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Retinal pigment epithelium (RPE) is an epithelial cell monolayer located in the retina region 
at the back of the eye. RPE has a significant function in the eyesight as it plays a key role in 
the supporting of photoreceptor functions. Disorders of RPE lead to degenerative eye dis-
eases – such as macular degeneration and retinitis pigmentosa – that are the leading causes 
of blindness. In the future, these blinding retinal disorders could potentially be cured by uti-
lizing regenerative medicine. Degenerated RPE could be replaced by tissue graft derived 
from human pluripotent stem cells (hPSC). 
 
Currently, the differentiation of hPSCs to RPE cells is inefficient and results in low yields of 
functional cells. The yield of differentiated cells could be improved for example by chemical 
induction of the cells. The objective of the thesis was to further optimize a directed RPE 
differentiation method. In the future, more effective ways to produce hPSC-RPE could be 
used to develop tissue grafts that can be utilized in regenerative medicine.  
 
The aim of the study was to compare adherent and embryoid body (EB)-like culture meth-
ods for directed differentiation of hPSCs into RPE. The comparison was done by evaluating 
the formation of melanin pigmentation between different culture methods and by analyzing 
the quality of the produced cells. The hPSCs used in this thesis were human embryonic stem 
cells (hESC) and induced pluripotent stem cells (iPSC). Differentiation was directed by a 
use of growth factor and small molecule induction. 
 
Cells produced in this study were analyzed by morphology, transepithelial resistance (TER) 
and immunocytochemical stainings focusing on RPE markers. The characterization methods 
provided information about the differentiation status of the cells, including morphology, 
tightness of the cell junctions, protein expression and polarization of the cell monolayer. 
 
The results suggest that for this protocol of directed differentiation of hPSCs into RPE, the 
adherent culture method gives significantly better yield than the EB-like culture method. 
The induction seemed to work with both hESCs and iPSCs, but the yield tended to differ 
between the stem cell types, favoring the differentiation of hESC-RPE cells.  The cell cul-
tures on porous Polyethylene Terephthalate (PET) membrane did not form a confluent cell 
monolayer, and further research is needed on the reasons behind this behavior. However, the 
immunostainings suggested that the quality of hESC-RPE was desirable despite the relative-
ly young age of the differentiated cells. 
   

Key words: human pluripotent stem cell, adherent cell culture, embryoid body, RPE, 
differentiation 
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Verkkokalvon pigmenttiepiteeli (RPE) on retinassa sijaitseva yksikerroksinen solukerros, 
jolla on useita tehtäviä verkkokalvon valoaistinsolujen ylläpidossa. Monet sokeuteen 
johtavat sairaudet, kuten verkkokalvon ikärappeuma ja pigmenttidegeneraatio, ovat 
seurausta RPE-solujen vaurioitumisesta. Kantasolujen hyödyntämistä kudosteknologisissa 
sovelluksissa pidetään lupaavana tulevaisuuden hoitokeinona verkkokalvon vaurioiden 
hoidossa. Laboratorio-olosuhteissa voidaan tuottaa kaikkikykyisistä kantasoluista 
kasvatettuja siirteitä, joilla on mahdollista korvata vaurioituneita alueita.  
 
Nykyisin yleisesti käytetyt RPE-solujen erilaistusmenetelmät ovat suhteellisen tehottomia, 
sillä erilaistuksella tuotettujen solujen saannot ovat pieniä. Opinnäytetyön tavoitteena oli 
selvittää adherentin ja suspensioviljelymenetelmien eroavaisuuksia erilaistettaessa 
kaikkikykyisistä kantasoluista RPE-soluja. Erilaistusmenetelmien kehittyessä kantasoluista 
voidaan tuottaa RPE-soluja, joita on mahdollista hyödyntää kudosteknologisissa 
sovelluksissa. 
 
Opinnäytetyön tarkoituksena oli vertailla adherenttia ja suspensioviljelymenetelmää ihmisen 
kaikkikykyisten kantasolujen suunnatussa erilaistuksessa. Työn tutkittavina kaikkikykyisinä 
eli pluripotentteina kantasoluina käytettiin ihmisen alkion kantasoluja sekä indusoituja 
pluripotentteja kantasoluja. RPE-tyyppisten solujen erilaistumista seurattiin visuaalisesti 
solujen tuottaman melaniinipigmentin avulla. Erilaistusmenetelmiä vertailtiin 
tarkastelemalla tuotettujen RPE-solujen määrää ja laatua. Soluja karakterisoitiin 
transepiteelisen resistanssin ja immunosytokemiallisten värjäyksien perusteella. 
Karakterisointimenetelmät määrittivät epiteelin solujen konfluenssia, solujen välisten 
liitosten tiiviyttä sekä solujen morfologiaa, polarisoitumista ja erilaistumisastetta.  
 
Erilaistusmenetelmistä adherentti soluviljelymenetelmä tuotti huomattavasti parempia 
tuloksia. Suunnattu erilaistus tuotti pigmentoituneita soluja sekä alkion kantasoluilla että 
indusoiduilla pluripotenteilla kantasoluilla, mutta vain alkion kantasoluista saatiin tuotettua 
tarpeeksi soluja jatkotutkimuksiin. Erilaistetut solut eivät muodostaneet kaikilla 
viljelyalustoilla RPE-soluille tyypillistä yksikerroksista epiteelisolukerrosta, ja syitä tämän 
käytöksen taustalla tulisikin tutkia tarkemmin. Solut olivat kuitenkin immunovärjäysten 
perusteella erilaistuksen kestoon nähden melko kypsiä RPE-tyyppisiä soluja. 
 
 
 
 
 

  

Asiasanat: ihmisen kaikkikykyiset kantasolut, adherentti soluviljelmä, embryoid body, 
RPE, erilaistus 
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ABBREVIATIONS 

 

 

AMD Age-related macular degeneration 

bFGF or FGF (Basic) fibroblast growth factor   

BM Bruch’s membrane 

BMP Bone morphogenetic protein  

BMSC Bone marrow stromal cell 

BSA Bovine serum albumin 

BVMD Best vitelliform macular dystrophy (Best’s disease)  

c-Myc Regulator gene that codes for a transcription factor.  

CRALBP Cellular retinaldehyde-binding protein 

DAPI 4 ́, 6 ́ diamidino-2-phenylindole  

DM- Basic culturing medium based on DMEM 

DM+ DM- medium with added growth factor and small molecule 

selective inhibitors 

DPBS or PBS (Dulbecco’s) phosphate buffer saline 

EB Embryoid body 

ECM Extracellular matrix 

EMT Epithelial-mesenchymal transition  

GLP Good laboratory practice  

hESC or ESC (Human) embryonic stem cell 

hiPSC or iPSC (Human) induced pluripotent stem cell 

hFF Human foreskin fibroblasts  

HSC Hemopoietic st em cell 

IF Immunofluorescence 

IVF  in vitro fertilization 

IWP-2 N-(6-Methyl-2-benzothiazolyl)-2-[(3,4,6,7-tetrahydro-4-oxo-3-

phenylthieno[3,2-d]pyrimidin-2-yl)thio]-acetamide 

JAM Junctional adhesion molecules  

Klf4 Kruppel-like factor 4 

KO-DMEM Knockout Dulbecco’s Modified Eagle Medium 

KO-SR Knockout Serum Replacement 

MAPC Multipotent adult progenitor cell 



7 

 

 

 

OCT4 Octamer-binding transcription factor 

PET Polyethylene Terephthalate 

POS Photoreceptor outer segment 

RP Retinitis pigmentosa  

RT Room temperature 

RPE Retinal pigment epithelium 

RPE65 Retinal pigment epithelium-specific 65 kDa protein 

SB-505124  2-(5-benzo[1,3]dioxol-5-yl-2-tert-butyl-3H-imidazol-4-yl)-6-

methylpyridine hydrochloride 

SCED Single cell enzymatic dissociation  

SCNT  Somatic cell nuclear transfer 

STAP  Stimulus-triggered acquisition of pluripotency 

OX2 Transcription factor orexin-2 

TGF Transforming growth factors 

TER Transepithelial electric resistance  

ZO-1 Zonula occludens protein 1 
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1 INTRODUCTION 

 

Retinal pigment epithelium (RPE) is an epithelial cell monolayer located in the retina region 

at the back of the eye. The RPE has many vital functions in the eye, including transepithelial 

transport and regulation of biomolecules, taking part in the visual cycle and phagocytosis of 

the photoreceptors shed outer segments. Because of this critical role of the RPE, the 

degeneration of RPE leads to eye diseases such as age-related macular degeneration or 

retinis pigmentosa. Damages caused by retinal degeneration are currently the leading causes 

of permanent blindness (Strauss 2005). 

 

Currently, there are no effective widely accepted treatments to these drastic blinding 

diseases. It has been suggested that in the future, regenerative medicine could be the answer 

through RPE-cell tissue graft replacements. The functional RPE cells for these grafts can be 

differentiated from human pluripotent stem cells (hPSC). RPE-like cells can be derived from 

pluripotent stem cells spontaneously, but the yield could be improved through directed 

differentiation.  

 

This bachelor’s thesis was carried out in the Ophthalmology research group in the Institute 

of Biomedical Technology at the University of Tampere. The group is led by Academy of 

Finland Research Fellow Heli Skottman, PhD, and this thesis was supervised by PhD Tanja 

Ilmarinen. The main research aim for the group is to develop stem cell based tissue 

engineering applications for the retinal and corneal repair through cell transplantation and 

ophthalmic in vitro tissue models. 

