SSM, such as the continuous total time in one state, the posi-

tion of executing robot, etc. That is why the same skill can be repeatedly applied 

in different tactics or SSM and also in different condition for the same tactic or 

SSM. Obviously, this mechanism reduces the code duplication. /4/ /19/ 

Figure 48 shows the algorithm for FaceBall skill, which is the SMFaceBall in 

Figure 47. FaceBall skill allows the robot to face to the target ball. The skill first-

ly evaluates current situation and generates advanced necessary predicates, such 

as can_drive, which is derived from the data in the world modelling step after the 

vision data processing. After the evaluation, the skill transits to DriveToGoal 

(SMDriveToGoal) or ApproachBall (SMApproachBall) based on the previous 

evaluation results. If no condition satisfies, it then generates an essential command 

and transits to itself. 

 

Figure 48. FaceBall Skill Algorithm 

5.2.3 Evaluation Module 

According to Figure 46, the function evaluation.aim is part of the Evaluation 

Module, which intends to promote the aim process. In summary, the Evaluation 

Module helps to evaluate different alternatives to make optimal decisions 

throughout the execution of STP architecture. Similarly, to reduce code redundan-

Skill Execution SMFaceBall(i) 

if (direction_difference<THRESHOLD) then 

if (can_drive) 

then Transition(SMDriveToGoal) 

else if (NOT can_drive)  

then Transition(SMApproachBall) 

else then 

 commandi.navigation.direct <- true 

 commandi.navigation.velocity <- calculateVelocity() 

 Transition(SMFaceBall) 



 

 

cy, this system combines these evaluations to the Evaluation Module and divides 

them to three types of evaluations, aim, defense and target positions. /4/ 

 Aim  

 

This type of evaluation calculates the optimal angle for the robot to kick the ball 

while trying to avoid a collision. 

 Defense 

 

This type of evaluation provides the optimal defense strategy, such as point de-

fense, line defense and block defense, etc. 

 Target Position 

 

The last type of evaluation determines the optimal target position to complete a 

given task. Take TReceivePass as an example. The Evaluation Module here helps 

to find an optimal position for the robot to receive a pass. 

Figure 49 illustrates those evaluations. Mark NO.1, NO.2 and NO.3 respectively 

show three different evaluations at different situations.  

 

Figure 49. Illustration for Evaluation Module 
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5.3 Passing Evaluation 

Passing is a very common tactic in RoboCup, when, for example, an offense robot 

with the ball is blocked by the front defense robots of opponent team. In such ex-

ample case, to increase the score probability, the robot will firstly evaluate the 

current situation, select a teammate with higher advantage, then choose a pass lo-

cation and finally pass. The process described above is a part of evaluation mod-

ule and this section will take it as an example to introduce the passing algorithm 

and then simulate the process.  

5.3.1 Pass-ahead Location Selection 

To establish a mathematical model, the passing robot is defined as P and the re-

ceiving robot is defined as R. For the opponent team, the defense robot is defined 

as D and the goalie is defined as G.  

The passing tactic here is called direct chip deflection ‘header’, or called pass-

ahead. In such a tactic, P utilizes chip pass over d at a height midway up the field 

and then R deflects the ball directly into the goal directly into the goal. /6/ 

Figure 50 shows the initial situation before passing, simulated by Matlab. The 

yellow robot with the ball is P and the other yellow robot is R, while the red robot 

in the half-circle, defense zone, is G and the other is D. 

 

Figure 50. Initial situation before passing 

 



 

 

The goal of passing is based on the situation that the current offense robot with 

the ball has a relatively low score probability. So passing tactic intends to pass the 

ball to another teammate at position x*, and maximize its score probability. Defi-

nitely, the positions, x*, of all robots should  

x*∈R
2
                                                                                               (6) 

Where R
2 

is the set of all positions in the game field domain. 

For this target, we define 

x*  
                  

 ∈   
                                                             (7) 

As the passing process can be divided into two main parts, passing-receiving (R 

successfully receives the ball) and shooting (R successfully scores a goal), that 

means the probability is determined by two probabilities: 

x*  
                                      

 ∈   
                       (8) 

As our RoboCup game field is very complicated and highly dynamic, it is impos-

sible to exactly calculate the probability. Therefore, we can only try to approxi-

mate the real situation as close as possible, by defining several main conditions ci 

in the execution process at position x. Thus the approximating probability of suc-

cessful receiving pass is defined as: 

 ̂             ∏  ̂                                       (9) 

Therefore, at a specific position, given x, the probability for R to successfully re-

ceiving a pass is determines by  ̂      , the approximating probability for each 

condition, ci.  

