

KARELIA UNIVERSITY OF APPLIED SCIENCES
Degree Programme In Business Information Technology

Teemu Kokkonen

MICROTRANSACTIONS IN AN ANDROID GAME

Thesis
June 2014

THESIS
June 2014
Degree Programme In Business
Information Technology

Karjalankatu 3
80220 JOENSUU
FINLAND
013 260 600

Author(s)
Teemu Kokkonen

Title
Microtransactions in an Android Game

Commissioned by
-

Abstract

The objective of this thesis is to explore the products sold within mobile applications and
games, called in-app purchases or microtransactions. The thesis studies the history and
nature of these microtransactions and examines their positive and negative effects on
game design, as well as analyzes their usage in modern mobile games.

To reinforce the research, a mobile game codenamed TownBuilder was developed
alongside the thesis. The game paid attention to the designs explored in the earlier
chapters and incorporated design choices that attempted to optimize the effectiveness
of the microtransactions. In addition to the design, a portable code package was set to
be developed to simplify the usage of the in-app purchases in conjunction with Google
Play services.

The game that was developed during the thesis reached an early alpha stage, with the
microtransaction functionality demonstrably in place and some gameplay to go with it.
The design of the game was inspired by several successful examples on the field, and
even though it is not finished, the design was set a solid foundation for including
microtransactions in a player-friendly way.

With all its perks and disadvantages, it remains still yet to be seen if microtransactions
are the way of the future for the games industry. Despite the success stories, there are
a lot of alternatives, some of which yet undiscovered.

Language
English

Pages 48
Appendices 7
Pages of Appendices 9

Keywords

microtransactions, in-app purchases, monetizing, free-to-play, Android, game
development, Google Play

OPINNÄYTETYÖ
Kesäkuu 2014
Degree Programme In Business
Information Technology

Karjalankatu 3
80220 JOENSUU
FINLAND
013 260 600

Tekijä(t)
Teemu Kokkonen

Nimeke
Microtransactions in an Android Game / Mikromaksut Android-pelissä

Toimeksiantaja
-

Tiivistelmä

Opinnäytetyön tarkoituksena on tutkia mobiilipeleissä ja -sovelluksissa myytäviä
tuotteita, eli sovelluksensisäisiä ostoksia, mikromaksuja. Opinnäytetyössä käydään läpi
mikromaksujen historiaa ja luonnetta ja tutkitaan niiden hyviä ja huonoja vaikutuksia
pelisuunnitteluun. Opinnäytetyössä analysoidaan myös mikromaksujen käyttöä
moderneissa mobiilipeleissä, käyttäen esimerkkeinä Supercellin Clash of Clansia sekä
EA:n Dungeon Keeperiä.

Työssä kehitettiin myös mobiilipeli, joka kulkee koodinimellä TownBuilder. Pelissä
pyrittiin toteuttamaan mikromaksut mahdollisimman tehokkaalla menetelmällä. Peliin
toteutettiin siirrettävä koodikirjasto, jonka tarkoituksena oli yksinkertaistaa
mikromaksujen käyttöä Google Play -kaupan yhteydessä.

Opinnäytetyön osana kehitetty peli toteutettiin alfa-vaiheeseen asti. Peliin sisältyvät
mikromaksuominaisuudet esiteltävässä muodossa sekä jonkin verran pelattavuutta.
Pelisuunnittelussa otettiin inspiraatiota alan onnistumistarinoista, ja keskeneräisyydestä
huolimatta onnistuttiin jättämään hyvä pohja tehokkaiden mikromaksujen sisällytykselle
pelaajaystävällisessä muodossa.

Kieli
englanti

Sivuja 48
Liitteet 7
Liitesivumäärä 9

Asiasanat
mikromaksut, rahoitus, free-to-play, Android, pelikehitys, Google Play

Contents
1 Introduction .. 5

2 The Timeline of Microtransactions .. 6

2.1 Pre-online era .. 6

2.2 Video game business models .. 7

2.3 Modern microtransactions ... 9

3 The Nature of Microtransactions ... 10

3.1 Overview of commodities ... 10

3.2 Emergent characteristics ... 13

3.3 Maximizing the profit ... 15

3.4 Success in practice .. 18

4 The Manifestation of Microtransactions .. 19

4.1 Case: Clash of Clans ... 19

4.1.1 The idea of the game .. 19

4.1.2 Microtransactions ... 20

4.1.3 Acquisition ... 21

4.1.4 Placement ... 22

4.1.5 Morality .. 23

4.2 Case: Dungeon Keeper .. 25

4.2.1 The idea of the game .. 26

4.2.2 Microtransactions ... 27

4.2.3 Acquisition ... 29

4.2.4 Placement ... 31

4.2.5 Morality .. 31

4.3 Case-to-case observations ... 33

5 The Usage of Microtransactions .. 35

5.1 Introducing Project TownBuilder ... 35

5.2 The Design .. 36

5.2.1 Gameplay design .. 36

5.2.2 Microtransaction-induced design ... 37

5.3 The Implementation .. 39

5.3.1 Used tools and frameworks .. 39

5.3.2 The Microtransaction-modules .. 41

5.3.3 Integration with Google Play ... 43

6 The Conclusion on Microtransactions ... 44

REFERENCES .. 47

 5

1 Introduction

This thesis explores the world of microtransactions, what they are and how to use them

in a game made for the Android platform. The author is a gamer and a game

programming student with heavy interest in game design. The inspiration for the

technical execution for this thesis came from a course project game done in Android,

which was done without external game engines, giving wide options for customization.

In addition to just making an Android game, I decided to add a focus to a very recent

topic, one which will be very useful on my career later on, which is why I decided to

implement the microtransaction functionality to the game and research its origins. The

thesis aims to answer the question ”how do I use microtransactions in an Android

game?”, attempting to establish a knowledge base that allows for making informed

designs monetizing a free-to-play mobile game, as well as to give practical pointers on

how to implement microtransactions programmatically.

The thesis can hopefully provide something for readers from different milestones of

their career. For the beginner the document might be a good introduction to free-to-play

and general game funding, pointing out possible sources to follow to find out more as

well as giving an overview of practices and opinions regarding the microtransactions.

For the seasoned veteran the thesis may not directly bring any new information, but it

should work as a window to a student-gamer point of view to game monetization. If

nothing else, reading the thesis should strengthen the hope or fear towards the future of

the industry.

In the second chapter I will go back in time and study the origins of what today are

called microtransactions. The timeline begins from pre-online era of gaming, where

conclusions between microtransactions and arcade gaming are made. Then the story

moves to the world of today, where the different business models that are potentially

competing with microtransactions are explained. Last a brief look will be taken at what

the microtransactions today actually are, saving the deeper analysis for the next chapter.

After the brief history of the subject, I will delve deeper into the nature of

microtransactions in the third chapter. Different usages of in-app purchases will be

illustrated through examples, pointing out design choices for certain types of

 6

microtransaction items. After that the focus will shift to what characteristics emerge

from the already established framework, this chapter will look at terms such as ”pay-to-

win” and ”whales”.

As soon as the origin and being of microtransactions have been explored, the fourth

chapter takes a look at two examples of games utilizing them. I will analyze Supercell’s

Clash of Clans and EA’s Dungeon Keeper with the UK Office of Fair Trading

guidelines, hoping to gain an objective view on how these two games market their in-

app purchases.

In the fifth chapter an attempt will be made to utilize everything written so far in order

to make my own free-to-play mobile game on Android that tries to optimize the

profitability without upsetting players. The chapter also describes the portable Java

MTX package, which is an attempt to increase the ease of use of microtransactions and

to separate the vendor specific code from the actual game code.

2 The Timeline of Microtransactions

2.1 Pre-online era

By definition, microtransactions – or micropayments – mean the action of using a small

amount of money to purchase something online (Cambridge University Press 2014).

This thesis will specifically study the microtransactions used in video games, but the

timeline of using small quantity of currency to purchase commodities in games starts

from before the Internet was a common and popular thing like it is today. The history

leads back to the 70’s and 80’s, to a time where the World Wide Web was still taking its

baby steps (Cailliau 1995) and when video games were only found in halls and were

played on wardrobe-sized machines that had buttons on them. These machines would

require the player to insert coins in them before they could start playing. These coin-

operated machines were called arcade video games.

While the arcade game business model might not be strictly defined as being offline

microtransactions, it shares some features with the micropayment model. For example,

in some arcade games such as Metal Slug or Double Dragon you could buy yourself

 7

extra lives in-game by inserting a coin. This could be comparable to a feature in some

modern mobile and social games, where you have limited actions you can perform in

the game, and if you want to refill your actions, you have to use or purchase an in-game

item that will allow you to do so. The amount of money involved in the transaction is

also similar in both cases: The arcade game machines often accepted the 25 cent coins,

which - adjusted to today’s currency - is around 70 to 80 cents, nearing the typical low-

end purchase of a modern microtransaction-funded game.

These two implementations do also have a bunch of differences. When a customer

walks in to an arcade, they know they are going to spend money on the games they are

going to play, since arcade games explicitly inform them that they cost money to play.

Modern microtransaction games are often free-to-play, meaning that getting to play

them does not cost the player anything, but the money comes in after a while in the

form of in-game items and services, which actually highlight another difference

between the coin-operated and microtransaction-enabled games. While arcade games

have to be designed so that the player gets hooked to the gameplay, potentially enjoying

it, and wants to keep playing the game and trying again after failing or completing the

game by inserting more coins into the machine. The design could be defined to wanting

to make the player play longer. In several mobile games the aim of the design could be

claimed to have purpose that is the opposite. For example in Clash of Clans, as

described in later chapters, as well as in many other social and mobile games such as

Sims Social many of the commodities available help the player avoid doing tedious

tasks or waiting for a fabricated timer to finish. By logic, if the player is to encouraged

to consume money on the microtransactions, the free option of playing the game has to

be made tedious and undesirable enough for the paid option to be viable. The design

could be hyperbolically summarized as making the player play the game as little as

possible and favour the made-up benefits that save them time in real life.

2.2 Video game business models

Moving on to the present time and to its milieu of game development funding, the path

to understanding microtransactions starts from understanding that video games often

involve countless hours of design, programming and other productive work, and these

tasks are being carried out by humans. Doing this amount of work without

compensation in monetary or other form can be experienced as counterproductive for a

 8

person's survival and well-being in modern society. Long story short, video games cost

money.

There are several ways of funding game development, and the options differ most

distinctively in what state of the production the player is charged money, but also in the

amount. Each of these methods have their own pros and cons. A recent trend has been

to gather money by ”crowdfunding” a game. With this method the developers pitch the

game idea not to potential publishers, but instead to the potential audience and possible

players. Crowdfunded games are often either in very early development or still in

design phase. The risk of the developer not breaking even is minimized in this funding

method, as the production does not need to be started if the project does not meet the

funding goal. Even though supporters are not charged before the project has met at least

its initial goal, the risk involved in crowdfunding is shifted more towards the players.

Even a fully backed project can fail to deliver the product that the backers have paid for,

or the finished product may not be what they had expected.

A more traditional approach in project monetization is charging the customer once for

the finished game, after which they get unlimited access to the game and can play it as

they wish. This funding method may prove risky for the publisher, if no proper market

research has been done prior to design and development, as having a game with unclear

or too niche target audience can cause the publisher’s investments to not get the

expected return and possibly even leave them with less funds that they started with. In

deals where the publisher is separate from the developer, the designers and

programmers are often financially safe even if the game fails to succeed, as their

salaries are included in the budget that the investments have been spent on.

During the last few years, especially amongst independent (”indie”) developers, a

business model has emerged where access to a game has been sold while the game is

still in development. Players who purchase early access to a game can play and test the

game, which is often only in alpha or beta phases of the development and is prone to

containing bugs and errors. The final funding method is not dependent on early access

to a game, and the game may be sold at full price after release or possibly made as free-

to-play. Often developers offer a discount on the planned retail price for people who

purchase the unfinished version of the game. Selling early access is a more reliable

 9

funding method to guarantee at least some income from the game for indie developers,

as they can start gaining money with the game earlier and this way possibly get

financial motivation for finishing the product. Offering a game for early access also

allows the developer to map the interest for the game, make adjustments and even

promote the product through word of mouth, unlike with selling a finished game, when

the success and popularity may remain questionable until the release of the game.