 

This thesis took part in one of research group’s ongoing projects to develop more effective 

ways to differentiate RPE cells from hPSCs. The hPSCs used in this study were embryonic 

pluripotent stem cells (ESC) and induced pluripotent stem cells (iPSC). Objective was to 

derive hPSC-RPE cells with different differentiation conditions and to compare the 

differentiation efficiency and the quality of the produced cells. To enhance the 

differentiation efficiency, differentiation to RPE-like cells was directed by an induction 

method developed within the research group.  
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2 LITERATURE REVIEW 

 

 

2.1 Stem cells 

Stem cells are unspecialized cells capable of renewing themselves through cell division and 

they have potential to develop into many different cell types in the body. When a stem cell 

divides, each new cell can either remain as a stem cell or under certain physiologic or 

experimental conditions, they can be induced to become another type of tissue- or organ-

specific cell with special functions (Kolios & Moodley 2013). Stem cells are classified into 

different categories depending on the differentiation capacity; totipotent, pluripotent, 

multipotent, oligopotent or unipotent stem cells.  

Totipotent stem cells have the ability to differentiate to any type of cell in an organism. 

Zygotes or 2-3 days old embryos (morulas) are considered as totipotent cells. Pluripotent 

stem cells (PSC) have the ability to differentiate to any type of cell of the three germ layers, 

but cannot form even in favorable conditions a whole organ or individual since they lack the 

ability to form extraembryonic tissue. The embryonic stem cells (ESC) can be obtained from 

4-7 day old embryos (blastocysts) or they can be induced from somatic cells (induced 

pluripotent stem cells, iPSC). (Kolios & Moodley 2013.) 

Multipotent stem cells, or progenitor cells, are type of stem cells that are more differentiated 

and therefore less plastic.  They can form different cell types within certain tissue type, and 

for example multipotent hematocyte can differentiate to platelets (thrombocytes) or red or 

white blood cells (erythrocytes and leukocytes, respectively.) Oligopotent cells are 

considered tissue-resident progenitor cells with the potency to form a limited number of 

terminally differentiated cells, and are similar in a way to unipotent stem cells, such as germ 

cells, that are capable to form only one type of cell  (Kolios & Moodley 2013). 

 

Given their unique regenerative abilities, stem cells offer new potentials for treating diseases 

which are caused by failure of certain tissue type, such as retinal degeneration, diabetes and 

heart diseases. Much work remains still to be done to understand how to use these cells for 

cell-based therapies to treat diseases.   
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2.1.1 Adult stem cells 
 

Many tissues contain reservoirs of stem cells called adult stem cells. Compared with ESCs, 

adult stem cells cannot differentiate into multiple lineages. As multipotent stem cells, adult 

stem cells are usually capable of differentiating only into lineage-specific cells. Adult stem 

cells residing in specific tissues and organs are called tissue specific stem cells.  

 

Bone marrow, for example, represents a unique reservoir of tissue specific stem cells. Bone 

marrow contains at least two other populations of stem cells; bone marrow stromal cells 

(BMSCs) and a heterogenous population of multipotent adult progenitor cells (MAPCs) 

such as mesenchymal stem cells, which appear to have broad developmental capabilities. 

MAPCs have the potential to differentiate to lineages of mesenchymal tissues, including 

bone, cartilage, fat, tendon, muscle, and marrow stroma. (Ross & Pawlina 2011.) 

 

When injected into an early blastocyst in vitro, single MAPCs contribute to most, if not all, 

somatic cell types. On transplantation, MAPCs engraft and differentiate to the hematopoietic 

lineage, in addition to the epithelium of liver, lung and gut. As MAPCs proliferate 

extensively without obvious senescence or loss of differentiation potential, they could be 

one ideal cell source for therapy of inherited or degenerative diseases (Kolios & Moodley 

2013.) 

 

 

2.1.2 Human embryonic stem cells 

Embryonic stem cells are undifferentiated pluripotent cells derived from the blastocyst stage 

embryos. Method to derive embryonic stem cells was first established with mouse 

embryonic stem cells (Evans & Kaufman, 1981) before the derivation of human embryonic 

stem cell (hESC) lines (Thomson et al. 1998). Embryonic stem cells form an ESC-line 

when they have been cultured under in vitro conditions and have been capable of dividing 

without differentiating for a prolonged period, usually months containing tens of passages 

(Kolios & Moodley 2013.) 

In Finland, the hESC lines are derived from surplus embryos from in vitro fertilization (IVF) 

clinics by the permission from the donors with no financial compensation made for the 

donation. (Skottman, 2010). Cells of the embryo’s inner cell mass are separated from the 
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outer cell mass and are placed on a layer of mitotically inactivated fibroblasts, commonly 

referred to as a feeder cell layer, or on a matrix which supports the pluripotency of the cells. 

The resulting cell population is expanded in vitro by subculturing the undifferentiated cells 

as colonies (Hoffman & Carpenter 2005; Kolios & Moodley 2013.)  

 

2.1.3 Induced pluripotent stem cells  

 

Induced pluripotent stem cells are stem cells that have been reprogrammed to pluripotent 

state from somatic cells. Currently, iPSCs can be generated with two notable methods; 

nuclear transfer from differentiated somatic cell to oocyte (i.e. egg cell) or by introducing a 

set of defined factors into somatic cells. 

 

Nuclear transfer – or somatic cell nuclear transfer (SCNT) – to oocytes is used in both 

reproductive and therapeutic cloning, resulting a viable embryo. The first successful nuclear 

transfer was used when the first cloned mammal Dolly the Sheep was created. However, 

SCNT is considered as inefficient method, since the stress placed on both the oocyte and the 

introduced nucleus are exceptional (Lomax & Dewitt 2013). 

 

Shinya Yamanaka and his research group introduced in 2007 a method to induce somatic 

cells to their pluripotent state by the introduction of four key transcription factors, OCT3/4, 

SOX2, Klf4, and c-Myc, which have since been referred as the Yamanaka factors. The first 

reprogramming of somatic cells was done with fibroblast from mouse (Takahashi 2006) and 

followed by generating iPSCs from human adult fibroblasts (Takahashi 2007). This research 

was remarkable in the field of stem cells, and Yamanaka and his fellow stem cell researcher 

John Gurdon were awarded the Nobel Prize for Physiology or Medicine in 2012 (The Nobel 

Assembly at Karolinska Institutet 2012.)   

 

Other combinations of transcription factors have also been employed in different studies, 

including the use of 1-4 factors in most cases (Stadtfeld & Hochedlinger 2010.) Some viral 

vectors used in introduction of the transcription factors, such as retroviruses and plasmids, 

may cause a genomic alteration to the host cells. Fortunately, nonintegrative reprogramming 

alternatives, such as Sendai virus, directed mRNA and protein transduction, have been 

discovered (Carr et al. 2013).  

 



12 

 

 

 

2.1.4 Stem cells in regenerative medicine 

 

Regenerative medicine and treatments based on stem cells seem to hold many promises for 

numerous applications in the future. The treatments are carried out with cells differentiated 

from the stem cells. Use of adult stem cells does not cause immune reaction when patients 

own autogeneic stem cells are used. However, since adult stem cells are already somewhat 

differentiated cells, they do not have the same differentiation potential as hPSCs. In the use 

of hPSCs, ethical issues are raised considering the use of hESCs, as derivation of hESC-

lines results in destruction of living blastocysts. Using the iPSCs in regenerative medicine 

can possibly overcome the ethical controversy of hESCs. Treatments done with allogeneic 

iPSC could potentially also be conducted without immunogenecity issues (Takahashi et al. 

2007; Yamanaka 2007). 

 

However, in 2011 a research by Zhao et al. claimed that cells differentiated from ESCs 

derived from inbred mice line could efficiently form teratomas within the same line 

individuals without any evident immune rejection. A teratoma is a type of tumor that may 

contain several tissue derivatives from more than one germ layer. When used allogeneic 

ESCs in the differentiation, teratomas did not appear due to rapid rejection of the cells by 

recipients. The same study also suggested that when using iPSCs derived with both 

retroviral and novel episomal approach, not did the mice only form teratomas but they also 

triggered an immune response, a body’s immunologic reaction to an antigen, despite being 

derived from autonomous somatic cells. The results raised concerns about the safety of the 

future regenerative medicine treatments (Zhao et al. 2011).  

 

The results provided by Zhao et al. (2011) have since been put on question, since it has been 

shown that in mouse (Araki et al. 2012,) rats (Kanemura et al. 2014) and monkey studies 

(Kamao et al. 2014) that cells differentiated from iPSCs were unlikely to cause tumors or 

immunogenicity. Since then, studies that utilize both ESC (Schwartz et al. 2014) and iPSC 

(Cyranoski 2014a) have advanced to clinical trials. For adult stem cells, currently only one 

widely used stem cell therapy treatment has been established. The treatment is provided with 

hematopoietic stem cells that are used mainly in bone-marrow transplants for cancer patients 

(Burt et al. 2008). 
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2.2 Stem cell culture and differentiation 

 

 

2.2.1 Pluripotent stem cell culture 

 

Native stem cells grow in complex environment and thus they tend to also have demanding 

in vitro culturing conditions. To keep the stem cell lines in undifferentiated state, some 

necessities have to be taken care of. Other type of cells, called feeder cells, can be co-

cultured with stem cell colonies in the same culturing well or a petri dish (Stacey et al., 

2006). The role of feeder cells is to secrete various growth factors and extracellular matrix 

(ECM) proteins that are beneficial by yet unclear ways for the growth and pluripotency of 

the stem cells (Hongisto et al. 2011.)  

 

In order to keep the conditions free from animal-derived materials which could be harmful 

in clinical applications, use of human fibroblasts, like commercially available neonatal 

human foreskin fibroblasts (hFF), is to be considered (Skottman 2010; Vaajasaari 2011). As 

in any other cell cultures, aseptic work, sterile instruments and right conditions are important 

for stem cell culturing. 

 
 
2.2.2 Differentiation in suspension culture 

 

Methods for stem cell differentiation are diverse, and several protocols can be used for the 

differentiation of same target cells. When hPSCs colonies are dissected and transferred to a 

suspension culture with medium with low basic fibroblast growth factor (bFGF) 

concentrations, the cells tend to form three-dimensional cell aggregates, called embryoid 

bodies (EB). EB formation resembles embryonic development (Carr et al. 2013.) Cell 

aggregates are formed from multiple cells and EB-culturing is not to be confused with single 

cell suspension culturing.  