To calculate each probability, we assume that, in such situation in Figure 51, the 

velocity of all objects is 0 before passing. The position of R is xR while the posi-

tion of D is xD. In addition, due to the physical limitations of robot and SSL rules, 

 Robot has a maximum acceleration value aRmax, 
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 Robot has a maximum velocity vRmax, 

 Ball has a maximum velocity vBmax. 

The main conditions ci are: 

 c1: No opponent is able to be faster than R to arrive at x.  ̂      ~0 if at least 

one opponent can be faster than R to reach x; otherwise  ̂      ~1. 

We can compare the navigation time for each robot respectively. For D, to 

reach x as soon as possible, directly towards x, it should (a) accelerate with 

maximum acceleration until vRmax. If in such case, it has not reached x, D will 

(b) keep vRmax until x. The navigation time is td, so for (a) 

if 

 

 
       

                                                                              (10) 

Therefore, 

    √            ⁄                                                                (11) 

if current speed of D, vD is smaller than the maximum velocity vRmax, 

         ≤                                                                                                                  (12) 

Else, for (b), if vD is greater than the maximum velocity vRmax, 

         ≥ vRmax                                                                                                            (13) 

After the acceleration, D runs in uniform linear motion for   . The accelera-

tion distance    and time t is 

              
                                                                        (14) 

   
 

 
      

                   (15) 

So the uniform linear motion time,  

  =       -                                        (16) 

Thus, the total navigation time for case (b) is 

                     ⁄         -     
                       (17) 

      So the navigation time    is 



 

 

{
√            ⁄                    

 

            ⁄               
                                      

 
 

               (18) 

Similarly, for R, we can get the total navigation time tr, 

{
√            ⁄                    

 

            ⁄               
                                      

 
 

                (19) 

Obviously, the  ̂       is 

 ̂       {
       
       

                      (20) 

 c2: No opponent can intercept the pass.  ̂      ~0 if D can navigate to a posi-

tion along the line between the original pass position    and destination x and 

then intercept the ball; otherwise  ̂      ~1. 

 

Figure 51 illustrates the ball passing trajectory in 2D. To intercept the pass, D 

must move to the position between f(O1) and f(O2), the center of two critical 

robots respectively, where f(x) is the function that converts the 2D position to 

3D position. 

 

Figure 51. Ball Passing Trajectory Illustration 

Assume that the vertical velocity of the ball is V_ver while the horizontal ve-

locity is V_hori and time to specific position is tb. The height and distance of 
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ball is H and S, the gravity acceleration is g, the height and radius of robot is 

Hr and Rr, respectively. So the kinematics equations on both vertical and hori-

zontal direction are, 

Horizontal: V_hori* tb =                   (21) 

Vertical: H = V_ver* tb - 
 

 
   

             (22) 

H ∈［0,Hr］ 

S ∈［0 ,       ］ 

So the time for the ball to specific position t is 

   = 
      √     

     

 
                          (23) 

     Assume that the intercept position of D is O, 

 O ∈［            ］ 

For   , in equation (22) and (23), set H as Rr and use equation (24),  

    V_hori
      

 
 - Rr                                    (24) 

For   , in equation (22) and (23), set H as 0 and use equation (24),  

    V_hori
      √     

      

 
 + Rr           (25) 

So, according to the equation (19), the navigation time    of D is, 

{
√            ⁄                    

 

            ⁄               
                                      

 
         

After time    of passing, using equation (23), set tb as td, the height of the ball 

H is, 

H = V_ver* td - 
 

 
   

                        (26) 

Obviously, the  ̂       is 

 ̂       {
      
      

         (27) 



 

 

 c3: R has enough time to receive the pass.  ̂      ~0 when the ball passing 

time to x is longer than a minimum reaction time tmin of R; otherwise 

 ̂      ~1. 

In our frame, the vision frame is about 60 bps, thus the least reaction for a ro-

bot is 1/60 s. Assume in the maximum velocity, the distance is much smaller 

than the safe distance which will be introduced in c4, 

vRmax*1/60 << 2*robot_radius         (28) 

So the  

 ̂      =1 

 c4: The receiving location x is suitable for pass receiving.  ̂      ~0 if the x is 

too close to the opponent defense area, which is forbidden by the rules, or if R 

reaches x, this can cause a collision with other robot or cause out-of-bounds; 

otherwise  ̂      ~1. 