Some games not only cost to develop, but also involve upkeep costs. These costs are

most often related to multiplayer games that sustain a virtual world, and the biggest

genre in this category are the massively multiplayer online role playing games, or

MMORPGs. To compensate the cost of keeping up the online world by having several

servers run constantly, these games often require the user to pay a monthly subscription

fee to access the game. While the subscription model provides the developer with a

steady cash flow, the recurring nature of the fee may repel players who do not have a

stable income to spare.

2.3 Modern microtransactions

Originating mostly from the need to find a more affordable funding model for

subscription-based games, developers began offering virtual items and services for

microtransactions . Microtransactions (sometimes abbreviated mtx) are, as their name

would suggest, small payments, and as a business model they often appear as purchases

that the player can make from inside the game (in mobile games often referred to as "in-

app purchases"). Unlike with the other business models, funding a game with

microtransactions often happens after the game has been designed, developed, released

and even played by the customer.

The financial risk in microtransaction-based games is greater than in other business

models, as the budget has to be planned ahead far enough to cover running the game

and possible multiplayer servers it needs long enough for the players to start generating

income. A game that utilizes microtransactions is also often "f2p", free-to-play, in order

to encourage players to get in the game and play it enough to consider spending money

on the microtransactions and to lower the step to install and get in the game. The free-

to-play model is used in conjunction with microtransactions so often that the terms are

almost synonymous. The high risk involved in free-to-play games also affects the

 10

developers’ ability to secure investments for their project. The demand for high revenue

potential is even more common despite the recent free-to-play successes such as Clash

of Clans, as the CEO of german mobile developer Fishlabs Michael Schade mentions in

his interview to PocketGamer.biz (PocketGamer.biz 2013). When he is asked about the

difficulty of getting an investment. he mentions that ”If you don't have a game that has

the potential to generate $1 million a day, it is a tough call”. This may be one of the

reasons why some games have gone as far as to exploit human psychology and invoke

gambling habits (Rose 2013). The link to gambling is discussed in detail later in chapter

3.

Careful attention must be paid while designing microtransaction-equipped games to

what the game offers, as the items you can acquire with microtransactions have to be

tempting enough and make a big enough impact to the gameplay experience for it to be

worth the price, but at the same time has to be bound by the game balance in order for it

not to trivialize the game content, causing the player to get bored of the game and stop

playing and spending more money on the game.

3 The Nature of Microtransactions

3.1 Overview of commodities

As described in chapter 2.3, microtransactions are small payments, and in the specific

context of this thesis they are microtransactions inside a smartphone application used to

trade for virtual commodities. To simplify payments and guarantee larger amounts for

single transactions, a middleman is added by making the virtual items available for

purchase only with a virtual currency that can be gained more or less exclusively with

real money. In many games the virtual currency is acquirable by in-game methods, but

the available amount may be limited or the commodities offered vary by game and

genre.

In social games, the common idea for virtual commodities appears to be in gaining an

edge over others, as competitiveness is a key element in majority of them. For example,

in King.com’s Candy Crush Saga, players are able to purchase items that grant them

extra moves or extra time that they can use to keep on playing and attempt to salvage

 11

the situation if they find themselves on the verge of defeat in a puzzle. The game’s

randomness guarantees that each attempt at a puzzle is different, and if the dice are in

player’s favour they may feel like they do not want to waste the chance to show off their

score to their friends by submitting to a defeat that they could have avoided with a

booster. In addition to extra time or moves, the game offers boosters to further help the

player gather points in the puzzles, potentially gaining an edge over other players that

may not have the same boosters at hand. In 8 Pool by Miniclip players play pool against

each other. Edge can be gained by purchasing boosts that increase the maximum power

or maximum spin of the player’s shot, or one that grants an extended guideline that

trivializes the estimation required for a shot. The boosts are not necessary, but can give

the player a measurable advantage over their opponent. In addition to these boosts, the

game offers a variety of cosmetic options for their cue and table available for in-game

currencies. The most expensive cosmetic items allow the player to display a level of

prestige and status, for example the most expensive cue in 8 Pool, the Diamond Cue,

costs 2.5 million coins. They are obtainable through normal play, but if the player

chooses to avoid playing the game for hundreds of hours, they can buy the required

coins with real money, costing them about €3000. Cosmetic purchases are also available

in Criminal Case by Pretty Simple in form of clothing, hairstyles and other accessories

that the player can wear on their avatar. The biggest money sink in this crime solving

game is the energy restoration items, which are fairly typical for Facebook games. The

game has missions that the player has to complete in order to proceed. Attempting to

complete a mission costs Energy, which is a resource that regenerates either slowly over

time or consuming an Energy consumable. The same mechanic has been used in

numerous social games, such as Mafia Wars, Sim City Social and the Sims Social.

The design of mobile games affects the nature of commodities that they offer. As social

games tend to be designed around being connected and their mechanics sometimes

revolve around utilizing or exploiting these connections, mobile games are more

focused on offering short bursts of gameplay able to be played on the go. A common

characteristic for mobile game microtransaction commodities is that they aim to save

the player’s time, as is the case in for example Clash of Clans and Dungeon Keeper,

described in depth in chapter 4. In these games the player can use Gems that they can

purchase with real world money to instantly complete building, upgrading or training

actions, saving them hours or even days. Some items may not directly skip a timer to

 12

complete an action, like in Hill Climb Racing where the player can buy coins with their

money. Coins are the single currency in the game, and are acquired by playing the game

normally. They are expended in unlocking levels and vehicles as well as vehicle

upgrades, and the prices are high enough that making a coin purchase saves a lot of time

gathering coins and allows much more customization in form of different vehicles for

the player.

Games released and developed especially for PC are generally made to be played for

longer sessions at a time, thus limiting the flow with long delays for crucial actions is

not the best design for gameplay. PC games often offer greater complexity than their

social and mobile counterparts, which is one of the reasons they keep players captivated

longer. Having a longer relationship with the game increases the emotional attachment

to the actual game as well as to the player’s avatar. This bonding is essential for the

profitability of cosmetic commodities offered directly or indirectly for

microtransactions. Cosmetic commodities are most common in games where the

developer has decided to have in-game items to purchase with real money in a way that

does not affect the balance of the game. Notable examples are Path of Exile by Grinding

Gear Games, where players can purchase new appearances for their equipment or skill

effect, and Guild Wars 2, which offers also different appearances for the player’s

equipment as well as different animations that the player can display while they defeat

other players in combat, in addition to other cosmetic upgrades available.

Competitiveness and skill are key elements in many computer games, which is why

offering boosts that enhance the player’s performance may label a game of this nature as

unfair, potentially repelling players who do not want to waste their time and effort to

something that does not reward them for it without them having to spend more cash on

the game. This is another reason to offer only cosmetic items as purchasable

commodities, as has been done in for example Valve’s DotA 2 and Counter Strike:

Global Offensive, both of which feature a dedicated e-sports community.

The use of microtransactions is relatively uncommon in console gaming compared to

other formats. The dominant business model used in these games is the retail, pay to

play model where the player purchases the game in full price and receives the full game

without requirements to pay more. One of the few free-to-play games on consoles is

DUST 514, by the EVE Online developer CCP. The game has two currencies, one

 13

which can be only acquired with real money. Players can use the premium currency to

purchase visual upgrades and item variants, instead of direct upgrades to their gear.

Several games offer downloadable content (DLC) however, which may in some context

count as microtransactions as the prices of DLC vary between single dollars to dozens.

The scarcity of microtransactions and free-to-play games in the console market may be

explained with the high risk of the business model against the high maintenance and

development costs for the console (Peterson 2012). Another reason may be the limited

nature of console controls compared to a mouse or a touch screen.

3.2 Emergent characteristics

Competition is a big part of the gameplay and the experience in some games, as briefly

mentioned in previous chapters, and it is important to maintain the equilibrium between

players mechanics-wise to give the game a chance to be fair and enjoyable for all

players, especially if they are playing against each other. Games that fail to maintain

that balance in order to favour purchased items and content tend to be shunned by a

large portion of the gamer community, resulting the game to be labelled ”p2w”, or pay-

to-win. An example of a pay-to-win game is APB: Reloaded, by Reloaded Productions,

where players team up and fight against other players in an urban environment. One

side works as law enforcement, and the other act as criminals. In the game, the player

needs to first unlock and then purchase weapons with in-game currency. Instead of

permanently gaining access to the weapon, they only get a 10-day lease on it. By

spending real money, players are able to purchase permanent leases on the weapons, as

well as different weapons that are not available for purchase with in-game currency. The

”premium” weapons often tend to be more powerful and effective in order to make them

more desirable. The dilemma of premium weapons is that they need to be made

powerful enough to be desirable and to give the player their money’s worth of content,

but at the same time they need to be in balance with the rest of the game so that the

premium items do not repel the players who are yet to make a purchase or only wish to

play the game for free.

Analysis and discussion on the performance of in-app purchases has brought up a need

for specific terminology. Because of the fact that unlike in the traditional retail business

model, in free-to-play games the revenue per user is not constant, or even a certainty,

the industry has adopted terms like Average Revenue Per User (or Unit, if the wishes to

 14

remove the last reference to humanity from their view of customers) – ARPU – and

Average Revenue Per Paying User, similarly abbreviated ARPPU. The former, ARPU,

represents the average amount of money the game generates per player if all players of

the game paid the same amount. The measure may be attractive from a pure revenue

point of view, but suffers from inaccuracy caused by the earlier mentioned uncertainty

of payments per user. While no average or approximation display information about all

the users in accurately from a personal point of view, Average Revenue per User tends

to distort the reality up to the point where it is not the most optimal metric to designers

who wish to improve the gained revenues. To this purpose an alternative iteration of

user data will work better. Average Revenue per Paying User represents the average

amount of money used by the players who purchase at least something something by

microtransactions. This takes into account the uncertainty factor in the payments in free-

to-play games and as generally the amount of players who do not pay is significant

[src], this attribute gives a better view on how much the average amount of purchases in

a game is. The amount of paying users is also a popular metric in the analysis of

profitability of microtransaction-offering games, and it is communicated through

”conversion rate”. The scarcity of paying users in free-to-play games has been analyzed

by SuperData, reporting the average conversion rate in the first quarter of 2014 at 5,0%

in the US and 2.9% in China in their presentation ”US and China Mobile Games

Markets Brief”.

As implied earlier in this chapter, there is a divide in principle amongst players of free-

to-play or other games offering microtransactions. The chasm that sets the two major

categories of players apart is the willingness to pay and make a purchase of a game's

commodities. The gap can be illustrated by further analysing numbers given for the first

quarter of 2014 provided by SuperData in their US and China Mobile Game Markets

Brief (Superdata 2014a). The analysis shows that the average revenue per paying user in

the US is $21,60 and $32,46 in China. Comparing to the previous numbers we can

deduce that the average revenue per user for these markets revolve around the amount

of one dollar, $1,08 and $0,94 respectively. Not only do the numbers elaborate on the

gap between paying and non-paying users, it also implies cultural differences between

the east and west. Not only does the categorisation happen between paying and non-

paying users, it also happens within the paying userbase. Free-to-play games attract

behaviour that is also known in the casino business, where a player is willing to invest

 15

substantially larger amount of funds into the game than what is the average. These

people tend to be labelled in discussion as ”whales” - a nickname familiar with the high

rollers of casinos - but what differentiates the people who spend a significant amount of

money on video game from a gambling addict is that these game ”hobbyists” tend to

purchase considering a longer term investment instead of just being impulse-driven

(Yee 2014).

Gambling references do not only occur in labeling benefactory players, but also deeper

in the actual design of some games. Because developing games costs money, and free-

to-play games are - of course - free to start playing, developers and especially designers

need to pay extra effort in creating design that guarantees the return of investment for

the shareholders of the project. This objective is made easier to reach by falling back on

old and tested methods, such as the ones casinos operate on. While not all games are not

explicitly comparable to the one-armed bandits, some of the more sinister social and

mobile games base their mechanics on utilizing the same psychological perks (Tseng

2011). This currently poses a dilemma between financing a free-to-play game and

making a quality product that is enjoyable by players without them having to keep their

wallet open for the whole play session. The problem can be traced to pitching, as quality

and enjoyment are abstract concepts that cannot be put into numbers that convince

people with more money and less knowledge on games.