 

EB-culturing makes the cells epithelioid tissue; similar to epithelium but they lack basement 

membrane where to adhere (Ross & Pawlina 2011.) In contrast to adherent cell cultures, EB 

cultures enable larger yields of cells, since free floating aggregates can distribute to the 

surrounding medium. Over time, the hPSCs cell aggregates start to spontaneously 

differentiate into cell types of all three germ layers (Klimanskaya 2006.) 
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2.2.3 Differentiation in adherent cell culture 

 

In adherent cell culture the cells attach to a surface and adhere to it, and depending from cell 

type, can form a confluent layer of cells. Because of this, the maturity and differentiation 

stage of the cells is easier to evaluate in adherent cell cultures than in suspension culture. 

 

Usually for cells to adhere, the surface has to be treated somehow, since in the native 

conditions cells adhere to extracellular matrix. ECM content differs from the origin of tissue, 

but constitutes mostly from specific proteins of proteoglycans, polysaccharides or fibers, 

such as collagen or laminin in basal lamina called Bruch’s membrane (Ross & Pawlina 

2011.) 

 

 
2.3 Structure of the eye  

 

The eye is a complex sphere-shaped sensory organ that has a lens system reminiscent of a 

camera. The act of seeing starts when the lens of the eye focuses light reflected from objects 

onto a light-sensitive membrane at the back of the eye, called the retina, where almost 70% 

of body’s sense cells are located. These sense cells send the information to the brain along 

the optic nerve and the brain processes the information that is contained in the visible light 

(Haug et al. 1999.)   

 

The wall of human eye consists of three separate layers, called sclera, choroid and retina, 

that all have different errands in the general functionality of the eye, presented in figure 1. 

The outer layer, sclera, serves as the eye’s protective outer coat. Sclera is attached to the eye 

socket by six small muscles that enable the movement of eyeball. Sclera transforms from 

white, opaque tissue to transparent cornea in the frontal part of the eye. All the light that 

enters in the eye goes through refracting cornea and thus cornea’s condition is highly 

important for maintaining a good vision. After passing through the cornea, light travels 

through ring-shaped pupil that manipulates the amount of light that enters in the retina.  

Pupil is attached to iris that is a colored, circular structure. Iris is responsible for controlling 

the diameter and size of the pupil depending of the intensity of the entering light. Behind the 

iris is located the lens that focuses the entering light in the retina by changing its shape (Ross 

& Pawlina 2011.) 
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The middle layer of the eye located next to the sclera is known as choroid. The choroid is a 

layer of blood vessels that is responsible for the nutrient transportation to retina. Between 

the iris and the choroid lays the ciliary body. Ciliary body contains smooth muscle fibers 

that change the shape of the lens and produces the transparent liquid (aqueous humor) that 

fills the front of the eye. Retina, the inner layer of the eye, consist of two main layers, the 

neural layer and retinal pigment epithelium (RPE) layer. The space between the lens and the 

retina is filled with gel called vitreous humor (Ross & Pawlina 2011.) Retina region is 

illustrated with the layers of the eye in the figure 1. 

 

 

 

FIGURE 1. Gross anatomy of the eye and retina (modified from Ross & Pawlina, 2011) 

 
 
2.3.1 Neural retina 

 

Despite its location, the neural portion of the eye is actually part of the central nervous 

system. The retina, light sensitive layer of tissue, has a complex neural circuitry that 

converts the photoreceptors’ electrical activity into action potentials that travel to the brain 

by axons in the optic nerve. (Purves et al. 2001) The retina consists of two main layers; 

neural retina and RPE. The RPE layer is described separately in more detail in following 

chapters. 

 

Neural retina is the most inner part of retina and is formed of seven layers of different cells 

as seen in figure 1. There are five types of neurons in the retina: photoreceptors, horizontal 
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cells, bipolar cells, amacrine cells and ganglion cells. Two main types of light-sensitive pho-

photoreceptors in the retina are called rods and cones. Rods provide black-and-white vision 

and function mainly in dim light, while cones function best in relatively bright light and are 

responsible for color vision (Purves et al. 2001.) Horizontal cells’ function is to help 

integrate and regulate the input from multiple photoreceptor cells. Bipolar cells transmit the 

signals from either one type of photoreceptor or horizontal cells on to the ganglion cells 

directly or indirectly by amacrine cells and retinal ganglion cells collectively transmit 

signals onwards to several regions in the brain. In neural retina, there are located glial cells 

called Müller cells. Müller cells form architectural support structures that stretch radially 

across the thickness of the retina. The neural layer attaches to the RPE layer, which is the 

outermost layer of retina (Ross & Pawlina 2005).   

 

 

2.3.2 Retinal pigment epithelium 

 

Retinal pigment epithelium is an epithelial cell monolayer located in retina between neural 

retina and choriocapillaris (Strauss 2005). Like other epithelial cells, RPE is an avascular 

tissue where cells adhere to one another by means of specific cell-to-cell adhesion molecules 

that form specialized cell junctions. Epithelial cells are polarized so that they are associated 

with three distinct morphologic surface domains; apical, lateral and basal domain. Apical 

domain can be considered as the surface of the cells that is exposed to the environment, as 

later domain consists of the sides of the cells (cell-cell contacts) and basal domain is the 

surface epithelial by which the cell is attached to the extracellular matrix. The properties of 

each domain are determined by specific lipids and membrane proteins. The basal surface 

usually is attached to an underlying basement membrane, which for RPE is the Bruch’s 

membrane. RPE is formed of hexagonal cells that are densely packed with melanin 

containing light-absorbing pigment granules called melanosomes that prevent reflection of 

the light and resultant glare (Ross & Pawlina 2011.) 

 

RPE functions as a selective barrier that facilitates or inhibits the passage of specific 

substances between the exterior environment and the underlying tissue compartment. It 

secretes growth factors, regulates nutrient, ion and molecule transport between subretinal 

space and bloodstream by forming the blood-retina barrier (BRB) (Curcio & Johnson 2013, 

Ross & Pawlina 2011.) RPE has also many other crucial functions in the retina; it also 
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phagocytoses the shed membranous discs from photoreceptor outer segments (POS), regen-

regenerates visual pigment and takes part in the visual cycle by the vitamin A metabolism.  

In vitamin A metabolism, regeneration of retinoids requires molecule exchange between the 

photoreceptors and the RPE. These functions have been illustrated in figure 2.  

Dysfunctional RPE can cause impairment and death of the photoreceptor cells, and may 

eventually to deterioration or total loss of vision.  (Strauss 2005, Vaajasaari et al. 2011)   

 

Adjacent RPE cells are connected by a junctional complex that forms the inner blood-retina 

barrier. On the basal side of the RPE layer lays the outer limit of retina, basal membrane 

known as Bruch’s membrane (Strauss 2005, Ross & Pawlina 2011.) Bruch’s membrane 

plays a crucial role together with RPE cells in maintaining photoreceptor viability as well as 

overall retinal health. Bruch’s membrane anchors the RPE cells from their basal membrane 

via tight junctions and connects the RPE into the choroid. RPE forms in the other, outer 

BRB in collaboration with Bruch’s membrane and the choriocapillaris (Rizzolo et al. 2014.) 

Basement membrane–forming collagens in the Bruch’s membrane include type IV collagen, 

which is responsible for the collagen suprastructure in the basement membrane of epithelial 

cells (Ross & Pawlina 2011). The RPE’s basal surface participates in metabolic exchanges 

with the blood vessels in the underlying choriocapillaris (Bonilha 2008). 

 

 

FIGURE 2. Major functions of the RPE (Modified from Lehmann et al. 2014)  
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2.3.3 Retinal degeneration 

 

A collection of structural changes occur in aging eyes. Over time, overall thinning is 

apparent in the aged retina due to loss of neurons from all the neuronal cells and changes in 

photoreceptor cells.  The RPE specifically is known to undergo several structural alterations. 

These alterations include changes in density and coactions with Bruch’s membrane, loss of 

melanin granules, and even cell apoptosis (Bonilha 2008.) Dysfunction or deterioration of 

RPE is linked to degenerative retinal diseases, such as age-related macular degeneration 

(AMD) and retinitis pigmentosa (RP) (Strauss 2005). 

 

Age-related macular degeneration is a disease characterized by a breakdown of the macula. 

Macula is a relatively small area in the central retina that is responsible for the majority of 

useful photopic vision and almost 10 % of the entire visual field (Hageman 2014.) AMD 

occurs in two forms: neovascular or exudative (wet) and atrophic (dry) AMD. The rarer but 

more intense form of AMD, wet AMD, is characterized by abnormal growth of blood vessel 

from the choroid into the Bruch’s membrane and RPE. Wet AMD covers approximately 

20% of the AMD conditions. It results ultimately in severe, sudden visual loss by forming a 

scar in the macula. Dry AMD causes gradual loss of central vision due to the dysfunction or 

death of RPE and subsequent death of photoreceptor cells (Bonilha 2008.) AMD develops 

usually in later decades of life, but has been diagnosed in patients even in their forties. AMD 

causes loss of bilateral vision and is the leading cause of worldwide blindness in elder 

people (Chakravarthy et al. 2010.)  

 

RPE degeneration is the most leading causes of blindness. Retinitis pigmentosa (RP) is the 

most common group of inherited eye disorders that are caused by damage in the retina. 