The positions of P, R, G and D are respectively x0, x, xG and xD and the posi-

tion set of defense zone is F. So  ̂       is 

 ̂       

{
 
 

 
 
                             

                          
                          

                    ∈    

           

                (29) 

 c5: The passing ball exactly or nearly after R reaches x.  ̂      ~0 when the 

passing ball reaches relatively much later after R or earlier before R reaches; 

otherwise  ̂      ~1. 

Based on the conditions that c1 and c2 are both true, let us assume that the ver-

tical velocity of the ball is V_ver while the horizontal velocity is V_hori and 

time to specific position is tb. The time from xR to x is tr. According to the 

equation (20) and (24), tr and tb is respectively, 

{
√            ⁄                    

 

            ⁄               
                                      

 
 

   = 
      √     

     

 
          

So, obviously 
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 ̂       {
                            

      
        (30) 

Based on the theory above, we utilized Matlab to simulate the probability 

 ̂             ∏  ̂        and got the result shown in the following. The prob-

abilities for each position are shown in grayscale where the black is wrong and the 

white is true. According to the figure, obviously, the position around the R can be 

the potential candidate positions. The next section will evaluate the shooting pro-

cess after passing. 

 

Figure 52. Pass-ahead Probability Distribution 

 

Similarly,                   can also be defined as, 

 ̂                  ∏  ̂   
                                                      (31) 

For simplicity, two conditions is defined here,  

   
 : which is the open shooting   angle from x to the opposing goal. 

 ̂   
    ~0, when there is not shooting angle at all.  ̂   

    →1, when the 

   →    . When    >     ,  ̂   
     = 1, meaning that beyond such cer-

tain threshold, the    has no influence on the shooting probability. 

The following figure shows an example of shooting angle at the specific posi-

tion O. Usually, the shooting angle is the included angle between the lines to 

the goal border or tangent lines to block robots. Angles a and b are the two 



 

 

shooting angle at this position, so to calculate the shooting probability, set the 

bigger one, a, as   . The calculation equation is, 

 ̂   
     {

  

    
          

         

               (32) 

 

Figure 53. Shooting Angle Example 

   
   The shooting location x is suitable for shooting. This is the same as c4. So 

the equation is the same as equation (30). /23/ 

Based on the theory above, we utilized Matlab to simulate the probability 

 ̂                  ∏  ̂   
      and got the result shown in the following 

figure. Also, the probabilities for each position are shown in grayscale where 

the black is 0 and the white is 1. According to the figure, the positions marked 

with pink circle have a high probability and thus easier to score. Probability 

less than 10% are not drawn. 
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Figure 54. Shooting Probability Distribution 

 

Based on the theory above, we can multiply the two main probabilities together to 

evaluate the overall pass-ahead tactic, 

 ̂          ̂            ̂                         (33) 

 ̂             ∏  ̂                                 (34) 

 ̂                  ∏  ̂   
                        (35) 

Similarly, we utilized Matlab to simulate the probability ̂        . The highest 

probability,  

 ̂                

x*  
                                     

 ∈   
          (36) 

             



 

 

pointed by the array, is the optimal position for pass-ahead tactic.  

With the theory of shooting evaluation, we can also calculate the goal probability 

in x, 

 ̂         15.17% 

Significantly, our evaluation module provides a much better choice to goal. 

 

Figure 55. Passing Coordination Probability Distribution 

5.3.2 Pass-ahead Coordination 

After the evaluation, the rest of the work is the coordination among our robots ac-

cording to the evaluation result. The coordination aims to minimize the wait time 

of the receiver robot while ensuring the relatively high shooting probability. The 

following figure illustrates the algorithm. /23/   
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Figure 56. Pass-ahead Coordination Algorithm/23/ 

The reliability of the tactic depends on the accurate estimation of robot navigation 

time for a specific position and velocity, ball travel time to a given position. Com-

bined with the overall strategy for the whole team, which will be introduced in the 

next section, such tactics are very useful in the game. 