3.3 Maximizing the profit

As already established in the previous chapters, games cost money and they need to be

funded somehow. Often the funding comes from investors, who promise money in

exchange for more money later on. This is probably one of the biggest reasons that has

lead to free-to-play game design in some games becoming increasingly exploitative,

borrowing techniques from the ill-famed casino world. Social media has enabled a

design that focuses on reaching as much people as possible and attempt to addict them

to a game, later directing their addiction into converting them into paying customers.

Gabe Zichermann lists four key points of this design, called gamification, in his 2012

post on Mashable. The first of his points is that the player should feel like the game is

free, and instead of prohibiting actions the game should make the player wait. This way

the decision to use the game’s option to pay money to skip the wait will seem more

valuable in terms of how much it saves them time. The second of these points is that the

 16

game should not limit how much someone can pay, a note which concurs with the

earlier described ”whale” mentality apparent in free-to-play games. As third point,

Zichermann brings up that the items available for sale should not just be put out there,

but their placement needs to be determined by analyzing and studying the players’

behaviour. To offer players smaller and more variable tasks helps to keep them engaged

in the game for longer. The last point is that the game always needs more players. This

is a fact that has been acknowledged in especially social games, where the game will

attempt to notify the player’s friends about what they have done as much as possible, in

hopes of convincing some of them to join the game as well and share the experience.

(Zichermann 2012.) The list of design perks utilized in free-to-play games does not end

with Zichermann’s, and there are several available analyses on the internet, each more

or less authentic or credible.

Keeping players playing the game is, an aspect that has been studied heavily in games

involving microtransactions, and especially in social games. Many people have

presented critique towards the design of these games, and it has even been compared to

behavioural psychology experiments. This criticism stems from the characteristic

features that are used to maximize the amount of money that can be harvested with

microtransactions from the users.

Independent game designer Jonathan Blow underlines some of these practices in his

speech at CreativeMornings Portland (2013), listing them in his slides: ”Ensnare the

player for as long as possible (build an infinite treadmill)”, meaning that the game does

not have an ending, and might even have procedurally generated content to keep the

player playing. ”Interrupt the player's life as often as possible” is often the case with

mobile games and their push notifications, begging the player to come back to the game

or reminding them of pending actions. ”Train players to spend your fake currency”

describes the state of many microtransaction-equipped games’ introductions and

tutorials, where the players are given some of the premium currency and forced to spend

it. ”Get people to bug their friends”, as many social games do, trading premium

currency or other benefits inside the game for friend invites. ”Make game about waiting;

let player pay not to wait” is a frequently used principle in several mobile and social

games. ”Give a reward, threaten to take it away”, which Mr. Blow describes as

exploiting the psychological effect called ”loss aversion”, meaning that people often

 17

find it a greater loss if they lose something they have already acquired, instead of never

having possessed it in the first place. As a conclusion from these points Blow presents,

the direction of free-to-play game design does not necessarily bode well for the

customers. (Blow 2013.) While it cannot be denied that the players, or customers, can

have fun in the microtransaction-based games, it may be worth questioning the morality

and ethics of the methods the entertainment is being delivered and how it is being used

to maximize investor profits.

Since many free-to-play games are designed to include strong exploits of the human

psychological systems, special care has to be paid when targeting children who play the

games. The issue has been identified at least in the United Kingdom, where in January

2013 the Office of Fair Trading (OFT) released principles addressing the issues

emerging with aggressive marketing and children playing the games. On their web site,

the Office of Fair Trading list the concerns addressed in the principles:

• a lack of transparent, accurate and clear up-front information relating, for

example, to costs, and other information material to a consumer’s decision

about whether to play, download or sign up to a game

• misleading commercial practices, including failing to differentiate clearly

between commercial messages and gameplay

• exploiting children’s inexperience, vulnerability and credulity, including by

aggressive commercial practices

• including direct exhortations to children to buy advertised products or

persuade their parents or other adults to buy advertised products for them

• payments taken from account holders without their knowledge, express

authorisation or informed consent.

The issues listed are not exclusive to just children playing the games. The principles

give guidelines targeting existing methods for marketing and selling virtual items or

currency in games. The common idea behind most of the principles is that it is the

developer’s responsibility to make sure the player, and their parents, are aware of what

they are signing up for when they download the game and what their personal

information are being used for. The developer has to make sure that they have the

player’s full consent when taking payment from them, and the player has to be able to

identify messages and actions that have a commercial intent. All the 8 principles can be

read in full description from the document released by the OFT, found on their web site.

(Office of Fair Trading 2014.)

 18

3.4 Success in practice

Wargaming’s World of Tanks, which is one of the top grossing free-to-play games

(SuperData 2014b). World of Tanks allows the player to unlock tanks with XP points,

the XP cost to unlock a tank rises significantly after the early tiers while the XP income

stays somewhat same. Players are able to use their premium currency to convert the

tank-wise regular XP into ”Free XP” which can be used for all tanks. The XP

conversion in World of Tanks is one of the most significant real money sinks in the

game (Weidemann 2014). In principle the conversion mechanic allows the player to use

the resources they have gathered with their effort spent on an action that is not directly

related in overcoming the requirements to unlock a specific tank. The concept of this

may be an integral part in the success of World of Tanks, as the premium currency does

not directly give the players resources but rather amplifies their rewards, nor will it give

them an explicit edge over others, the game avoids being labelled pay-to-win yet still

retains the value of its microtransaction items. A deal that is good both for the developer

and the players.

Amongst the success stories such as Angry Birds and Clash of Clans, one could draw a

conclusion that free to play is the absolutely best business model for a mobile game.

The data studied in this thesis may have its say against that conclusion, low average

conversion rates and the fact that majority of the income comes from a very small group

of players combined with recent data that 19% of the players never open the game again

after launching it the first time and 34% of the players keep on playing after the first 24

hour period (Swrve 2014). These numbers tell that even though free-to-play games

reach significantly more users than the pay-to-play games, they highly ineffective in

offering the players content that they feel like playing. In his 2014 opinion post on

Polygon, The Room 2 developer Barry Meade describes that the problem does not

reside necessarily within the business model itself, but the mentality that it has made

money and thus will make money again upon repeating the steps. Concerning the future

of the games industry, Meade claims that ”A fertile ecosystem needs lots of green

shoots as well as the old redwoods”, a metaphor regarding the endless clones of

successful games, easily noticable upon browsing a mobile application marketplace, all

in hopes of recreating the success that their idol had. (Meade 2014.) For the health of

the industry, it is incredibly important to keep on innovating, of course while keeping in

mind the ”old redwoods” that made the industry what it is today.

 19

4 The Manifestation of Microtransactions

4.1 Case: Clash of Clans

This chapter will take a look Supercell’s Clash of Clans and examine what the game is

about, what is the context of microtransactions in it and how they are placed. The game

is also analyzed with UK Office of Fair Trading’s guidelines for in-app purchases in

mobile games.

4.1.1 The idea of the game

Clash of Clans is a mobile game produced by the Finnish game studio Supercell

released in 2012 for the Apple iOS and in 2013 for the Android platform. In Clash of

Clans players are given control of a town that they use to produce an army of units that

have different functions and abilities. Players start with being able to produce only a

small number of one kind of units, but are able to grow their army in size and variety by

building different kinds of buildings.

Buildings are built by consuming either Gold or Elixir and occupying one Builder while

the building is in construction, and take a set amount of time to complete. Already built

buildings can be upgraded to strengthen their effect. If all Builders are already in use, no

buildings can be built or upgraded. Building time increases exponentially as buildings

get more effective, for example building the first level Gold Mine takes one minute,

whereas upgrading it to level 4 takes one hour.

The objective in Clash of Clans is to certain extent defined by the player. The game

presents the player with a list of single player challenges that increase in difficulty.

Tougher challenges force the player to improve their town and acquire more powerful

units in order to overcome the predefined single-player challenges.

Another objective to aim for in the game is the multi-player Leagues, meaning that

instead of trying to conquer set challenges made by the developers, the players acquire

"Trophies" by challenging and defeating towns built by other players. The player will be

assigned a "League" based on the number of their trophies. Whenever a multi-player

battle is concluded, the victor is awarded Trophies and the loser will lose Trophies, the

 20

amount gained and lost is calculated based on the estimate of the difficulty of the battle,

taking in account both players' Leagues.

4.1.2 Microtransactions

The purpose of Microtransactions in the game is mostly to skip lengthy waits, usually

while building or upgrading a building or unit. Microtransactions are used to acquire a

special currency, and utilizing the game’s time-saving features use up this currency. The

cost to skip a wait goes higher as the wait time increases, but when the build times are

in several days, the temptation to pay the price may overcome many impatient players.

When the player starts the game for the first time, they are introduced to the game’s

features and mechanics by a tutorial sequence. The integration of microtransactions is

the most visible during this introductory phase, when the game figuratively holds the

player’s hand in teaching them to use the microtransaction currency. Players are not

explicitly forced to purchase the currency, as they are handed a moderate amount of it

upon installing and signing up for the game. Over half of this amount is however used

during the tutorial phase in an attempt to teach and encourage the player to use the

microtransaction currency, lowering the barrier to consume it also later in the game. To

reinforce this, wait times and the cost to skip them are relatively low in the early game,

so that it is easier for the player to get accustomed to spending the leftover currency

from the tutorial, and potentially purchase more in order to keep the pace of the game

constant. Progressing in the game causes the buildings and upgrades to take longer to

complete, and eventually the player will run out of activities to perform on that play

session, and will be forced to make the choice between spending more currency to keep

playing or ending the session and suppressing the possible ”flow” state they may be in.

The competitiveness of the game encourages the player to not wait too long, as waiting

can cause their competitors get ahead of them in unit upgrades and subsequently in

trophies and rankings.

In addition to gaining an edge over the competitors by skipping long wait times,

microtransactions can help the player fill out missing resources. In principle this is also

about eliminating wait times, as resources can be gained over time. Alternative to the

instant pay-off of missing resources, players can also choose to activate a ”Booster” for

 21

their resource-generating buildings, which makes them more efficient for a short period.

Boosting a resource building is less expensive currency-wise than filling missing

resources, but offers the player a strategic choice of to save their currency and spend

more of their time instead. For the developer’s business the player’s choice does not

matter, either scenario is beneficial; instantly gaining resources consumes more of the

player’s currency but the longer-lasting Boosters tie the player to the game for a longer

time.

Another usage for the microtransactions is in building an army: the training queues of

the unit producing buildings can be either sped up with a ”Booster” similar to the

resource buildings, but also by instantly completing the queue. This usage feeds from

the competitive nature of the game, as the player is able to challenge and conquer more

human players when they gain their units faster, allowing them to gain Trophies and

rising in ranks and leagues faster.

4.1.3 Acquisition

Microtransactions manifest themselves in Clash of Clans in the form of Gems, a

currency acquirable by only a few ways:

 Players are given a moderate amount of Gems upon first installing and signing

up for the game.

 There is a random chance to get a minimal amount of Gems from performing a

short action on shrubbery, rocks and other obstacles that appear in the player’s

town

 Completing achievements that require the player to perform a set amount of

actions or gather a specific amount of resources award the player with a small

amount of Gems.

 Exchanging real money for Gems is the fastest and most reliable way to get

larger amounts of gems.

Compared to buying the Gems, the other methods are unable yield enough Gems for the

player to use them regularly. The initial handout during the tutorial is 500 Gems.

Clearing out obstacles are easily repeatable actions that give the player anything

between 1 and 3 Gems, and completing achievements happens on a rarer occasion but

award the player usually with 2 to 20 gems except for the late-game achievements, that

 22

may give a one-time award of up to 2000 Gems (gained by reaching the Champion

league). League success plays even more important role in Gem acquisition, since the

top 3 Clans will receive a substantial amount of Gems for the top 10 players in those

Clans. Gems awarded for each Clan are divided equally between the highest performing

players. The highest ranking Clan gains 20 000 Gems, the second is awarded 10 000

and the third gets 6 000 Gems. For each of the top 10 players, this means 2 000, 1 000

and 600 Gems respectively for each.

4.1.4 Placement

While microtransactions themselves are confined in one specific menu, abstracting the

money into Gems allows buttons that consume them to be placed in easily accessible

locations. Most often a Gem-consuming button, or a Gem-button, is placed in the

context of its effect, for example Gold, Elixir and Unit training Boosters are available

for purchase when you select their respective building. Task-finishing buttons are often

placed next to the upgrade’s or building site’s Cancel-button, giving the player a chance

to consider their options and decide whether they should waste their resources

(cancelling an upgrade or a building site will only return half of the resources used to

initiate the operation), or spend Gems to finish the progress.