There are many variations of the disease, but common to all of them is retinal dystrophy 

caused by abnormalities of the photoreceptors or the RPE. This degeneration of retina is 

progressive and has no known cure (Jin et al. 2009.) Other typical retinal dystrophies 

include Stargardt’s macular dystrophy, Best vitelliform macular dystrophy (BVMD,) also 

known as Best’s disease, and diabetic retinopathy (Finnish Federation of the Visually 

Impaired, 2014.) High eye pressure as symptom of untreated glaucoma can cause blindness 

by damaging retinas sensor cells. Unlike many other retinal degeneration diseases, glaucoma 

can be effectively treated with medicine or surgery (Haug et al. 1999). 
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Since many diseases that cause retinal dystrophy are not currently treatable in other ways, 

cell replacement therapies are considered as a solution to these conditions. Treatment could 

be performed replacing damaged cells with healthy ones (Lund et al. 2006.) In RPE related 

diseases, clinical trials that utilize ESC-RPE cells in treatment of AMD are currently 

ongoing (Bharti et al. 2014) and so far the results have been promising (Schwartz et al. 

2014). The cell replacement can be done by either direct injection of RPE cell suspension 

(Schwartz et al. 2012) or as transplant of RPE cell sheet (Cyranoski 2014a) into the 

subretinal space. Cell sheet grafts may be a better option, since with cell suspension 

injections involve many uncontrollable variables. When injected as suspension, the cells 

might fail to form a functional monolayer by not adhering to Bruch’s membrane or by 

acquire an incorrect apical-basal orientation (da Cruz et al. 2007.) 

 

In Japan, permission has been recently granted to use hiPSC-RPE in clinical trials 

(Cyranoski 2014a). The first treatment, executed after four days of the permission, was done 

by Masayo Takahashi, an ophthalmologist with years of study in the field of iPS-cells. Trial 

was performed with the use of hiPSC-derived RPE cells as a treatment of AMD (Cyranoski 

2014b.)  

 

 
2.4 Differentiation of human pluripotent stem cells into RPE cells 

 

While hPSCs can differentiate to RPE cells, current differentiation protocols are inefficient 

and not optimal for clinical translation. The currently used protocols for RPE cell 

differentiation from hPSCs are mostly based on spontaneous differentiation that results in 

low yields (Klimayanska et al. 2004.) Phenomenon happens especially while deriving RPE 

cells from hiPSC lines (Rowland et al. 2013.) Effective culture methods and differentiation 

protocols are therefore needed and thus induction of differentiation can be used to guide 

differentiation towards defined cell type.  

 

The differentiation of hPSC-RPE can be carried out in either adherent or EB-like culturing 

conditions. EB-like culturing is a widely used differentiating method (Idelson et al. 2009; 

Klimanskaya 2004; Klimanskaya 2006; Vaajasaari et al. 2011).  As differentiation towards 

RPE cells progresses, pigmented areas start to develop on the EBs. These areas can then be 

selected and used to create monolayer cultures for further RPE enrichment and maturation 
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(Klimanskaya 2006.) Adherent differentiation can be used for generation of hPSC-RPE as 

well. Differentiation in adherent cell culture is usually carried out by removing the fibroblast 

growth factor (FGF) from the culturing medium, and stem cell colonies are let to overgrow 

and form a homogenous cell layer. Adherent cell culture could be suitable for hPSC-RPE 

differentiation, since RPE cell are epithelial cell that tend to grow in native conditions in 

monolayer (Vugler et al. 2008.) Adherent differentiation is used in hPSC-RPE culturing 

beside the EB-culturing (Carr et al. 2009, Klimanskaya 2006, Liao et al. 2010, Rowland et 

al. 2013, Vugler et al. 2008). 

 

When subcultured, epithelial cells lose their cell-cell adhesion. These dissociated cells gain 

migratory and invasive properties through epithelial-mesenchymal transition (EMT) and 

temporary form a fibroblast-like morphology before they revert to their original RPE-like 

morphology. (Lee et al. 2010; Vugler et al. 2008).  EMT is a process by which epithelial 

cells lose their differentiated phenotypes and transdifferentiate into motile mesenchymal-like 

cells (Tamiya et al. 2010).  Propagated RPE cells also lose their pigmentation as 

melanocysomes are exocytoced or diluted by cell division. After RPE cells gain their 

polygonal uniformity, confluent cobblestone morphology, they start to gain back their 

melanin pigmentation (Klimanskaya 2006). 

 
 
 
2.4.1 Spontaneous differentiation 

 

Currently, the widely used derivation methods in development of RPE-cells from hPSCs 

favor spontaneous differentiation (Carr et al. 2013, Klimanskaya 2004 & 2006, Liao et al. 

2010, Vaajasaari 2011, Vugler et al. 2008). When there are no known inductive agents in the 

culturing medium, ESCs tend to differentiate towards a neural pathway (Smukler et al. 

2006). RPE being derivative of the neuroectoderm can be thus produced with this default 

differentiation pathway (Fuhrmann 2010).  

 

When differentiating hPSC toward RPE cells, over time the RPE-like cells can be easily 

observed as they form distinguishable grey or black melanin pigmentation (Ross 2005). 

These areas on EB-like cell aggregates or adherent cultures can be then dissociated and 

placed in adherent culture to develop more homogeneous and mature cell cultures 

(Vaajasaari et al. 2011). 
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2.4.2 Induction toward RPE-cell differentiation 

 

As the spontaneous differentiation protocols of hPSC-RPE result in low yields, new methods 

are needed to produce cells more efficiently for clinical applications (Klimayanska et al. 

2006). The spontaneous differentiation tends to favor neuroectodermal differentiation, but it 

has also been shown that ESC-derived ectoderm can give rise to cells of both neural and 

epidermal lineage. Spontaneous differentiation results in heterogeneous cell populations, and 

since melanocytes are derivatives of the epidermis, they may be mistaken for RPE cells due 

to the fact that they also produce melanin and are therefore pigmented (Watabe & Miyazono 

2009.) Effective culture methods and differentiation protocols are therefore needed and thus 

induction of differentiation can be used to guide differentiation towards defined cell type.  

 

It has been suggested that the extracellular matrix can affect the cell differentiation, and 

therefore changes in ECM composition may improve the derivation of RPE-cells from 

pluripotent stem cells (PSC). In study published by Rowland et al. in 2013, several purified 

ECM proteins were tested for their ability to support iPSC-RPE differentiation and 

maintenance. The results showed that iPSCs differentiated on nearly all tested substrates 

developed melanin pigmented regions. However, although iPSC-RPEs cultured on the 

majority of the tested substrates expressed key RPE genes, only six substrates supported 

development of confluent monolayers with normal RPE morphology (Rowland et al. 2013.)  

 
The differentiation can be directed also in other ways, where one method is a use of a 

specific culturing medium composition (Carret et al. 2013; Idelson et al. 2009). One method 

developed within the ophthalmology group was originally used in deriving corneal 

epithelial-like cells from hiPSCs (Mikhailova et al. 2014), but preliminary tests have also 

been conducted within the group in deriving hPSC-RPEs (data not published). Method 

replicates early developmental mechanisms in the eye by blocking the transforming growth 

factor β (TGF-β) and Wnt-signaling pathways with small molecule inhibitors while 

activating fibroblast growth factor signaling. This induction method is based on a use of 

basic fibroblast growth factor and two small molecules, SB-505124 and IWP-2. (Mikhailova 

et al. 2014.) 

 

Basic fibroblast growth factor belongs to a family of polypeptide fibroblast growth factors 

that are involved in multiple functions. In normal tissue, basic fibroblast growth factor is 
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present in basement membranes and in the subendothelial extracellular matrix of blood ves-

vessels (Ross & Pawlina, 2011.)  Studies have shown that the bFGF may have a role for 

example in cell proliferation, survival, differentiation and motility (Watabe & Miyazono 

2009). bFGF may also play a part in inducing of RPE proliferation and in the 

transdifferentiation of RPE cells into neural progenitor cells (Klimanskaya 2006). In the 

culture medium bFGF will cause EMT process while speeding up cell proliferation, 

providing in the end a formation of a confluent RPE monolayer (Tamiya et al. 2010). 

 

Small molecule SB-505124 (2-(5-benzo[1,3]dioxol-5-yl-2-tert-butyl-3H-imidazol-4-yl)-6-

methylpyridine hydrochloride) is a selective inhibitor of various transforming growth factor-

β type I receptors. SB-505124 also blocks more complex endpoints of TGF-β action, as 

evidenced by its ability to abrogate cell death caused by TGF-β1 treatment (Byfield et al. 

2003.) The TGF- β superfamily includes transforming growth factor (TGF), activins, and 

bone morphogenetic proteins (BMPs). They regulate a wide range of responses in the cell, 

including cell proliferation, differentiation, adhesion, migration, and apoptosis (Sporn & 

Roberts 1990, Byfield et al. 2003.) 

 

IWP-2 (N-(6-Methyl-2-benzothiazolyl)-2-[(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno[3,2-

d]pyrimidin-2-yl)thio]-acetamide) is small molecule that acts as inactivator of Porcn 

function. IWP-2 also inhibits a signal transduction pathway called Wnt production, and 

blocks β-catenin accumulation. Wnt/β-catenin pathway affects the ability of stem cells to 

remain pluripotent and affects also the undifferentiated retinal progenitor by inducing the 

formation of the laminar structure of the retina (Mikhailova et al. 2014, Vugler et al. 2008.) 

 
 
2.5 RPE-cell characterization 

 

There are numerous different types of differentiated cells in human, and thus specific 

markers for certain cell type are needed to distinguish one cell from another. RPE-like cells 

can be distinguished by their specific morphology, expressed gene and protein markers and 

functionality. 
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2.5.1 Morphology 

 

Most mammalian cells can be divided into three basic categories based on their morphology. 

These categories are fibroblast-, epithelial- and lymphoblast-like cells. Epithelial cells, like 

RPE, grow attached to a substrate in discrete patches and their shape is mostly polygonal 

with more regular dimensions (Life Technologies 2014.) 

 

RPE-cells are bipolar cells which form a hexagonal cell monolayer.  RPE is densely packed 

with pigment granules called melanocytes, which results in distinct brown or black color 

from melanin pigment. Hexagonal morphology of RPE resembles cobblestone or 

honeycomb type of formation (Maminishkis et al. 2006.) The RPE cells form tight, adherent 

and gap junctions between cells which create a blood-retinal-barrier between the retina and 

choriocapillaris (Strauss 2005). 