5.4 Plays for Multi-Robot Control 

Plays are on the top level of the STP architecture, providing an overall strategy for 

the whole team. The possible issues concern dynamic role assignment, tactics ex-

ecution process, etc. In our system, play is defined as a team plan, while playbook 

is defined as a set of team plans. The following part will firstly introduce the tar-

get of the whole system and then discusses how plays and playbooks solve 

achieve the target. 

5.4.1 Targets 

The criteria to judge our team strategy is the performance. The following six tar-

gets are the main points for overall performance, 

1. Coordinated team behavior, 



 

 

2. Temporary action extension, 

3. Inclusion of special purpose behavior for certain situations, 

4. Convenience for human design, 

To achieve the first target to the fourth target, the system needs to generate coor-

dinated and sequenced behavior among the team. Also, because of modularization, 

the play design is separate with the lower layer. Therefore, the design language 

should be human readable so that one even without much programming skills can 

design a good play. This also requires the system to be able to execute what the 

designer describes.  

The rest of the targets are advanced targets, which are, 

5. Ability to grab opportunities, and 

6. Dynamic adaptation to different opponents  

Obviously, as the play designer cannot possibly consider all the situations in the 

play design, this requires the system to automatically grab possible opportunities 

in the game. The final target requires the system to adapt to different oppo-

nents./4/ 

The following part will describe the play execution system and then will show 

how our playbook chooses appropriate alternative strategy according to current 

situations. 

5.4.2 Play 

As mentioned above, a play is a team plan, which consists of four main parts,  

1. Applicability conditions,  

2. Termination conditions,  

3. Participant roles with tactics, and  
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4. Execution details. 

The applicability conditions refer to in what condition a play can be selected and 

executed. The termination conditions means in what condition a play can be ter-

minated. The participant roles refer to the participants in a play. The execution 

details contain a set of extra information, such as tactics parameters, etc. 

The play is written in the script language and it is easy to design the strategy. Fig-

ure 57 shows a play script example. Taking this play script as an example, the fol-

lowing will introduce each part individually. 

 

Figure 57. Play Script Example 

 Applicability conditions 

 

The applicability condition is triggered based on the current world state. The key-

word in the script is APPLICABLE, followed by a sequence of logical formula of 

predicates which is updated in the world modelling module. In Figure 45, the ap-

PLAY Two Attackers, Shoot 1 

APPLICABLE offense 

DONE aborted !offense 

TIMEOUT 10 

ROLE 1 

 shoot A 

 none 

ROLE 2 

 block 320 900 -1 

 none 

ROLE 3 

 position_for_pass { R { 1000 0 } { 700 0 } 500 } 

 none 

ROLE 4 

 defend_line { -3025 2025 } { -3025 -2025 } 1375 3025 

 none 



 

 

plicability condition is offense, which means that this play will be selected if of-

fense predicate is true. Figure 58 shows some of the available state predicate 

keywords in our system. The meaning of the predicate should be clear from the 

name.  

 

With applicability conditions, the strategy designer can restrict a play used for 

specific condition. For example, in Figure 57, only when the current condition is 

the offense state, will this play be possibly selected and executed. 

 Termination conditions 

 

Similarly, the termination condition is triggered based on the current world state, 

which determines the stop of this play in play script. The keyword of the termina-

tion conditions is DONE, followed with a result of each outcome and logical for-

mula of possible outcome predicates of this play.  

The possible results are, aborted, failed, succeeded and completed. Those key-

words are utilized to evaluate the execution status of current play, which can be 

used for play selection later. More precisely, succeeded and failed results means 

whether our team scored or not, by normal offense, or penalty shot, etc. Complet-

ed result refers to the condition when the whole play execution finishes. For ex-

ample, if an offense play completes a shot, no matter if the team scores, the status 

is considered completed. The aborted result describes the condition when the cur-

offense our_kickoff 

defense their_kickoff 

special our_freekick 

our_ball their_freekick 

their_ball our_penalty 

loose_ball their_penalty 

our_side ball_x_gt 

their_side ball_x_lt 

midfield ball_absy_gt 

Figure 58. Some of Available State Predicate Keywords 
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rent play stops and does not complete. For example, when the system executes an 

offense play, if the ball is stolen during the process, the status is considered failed. 

The outcome predicates can also be the condition in applicability conditions. In 

Figure 45, the only termination condition is !offense, which means that the play 

must end when the current status is not offense. Like common logical formulas, ‘!’ 

signifies negation. 