The actual purchases for Gems are as many clicks away in the menus as buildings.

Gems are offered in bundles in predefined amounts. As listed in Table 1, the gems

gained per money spent does not remain constant. This pricing model is implemented in

order to encourage players to purchase more Gems at a time, give better value for bigger

investments and balance the increase in Gem requirements for actions later in the game.

Table 1 - Amounts and prices of the Gem bundles in Clash of Clans

Amount Price (€) Gems per €
Relative increase

in value

500 4,49 111,36 -

1 200 8,99 133,48 19,87 %

2 500 17,99 138,97 4,11 %

6 500 44,99 144,48

14 000 89,99 155,57 7,68 %

 23

4.1.5 Morality

Objective perspective to the game’s morality and responsibility can be gained through

evaluating the game’s features with the UK Office of Fair Trading principles for online

and app-based games. There are 8 principles concerning the developer’s responsibility

to make the user aware that they are being sold services.

The first and second principles concern the clarity of information regarding costs that

are associated with the game, and the information regarding the game’s functions and

content such as its short description, hardware and software limitations and its social

functionality. Costs ought to be broken down to specify the initial purchase price of the

game, the possible subscription costs or mandatory payments that are required to keep

on playing the game and the possible microtransactions that the game offers. The first

principle also dictates that the amounts, or at least the range of the amounts, has to be

present with the aforementioned details. All this information needs to be presented

before the player begins to download or sign up for the game, meaning that the player

must have this information at hand while they are making the decision to download or

purchase the game.

The Clash of Clans Google Play store page includes includes a basic description of the

game and it’s functionality. It also describes clearly that the game is social and that the

player is likely to encounter human interaction within the game. There is also a note,

informing the potential customer that the game is free to play, and does not require any

subscriptions, but contains items that can be purchased for real money. (Supercell

2014.) If players do not want to use those features, the developers encourage them to

turn off the in-app purchase option from their device. However, the store page fails to

mention the exact amounts of the purchases, even though they are pre-defined easily

available to view from inside the game. Due to this, the game is less likely to comply

with the first principle of the guidelines presented by the UK Office of Fair Trading.

The third principle dictates that the information to contact the seller or developer of the

game has to be clearly presented before acquiring the game or creating an account for

the game, and that the information must be based on a reliable means of

 24

communication. Clash of Clans includes two e-mail addresses on their Google Play

store page, one for suggestions and feedback and another for other queries. The

principle also expects that the seller is able to be contacted rapidly and directly. This

depends on the development team’s customer service capabilities, and cannot at this

time and in this case be confirmed. Further contact information is only listed on the

developer’s site, but the addresses on the store page should suffice to comply with this

principle.

The fourth and fifth principles discourage ambiguity of commercial intents. These

principles describe that all features involving real money have to be easily

distinguishable from the actual gameplay, and that the player has to be aware that the

actions they are about to invoke may involve or require utilizing microtransactions. The

player also must not be mislead in to believing that microtransactions are a required part

of the game where they are actually not. Direct purchases are strongly discouraged, and

they should instead always point to a dedicated shop window, that can be recognized as

a separate part from the gameplay. Clash of Clans may not fully comply with these

guidelines. The game does force the player to go to the store when they are short of

gems for an action, the wait times for different actions are displayed clearly and all

screens where the usage of gems is a possibility there are also buttons to exit the screen.

However the concern and a target for closer inspection is the distinguishability of the

microtransactions from the core gameplay, as the game specially teaches the player to

use the currency during the tutorial, and the wait times get so long down the line that the

only logical thing to do to keep on playing might seem like purchasing with the

microtransactions. The game does not really tell the player to do so, but the player may

feel obligated to do so.

The sixth and seventh principles regard marketing towards children, prompting the

developers to not exploit children’s inexperience and credulity that their young age

includes. The seventh principle especially discourages direct exhortations to children, as

they may feel forced to make a purchase, or ask and persuade someone else to do it for

them. To achieve this, the game has to present the free and the paid options equally, and

not provide a straight link to activate the microtransactions but rather encourage the

player to purchase the required items from the shop. The game should also avoid using

imperative language, as children may feel that they are forced to make a purchase to

 25

keep on playing. Clash of Clans mostly complies with these two guidelines, as the

language used in the game is not in demanding form, but rather suggesting or asking.

For example if you do not have enough Gems to finish a construction, the game throws

you a popup titled ”Not enough Gems”, informing the player of their lack of currency,

and then says ”Do you want to get more?” and gives the player a button to enter the

shop to purchase the Gems.

The eighth and final principle is defined to ensure that when a payment is taken from

the player unless they have given their consent, being aware of the consequences of the

purchase. The developers must ensure that the player knows when they are being billed

for their actions, and that they explicitly acknowledge that they are going to pay the

given amount. In the case of Clash of Clans, an easing fact is that all payments are done

through the designated store window. On Android, selecting a Gem bundle from the

store window opens the Google Play store purchase confirmation dialog box, that has a

clearly labeled button that says ”Buy”, and represents the price clearly right above it.

This complies with the given guidelines, as the buyer should be aware that they are

being charged when they get to the screen to perform the purchase.

In conclusion, Clash of Clans seems to be somewhat responsibly designed and mostly in

compliance of the UK Office of Fair Trading principles for online and app-based games.

It is important that these kinds of guidelines are being drawn and that they are followed,

as overly commercializing social and mobile games does not promise a bright future for

the gamers, when they are more and more being used as figurative money cows that are

being tapped into and milked with games.

4.2 Case: Dungeon Keeper

This chapter will examine the recently released Dungeon Keeper published by EA and

study its game mechanics and how they work with the microtransactions that are

included in the game. The game is also put under analysis and is compared to the

guidelines released by the UK Office of Fair Trading.

 26

4.2.1 The idea of the game

Dungeon Keeper is a game released in 2013 for the Android and iOS mobile platforms,

developed by Mythic Entertainment and released by Electronic Arts (not to be confused

with Dungeon Keeper, the PC strategy game released in 1997 developed by Bullfrog

Productions and also released by Electronic Arts). The developers describe the game on

the Google Play store page as ”It’s tower defense…without the tower…and a lot more

offensive!”, possibly referring to the tower-defense-like nature of the earlier games in

the Dungeon Keeper franchise (EA Mobile 2014). The game’s reception was mostly

negative, as of April 2014 its rating on the rating aggregate site metacritic is 42 out of

100, describing responses as ”Generally unfavorable reviews” (metacritic 2014b). Most

of the criticism is aimed towards the game’s heavy use of microtransactions, so much so

that even the original franchise creator Peter Molyneux had shunned the game for them

(Handrahan 2014), which is why it makes a valid case for analysis for this thesis.

The gameplay of Dungeon Keeper revolves around the player managing their own

dungeon, much like the player manages their town in Clash of Clans. The dungeon

consists of rooms connected with corridors and traps that can be laid down on the

corridors. The player can summon units which they can use in raids against other

players’ dungeons. The center of the dungeon is a room called ”Dungeon Heart”, which

works as a place to recruit units and it determines the maximum level of other rooms in

the dungeon.

Rooms and units can be purchased with Gold or Stone, the two main resources used in

Dungeon Keeper. Stone is acquired by claiming Stone Quarries which slowly generate

Stone, and they can be harvested by tapping them when they have gathered some Stone.

Gold can be acquired by claiming Gold Mines, which work the same way as Stone

Quarries. Both Gold Mines and Stone Quarries are pre-placed on the dungeon map,

each containing total of 4 both resource buildings. In addition to generating resources,

the Gold Mines and Stone Quarries also work as entry points for enemy units during

raids on the player’s dungeon.

Units can be used to conduct raids on other players’ dungeons. Much like in Clash of

Clans, whenever units are used in raids they are expended and can not be used again. In

addition to units, player can use Spells to their advantage during raids. Spells have

 27

various effects, and they are generally more powerful than units and use Mana

whenever they are cast. Mana can be acquired by building a Dark Library, which works

like Stone Quarries or Gold Mines, generating Mana over time, and is gathered by

tapping the Dark Library when it has generated some Mana. Raids reward the player

with Gold and Stone as well as Trophies and Attack Points. The latter two are used to

determine the player’s rank on the game’s global leaderboards.

4.2.2 Microtransactions

The real-money sink for Dungeon Keeper is its premium in-game currency, Gems. The

Gems in this game work fairly similar to how they work in the previously analyzed

Clash of Clans, at least as far as their usage goes. The main commodities that can be

exchanged for Gems are time, in-game resources and different ”Boosts”.

The gameplay in Dungeon Keeper, especially in later stages, involves a lot of waiting in

the form of building, training and mining times. Waiting times are troublesome for the

player due to their tendency to break the play session flow, which can in some cases

mean that the player becomes annoyed or frustrated because they have had good time

playing the game for several minutes and now need to put the game down despite their

desire to keep on playing due to the timer delaying their actions in-game. This, intended

by design, promotes the option to use the game’s premium currency to skip these

waiting times in order to keep on playing.

Resources to build and upgrade buildings can be gathered from resource buildings that

generate them slowly over time. The buying power of the player depending solely on

the income from the resource buildings diminishes quickly, as costs to upgrade

buildings increase exponentially, whereas the extra income from resource building

upgrades increases in linear fashion. To gather resources required to upgrade the central

building, the Dungeon Heart which limits the progression of everything else, to

maximum level will take the player around 103 continuous days having only the

resource buildings as an income. To compensate for the radically increasing costs the

players can purchase resource fills with Gems. Resources can also be gained by

launching attacks with your own troops – raiding – other players' dungeons or

completing raid "Events". The amount of resources that can be gained through raiding is

limited by the level of the Dungeon Heart, which allows for some scaling towards the

 28

higher costs of late-game upgrades, but also prevents the Gem purchases from

becoming redundant.

One of the more significant commodities the player can purchase with Gems are the

”Imps”. They are similar to Clash of Clan’s Workers, as they limit the player’s

concurrent actions. The player can get around this limit by either waiting for their

actions to finish, using Gems to finish an action in progress or purchasing another Imp,

which provides another slot for an action. The amount of Imps is limited to six, and the

cost of hiring them increases exponentially with each, the advantage being that once you

purchase them, the Imps are permanently enabled on your account.

To temporarily boost the player’s defensive or offensive abilities or to increase their

resource gain the game offers a variety of Boosts. These Boosts can be purchased with

Gems, and they are in effect for a predefined duration that starts upon their activation.

There are 5 different Boosts: ”Cave-in”, which prevents other players’ raids on your

dungeon but is discarded if the player decides to raid someone else’s dungeon. ”First

Strike” increases Minions’ health, damage and movement speed as well as Spell

damage by 10% while attacking. ”Fortification” Boost increases Trap, Room and

Minion health and damage while defending your dungeon. ”Scouting” is a Boost that

reveals hidden Traps during raids. As the fifth Boost there is the DK Premium, which is

comparatively longer Boost that increases resource production, Raid rewards and gained

Gem rewards from Exclusive Raids.

When the player starts Dungeon Keeper for the first time, they are taken through an

introductory tutorial for the game’s mechanics. In addition to teaching the basic

gameplay, the tutorial seemingly attempts to teach the player to be liberal at consuming

the premium currency they are given upon signing up for the game. There are several

parts during the tutorial when the player is told to spend Gems, and in case of

introducing the feature to skip a wait time during construction or unit training the

prompt can be ignored by just waiting until the task is completed, but for example in

telling the player about the Imps and how they are required for different tasks the player

is forced to use 100 Gems to perform the purchase action in order to proceed in the

tutorial. The amount of Gems required for the second Imp and skipping waits are

significantly lower during the tutorial than what they are in the actual game, which may

 29

lead the player to a sense of false security about the amount of Gems they possess and

the amount of buying power they actually provide. If the player gets used to skipping all

waits during the tutorial, nearly all of them being under one minute, for 1 Gem and they

continue the behaviour after the tutorial is done, they may quickly burn through the

initial Gem reserve and be faced with a decision to buy more Gems to keep up the

freshly learned playstyle.