 

 

2.5.2 Transepithelial resistance 

 

Transepithelial resistance (TER) measures the epithelial layer’s ability to resist current or 

diffusion of the ions across it. The measuring can be performed with either Ussing chamber 

or a voltohmmeter. TER depicts the development of epithelial barrier properties and tight 

junction formation between the cells (Carr et al. 2013.) Thus, TER can be used to analyze 

the formation of the RPE epithelial cell monolayer. Transepithelial resistance values 

measured from RPE-cells vary in different studies as shown in table 1. TER-values seem to 

be affected by the source of the cells, days of the culturing, measurement conditions and 

overall information of how the cells have attached to the surface and have been able to form 

resistant tight junctions. The selection of measurement system has also a great impact on the 

results. 

 

Tight junctions, also known as zonula occludens, are found in the most apical component in 

the junctional complex between epithelial cells. Their function is to hold the cells tightly in 

close connection and also form a barrier that seals of the intracellular space. Zonula 

occludens strands correspond to the location of the rows of transmembrane proteins. Three 

major transmembrane groups found in zonula occludens are occludin, claudins are 

junctional adhesion molecules (JAM) (Ross & Pawlina 2011.) 
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TABLE 1. Transepithelial resistance of RPE cells in literature. 

Reference Tissue TER (Ω· cm2) 
Frambach et al. 1990 Cultured human RPE 330 
Quinn & Miller 1992 Human adult RPE 79±48 
Quinn & Miller 1992 Human fetal RPE 206±151 
Maminishkis et al. 2006 Human fetal RPE 501±138 
Vaajasaari et al. 2011 putative hESC-RPE d30 6-32 
Vaajasaari et al. 2011 putative hESC-RPE d60 145-188 
Vaajasaari et al. 2011 putative hESC-RPE d90 311 
Vaajasaari et al. 2011 putative hiPSC-RPE d30 6-10 
Vaajasaari et al. 2011 putative hiPSC-RPE d60 23-38 
Vaajasaari et al. 2011 putative hiPSC-RPE d90 74 
Peng et al. 2014 Human fetal RPE 500 - 2000 
 
 
2.5.3 RPE specific proteins 

 

Immunofluorescence (IF) staining is a method that applies immunochemistry in a way to 

image specific substances.  IF utilizes fluorophores and antibodies that are labeled with 

fluorescent dye (Wilson & Walker 2010.) Antibodies, or immunoglobulins, are proteins 

produced by plasma cells. They bind specifically to particular substances, referred as 

antigens (Ross & Pawlina 2011.) Antibodies can be used to visualize the distribution of a 

specific biomolecule with an antibody that recognizes the examined protein as antigen and 

binds to it. Fluorescent antibody complex can be formed by direct or indirect method 

(Wilson & Walker 2010.) 

 

Direct method applies the antibody labeled with fluorescent dye directly to the antigen. 

Indirect method utilizes two different antibodies, where one recognizes the target protein 

and another contains the fluorescent label. In indirect method first the primary antibody that 

recognizes the antigen binds to the target biomolecule. Secondly, the secondary antibody 

with the fluorescent label binds to the primary antibody, forming this way a fluorescent 

complex.  The fluorescence can be detected by fluorescent microscope after illuminating the 

sample with dye-specific excitatory wavelength (Wilson & Walker 2010.) 

 
There are several known molecular markers of the RPE. Most distinct markers that RPE-like 

cells express are for example cellular retinaldehyde-binding protein (CRALBP), retinal 

pigment epithelium-specific 65 kDa protein (RPE65), bestrophin and pigment epithelium 

derived factor (PEDF) (Klimanskaya 2004.)  Cultured RPE cells differ in gene expression 
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on different time points and hence functionality depends on cell passage and degree of epi-

epithelial polarization (Mazzoni et al. 2014.) For example, in mature hESC-RPE cells, the 

expression of genes that are involved in visual cycle should be-up-regulated (Liao et al. 

2010). 

 

Cellular retinaldehyde-binding protein (CRALBP) is a protein that takes part in the visual 

cycle by functioning as a substrate carrier protein that modulates interaction of retinoids (11-

cis-retinaldehyde). CRALBP is expressed in RPE cells, but is present also in Müller cells in 

the retina (Saari & Crabb 2005.) Retinal pigment epithelium-specific 65 kDa protein 

(RPE65) is involved in the visual cycle by taking part in the conversion of all-trans retinol to 

11-cis retinal during photo-transduction. RPE65 also regenerates the visual pigment in 

photoreceptor cells. (Cai et al. 2009)  

 

Bestrophin, a product of the Best vitelliform macular dystrophy gene, is commonly used 

molecule marker in RPE cells (Klimanskaya et al. 2004, Burke et al. 2008). As one of the 

roles of RPE is to transport nutrients and ions between the choriocapillaris and 

photoreceptors, the bestrophin, as a type of calcium-activated anion channel, plays important 

role specifically in cloride conductance and calsium signalling in the RPE cells (Hartzell et 

al. 2008.) 

 

 
2.5.4 Proteins indicating the polarity of the cells 

 

RPE cells are polarized epithelial cells. Transmembrane proteins expressed in RPE cells 

include proteins such as sodium-potassium-adenosine triphosphatase (Na+/K+ -ATPase) and 

tight junction proteins zonula occludens 1 (ZO-1) and claudin-19 (Lehmann et al. 2014, 

Rizzolo 2014).  

 

Sodium-potassium- adenosine triphosphatase (Na+/K+ -ATPase) is an ion pumping protein 

complex located in cell membrane. This pump is essential for the maintenance of Na+ and 

K+ ion concentrations across the membrane. Energy for transepithelial transport is provided 

by Na+/K+ -ATPase on the apical membrane of RPE cells (Lehmann et al. 2014.)  
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ZO-1 is one of the zonula occludens proteins. ZO-1 is an important link in transduction of 

signals from all transmembrane proteins (Ross & Pawlina 2011.)  It is a transmembrane 

protein that is located on the apical (cytoplasmic) side of RPE-cell (Rizzolo 2014).  

 

Claudins are transmembrane proteins that form the backbone of zonula occludens strands. 

They form and regulate aqueous channels used in paracellular diffusion (Ross & Pawlina 

2011.) Claudin-19 is a protein that is an essential component of human RPE tight junctions 

since patients with genetic defect of claudin 19 suffer profound ocular deficits (Konrad et al. 

2006.)  It has been shown that claudin-19 is the dominant claudin expressed in cultured 

RPE-cells and it is the only claudin that was identified as RPE-specific when compared with 

photoreceptors and choroid (Peng et al. 2011). 

 

 

2.5.5 Other characterization methods 

 

Along with other vital functions in the retina, phagocytic activity is a core trait of RPE cells 

in vivo and in culture. Continuous renewal of the light-sensitive outer segment portions of 

photoreceptors is critical for vision and thus the phagocytosis by RPE cells is highly 

regulated and specific for spent outer segment fragments.  Phagocytic processes consists of 

three distinct phases; recognition/binding, internalization, and digestion. (Mazzoni et al. 

2014.) RPE cells are the most actively phagocytic cells in the human body. One RPE cell 

supports 30–50 photoreceptors, which shed daily ~5% of their outer segment mass (Bonilha 

2008). In situ analysis of RPE phagosomes has identified essential proteins of the RPE 

phagocytic machinery. These phagosomes in the RPE may be identified by different 

microscopy techniques based on their sizes and location in the RPE (Mazzoni et al. 2014.) 

 

Immunolabeling any outer segment protein may aid in identification of RPE phagosomes, 

but rhodopsin is the most ideal to immunolabel, since it is the most abundant protein in rod 

outer segments. The RPE cells do not express rhodopsin themselves and rhodopsin content 

of the RPE therefore will correlate directly with relative phagocytic load. (Mazzoni et al. 

2014.) POS phagocytosis can be also tested with specific assays and quantification method 

that utilize for example latex beads (Klimanskaya 2006). 
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3 AIMS OF THE STUDY 

 

The objective of this Bachelor’s thesis was to further optimize a directed RPE differentiation 

method developed in the Skottman Ophthalmology group by providing knowledge on the 

differences between the efficiency of the adherent and EB-like culturing methods in the dif-

ferentiation of RPE-like cells from human pluripotent stem cells. When more efficient ways 

to produce RPE-cells are discovered, these methods could be utilized in tissue engineering 

applications. In the future, disorders caused by retinal degeneration could be cured by apply-

ing regenerative medicine, where the damaged RPE would be replaced by tissue graft de-

rived from hPSCs.  

.. 

The aim of the study was to compare adherent and EB-like differentiation methods in di-

rected differentiation of hPSCs into RPE. The main points of interest were to evaluate the 

formation of melanin pigment producing cells between the differentiation methods and to 

analyze of the quality of the produced cells. The cell lines chosen for this study were a 

hESC-line that is commonly used in differentiation of hESC-RPE within the research group, 

and one human iPSC-line for comparison. 
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4 MATERIALS AND METHODS 

 

The experiment consisted of two separate phases. The initial differentiation phase consisted 

of chemical differentiation induction in EB cultures followed by comparison of the EB ver-

sus adherent culturing methods by the rate of melanin pigmented cells produced. In the fol-

lowing phase, the produced pigmented cells were selected for subculturing and characterized 

by TER and immunofluorescence stainings to determine their barrier junction properties, 

differentiation state, polarity and expression of RPE typical proteins. Course of the experi-

ments are described in table 2. Experiments were performed following good laboratory prac-

tice (GLP) whenever possible.  