Besides termination conditions after keyword DONE, in our system, two condi-

tions can also result in the current play to terminate. The first condition is trig-

gered when the current status is completed, which means our team scores. The 

second condition is triggered when the current play continues to execute too long 

time, longer than a threshold (usually 20 seconds), and no other termination con-

ditions are triggered. In this case, the current status changes to aborted. This 

mechanism restricts the maximum execution time of a play to increase the feasi-

bility of the system. 

 Participant roles with tactics 

 

Inevitably, the main components of the plays are roles. In our current system, our 

play supports four roles and the rest one acts as goalie. Figure 57 shows another 

play script, but different from Figure 57, each role has multiple tactics in a se-

quence. For a robot, it will transit to the next after current tactic completes.  

The coordination is a crucial issue of the multi-agent system which requires all the 

roles to transit at the same time through the sequence of behaviors. For example, 

in Figure 59, the role NO.1 executes spin_to_region tactic, which spins the ball to 

the specific region. Meanwhile, role NO.3 executes position_for_loose_ball tactic, 

which obtains the loose ball spinned by the role NO.1 in the same region. After 

that, role NO.3 transmits to shoot tactic while role NO.1 waits in a specific region 

for the possible ball. 



 

 

 

Figure 59. Play Script with Multiple Tactics for Each Role 

For system flexibility, the roles assignment can be dynamic based on the current 

situation. This requires the system to scientifically evaluate the situation and gen-

erate an appropriate assignment plan. Moreover, the parameters format of tactics 

is determined by the tactic class. Take tactic class defend_line as an example, ac-

cording to the parameter parsing function and construct function, the parameter 

should be two point positions to determine a segment and a range with a minimal 

and maximal value, which is  

defend_line {x1,y1} {x2,y2} min max 

PLAY Two Attackers, Corner Spin 1 

APPLICABLE offense  in_their_corner 

DONE aborted !offense 

TIMEOUT 15 

ROLE 1 

 spin_to_region { R { B 1100 800 } { B 700 800 } 300} 

 position_for_pass { R { 1000 0 } { 700 0 } 500 } 

 none 

ROLE 2 

 block 320 900 -1 

 none 

ROLE 3 

 position_for_loose_ball { R { B 1100 800 } { B 700 800 } 300} 

 shoot A 

 none 

ROLE 4 

 defend_line { -3025 2025} {-3025 -2025} 1275 3025 

 none 
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The possible parameters can be a specific point position, a segment, or a rectangle 

region. This, in another aspect, enables the tactic to adapt to different situations, 

thus increase the flexibility. 

 Execution details 

 

The execution details refer to the rest of the play script. For example, the name of 

the play follows the keyword PLAY. TIMEOUT specifies the timeout length of 

this play, overriding the default timeout in the system. For the detail of script ex-

ample, please refer to the appendix. 

5.4.3 Play Execution 

The Play Execution Module aims to assign correctly the tactics of play into corre-

sponding robots and ensure their execution. After parsing and interpreting the play 

script, this module then assigns roles, switches different roles, distributes tactics, 

grabs opportunities, and termination.  

As mentioned above, the role assignment can be dynamic, which, in other words, 

means that the role assignment is tactic-specific. Because of this, this module 

needs role switching based on the actual situations. Tactic distribution intends to 

transit the tactics according to the play script and situations. When the tactic status 

is succeeded, the play transits to the next tactic for each role. Opportunity grab-

bing means this module will monitor the situation and immediately react to those 

valuable opportunities. For example, when the ball is much closed to one of our 

role and the opponent defense zone, this role will be quickly assigned with a shoot 

tactic and execute. The termination step happens when the current status fulfills 

the play script, or the two situations mentioned above. Besides those, the com-

mand from the referee, like penalty declaration, can also terminate the game. 

5.4.4 Playbook 

As mentioned above, the playbook is a set of all plays, providing all possible team 

behavior. Though it is impossible to design a play which suits all kinds of situa-

tions, our system can keep improving by adding a new play for different situations. 



 

 

Therefore, there exist plenty of plays in the playbook and the key target is to se-

lect an appropriate play. For example, if the current status is both our_ball and 

offense, which play with accordant applicability conditions should be selected? 

To solve this problem, in the playbook, our system sets a weight for every play. 