4.2.3 Acquisition

Gems in Dungeon Keeper can be acquired in several different ways. The easiest and

most time-efficient way of getting Gems are the Gem bundles, which are available for

real world money, but the game also rewards the player with Gems for completing

achievements or doing certain tasks. Achievements usually reward the player with 5

gems per completed achievement, the longer term achievements give out 10–50 gems

and the multiplayer league related achievements return 10–2250 gems. The league

achievements are awarded for people ranking first in their current leagues, which may

make using Gems to climb the ladder tempting, seeing that beating other players gives

back a substantial amount of Gems.

Another cost-free way of gaining gems are the in-game tasks. The player’s dungeon

consists of rooms and corridors carved in rock. There are three different types of rocks,

Soft Rock, Gem Vein and Hard Gem Vein. The Soft Rock is the fastest rock type to

mine, but they only have a small chance of containing a small number of gems. The

Gem Vein and Hard Gem Vein take longer time to mine, 4 hours and 24 hours

respectively without a building time boost, but they also yield the most gems when

mined. Gem Vein contains 2–3 Gems and Hard Gem Vein 9–10 Gems, significantly

more than the Soft Rock on average. To get any profit from the Gem Veins, the player

has to wait for the mining time to finish as skipping the Gem Vein’s 4 hour build time

would cost 49 Gems, resulting in 46–47 Gem loss for the player. In addition to mining

the rocks in the dungeon, the player can take part in ”Exclusive Raids”, which are like

regular Raids against a computer opponent, except that the player is defending in their

own dungeon and the opponent has 10 waves of monsters to attack with. If the player

can defend for all of the 10 waves without their Dungeon Heart destroying, they are

awarded 46 Gems. Retrying the Raid will cost the player 30 Gems, but they have

another shot at the 46 Gem reward.

 30

The Gems are sold in bundles, priced between 4,49 € for 500 gems and 89,99 € for

14000 gems, as described in detail in table 2. The price points are identical to what

Clash of Clans has, as shown in table 1, with the exception of the second cheapest

bundle. Despite it possibly seeming like a minor difference, it may have an impact on

the player’s decision to spend just a couple of dollars more than they originally intended

by having a better increase in value for lower amount of money. The increase in value

compared to the one step cheaper item can be seen visualized in figure 1. Once the

player’s threshold to purchase bigger amounts of gems has been lowered in this manner,

there may be a greater chance that they make similar decisions in the future.

Table 2 - The sizes and prices of the Gem bundles in Dungeon Keeper

Figure 1 – The increase in value of a gem bundle compared to the previous price point

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

4,49 6,99 8,99 17,99 44,99 89,99

Dungeon Keeper

Clash of clans

Amount Price (€) Gems per €

Relative increase

in value

500 4,49 111,36 0

900 6,99 128,76 15,62 %

1200 8,99 133,48 3,67 %

2500 17,99 138,97 4,11 %

6500 44,99 144,48 3,97 %

14000 89,99 155,57 7,68 %

 31

4.2.4 Placement

The placement of microtransactions in Dungeon Keeper is very similar to what it is in

Clash of Clans: the actual real money purchases are available from a single menu screen

and the buttons that consume gems are located in the specific context where their

actions are needed. Boosters are an exception, as they can be bought from a separate

screen to be used later as well as before starting a raid.

One of the differences between the placement and advertising between Dungeon Keeper

and Clash of Clans is that Dungeon Keeper tends to advertise and pressure the player

more to use the gems. As mentioned earlier, the buttons to expend gems are strongly

highlighted during the tutorial, and the player may feel that they can not progress

without consuming some of their starting gems.

4.2.5 Morality

Like in the previous case with Clash of Clans, Dungeon Keeper’s morality can be

judged by comparing it to the guidelines issued by United Kingdom Office of Fair

Trading. The guidelines include 8 principles regarding the presentation and advertising

of in-app purchases.

The Dungeon Keeper Google Play store page provides information on the cost for

signing up for the game, which is none, as well as a mention on the availability of

microtransactions, as suggested by the first principle of the guidelines. The page fails to

break down the optional costs of purchasing gems from inside the game however, as

also mentioned in the principle. The advantage of having the information on gem

bundles available, without the need to install the game, is that the guardians of younger

players, the people who pay the bills, can plan and advise the player on the use of those

in-app purchases. While the breakdown of in-app purchases is missing, these details are

likely to comply with the guidelines.

The store page for Dungeon Keeper describes in sufficient detail the game’s

functionality. It also mentions the ability to group with other people and the possibility

of the player’s dungeon being invaded by other players. The second principle expects

the developer to disclose information about the game’s characteristics so that the

 32

customer is able to make a decision of buying or signing up for the game with enough

information about it. In addition to information about the game, the game’s description

addresses the use of the player’s personal data that is being gathered and the inclusion

of advertising for the developer’s or its partners products. This amount of information

should be sufficient to comply with the given guidelines.

The third principle outlines that the customer should be informed of ways to contact the

developer or the publisher before they purchase or start to play the game. The Google

Play store page for Dungeon Keeper includes an e-mail address to direct queries about

the game. The page also lists several social media sites related to the game, but a lack of

mention may mean that they are not used by the support personnel and can not be used

for support requests or complaints. The functionality of the support e-mail address can

not be verified within the timeframe of this analysis. Despite the scarcity of contact

information, the game is likely to comply with this principle as it meets the minimum

requirements.

As described in the fourth principle, commercial intent of any advertisement must be

easily told apart from the actual gameplay. The fifth and sixth principles prohibit

misleading the consumer into thinking payments are required or integral part of the

game, and exploiting young players’ naivety in order to pressure them to make a

purchase, respectively. To the same category belongs the principle seven, which advises

a game to not include imperative wording that a child may consider as an order to

purchase something. While Dungeon Keeper does not advertise products or services

unrelated to the game, some of the game related advertising may be confusing for

younger players. As an example, some time after installing the player is greeted with a

popup upon launching the game, promoting a Dungeon Keeper related ringtone. The

wording of the popup is in an imperative and almost taunting tone, reading ”Enjoying

Dungeon Keeper? Install the exclusive Dungeon Keeper Ringtone Rap onto your device

now. Go on, it’s FREE!”. Out of the four buttons below the text, only one makes the

popup go permanently away. While it does not promote paid content, the wording gives

an example of the relative aggressiveness of advertising in the game, potentially veiled

under the personality of the support character that is displayed saying them. Another

example of this is when the player completes one of their first raids, and they are

congratulated with a message saying ”If only you had DK Premium, Keeper, you’d

 33

have plundered 40% more resources. You can find it in the shop, under Boosts” (figure

2). While the message does not strictly order the player to purchase the Premium Boost,

it does strongly suggest so by again nearly taunting the player. While the language and

messages may not be strictly in violation of the principle due to the theme of the game

being ”evil” and because the payments are hidden beyond the Gem currency, careful

consideration should be done while deciding on the compatibility with the guidelines.

Figure 2 – Dungeon Keeper’s congratulatory message received upon first victory –

Screen capture from the game Dungeon Keeper by EA

The final principle implies that a payment should not be made without the account

holder complying to it. Dungeon Keeper on Android does not directly have control over

this, but the Google Play Store offers a setting that requires password for purchases

made from the Store. The setting can be set to require authentication for all or no

purchases, or to ask the password every 30 minutes. This offers a possibility for the

account holder to be aware of all purchases unless their password has been

compromised, complying with the guidelines.

4.3 Case-to-case observations

Prior to writing this thesis, the great likelihood between Clash of Clans and Dungeon

Keeper was not completely obvious to the writer. During research it did become clear

that these games are both made with the same formula, but what most differentiates

them is their success and reception. The gap of these two games can be seen in their

 34

metacritic ratings, where Clash of Clans has average critic score of 74 and user score of

7,0 (metacritic 2014a) while Dungeon Keeper has generally negative reviews with critic

score of 42 and user score of 0,4 (metacritic 2014b).

The reception of Clash of Clans was relatively neutral and quiet compared to that of

Dungeon Keeper. According to Google Trends , as seen in figure 3, Clash of Clans

gained its significant search popularity boosts long after the App Store launch. Dungeon

Keeper on the other hand bases itself on a well known franchise named the same, and is

thus already placed under heavy scrutiny even before its release. Despite its reference to

a well known and established series, the game did not gain significant search popularity

boost after its announcement, as seen in figure 4 where marker D signifies the

approximate time of announcement and marker C the launch for limited audiences. The

game was properly released in December 2013. The series has had a long pause in

proper installation releases, last one dating back to June 1999, which creates even more

anticipation amongst fans of the Dungeon Keeper franchise. The high fan anticipation

and the fact that Dungeon Keeper does not seem to be aimed towards those loyal fans

but rather towards the mobile free-to-play audience are part of a recipe that probably

caused the outstandingly negative reception for the game (Levy 2014). Because of their

similarity in the microtransactions and baseline gameplay, one can only draw

conclusion that the failure of Dungeon Keeper is mostly because of the fans not getting

what they wanted, and the developer taking a well known title and transforming it into a

completely different experience.

Figure 3 – Clash of Clans search popularity over time. Screen capture from

www.google.com, retrieved 1.6.2014.

 35

Figure 4 – Dungeon Keeper search popularity, starting from its announcement. Screen

capture from www.google.com, retrieved 4.6.2014.

While studying the success of each of the inspected games, a strong difference of post-

release performance can be seen. While Supercell, the developers of Clash of Clans,

enjoyed success in the form of acquisition by SoftBank and GungHo (Softbank 2013),

the developers of Dungeon Keeper were not as fortunate. Late in May 2014 news that

EA, the owners of Mythic Entertainment, are closing the studio emerged (Schreier,

2014). Drawing conclusions from big companies’ actions like EA’s may not lead to a

realistic estimate of the undergoing events, it could be speculated that the financial

performance of Dungeon Keeper was not on par with what the stakeholders had

expected, especially with the game’s release after the success of Clash of Clans, and

they had to let the team go.

5 The Usage of Microtransactions

5.1 Introducing Project TownBuilder

The idea for an Android game for this project originates from a course project that was

made for the platform. The Android platform offered much more freedom than game

engines did, and it seemed like a worthy system to study and learn. The game has been

built from ground up on the Android platform libraries, and it utilizes its user interface

tools as well as the Canvas element for drawing the game.

The design for a peaceful co-op town building game stems from personal experiences

and preferences. The genre may be somewhat niche, but it is only an advantage to this

http://www.google.com/

 36

specific project as it allows it to stand out from the crowd a little easier. The genre’s

compatibility with microtransactions seems also fairly undocumented, so even though it

is out of the scope of this thesis, the project will serve as an experiment on the viability

of the format.

The whole game will not be released as open source, but the modules that are directly

related to this thesis, the MTX modules, will be available to download for public and

they will also be appended to the thesis as they currently stand. The current

implementation may be inefficient and hastily made due to the timeframe available for

the thesis.

5.2 The Design

5.2.1 Gameplay design

Project TownBuilder is a mobile game where the player is put in charge of running a

post-apocalyptic town. The player has to set up their headquarters and start gathering

resources from their surroundings in order to improve their central buildings and grow

their town larger. The objective of the game is to gather as big score as possible by

converting their own resources or using them to trade for resources that other players

have in order to gain more points for themselves. The planned multiplayer features

concentrate heavily on cooperation instead of opposition.

At the beginning, the players start with nothing else but their headquarter building and

some resources to be able to build some of the starting buildings. To progress in the

game, they have to identify the resource nodes and build resource gathering buildings

on them in order to start gaining more resources to spend on other buildings. Placing the

available buildings unlocks new ones according to a technology tree, opening up an

element of planning for the player. As they progress in the game, the player can

eventually unlock and build buildings that allow them to expand their territory,

uncovering new resource nodes and other valuables, as well as buildings that enable

them to communicate and reach further players with their trades.

 37

When the player signs up for the game, they are created a profile where their progress is

being saved, so that they do not have to start their town from zero every time they start

playing. This way the game provides a sensation of progression, and allows the player

to progress by only popping in the game for a short time to build a building or upgrade

their headquarters. Unlike in most social and mobile games such as Sim City Social,

gathering resources does not require player action so that the income stays steady.

Technically this is done by evaluating the progress that has happened while the player

has not played the game when they next time log in the game.

5.2.2 Microtransaction-induced design

This chapter will list the design choices that are induced by the intended

microtransactions. The design of the microtransactions are set to follow three principles:

 The game has to be enjoyable and playable without spending any money

 People who wish to support the developer by making a one-time purchase must

get their money’s worth in the game without giving them unfair advantage over

others.