 

TABLE 2. The course of the study  

Method Number 

of days 

Introduction of the method 

Induction of differentiation d0 Stem cells colonies were mechanically cut and the pieces 

were placed in low attachment 6-well plate for differen-

tiation in induction medium. The colonies form a three-

dimensional aggregate, called EB (figure 3.) 

 d4 EBs are divided into two groups of equal size. One group 

continues to differentiate as EBs in suspension culture, 

the other group is transferred to collagen IV coated ad-

herent culturing 6-well plate. The induction medium is 

replaced with basic cell culturing medium. 

Subculture  ~d40 The differentiated, RPE-like pigmented areas of cultures 

are mechanically selected and dissociated to single cell 

suspension. The cells are counted with hemocytometer 

and seeded to collagen IV coated 24-well plates and per-

meable (Polyethylene Terephthalate) PET-membrane 

inserts.  

TER measurements d40 + 5-7 

weeks 

TER is measured from PET-membrane cultures.  

Immunostainings d 40 + 5-7 

weeks 

The PET-membrane cultures are stained with RPE-

spesific antibodies and imaged with confocal microscopy. 
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4.1 Cell culture 

 

 

4.1.1 Human pluripotent stem cells 

 

Cell lines used in this study were hESC line Regea 08/017 previously derived in research 

group’s laboratory (Skottman 2010) and hiPSC line UTA.04511.WTs. Two different batches 

of both cell lines were used to evaluate the pigmentation rate. The pluripotent cell lines were 

handled in sterile conditions and cultured in humidified incubators (Thermo Electron Corp., 

Waltham, MA, USA) at +37 °C in 5% CO2 on mitotically inactivated (by mitomycin C) 

hFF (36,500 cells/cm2; CRL-2429; American Type Culture Collection, ATCC, Manassas, 

VA) in serum-free conditions (Vaajasaari 2010) and passaged with single cell enzymatic 

dissociation (SCED) –method. 

 

Research group gets the embryos for derivation of hESC lines as a donation from couples 

that have gone through fertility treatments and signed an informed consent form. The sur-

plus embryos are unfit to be used in the treatments and would have otherwise been disposed 

of. Group leader Heli Skottman has the approval of the National Authority for Mediolegal 

Affairs Finland to study human embryos (Dnro1426/32/300/05) and has the support of the 

Ethical Committee of the Pirkanmaa Hospital District (R05116) to derive, culture and dif-

ferentiate hESC lines from surplus embryos (Skottman 2010.)  

 

Human iPSC line used in this study is a wildtype line inducted with Sendai-virus method. 

Line is mainly used in BioMediTech research group led by Katriina Aalto-Setälä. Aalto-

Setälä’s group does research in the field of cell - and tissue technology, focusing on heart 

cells. The hiPSC-line is used as a control cell line in the studies and it is formed within Uni-

versity of Tampere from patient skin biopsy (Haponen 2014.) 

 

Basic hPSC culture medium consisted of Knockout Dulbecco’s Modified Eagle Medium 

(KO-DMEM) containing 20% KnockOut Serum Replacement (KO-SR), 2 mM glutamine 

mixture (GlutaMax), 0.1 mM β-mercaptoethanol, 1% Minimum Essential Medium nones-

sential amino acids, (all from Invitrogen, Carlsbad, CA) 50 U/ml penicillin/streptomycin 

(Cambrex Bio Science, Walkersville, MD), and 8 ng/ml human basic fibroblast growth fac-

tor (bFGF; R&D Systems Inc., Minneapolis, MN) (Vaajasaari 2010). 
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4.1.2 Differentiation and culture media 

 

The basic differentiation culture medium (called DM-) is used normally in spontaneous dif-

ferentiation within the research group (Vaajasaari et al. 2010). DM- consists of basic growth 

medium KO-DMEM that is supplemented with 15% KO-SR, 50 U/ml penicil-

lin/streptomycin, 1% non-essential aminoacids, 1% GlutaMax and β-mercaptoethanol. 

 

The differentiation of the cells was induced by adding basic fibroblast growth factor (human 

FGF-basic 50 µg, PeproTech) and small molecule selective inhibitors SB505124 and IWP-2 

(both from Sigma-Aldrich, Sigma Life Sciences) to DM- medium, that was thus being called 

as DM+ medium. The induction method is based on knowledge provided previously in the 

research group (Mikhailova et al. 2014; unpublished data.) DM+ medium used in induction 

was changed 2-4 times during the first four days of differentiation. After the induction, cells 

were transferred to the DM- medium. DM- medium was changed three times a week. 

 

 

4.1.3 RPE differentiation 

 

The human pluripotent stem cells were grown with supportive feeder cell layer of human 

foreskin fibroblasts. For differentiation, the stem cell colonies were mechanically cut and 

undifferentiated areas selected from the culturing wells and passaged to 6-well plate (Costar 

multiwell plate, 6-well Ultra-Low attachment surface, Corning Incorporated) with differen-

tiation medium DM+. The passaged colonies formed floating cell aggregates spontaneously 

as they were placed on the medium. The method is demonstrated in figure 3. 

 

Directed differentiation by small molecule induction took place for four first days of the 

differentiation. On d4 the medium was changed to basic culturing medium DM- and the 

formed EB-like cell aggregates were either kept in the EB suspension culture or transformed 

to adherent culture conditions. Adherent culturing took place on 6-well plate (Costar multi-

well plate, 6-well Corning CellBind Surface, Corning Incorporated.) The wells were coated 

with Collagen IV (Sigma-Aldrich) 5 µg/cm2. EB-like cell aggregates attached to the coated 

bottom of the well and started to form an adherent culture.  
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FIGURE 3. Overview of mechanical selection of stem cell colonies. (A) Stem cell colonies viewed 

by phase contrast microscope, picture taken through oculars. 1x magnification (B) Undifferentiated 

stem cell colonies on top of feeder cells. (C) & (D) Cutting was done by scalpel and colonies were 

unfastened from bottom of the well. (E) Colonies floating free in the medium (d0) (F) Colonies form 

EB-like cell aggregates within a day from the selection (d1) Pictures B-F magnification 4x, scale bar 

200 µm. 

 

The differentiation potentials of the adherent and EB-like culturing methods with hESC and 

hiPSC lines were analyzed by the appearance of the first pigmented cells emerging from 

each cell line. Observations were done five times a week with phase contrast light micro-

scope (Nicon eclipse TE2000-5.) Pictures were taken in different time points to document 

the development of melanin pigmentation with camera attached to the microscope (Nikon 

Digital Sight DS-L5) 

 

After 42 days of differentiation, pigmented areas were cut mechanically and passaged with 

SCED to Collagen IV coated 24-well plates and PET-membranes on culturing well inserts. 

The meaning of subculture was to gain more homogenous epithelial like RPE-cultures. 
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4.1.4 Subculture  

 

For enrichment and maturation of the RPE-like cell produced, the areas with pigmented cells 

were chosen manually with a scalpel in sterile conditions and subsequently dissociated and 

passaged to a different well plate. Passaging was performed within d41-d42 of the initiation 

of differentiation. Usually longer differentiation develops better yield of pigmented cells, but 

in the limited timescale for the project, this step had to be performed with modest amounts 

of pigmented cell material. 

 

After mechanical separation, cells were washed two times with Dulbecco’s phosphate-

buffered saline (DPBS.) A proteolytic enzyme with brand name TrypleSelect was used to 

dissociate the cells for 10-15 min at +37 C°. The cells were carefully triturated and put in 

DM- medium through 4.0 µm nylon cell strainer to gain a single cell suspension. Cell sus-

pension was then centrifuged at 1500 rpm for 5 min. Medium containing TrypleSelect was 

removed and cells were resuspended to 1 ml of DM- and counted with hemocytometer. Rea-

gents were manufactured by Invitrogen, Life Technologies. 

 

The cells were plated either on collagen IV (5 µg/cm2; Sigma-Aldrich)-coated 24 well plates 

(42 000 – 56 000 cells/cm2; Costar multiwell plate, 24-well Corning CellBind Surface, 

Corning Incorporated) for pigmentation and morphology follow-up, or on permeable Colla-

gen IV–coated PET-membrane inserts (100 000 – 200 000 cells/cm2; Millicel 24-well hang-

ing cell culture insert, 1,0 µm PET transparent, Millipore) for immunofluorescent stainings. 

 

 

4.2 Reference material 

 

To analyze the cells produced in this study, two hESC-RPE cell cultures were taken to the 

characterizations as reference material. The reference cells were produced within the group 

from the same hESC-line as the cells used in the study. Adherently differentiated hESC-RPE 

cells were compared to control cell cultures. Purpose of the reference material was to use 

them as control samples to see if there was a difference in the quality of the cells produced 

with induction and spontaneous differentiation methods. The controls were named based on 

their differentiation mediums DM- and DM+/DM- as M- and M+/M-, respectively.  
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The control cell M- cultures was produced with spontaneous differentiation process (method 

used previously in Mikhailova, 2011 and Vaajasaari et al., 2011) and the another control 

M+/M- represented a type of parallel sample by being derived with same directed differenti-

ation method as the adherently differentiated hESC-RPE sample.  

 

The comparison of the control cells and the adherently differentiated hESC-RPE cell sample 

is presented on table 3. The passage number is counted from each subculture of the original-

ly differentiated RPE-like cells. Control M- cells were spontaneously differentiated in EB-

form in DM- medium (passage +1), without small molecule or growth factor induction. Af-

ter 58 days of differentiation, pigmented areas were cut mechanically (passage +2), and plat-

ed to collagen IV coated 24-well plates without SCED treatment as cell clusters. After RPE-

like cells had gained confluence for 68 days on passage +2, they were passaged to collagen 

IV coated PET-membrane on culturing well inserts (passage +3).  

 

The control cells called M+/M- were differentiated with same method as study inserts, first 

four days on DM+ and then DM- medium. Only difference is on that these cells were plated 

to inserts on their passage +3 after they had formed confluent RPE-like colonies on 24-well 

plate in passage +2. Differentiation in first passage took 47 days, and maturation on second 

passage 36 days.  