When p1 p2 p3 …pk are the plays whose weights are w1 w2 w3 wk respectively and 

also satisfy current status. So the probability for a certain play pj to be selected is 

  (  | )  
  

∑   
 
   

             (37) 

Our system just directly signifies the weights in the playbook, but some algorithm 

like Random Weighted Majority and Exp3 can dynamically adjust the weight ac-

cording to different opponents. /21/ 

5.4.5 Implementation 

The main implementation files are under folder strategy_extutor. The following 

figure illustrates the overall file structure of STP. Clearly, Skill, Tactic and Play 

are implemented in the corresponding folder respectively. As the skill is the bot-

tom-level action, most of the function is implemented together with tactic in the 

tactic folder. The CPP (C Plus Plus) file evaluation.cpp with its header file im-

plements the evaluation module. The execution and evaluation of the play is im-

plemented in strategy.cpp with its header file, which calls the method and variable 

of others files.  

 

Figure 60. File Structure of STP 
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 Tactic and skill 

 

As mentioned in Chapter 3, with polymorphism, the tactics are implemented un-

der the tactic folder. The following figure shows some of the tactic files, which 

evaluate the current situation and generate tactic commands for single robots. 

 

Figure 61. Example of Tactic and Skill Files 

The SSM (skill state machine), introduced earlier in Chapter 5.2, is implemented 

in field_world_robot.cpp with its header file of knowledge_base/ database/ 

world_state folder. It defines a class Robot, representing the robot in real world, 

including the parameters like position, teammates, obstacles, commands, and 

some methods like go to specific point, etc. The relationship between its methods 

and the SSM is shown in the following figure. Combined with Figure 47, the tac-

tic commands are defined as an enumeration, CommandType. Also, the skill states 

are defined as another enumeration, SMState, while the corresponding methods 

are listed on the right. 



 

 

 

Figure 62. The relationship between methods in class Robot and SSM 

 

 Evaluation 

 

This part implements the function of evaluation module, such as the aim before 

shooting, defense position planning, etc. The file evaluation.cpp with its header 

file provide class Evaluation and class EvaluationPosition for evaluation purposes. 

 Play 

 

The implementation of Play can be divided into two parts. The first part is the 

play script .ply file, which is located in folder config/plays/, and another part is the 

parser for the script, which is implemented in play.cpp and its header file. The re-

lationship between each class, defined in that file, is illustrated in the following 

figure. 
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Figure 63. Class Relationship in play.h 

As it can be seen the figure, class PlayRole describes the specific role of a robot, 

including the tactic, represented by class Tactic. Class Play is a set of PlayRole for 

a team, which is inherited by class PlayAscii. PlayAscii has two main functions, 

parse and predicate based on current situations. As the play script is programmed 

not in standard advanced language, but our customized script language, it needs to 

be parsed by our program, which is class PlayAscii. The pseudo code of parsing 

algorithm is shown below. The key of this algorithm is the parameter parsing after 

detection of corresponding keywords. 

For the predicate function of class PlayAscii, it provides many methods to predi-

cate the status according to the world model, such as if the ball is on our side, or 

whether it is in offense now, which determines the applicability and termination 

conditions. 



 

 

 

Figure 64. Parsing algorithm of class PlayAscii 

 Strategy 

File strategy.h defines four classes, PlayExecutor, PlayBook, Warmup and Strate-

gy, whose relationship is shown in the following figure. Class PlayBook, repre-

sented the concept of playbook mentioned before, stores all the play, their result 

and other parameters, like the play name, play weights, etc. Class Executor is re-

sponsible for evaluation and execution, given the play in class PlayBook. Also, as 

introduced above, this class also implements the opportunity grabbing function to 

grab a possible goal chance thereby increasing strategy feasibility. Class Warmup 

defines a tactic for the team to warm up before the start of the game. For the Class 

Strategy, it combines the mentioned class together and executes whole play, the 

highest level of STP architecture. 
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Figure 65. Class Relationship in strategy.h 

 

 

 

 

 

 

 

 

 

 

 



 

 

6 OVERVIEW OF FUTURE RESEARCH 

As our Botnia RoboCup SSL project is a huge system, there are many places to 

improve and complete. Also, we have to make progress to avoid falling behind 

other teams. Finally, with the development of our society, various theory and ap-

proaches are being created, thus it is highly necessary to keep our team with the 

world. Therefore, this chapter plans an overview of to-do lists for the future work 

in several aspects, based on current situations. 

6.1 Strategy Server 

6.1.1 GUI 

As the interaction interface, GUI module influences the performance of our sys-

tem. A user-friendly GUI can provide numerous data for analysis and debug. The 

figure below shows an example of good GUI. 