 People who are willing and able to make several, even regular, purchases must

also get their money’s worth in the game without giving them unfair advantage

or eliminating difficulty, causing the game to become less enjoyable.

The principles are not based on professional experience or research, but rather on

personal experience in gaming and the ideas and desires projected from that. While the

principles may appear utopistic at first, they are worth aiming for as the field of the

subject is still relatively fresh and its true limits undiscovered.

The game will incorporate a ”premium currency” system, which can be seen in majority

of games that allow microtransaction-paid content. The wide adaption of the system, in

numerous titles such as Settlers Online or Hill Climb Racing to name a few, can be

interpreted as its proof of efficiency over alternatives such as directly purchasing in-

game items or bundles. A premium currency grants several perks: it simplifies the

purchase process, eliminating the need to process orders for dozens of items and

narrowing the purchases to bundles of premium currency, this can be confirmed by

comparing the market mechanics for example in Team Fortress 2, which has real money

price for every item and requires a money transaction for every purchase, and APB:

 38

Reloaded, which relies on a premium currency (G1C), which allows several item

purchases per real money transaction. The premium currency in TownBuilder does not

act exactly as it traditionally does, like in for example the earlier analyzed Clash of

Clans or Dungeon Keeper. Players can purchase the premium currency with real money,

or they can find or produce it themselves in the game in smaller amounts. In addition to

being a commodity to trade for in-game items, the currency itself works as a booster of

kind, improving the efficiency of conversion rates for regular resources when consumed

in the conversion process. The idea is somewhat inspired by the XP conversion

mechanic in World of Tanks, described more in detail in the chapter 2.3. The premium

currency itself does not add you resources, but allows the player to get better worth for

their already spent effort. This attempts to invoke loss aversion by having the player

already done their work and letting them decide themselves whether they want to get

paid more for them. The premium currency is designed to allow the gaming hobbyists’

large scale consumption, but in addition to buying it with real money it will be also

available through regular gameplay, so that it can be included in the game’s core

mechanics without leaving out the players who do not wish to pay for the game.

Catering to the non-paying players is important, as they make up the majority of players

in a free-to-play games as discussed in chapter 3.2 on the topic of conversion rates.

Purchasable items can be divided into two categories: one-time-purchase features and

consumable items. The pricing of features is determined by setting the game a price

point, which will be equal to the sum of all features available for purchase. In a sense,

the game is sold in separate parts. The features that will be sold are designed as being

non-mandatory for effective gameplay, but still offering not necessarily an advantage,

but rather ease on restrictions or alternative gameplay methods for those who possess

them. An example of a purchasable feature is the ”Exploration Pack”, which is designed

to allow the player leave their town and discover other players’ town in order to trade

and otherwise communicate with them in order to boost their own production. The

purpose of the purchasable features is to allow people to contribute to the game by

making a single purchase, but still gain something that will affect the rest of their time

with the game.

Consumable items are designed to give a permanent or a temporary boost or cosmetic

change to the player’s units or resources. Due to the project not containing a graphic

 39

designer, cosmetic purchases may need to be closed out as consumable option in the

early phases of development. The premium currency bundles also count as consumable

items, although the player is in no control of when to consume the bundles, as they are

consumed upon purchase in order to give the player the amount of premium currency

they have just purchased.

The principles listed in the beginning of the chapter should be fulfilled with these

baseline design instructions. The non-payer player’s enjoyment must be guaranteed with

the actual game design, which is already important for the success of the whole project.

For players who wish to make a contribution or a single purchase, the one-time-items

should satisfy their needs. The premium currency has no purchase limit, which makes it

optimal for people with regular disposable income they wish to spend on the game. The

attractiveness of the premium currency can be adjusted by the items that the player can

purchase with them, as well as by balancing its availability within the game.

Due to the unfinished and largely undesigned nature of the game’s user interface, the

game cannot be put under analysis for the UK OFT guidelines used in the case studies,

but as they are acknowledged during the design, they will be taken in account while

putting together the user interface for the game. Some concrete examples are that the in-

app purchases will be confined to a shop menu behind a visible, but non-intrusive

button. If design-wise possible, the game will try to avoid any kind of direct purchase

impulse buttons. The game will be designed for young adults and older, so the children

are not in the main focus of the microtransaction marketing. Regardless of the main

demographic, the game will not be restricted from children and will attempt to comply

with the previously mentioned guidelines, as they also imply respect for the human

value of the player, which will be of priority in the design of this game.

5.3 The Implementation

5.3.1 Used tools and frameworks

The tools and frameworks used in the project have been chosen to cater for Android

development using Google’s and Android’s own libraries and technologies. The

programming, app layout design and app setup is done in the Android Developer Tools

 40

(ADT), which is a modified version of the open sourced programming IDE (Integrated

Development Environment) Eclipse. The reason why ADT was chosen was mainly

because it was one of the only Android development environments during the beginning

of the project, and was the offered tool from the Android team.

It is worth noting that the start of the TownBuilder project was nearly one year before

the work on the actual thesis started, and during that time some alternatives to the

Eclipse-based ADT have arisen. One potential alternative is the Android Studio, which

is currently under development and available from the Android developer resources.

Instead of Eclipse, the Android Studio is based on IntelliJ IDEA. It is still not finished,

but an early access preview is available for those who do not mind facing bugs or

incomplete features. One of the main reasons the TownBuilder project was not migrated

to the Android Studio was that the relatively short schedule that had been planned for

the project would be compromised by the need to learn the new environment and

becoming as fluent with it as with the ADT.

Another alternative to the ADT was Unity, and while it is a highly efficient tool to

produce content on, it did not meet the personal requirements set for this project. While

selecting the tools for TownBuilder, Unity did not have its 2D toolkit implemented yet,

and while Unity had 2D frameworks available, the toolset itself was still optimized for

3D production (Saarelainen & Pakarinen 2013, 10–12). Another criteria for dismissing

Unity was the desire for advancing personal skills on Android development and the

motivation to learn something new. Using ADT and a custom game engine permits to

apply personal touch to the game without being constricted by the limits of another

game engine, such as Unity. Soon after starting the development, Unity released its 2D

toolkit, which could have made the production of TownBuilder faster, but the change of

tools was never made due to the custom game engine being in a good shape, and

because one of the core ideas for the thesis was to make something that is not made with

Unity. In hindsight the Unity environment would have been too heavy for this purpose,

as the game is only in 2D and is not action packed enough to require heavy calculation

and sprite optimization.

 41

5.3.2 The Microtransaction-modules

For the purpose of implementing microtransactions into TownBuilder, which is an

Android game, the ”MTX”-package was set to be developed. This will not be the first of

its kind, as somewhat similar solutions already exist, for example prime[31] offers an

In-App Billing plugin for Unity that allows Google Play microtransaction integration.

What separates this MTX module from the Unity plugin is that the MTX module offers

greater customization, as the Unity plugin is merely for communicating with Google

Play. The purpose of this package is to simplify the usage flow of using

microtransactions in a Java application. The structure and logic of the package is

described in figure 5 as it is in use in the project TownBuilder. The design for the

modules in this package was inspired by the idea that the developer could simply invoke

a method call from their main code and receive a result to a method that handles the

data according to their own programming. The advantage to this is to separate the

different independent actors in the purchase to their own modules is the versatility in

case of porting to a different platform or a different vendor, when the functionality can

be programmed to their own modules without the need to change game code.

Figure 5. The structure and data flow of a purchase activity in MTX module

The Game.java code file in picture 1 represents the actual game code. The function calls

to the MTX class are not made strictly in one code file, but rather they have been placed

 42

in more context-related locations such as buttons’ on-click functions. Overall control of

the modules in this package is in the MTX.java, which relays the commands to the

appropriate vendor objects and handles received events. The MTX class is used by

creating an instance of it in the game code, passing the game-specific vendor

implementation which in this case is TownBuilderVendor.java. The vendor class that

the MTX module uses bases itself to the IMTXVendor interface, which defines methods

for purchasing items and retrieving the product list from the vendor. In addition to the

commands, the vendor must also implement methods to handle the events of receiving

the product list and receiving a successful purchase. These methods are to be defined in

the app-specific implementation, as they are expected to display information on the

screen, and the control of the app’s UI is left to the implementing class. The next

iteration of the vendor module is the abstract class defined in GooglePlayVendor.java,

which connects to the Google Play service upon creation. This class implements the

purchasing and product list fetching functionality through the connection that is stored

in it, but also imposes new abstract methods that need to be implemented in the app-

specific class. These methods are related to the Android platform and used for retrieving

the current Context object or an id pointing to a store layout. The Google Play Vendor

class also requires the MTXPurchaseActivity class, which inherits the properties of an

Android Activity, which are basically used to display different screens in an app. The

Activity is required to successfully display the purchase confirmation dialog. Further

iteration of the module could allow the currently displayed Activity to be used for the

purchase dialog, but such feature is not present in the current version of the package.

Finally in the vendor class hierarchy is the TownBuilderVendor, which handles the

incoming product lists by displaying them in a store dialog, and purchases by checking

the product id of the received purchase and performing the predefined actions set to

them. The TownBuilderVendor class also defines the product ids that are available for

purchase, and that are used to query the serverside product list.

A purchase with the module is done by first instantiating an instance of the MTX class

in the game's code and then calling the purchase method through the object. The

command is relayed to the vendor class defined in the MTX object’s constructor, which

uses its connection to the vendor service to retrieve the data and request the purchase

from the user. The actions are done in an asynchronous task, so that the app will stay

responsive and does not freeze completely. After the task has finished, the vendor class

 43

calls back to the MTX class to report that the action is completed, and that information

is again relayed to the app-specific implementation of the vendor class. This class then

processes the purchase, and adds the player some of the premium currency for example,

had the player purchased one of the bundles.

The MTX modules were written with portability in mind. The different platform

requirements are confined within single modules, which aims to make the code package

usable in virtually any Java environment. The support for non-Android projects can be

achieved by writing a new platform-specific class that implements the IMTXVendor

interface, although as of now the only option is the Android and Google Play

implementation. In order for a developer to implement these modules to their project,

they need to import the packages and write their own implementation of the

GooglePlayVendor class that implements the responses to receiving a product list or a

purchase confirmation. After this the developer only needs to create an instance of the

MTX class with their vendor implementation and call the appropriate methods when

they need to make a purchase or retrieve the product list from the vendor.

5.3.3 Integration with Google Play

In order to sell in-app products with Google Play the developer will have to gain access

to a Developer Console, which requires a Google Play publisher account, and a Google

Wallet merchant account. Registering a publisher account requires a payment of $25 to

Google, and the Google Wallet account can be created through the Developer Console.

Registering for these accounts requires the developer to provide personal contact

information and allows for providing company and tax information as well for those

who it applies to. However it is not required to have a company in order to register for a

publisher or Google Wallet account.

The actual communication with Google Play from the app is done in TownBuilder by

the GooglePlayVendor abstract class, which utilizes the Google’s

com.android.vending.billing library. Upon being created, the class instantiates a

ServiceConnection object to the InAppBillingService, which is bound to the

application’s Context, meaning that it will exist as long as the app exists. The

connection is used when the buy or product list retrieval methods are called, although in

both cases the user is not the class itself. In purchase action the connection is retrieved

 44

by the initialized Activity that helps display the purchase confirmation dialog. In

retrieving the product list, GooglePlayVendor retrieves the application’s product strings

defined inside the program and then instantiates an asynchronous task to wait for the

response from the server. The product list fetch contacts the Google Play servers and

retrieves information of in-app-purchasable items that match the strings that are sent to

it. To ensure that the service is established, the user can pass a parameter that makes the

program wait for the service for a set amount of time. This is most useful when the

service needs to be used quickly after its initialization, and should not be required

otherwise.

6 The Conclusion on Microtransactions

The setup for this thesis can be described as a question, asking ”how do I use

microtransactions in an Android game?”. The research question is intended to be a

double entendre to cover the two aspects of the perceived results: the design and the

practical code implementation. The basis for the resulting design of the project

TownBuilder was laid in chapter 3 when the nature and characteristics of

microtransactions were studied. Although these practices were taken in account while

designing the in-app purchases for TownBuilder, it is impossible to achieve perfection,

and the resulting items, pricing and gameplay integration may need to be iterated

several times in order to achieve the best efficiency. The objective was not to design a

final product, but to create a foundation for steady design that includes in-app

microtransactions. The most important goal was to avoid the ”black hat design” in

maximizing the profitability of the microtransactions. This was achieved by making the

premium currency available inside the game by gameplay and with the limitation that

the premium currency does not necessarily create resources for the player out of nothing

and instead they only reward the player better when they actually play the game.