 

TABLE 3. Comparison of the sample cells and the control cells 

Type  (name) Diff. method Medium Diff. culturing 

condition 

Passage 

on insert 

Control M- spontaneous DM- EB +3 

Control M+/M- directed DM+/DM- adherent +3 

Sample hESC adherent directed DM+/DM- adherent +2 
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4.3 Transepithelial resistance 

 

Transepithelial resistance was measured from the sample and control culture inserts. Meas-

urement devise used in the study was Millicell Electrical resistance system 2 voltohmmeter. 

The measurement electrodes were disinfected by keeping them ~15 minutes (min) in 70% 

ethanol. Electrodes were let to dry in the room temperature (RT) before they were used in 

the measurements. For stabilization, the electrodes were rinsed in two different falcon tubes 

that contained PBS before every measurement. The PET-membranes were in the DM- medi-

um during the measurements. Measuring was performed 2-3 times to each sample and a 

blank control. The resistance measurements were averaged and the value of the blank was 

subtracted from the sample-well resistance. 

 

 

4.4 Immunofluorescence staining 

 

Immunofluoresce stainings were performed to detect expression of commonly used RPE-

spesific marker proteins by the cells. Imaging with confocal microscope enabled the anal-

yses of the polarization of the marker proteins.  

 

The cells were washed three times with PBS and fixed with 4% paraformaldehyde (pH 7.4; 

Sigma-Aldrich) for 10 min at RT following repeated washings with PBS. The cells were 

made permeable by incubating in 0.1% Triton X-100 in PBS (Sigma-Aldrich) at RT for 10 

min. The unspecific binding sites were then blocked by treating cells with 3% BSA (BSA; 

Sigma–Aldrich) at RT for 1 hour (h) and the PET-membranes were cut to three or four piec-

es. Samples were incubated overnight at +4 °C with primary antibodies shown in table 4. 

Dilutions were prepared in 0.5% BSA in DPBS. Cells were washed three times with PBS 

and labeled with secondary antibodies shown in table 5. Secondary antibodies were diluted 

in 0.5% BSA-PBS and incubated 1.5 h at RT following repeated PBS washings. The nuclei 

were stained with 4 ́, 6 ́ diamidino-2-phenylidole (DAPI) included in the mounting media 

(Vector Laboratories Inc.)  
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TABLE 4. Primary antibodies 

Primary antibodies Manufacturer / Product code Dilution 

mouse anti-Na+/K+ -ATPase Abcam / ab7671 1:200 

rabbit anti-bestrophin Abcam / ab14928 1:200 

mouse anti-RPE-65 Millipore / MAB5428 1:200 

rabbit anti-ZO-1 Life technologies / Novex 61-7300 1:200 

mouse anti-CRALBP Abcam / ab15051 1:500 

mouse anti-claudin-19 Millipore / MAB6970 1:100 

 

TABLE 5. Secondary antibodies 

Secondary antibodies Manufacturer / Product code Dilution 

donkey anti-mouse IgG A488 Life Technologies / Alexa Fluor A-21202 1:800 

goat anti-rabbit IgG A568 Life Technologies / Alexa Fluor A-11011 1:800 

 

 

The control cell cultures M- and M+/M- on PET-membranes were stained using all of the 

primary antibodies listed in table 4. Due to the poor outcome, the hESC-RPE cell cultures 

produced in this study were stained using only anti-Na+/K+ ATPase, anti-BEST, anti-

CRALBP and antiZO-1 leaving out the RPE65, and the other tight junction protein, anti-

claudin-19, which show usually only in well matured RPE-like cells.  

 

At time of the immostainings, the cell cultures control DM-, control DM-/DM+ and hESC-

RPE sample had been on the culturing inserts for 106 days, 91 days and 40 to 49 days, re-

spectively.  Images were taken with an LSM 700 confocal microscope (Carl Zeiss, Jena, 

Germany) using a 63×oil immersion objective.  
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5 RESULTS 

 

The actual time points for each step of the experiment are shown up in the figure 4 and are 

discussed in detail in the following chapters. 

 

 

FIGURE 4. Course of the practical work. *Some of the cells were passaged only on 24-well plates, 
but they did not manage to form a subculture. 

 

 

5.1 Appearance of pigmentated cells 

 

Appearance of pigmented cells was followed daily, excluding weekends. The formation of 

the pigmentation is presented in figure 5. The observations for each cell lines and culturing 

conditions are shown on table 6. The comparison of cell differentiation in different culture 

conditions can be seen in the images in figures 6 and 7. Figures 6 and 7 represents the dif-

ferentiation of hESC line and hiPSC line on the 39th day of differentiation, respectively. The 

differentiation potentials of the culturing methods can be compared by the amount pigment-

ed cells emerging from each cell line. 
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FIGURE 5. Melanin pigmentation development (A) Suspension culture, no pigmentation on EBs on 

(hESC, d11) (B) First sign of pigmentation on EB (hESC, d21) (C) Developed pigmentation on EB, 

(hESC, d35) (D) Adherent culture, no pigmentation (hESC, d6) (E) First signs of pigmentation on 

adherent culture (hESC, d21) (F) Well pigmented adherent culture (hESC, d35.) Magnification 4x, 

scale bar 200 µm. 

 

 

TABLE 6. Summary of the pigmentation formation  

Cell line / conditions Pigmentation first shown 

hESC adherent d17-d21 

hESC EB d18-d22 

hiPSC adherent d17-d19 

hiPSC EB d26-d28 
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FIGURE 6 hESC line, day 39 of differentiation (A) adherent culturing conditions, overview. (B) 

adherent culturing conditions, close-up. (C) EB-like culturing conditions, overview. (D) EB-like 

culturing conditions, close-up. Some of the pigmented areas are marked with arrows. 

 

 

FIGURE 7. hiPSC line, day 39-40 of culturing. (A) adherent culturing conditions, overview. (B) 

adherent culturing conditions, close-up. (C) d40 EB-like culturing conditions, overview, (D) d40 EB-

like culturing conditions, close-up. Some of the pigmented areas are marked with arrows.
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5.2 Characterization 

 

 

5.2.1 Morphology 

 

Only hESC-RPEs that were differentiated with adherent culturing gave enough yield to be 

passaged successfully to 24-well plate and hanging culture inserts. EB-like cultured hESCs 

and adherent cultured hiPSCs were also plated to 24-well plate, but the passaged cell did not 

proliferate (data not shown.) After plating, the hESC subculture went through epithelial-

mesenchymal transition (EMT) before reforming into RPE-like pigmentated cells of cobble-

stone morphology (figure 8.) 

 

 

FIGURE 8. Plated adherent cultured hESC-RPE cells in different time points. (A) On d1 cells were 
attaching to the surface (B) on d6 cells were going through the EMT, fibroblast-like morphology (C) 
on d12 cells had proliferated and started to reach confluency (D) Cells started to form a cobblestone-
like morphology during d18 but were not yet fully confluent (E) on d23 the cells had gained conflu-
ent morphology (F) d37 RPE-like cells had gained back their original appearance. Magnification 
10x, scale bar 50 µm. 
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5.2.2 Transepithelial electric resistance of the PET-membranes 

 

Transepitheliel electric resistance was measured from the PET-membrane inserts shown in 

figure 9 to analyze the barrier properties of the cell monolayer. Control insert without cells 

was used to reduce the background produced by the PET membrane. The measured TER 

was converted to unit area resistance with the membranes surface area. Results are shown in 

table 7.  

 

 

FIGURE 9. PET-membrane cultures before TER measurements. (A) M- control (d92 on insert) (B) 

M+/M- control (d78 on insert) (C) hESC adherent induction insert (d36 on insert.) Pictures taken 

through phase contrast microscopes oculars, magnification 2,5x. No scale bar provided. 

 

 

TABLE 7 Results of the TER measurements 

Cell sample Culturing days on insert TER (Ω· cm2) 

M- control d92 420 

M+/M- control d78 115 

hESC adherent d36 2 
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5.2.3 Immunofluorescence staining 

 

The immunofluorescence stainings were performed when the adherently differentiated 

hESC-RPE cells had been 40 to 49 days on the permeable PET-membrane inserts. Despite 

poor condition of the formed epithelial monolayer, there were nevertheless decent areas to 

analyze with immunofluorescense stainings. Nuclei stainings with DAPI were observed with 

microscope, but the observations did not show in the pictures since the dark melanin pig-

mentation concealed the DAPI in the cells.  The immunostaining for CRALBP, ZO-1, Na+-

K+-ATPase and bestrophin were positive for the hESC-RPEs developed in this study. The 

stainings for the control samples were not essential for this thesis and are not therefore dis-

cussed in detail in the results.  

 

Figure 10 shows images taken from cells stained with CRALBP (A488, cyan green) and 

ZO-1 (A568, reddish orange) antibodies. Nuclei staining DAPI (cyan) cannot be recognized, 

due to the concealment by dense melanin pigmentation. The phenomena is relatively com-

mon with highly pigmented RPE-like cells. Blue dominating in the images is from back-

ground fluorescence from the PET-membrane. It should be noted that the images taken from 

the sample cover only a small area. The overview of the sample illustrated relatively high 

variation on different parts of the sample. 
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FIGURE 10. Images taken with confocal microscopy, magnification 63x (oil immersion) of 

CRALBP and ZO-1 immunostained hESC samples. Bluish/magenta color is mainly from the fluo-

rescent PET-membrane, nuclei staining DAPI is colored with cyan (A) Parts of the sample that 

demonstrated a beautiful cobblestone morphology. (B) Demonstration from the distressed parts of 

the sample.  (C) Variable cell morphology. (D) Confocal stack image that shows part of the sample 

where ZO-1 can be seen well on cell junctions and CRALPB in the cytoplasm.  