1. After clicking a robot, a window jumps out showing the current situation of this 

robot, including the real-time position, speed, electric quality and so on in data 

form and figure form. Also, the previous and possible future trajectories can also 

be shown in the field for analysis. 

2. A specific game process can be recorded and replayed. Usually our game exe-

cutes in high speed, it is essential to analyze the process after the match. So game 

recording is very important. 

3. The real-time skills, tactics and plays can also be listed and recorded. 
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Figure 66. To-Do Lists of GUI Module 

 

6.1.2 STP 

 Play Script Language 

 

As our current play script language is customized, it has some limitations, such as 

optimization, error checking, etc. In the future, we can develop or utilize a robust 

language and compiler thereby increasing the overall performance and separating 

a new module, play design module. Many popular programing languages for AI 

(Artificial Intelligence) can be a good example, like IPL, Lisp, Prolog, STRIPS 

and so on. In such case, our development can be divided into system development 

team and strategy development team. 

 Offense 

 

Although, with method of opportunity grabbing, our system has some feasibility, 

the current offense strategy mainly depends on the logic of the developer of the 

play script. For the future, to obtain high feasibility, Machine Learning can be uti-



 

 

lized in this system so that the system can think itself to plan the defense strategy. 

/24/ 

 

Figure 67. Example of Machine Learning Algorithm 

 Defense 

 

If the offense strategy is called active strategy, the defense strategy can be called 

passive strategy which should predict the possible trend of the game. In our cur-

rent system, the predication is based on pure theoretical analysis. For example, to 

calculate the probability of an opponent defense robot, our system will analyze the 

closest robot to plan the defense strategy. In fact, this mechanism establishes a 

universal model for all opponents. But as every team strategy is different, it is un-

necessary to predict all possible situations for one certain team. Instead, if our sys-

tem can make prediction based on the characteristics of a specific team, the effi-

ciency will be improved tremendously. To solve this issue, we can apply game 

training system for our team which builds a certain game parameter for each op-

ponent. While competing with those opponents, the system will update the param-

eter and adjust the defense strategy./24/ 
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Figure 68. Game Training Model 

6.1.3 Vision Data Processing 

The main algorithm of vision data processing utilized in our vision server is 

EKBF (Extended Kalman-Bucy Filters). Although it highly improves the stability 

of vision data, because of some errors like linearization, the result cannot keep 

stable, sometimes not even work. Therefore, this algorithm needs optimize by us-

ing, e.g. Levenberg-Marquardt approach in iteration step. /25/ 

6.2 Robot Motion Control 

6.2.1 Robot Body Simulation 

Robots, as the final executor of the whole system in the game field, must accurate-

ly execute the commands given by the strategy system, so a robust embedded mo-

tion control algorithm is highly necessary. One of the popular approaches is to 

utilize Maltab Simulink for the simulation and algorithm parameter generation. In 

the future, our team can simulate the robot as seen in the following figure for fur-

ther research. 



 

 

 

Figure 69. Simulation of Brushless Motor/26/ 

6.2.2 Intercommunication 

Currently, the real-time data of the game field totally comes from the vision server 

and it is not enough, as our system needs the data from the robot directly, such as 

the electric quantity, the motor speed, etc. In our current architecture, we have 

considered this extension in the strategy server, so the rest of the work is in the 

embedded system of the robot. 
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7 SUMMARY 

This thesis introduces the development of team strategy in detail for Botnia Ro-

boCup Small Size League (SSL) Robot Team.  

By the optimization of strategy software and the development of STP architecture 

for our team strategy, the behavior of the team including overall and single robot 

improved a lot. It can be concluded that the STP architecture is a very powerful 

tool which divides complex team control into separate layers and also solves the 

uncertainty problem by state machine. Moreover, an appropriate mathematical 

model needs to be established to evaluate the actual situation for decision making. 

In this thesis, based on the mathematical model, physical motion equations and 

the probability theory are utilized, which helps to evaluate the running trend and 

make strategy decision in the field. Last but not least, at the implementation stage, 

designing robust framework with clear structure and high expansibility is im-

portant. Therefore, the key points of this thesis are the process division approach 

and strict mathematic theory support as well as implementation skills. 