Optimizing the profitability was done by offering both one-time buyers and the

”hobbyists” an option for a purchase. Premium currency is for the heavy spenders, and

the purchasable features work as one-time purchases that give advantage for a long time

without unbalancing the game. After having written the report and seen some seminars

from industry veterans such as Teut Weidemann, it appears the design principles set for

 45

TownBuilder are not as utopistic as thought, and similar designs actually in use in

successful free-to-play games already.

The backing for the code implementation results in the report comes from the actual

TownBuilder project. With the code files made and tested in practice, it gives a proper

source to base the findings in the implementation process. The MTX package is

appended to the report, so that its portability can be tested in practice. The game itself is

in an early alpha stage at the time of finishing the thesis, but it will be made available on

Google Play as soon as it is in a finishable state, so that the actual design can be

experienced in practice as well. No significant technical problems emerged during the

project, and those few problems that did were related mostly to Android platform’s

Activity management.

The tools, frameworks and methods that were chosen for this thesis were sufficient and

fit for their purpose. Android Developer Tools proved to be a well supported up-to-date

platform to develop an Android game on, with plenty of support in problematic

situations from the developer as well as the community. The research methods for the

history and nature of microtransactions were mainly studying the articles and

documents related to the topic, and was mainly done on sources available on the

internet. Due to the relative freshness of the subject, very little up-to-date literature was

to be found. The two case studies in this thesis gave several viewpoints to the state of

Android mobile games, as it was found after the evaluation of both games that they

were essentially made with the same formula. Analyzing Clash of Clans and Dungeon

Keeper with the UK Office of Fair Trading guidelines shed some objective light on the

in-app purchases offered by both games. While studying mobile games, objectivity is

important as in some cases the majority of a gaming community and the developers may

not be in perfect harmony, which causes a strong bias of facts and opinions on both

sides: the players wish to have enjoyable gameplay and do not expect to pay too much

but on the other hand the developers and especially the stakeholders wish to maximize

their investments, sometimes at the cost of the players’ wishes.

As mentioned in the chapter defining project TownBuilder’s design principles, the

writer of this thesis is merely a game programming student with no real accountable

professional experience. Despite the intention to stay objective while studying

 46

microtransactions, all objectiveness originates mostly from a gamer and customer

perspective. To guarantee credibility, a variety sources have been used ranging from

research companies to releases from appreciated industry newsletters.

The personal learning process during this thesis has been significant. Less in general

information about microtransactions, but even more so in Java and Android

programming, project and time management as well as writing capabilities. While

starting the TownBuilder project, my Android knowledge was still limited and I was not

completely clear on Activity lifecycles and general inner workings of Android apps.

Now after several iterations on the game project, I have better knowledge on good

practices and optimizations in Android projects. The writing of the thesis report was

fairly difficult at first, but as the report grew larger and larger, the confidence in my own

writing also strengthened, and I could see that it is possible to create large amounts of

content in a short time if the premises are set correctly. I became aware that studying the

subject yourself helps significantly in the writing of new content.

As mentioned before, perfection is not within reach, at least for this thesis. The

development on TownBuilder will continue with this research backing its design, and

the current plans for the project is to finish it as a playable game and release it properly

on Google Play. The MTX modules will be released as open source, and updated to

improve performance and ease of use. Further research ideas in the area of

microtransactions could be, for example, examining the revenue numbers and their

correlation to the prices of in-app purchases of a game or the advantages offered with

the purchasable items. Hopefully the thesis itself will find some use in helping

developers’ decisionmaking and making customers understand the reasoning between

some of the microtransactions that are used in the games they play, all this in hopes of

making all kinds of gaming better and more profitable, without harming the customers,

so that the future of the industry can be guaranteed.

 47

REFERENCES

Blow, J. 2013. Game design: the medium is the message. CreativeMornings.

http://creativemornings.com/talks/jonathan-blow. 2.2.2014.

Cailliau, R. 1995. A Little History of the World Wide Web.

http://www.w3.org/History.html. 2.6.2014.

Cambridge University Press. 2014. micropayment noun - definition in the Business

English Dictionary - Cambridge Dictionaries Online.

http://dictionary.cambridge.org/dictionary/business-english/micropayment.

2.6.2014.

EA Mobile. 2014. Dungeon Keeper - Android Apps on Google Play.

https://play.google.com/store/apps/details?id=com.ea.game.dungeonkeeper_

row. 2.6.2014.

Handrahan, M. 2014. Molyneux: EA's Dungeon Keeper "crucifies my patience" |

GamesIndustry International. http://www.gamesindustry.biz/articles/2014-

02-11-molyneux-eas-dungeon-keeper-crucifies-my-patience. 2.6.2014.

Levy, E. 2014. Gamasutra: Ethan Levy's Blog - The demon driving Dungeon Keeper

backlash.

http://www.gamasutra.com/blogs/EthanLevy/20140210/210391/The_demon

_driving_Dungeon_Keeper_backlash.php. 2.6.2014.

Meade, B. 2014. Mobile is burning, and free-to-play binds the hands of devs who want

to help | Polygon. http://www.polygon.com/2014/5/9/5699058/free-to-play-

mobile-candy-crush-the-room. 2.6.2014.

Metacritic. 2014a. Clash of Clans for iPhone/iPad Reviews – Metacritic.

http://www.metacritic.com/game/ios/clash-of-clans. 2.6.2014.

Metacritic. 2014b. Dungeon Keeper Critic Reviews for iPhone/iPad – Metacritic.

http://www.metacritic.com/game/ios/dungeon-keeper/critic-reviews.

2.6.2014.

Office of Fair Trading. 2013. The OFT’s Principles for online and app-based games.

http://www.oft.gov.uk/shared_oft/consumer-enforcement/oft1519.pdf .

15.3.2014.

Peterson, S. 2012. Next-gen consoles mean increased development costs.

http://www.gamesindustry.biz/articles/2012-04-03-next-gen-consoles-mean-

increased-development-costs. 2.6.2014.

PocketGamer.biz. 2013. Investors aren't interested unless you generate $1M a day, says

Fishlabs.

http://www.gamasutra.com/view/news/203337/To_get_investors_interested

_you_need_to_generate_1M_a_day_says_Fishlabs.php. 2.6.2014.

Rose, M. 2013. Chasing the Whale: Examining the ethics of free-to-play games.

http://www.gamasutra.com/view/feature/195806/chasing_the_whale_exami

ning_the_.php. 2.6.2014.

Saarelainen, T. & Pakarinen, M. 2013. 2D Game Development With Unity 3D.

http://theseus.fi/bitstream/handle/10024/68508/Saarelainen_Taavi_Pakarine

n_Miika.pdf?sequence=1. 2.6.2014.

Schreier, J. 2014. EA Shuts Down Longtime Game Studio Mythic Entertainment.

http://kotaku.com/ea-shuts-down-mythic-the-studio-behind-warhammer-

onlin-1583376655. 2.6.2014.

Softbank. 2013. SoftBank and GungHo Announce Strategic Investment of USD 1.5

Billion in Supercell.

http://creativemornings.com/talks/jonathan-blow
http://www.w3.org/History.html
http://dictionary.cambridge.org/dictionary/business-english/micropayment
https://play.google.com/store/apps/details?id=com.ea.game.dungeonkeeper_row
https://play.google.com/store/apps/details?id=com.ea.game.dungeonkeeper_row
http://www.gamesindustry.biz/articles/2014-02-11-molyneux-eas-dungeon-keeper-crucifies-my-patience
http://www.gamesindustry.biz/articles/2014-02-11-molyneux-eas-dungeon-keeper-crucifies-my-patience
http://www.gamasutra.com/blogs/EthanLevy/20140210/210391/The_demon_driving_Dungeon_Keeper_backlash.php
http://www.gamasutra.com/blogs/EthanLevy/20140210/210391/The_demon_driving_Dungeon_Keeper_backlash.php
http://www.polygon.com/2014/5/9/5699058/free-to-play-mobile-candy-crush-the-room
http://www.polygon.com/2014/5/9/5699058/free-to-play-mobile-candy-crush-the-room
http://www.metacritic.com/game/ios/clash-of-clans
http://www.metacritic.com/game/ios/dungeon-keeper/critic-reviews
http://www.oft.gov.uk/shared_oft/consumer-enforcement/oft1519.pdf
http://www.gamesindustry.biz/articles/2012-04-03-next-gen-consoles-mean-increased-development-costs.%202.6.2014
http://www.gamesindustry.biz/articles/2012-04-03-next-gen-consoles-mean-increased-development-costs.%202.6.2014
http://www.gamasutra.com/view/news/203337/To_get_investors_interested_you_need_to_generate_1M_a_day_says_Fishlabs.php
http://www.gamasutra.com/view/news/203337/To_get_investors_interested_you_need_to_generate_1M_a_day_says_Fishlabs.php
http://www.gamasutra.com/view/feature/195806/chasing_the_whale_examining_the_.php
http://www.gamasutra.com/view/feature/195806/chasing_the_whale_examining_the_.php
http://theseus.fi/bitstream/handle/10024/68508/Saarelainen_Taavi_Pakarinen_Miika.pdf?sequence=1
http://theseus.fi/bitstream/handle/10024/68508/Saarelainen_Taavi_Pakarinen_Miika.pdf?sequence=1
http://kotaku.com/ea-shuts-down-mythic-the-studio-behind-warhammer-onlin-1583376655
http://kotaku.com/ea-shuts-down-mythic-the-studio-behind-warhammer-onlin-1583376655

 48

http://www.softbank.jp/en/corp/set/data/news/press/sb/2013/20131015_02/p

df/20131015_02.pdf. 2.6.2014.

Supercell. 2014. Clash of Clans - Android Apps on Google Play.

https://play.google.com/store/apps/details?id=com.supercell.clashofclans.

2.6.2014.

SuperData. 2014a. US and China Mobile Games Markets Brief.

http://www.slideshare.net/superdata/us-and-china-mobile-games-markets-

brief. 3.6.2014.

SuperData. 2014b. Comparing MMO ARPU for major free-to-play titles.

http://www.superdataresearch.com/blog/mmo-arpu/. 2.6.2014.

Swrve. 2014. Swrve Finds Over 35% Of All In-Game Revenues Are Delivered In The...

-- SAN FRANCISCO, April 9, 2014 /PRNewswire/ --.

http://www.prnewswire.com/news-releases/swrve-finds-over-35-of-all-in-

game-revenues-are-delivered-in-the-first-three-days-of-player-life-

254526381.html. 2.6.2014.

Tseng, J. 2011. Zynga "Appeals to the Same Psychology as Gambling," Says Analytics

Expert Jeff Tseng.

http://www.forbes.com/sites/benzingainsights/2011/08/12/zynga-appeals-to-

the-same-psychology-as-gambling-says-analytics-expert-jeff-tseng/.

2.6.2014.

Weidemann, T. 2014. Dissecting World of Tanks Monetization | Teut WEIDEMANN –

YouTube. https://www.youtube.com/watch?v=c7H40Qd_lis. 2.6.2014.

Yee, N. 2014. Free-to-play whales more rational than assumed.

http://www.gamesindustry.biz/articles/2014-04-01-free-to-play-whales-

more-rational-than-assumed. 2.6.2014.