 

Images in the figure 11 are from samples that were immunostained for Na+/K+-ATPase 

(A488, cyan green) and bestrophin (A568, reddish orange.) Images are formed with confocal 

image; image in the middle is the most describing overview of the sample, and the slides on 

top and left are cross-sections formed from stack of images taken from the different depths 

of the sample.  The DAPI-stained nuclei can be seen as cyan colored with some cells on the 

area on the left image 11B.  
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FIGURE 11. Confocal stack images from immunostained hESC-RPE samples, magnification 63x 

(oil immersion.) Na+/K+-ATPase can be seen as cyan green (A488) and bestrophin as reddish orange 

(A568.) DAPI stained the cell nuclei as cyan blue. Na+/K+ is polarized on the apical cell membrane. 

A) Stratified part of the sample, image taken first batch of the hESCs, (7 weeks on inserts) B) Cells 

formed RPE-like monolayer, part found on the second batch of hESCs patches (5 weeks on inserts.) 

 

The immunocytochemical analyses of the control sample M- showed that the cells were 

stressed probably duo to cellular senescence which often occurs in prolonged cell culture. 

Beside these results, other comparable immunofluorescence stainings from cells with same 

differentiation method can be found in the research of Vaajasaari et al. 2011. Some of the 

data collected from control M+/M- can be seen in the appendix 1. Condition of the observed 

areas indicated that the cells had possibly been detached during the stainings. The results of 

the stainings were in conformity with the outcome of the sample hESC-RPE. The control 

M+/M- had two additional stainings with antibodies for RPE65 and claudin-19. These are 

included in appendix 1. Since RPE65 was almost nonexistent, the staining was concluded as 

negative. Immunostaining for claudin-19 was positive, with higher intensity on proximity of 

certain individual cells.  
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6 DISCUSSION 

 

The objective of the thesis was to further optimize a directed RPE differentiation method by 

comparing adherent and EB-like culturing methods. Differentiation of hPSCs into RPE-like 

cells was first determined by observation of melanin pigmentation development. In hESC 

line the pigmentation was detected a day apart in both adherent and EB-like cultures, but in 

the end, only adherent culture developed enough pigmented cells for subculture. With dif-

ferentiating hiPSCs, the EB-like cultures had delayed formation of pigmentation compared 

to adherent cultures. Differentiation in EB-like suspension cultures did not show improve-

ment even when cultured further from the first timepoint of around d40 (data not shown.)  

 

The adherent hESC-RPE cultures were selected and passaged successfully forward to 24-

well plates and PET-membrane inserts, and after a 40 to 49-day maturation period, analyzed 

by means of immunofluorescent stainings. Based on the results provided in this study, ad-

herent differentiation conditions may turn out to be more preferable for hPSC-RPE when the 

differentiation has been directed with induction. Also, in the native environment epithelial 

RPE monolayer grows adherently attached to Bruch’s membrane. 

 

Induction of differentiation did not seem work well for EB-like aggregates, as can be ap-

proximated from figures 6 and 7. The first pigmentation of cells in adherent hESC cultures 

(d17-d22) seemed to appear just slightly faster than in the spontaneous EB-like cultures de-

veloped for another studies in the same laboratory; these spontaneously differentiated hESC 

of the same particular cell line started to develop pigmentation on average on day 23 (the 

mean results with five different hESC passages, data not shown.)   

 

One of the two hiPSC batches yielded notably small amount of differentiated, melanin pig-

mented cells (data not shown.) The better success with the second batch indicated that the 

problem was more likely with the quantity of the cells than the quality, since in the begin-

ning of differentiation the first hiPSC batch had significally less stem cell colonies to even 

begin to differentiate. However, with these particular cell lines the hiPSCs gave poorer yield 

of RPE-like cells than the hESCs. The hiPSC-RPE cells did not live through of the subcul-

turing and therefore, there are no follow-up results for the cell line.  
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The differentiated melanin pigmented cells were characterized to identify if they resembled 

RPE-like cells. Since in the time limits of the study only the adherent differentiation for 

hESC provided sufficient yields, the quality of the hPSC-RPE cells was thus determined 

only for these cell samples. The cell seedings on the porous PET-insert did not form an epi-

thelial-like monolayer, but instead a network-like formation of stratified cells. This is not 

expected behavior with RPE-like cells, but the phenomenon has been noted also in another 

study (Rowland et al. 2013.) Despite these problems, the immunostainings turned out to be 

successful and gave informative results.   

 

TER interprets the confluence and barrier properties of a cell monolayer. Some of the refer-

ence values for RPE monolayer presented in literature can be found on table 1 on page 24. 

The TER measurements for control sample M- showed of a formation of a proper monolay-

er, while the values were slightly lower for the control M+/M-. As for the hESC-RPE sam-

ple, it can be seen from measured TER values and even from figure 9 on page 40, that the 

cells produced in this study did not form a monolayer that could have had any kind of barrier 

properties. However, regarding the immunofluorescence stainings, the quality of the hESC-

RPE cells was still relatively good. 

 

The immunofluorescence staining provided information about how the cell expressed known 

markers for RPE-like cells. The existence and location of the RPE markers depicted the ma-

turity and development of the RPE-like cells. The sample cells that were differentiated with 

induction method were rather matured, despite their short differentiation and culturing peri-

od (Carr et al. 2014.)  Early maturation could have been resulted with the induction used in 

the beginning of the differentiation process. 

 

RPE marker protein CRALBP was found in the cytoplasm and in close proximate of cell 

membrane (10D, confocal image.) The faintly showing junction protein ZO-1 was found 

mainly in the nucleus of the cells. In some parts of the sample, ZO-1 could be also seen in 

the cell-cell junctions suggesting formation of tight junctions. ZO-1 was positive on all over 

the sample, but higher intensity of fluorescence could be observed between some certain 

cells shown outside of the area in figure 10.  The cells show a cobblestone-like morphology. 

Some stretching of the cells can be seen on images 10B and 10C. Most of the images were 

taken from the prominent parts of the sample that formed epithelial-like monolayer. 
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In confocal stacks on figure 11A and 11B, Na+/K+-ATPase was located on the apical side of 

the cells membrane. Normally bestrophin should be found on the basal membrane on ma-

tured RPE-cells. However, as seen more properly on the image 11B, bestrophin can also be 

found elsewhere, in nucleus and cytoplasm, when the cells are still relatively unmatured. 

Morphology of the cells is relatively good, but the undesirable formation of stratification can 

be seen especially on figure 11A. 

 

The cell monolayer was relatively well formed in the control culture M+/M-, but after the 

immunostainings, microscope-examination revealed that the monolayer was destroyed on 

some areas and cells were detached from most parts of the membrane.  This suggests that the 

cell were not attached properly to the basal membrane during the culturing period. The same 

phenomena could have appeared in the hESC-RPE sample in the formation of the stratified, 

network-like growth. 

 

Reasons for the problematic development of the cell monolayer could be caused by many 

different variables. One difference between the hESC-RPE sample and M+/M- control was 

that the sample cells were plated straight from the differentiation stage. Thus, the sample 

hESC-RPE cells did not have opportunity to form a subculture of homogenous colonies, 

which could have yielded purer RPE-like populations (Vaajasaari et al. 2011.)  More likely, 

the problems could be with the insert culturing on a PET-membrane, since the seeding to 24-

well plate turned out fine as can be seen on figure 8 on page 39.  

 

The control culture M- with spontaneous induction developed the finest monolayer of the 

characterized cells, which proposes influence of the executed induction.  It should also be 

noted that in the time of the study, collagen IV coatings gave varied development of mono-

layer in other cell cultures developed in the laboratory (data not shown.) It has been shown 

that the coating substance has an impact in the formation of the confluent monolayer (Row-

land et al. 2013.)  

 

In conclusion, the results found in this study suggested that TER is not by itself a reliable 

measurement of the development state of the RPE-like cells.  Immunostainings revealed that 

the cells were polarized resembling RPE cells by expressing the specific molecular markers.  

The marker proteins were not in all cases yet located where they are normally expressed in 

mature native RPE-cells.  
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The results provided in this study suggest that for specific type of directed differentiation of 

hPSCs into RPE, the adherent culture method gives significantly better yield than the EB-

like culture method. The induction seems to work with both hESCs and iPSCs, but the yield 

tends to differ.  It has been shown in other studies that iPSCs and hESCs show variability in 

their propensity to generate viable RPE cells (Buchholz et al. 2009; Rowland et al. 2013; 

Vaajasaari et al. 2011). 

 

To determine if this culturing method combined with directed differentiation could be prom-

ising way to derive hPSC-RPE cells, further research is needed on the subject with different 

cell lines and bigger cell amounts to compare more closely on the yields and efficiency with 

the spontaneous culturing method. Results from the immunostainings suggest that the differ-

entiation method used in this provided RPE-like cells that were yet completely mature in the 

given time, but promisingly well developed. Functionality of the RPE-like cells could be 

shown with for example by testing the cell’s ability of phagocytosis of POS.  

 

The problems with monolayer development on inserts and thus effects in the TER values 

suggest a problem in the attachment of the cells on the surface. The main causes of this 

could possibly be the coating of the surfaces by collagen IV, the quality of PET-membranes 

or the passage of the differentiated cells. It is necessary to determinate the main source of 

problematic formation of monolayer for the development of cell cultures in the future. It 

should be kept in mind that hPSCs and their differentiation are very delicate biological pro-

cesses, and even minor variables, such as subtle changes in culturing media or basal mem-

brane, could possibly affect in drastic measurements.  

Research aims were achieved to the extent that there were found notable difference in the 

yield between the cell culturing methods. Based on the immunostaining results, adherent 

culturing method with directed differentiation produced RPE-like cells in relatively short 

time period and could be a promising new method to develop RPE-cells for future applica-

tions. 
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APPENDICES 

Appendix 1. M+/M- control cell culture immunostainings 

 

 

FIGURE 12 Control cell culture M+/M- immunostainings. A) Na+/K+-ATPase A488, B) RPE65 

A488 (negative), ZO-1 A568 C) CRALBP A488  D) Claudin 19 A488. Confocal microscope, 63x oil 

immersion. 

 