There is no success without hard work. To work on such a huge project, you have 

to keep self-studying by reading academic articles, taking advanced courses, con-

sulting experts, etc. For the students who are interested in this project, this thesis 

recommends them firstly thoroughly figure out the whole structure of the system. 

Based on that, the students should then decide the research direction and start 

work. The direction should not necessarily be very difficult but challenging in 

some level. During the process of research, students can improve much. 

We wish all the students working on this project the best for their future study and 

career. 
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APPENDIX 1  1(1) 

 

DEFINITION OF TACTIC CLASS TSHOOT 

class TShoot : public RobotTactic 

{ 

public: 

 enum Type { Aim, NoAim, Deflect }; 

 virtual const char *name() const; 

 static double eval_fn(World &world, const MyVector2d p, 

                       int obs_flags, double &a); 

private: 

 Type type; 

 int deflect_target; 

 MyVector2d prev_target; 

 bool prev_target_set; 

 EvaluationPosition eval; 

public: 

 TShoot(Type _shot_type = Aim, int _deflect_target = -1); 

 virtual ~TShoot() { } 

 void LoadConfig(); 

 static Tactic *parser(const char *param_string); 

 virtual Tactic *clone() const; 

 virtual int selectRobot(World &world, bool candidates[], double bi-

as[]); 

 virtual void command(World &world, int me, Robot::RobotCommand 

&command,bool debug); 

 double successProb(World &world); 

}; 





APPENDIX 2  1(2) 

 

DEFINITION OF CLASS OBSTACLE AND OBSTACLES 

Field_world_obstacle.h 

#define OBS_RECTANGLE  0 

#define OBS_CIRCLE     1 

#define OBS_HALF_PLANE 2 

 

class obstacle 
{ 

private: 

        //mask is the flag whether the obstacle is masked 

        int type,mask; // type of obstacle, enable mask 

        vector2f pos;  // location of center 

        //circle: rad.x save rad 

        //rectangle: save width and height 

        //plane: save the direction and side 

        vector2f rad;  // (x,y) radii perpendicular 

        vector2f vel;  // object velocity 

public: 

        double margin(state s);//Calculate the distance between robot and the ob-

stacle 

        vector2f closest_point(state s);//Find the closest point of the obstacle to the 

robot 

        bool check(state s);//check whether the robot collides with the obstacle 

    //true: not collide, false: collide 

        bool check(state s0,state s1);//check the collision with the straight line 

//determined by state s0 and state s1 

        vector2f repulse(state s); 

}; 

class obstacles 
{ 

public: 

        obstacle obs[MAX_OBSTACLES]; 

        int num,current_mask; 

public: 

        obstacles(); 

        void clear(); 

        void add_rectangle(float cx,float cy,float w,float h,int mask); 

        void add_circle(float x,float y,float radius, 

                        float vx,float vy,int mask); 

        void add_half_plane(float x,float y,float nx,float ny,int mask); 

        void set_mask(int mask); 

        bool check(MyVector2d p); 

        bool check(MyVector2d p,int &id); 

        bool check(state s); 

        bool check(state s,int &id); 

        bool check(state s0,state s1); 



 

 

        bool check(state s0,state s1,int &id); 

        vector2f repulse(state s); 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX 3  1(2) 

 

PLAY SCRIPT GRAMMAR 

PLAY playname 

[APPLICABLE [!]<predicate> [!]<predicate> ...] 

... (each line is combined with an or operator) 

[APPLICABLE [!]<predicate> [!]<predicate> ...] 

[DONE {failure | success} [!]<predicate> ...] 

... (each line is combined with an or operator) 

[DONE {failure | success} [!]<predicate> ...] 

[FIXEDROLES 1 3 4 2] 

ROLE 1 

 tactic parameters 

 none 

ROLE 2 

 tactic parameters 

 none 

... 

Parameters: 

Tcoordinates 

[{] [[origin type] side type [d]] coordx coordy   [}] 

origin type: 

none   : world origin 

A      : absolute 

B      : ball 

side type: 

null : absolute 

B : ball (direction of ball is positive) 

A : Absolute 

S : strong side of opponent team (side they have most robots) 

O : ball side unless ball is in middle then it is S side 

optional 

d : dynamic: gets recomputed each frame  



 

 

TRegion: 

[{] {R {Tcoord1 Tcoord2 width}  | C {Tcoord_center radius} }  

R   : rectangle 

width is width of rectangle where length is along Tcoord1 to Tcoord2 