Zichermann, G. 2012. Zynganomics: 4 Secrets of the Social Gaming Business Model.

http://mashable.com/2012/03/23/zynga-economics/. 2.6.2014.

http://www.softbank.jp/en/corp/set/data/news/press/sb/2013/20131015_02/pdf/20131015_02.pdf
http://www.softbank.jp/en/corp/set/data/news/press/sb/2013/20131015_02/pdf/20131015_02.pdf
https://play.google.com/store/apps/details?id=com.supercell.clashofclans
http://www.superdataresearch.com/blog/mmo-arpu/
http://www.prnewswire.com/news-releases/swrve-finds-over-35-of-all-in-game-revenues-are-delivered-in-the-first-three-days-of-player-life-254526381.html
http://www.prnewswire.com/news-releases/swrve-finds-over-35-of-all-in-game-revenues-are-delivered-in-the-first-three-days-of-player-life-254526381.html
http://www.prnewswire.com/news-releases/swrve-finds-over-35-of-all-in-game-revenues-are-delivered-in-the-first-three-days-of-player-life-254526381.html
http://www.forbes.com/sites/benzingainsights/2011/08/12/zynga-appeals-to-the-same-psychology-as-gambling-says-analytics-expert-jeff-tseng/
http://www.forbes.com/sites/benzingainsights/2011/08/12/zynga-appeals-to-the-same-psychology-as-gambling-says-analytics-expert-jeff-tseng/
https://www.youtube.com/watch?v=c7H40Qd_lis
http://www.gamesindustry.biz/articles/2014-04-01-free-to-play-whales-more-rational-than-assumed
http://www.gamesindustry.biz/articles/2014-04-01-free-to-play-whales-more-rational-than-assumed
http://mashable.com/2012/03/23/zynga-economics/

 Appendix 1 1 (1)

// For latest version, please see https://github.com/i-h/mtx-java

package org.rautasydan.mtx.common;

import java.lang.reflect.Constructor;

import java.util.ArrayList;

public class MTX {

 static IMTXVendor vendor;

 private static ArrayList<String> skuList;

 public MTXItemTable products;

 public MTX(Class<? extends IMTXVendor> vendorType) {

 IMTXVendor newVendor;

 try {

 Constructor<? extends IMTXVendor> c =

vendorType.getConstructor();

 newVendor = vendorType.cast(c.newInstance());

 } catch (Exception e) {

 e.printStackTrace();

 newVendor = null;

 }

 vendor = newVendor;

 skuList = new ArrayList<String>();

 for(String s : vendor.getSkuList()){

 skuList.add(s);

 }

 }

 public static void setVendor(IMTXVendor v){

 vendor = v;

 }

 public MTXItem purchase(MTXItem item){

 if(!vendor.buyItem(item)){

 item.setQuantity(0);

 }

 return item;

 }

 public static void receivePurchase(MTXItem item){

 vendor.receivePurchase(item);

 }

 public void destroy() {

 vendor.destroy();

 }

 public void getProductList(){

 vendor.getProductList();

 }

 public void setSkuList(ArrayList<String> itemSkuList){

 skuList = itemSkuList;

 }

 public static ArrayList<String> getSkuList(){

 if(skuList == null){

 skuList = new ArrayList<String>();

 }

 return skuList;

 }

 public static void receiveProductList(MTXItemTable items){

 vendor.receiveProductList(items);

 }

}

 Appendix 2 1 (1)

package org.rautasydan.mtx.common;

public class MTXItem {

 String id;

 String priceString;

 int quantity;

 float valuePerItem;

 public MTXItem(String itemID, String price){

 id = itemID;

 priceString = price;

 }

 public MTXItem(String itemID, float itemValue) {

 id = itemID;

 quantity = 1;

 valuePerItem = itemValue;

 }

 public MTXItem(String itemID, int itemQuantity, float

itemValue){

 id = itemID;

 quantity = itemQuantity;

 valuePerItem = itemValue;

 }

 public String getId() {

 return id;

 }

 public int getQuantity() {

 return quantity;

 }

 public float getValuePerItem() {

 return valuePerItem;

 }

 public float getTotalValue() {

 return valuePerItem * quantity;

 }

 public String getPriceString(){

 if(priceString == null || priceString.equals("")){

 return valuePerItem + "";

 } else {

 return priceString;

 }

 }

 public void setId(String id) {

 this.id = id;

 }

 public void setQuantity(int quantity) {

 this.quantity = quantity;

 }

 public void setValuePerItem(float valuePerItem) {

 this.valuePerItem = valuePerItem;

 }

}

 Appendix 3 1 (1)

package org.rautasydan.mtx.common;

import java.util.ArrayList;

public class MTXItemTable extends ArrayList<MTXItem> {

 private static final long serialVersionUID =

7936494652191185166L;

}

 Appendix 4 1 (1)

package org.rautasydan.mtx.common;

public interface IMTXVendor {

 public boolean buyItem(MTXItem itm);

 public void getProductList();

 public void receiveProductList(MTXItemTable items);

 public void receivePurchase(MTXItem item);

 public void destroy();

 public String[] getSkuList();

}

 Appendix 5 1 (2)

package org.rautasydan.mtx.android;

import org.rautasydan.mtx.common.MTX;

import org.rautasydan.mtx.common.MTXItem;

import org.rautasydan.mtx.common.IMTXVendor;

import com.android.vending.billing.IInAppBillingService;

import android.app.Activity;

import android.content.ComponentName;

import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;

import android.os.Bundle;

import android.os.IBinder;

import android.os.RemoteException;

import android.util.Log;

public abstract class GooglePlayVendor implements IMTXVendor {

 final protected Class<? extends Activity> storeActivity;

 final String tag = getClass().getSimpleName();

 final int IAPversion = 3;

 static IInAppBillingService iabService;

 ServiceConnection iabServConn = new ServiceConnection() {

 @Override

 public void onServiceDisconnected(ComponentName name) {

 Log.i(tag, "iabService disconnected!");

 iabService = null;

 }

 @Override

 public void onServiceConnected(ComponentName name, IBinder

service) {

 Log.i(tag, "iabService connected!");

 iabService =

IInAppBillingService.Stub.asInterface(service);

 }

 };

 public GooglePlayVendor(Class<? extends Activity>

storeActivityClass) {

 storeActivity = storeActivityClass;

 // Bind to IInAppBillingService

 Intent billingIntent = new Intent(

 "com.android.vending.billing.InAppBillingService.BIND");

 getContext().bindService(billingIntent, iabServConn,

 Context.BIND_AUTO_CREATE);

 }

 @Override

 public boolean buyItem(MTXItem itm) {

 try {

 Bundle buyIntentBundle =

iabService.getBuyIntent(IAPversion,

 getContext().getPackageName(), itm.getId(), "inapp", "");

 Intent i = new Intent(getContext(),

MTXPurchaseActivity.class);

 i.putExtra("buy", buyIntentBundle);

 getContext().startActivity(i);

 } catch (RemoteException e) {

 e.printStackTrace();

 Appendix 5 2 (2)

 }

 return true;

 }

 @Override

 public void getProductList() {

 Bundle querySkus = new Bundle();

 querySkus.putStringArrayList("ITEM_ID_LIST",

MTX.getSkuList());

 MTXTask task = new MTXTask(getContext(), this);

 task.execute(querySkus);

 }

 @Override

 public void destroy() {

 if (iabService != null) {

 getContext().unbindService(iabServConn);

 }

 }

 public void displayStore() {

 Intent i = new Intent(getContext(), this.getClass());

 getContext().startActivity(i);

 }

 public void waitUntilConnected(float timeout) {

 if (iabService != null) {

 return;

 }

 float wait = 100.0f;

 float elapsed = 0;

 float maxWait;

 if (timeout <= 0) {

 maxWait = 1000;

 } else {

 maxWait = timeout;

 }

 Log.w(tag, "Starting wait for iabService...");

 while (iabService == null || elapsed < maxWait) {

 Log.i(tag, "Waiting..." + elapsed + "/" +

maxWait);

 elapsed += wait;

 try {

 Thread.sleep((long) wait);

 } catch (InterruptedException e) {

 Log.e(tag, "Wait interrupted: " +

e.toString());

 }

 }

 Log.w(tag, "Wait for iabService over.");

 }

 public IInAppBillingService getIabService(boolean wait) {

 if (wait) {

 waitUntilConnected(-1);

 }

 Log.i(tag, "iabService = " + iabService);

 return iabService;

 }

 protected abstract Context getContext();

 protected abstract int getStoreLayoutID();

}

 Appendix 6 1 (2)

package org.rautasydan.mtx.android;

import java.util.ArrayList;

import org.json.JSONException;

import org.json.JSONObject;

import org.rautasydan.mtx.common.MTX;

import org.rautasydan.mtx.common.MTXItem;

import org.rautasydan.mtx.common.MTXItemTable;

import android.content.Context;

import android.os.AsyncTask;

import android.os.Bundle;

import android.os.RemoteException;

import android.util.Log;

public class MTXTask extends AsyncTask<Bundle, Integer, Bundle> {

 GooglePlayVendor vendor;

 Context context;

 String tag = "MTXTask";

 int timeout = 20;

 public MTXTask(Context ctx, GooglePlayVendor service) {

 super();

 vendor = service;

 context = ctx;

 }

 @Override

 protected Bundle doInBackground(Bundle... querySkus) {

 Bundle skuDetails= new Bundle();

 skuDetails.putInt("RESPONSE_CODE", 1);

 try {

 skuDetails =

vendor.getIabService(true).getSkuDetails(3,

context.getPackageName(),

 "inapp", querySkus[0]);

 Log.i(tag, "Got skuDetails: " +

skuDetails.toString());

 } catch (RemoteException e) {

 Log.e(tag, "Error retrieving sku details for

product list" + e.toString());

 } catch (NullPointerException e){

 Log.e(tag, "iabService was not ready yet!" +

e.toString());

 }

 return skuDetails;

 }

 @Override

 protected void onPostExecute(Bundle skuDetails) {

 super.onPostExecute(skuDetails);

 MTXItemTable items = new MTXItemTable();

 int response = skuDetails.getInt("RESPONSE_CODE");

 if(response == 0){

 ArrayList<String> responseList =

skuDetails.getStringArrayList("DETAILS_LIST");

 for(String s : responseList){

 try {

 JSONObject obj = new

JSONObject(s);

 String sku =

obj.getString("productId");

 Appendix 6 2 (2)

 String price =

obj.getString("price");

 items.add(new MTXItem(sku,

price));

 Log.i(tag, "Item received:

" + sku + ": " + price);

 } catch (JSONException e) {

 Log.e(tag, "Couldn't parse

sku detail response: " + e.toString());

 }

 }

 } else {

 Log.e(tag, "Response not ok, was " + response);

 }

 MTX.receiveProductList(items);

 }

}

 Appendix 7 1 (2)

package org.rautasydan.mtx.android;

import org.json.JSONException;

import org.json.JSONObject;

import org.rautasydan.mtx.common.MTX;

import org.rautasydan.mtx.common.MTXItem;

import android.app.Activity;

import android.app.PendingIntent;

import android.content.Intent;

import android.content.IntentSender.SendIntentException;

import android.os.Bundle;

import android.util.Log;

import android.widget.Toast;

public class MTXPurchaseActivity extends Activity {

 String tag = "PurchaseActivity";

 public static boolean isActive = false;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 if (getIntent().hasExtra("buy")) {

 Bundle buyIntentBundle =

getIntent().getBundleExtra("buy");

 PendingIntent pendingIntent = buyIntentBundle

 .getParcelable("BUY_INTENT");

 try {

 startIntentSenderForResult(pendingIntent.getIntentSender(),

 1001, new

Intent(), Integer.valueOf(0),

 Integer.valueOf(0), Integer.valueOf(0));

 } catch (SendIntentException e) {

 e.printStackTrace();

 }

 } else {

 Log.e(tag, "No buyIntentBundle passed, not buying

anything >:(");

 }

 }

 @Override

 protected void onStart() {

 super.onStart();

 isActive = true;

 }

 @Override

 protected void onStop() {

 super.onStop();

 isActive = false;

 }

 @Override

 protected void onActivityResult(int requestCode, int

resultCode, Intent data) {

 super.onActivityResult(requestCode, resultCode, data);

 if (requestCode == 1001) {

 Appendix 7 2 (2)

 String purchaseData =

data.getStringExtra("INAPP_PURCHASE_DATA");

 if (resultCode == RESULT_OK) {

 try {

 JSONObject jo = new

JSONObject(purchaseData);

 String sku =

jo.getString("productId");

 int amount = 1;

 float price = 0.00f;

 Toast.makeText(getApplicationContext(),

 "You

have bought the " + sku + ".",

 Toast.LENGTH_LONG).show();

 MTXItem boughtItem = new

MTXItem(sku, amount, price);

 MTX.receivePurchase(boughtItem);

 } catch (JSONException e) {

 Toast.makeText(getApplicationContext(),

 "Failed to parse purchase data.", Toast.LENGTH_LONG)

 .show();

 e.printStackTrace();

 }

 }

 }

 finish();

 }

}

