Hans-JUrgen Krupp

Harvest Survive

Game Mechanics of Unity 2D Game

F

Helsinki Metropolia University of Applied Sciences
Degree Bachelor of Engineering

Degree Programme Information Technology
Thesis

Date 25.9.2014

/" Helsinki

Metropolia

University of Applied Sciences

Abstract

Author(s) Hans-Jirgen Krupp

Title Harvest Survive : Game Mechanics of Unity 2D Game
Number of Pages 70 pages + 0 appendices

Date 25 September 2014

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor Juha Huhtakallio

The purpose of this project was to learn how to create Games in Unity 2D, to see the work-
flow and to test if the new Unity 2D feature of the Unity engine was a good alternative for
developing 2D games. A further aspect was to learn the different steps and mechanics of
the Unity environment.

The goal was to create a survival game, in which the player would have to grow plants in
order to get food and money to stay alive in a hostile environment. The player has to sur-
vive in six different areas with different monsters and one final boss in the last area. The
player wins the game when the last boss is killed. To achieve this, the player has to grow a
large number of crops and survive the roaming monsters and earn money to get the best
equipment.

As for the technology used in the project, the game engine Unity was used with the plugins
Toolkit2D for the tilemaps, Navmesh2D for the pathfinding of the monsters and the Nec-
romancers skin for the user interface.

The result of the project was a working Unity 2D game, which can be played on Windows
systems. Moreover it is the first step into making Unity games and provides useful experi-
ence for future Unity projects.

Keywords Unity, 2D, Game, Navmesh2D, Toolkit2D

e

Metropolia

University of Applied Sciences

Contents

1 Introduction 1
2 Theoretical Background 2
2.1 Overview 2
2.2 Unity 2
2.2.1 History 2

2.2.2 Features 3

2.2.3 Unity 2D 8

2.3 Summary 8

3 Technology Presentation 8
3.1 2Dtoolkit 9
3.2 Navmesh2D 10

4 Harvest Survive 10
4.1 Basic Structure 10
4.2 Map 11
4.3 Player 15
4.3.1 Movement and Animations 16

4.3.2 Inventory and Equipment System 18

4.3.3 Character System 27

4.3.4 Attack System 28

4.4 Planting 33
4.5 Monsters 35
4.5.1 Basics 35

4.5.2 Path Finding 37

4.5.3 Health Bar System 44

4.5.4 Spawner 46

4.6 Audio 49
4.7 User Interface 50
4.8 Game Scenes 61

5 Results and Discussion 61
6 Conclusions 67
References 68

—

Helsinki

Metropolia

University of Applied Sciences

1 Introduction

The project is a survival game with a focus on planting and harvesting crops while de-
feating monsters. This was made with Unity 2D and the target platform was Windows.
The project was a single-person project. Moreover the topic was chosen because Unity
is becoming more famous among Indie developers because of its free license, which
can be used to publish games until an annual gross revenue of 100,000 $. [1]

Of course not all features are included in the free version, but it is enough for Indie
game development, especially if it is used for 2D development. Moreover Unity focuses
mainly on portability, which means it is possible with the same project to release it to
Windows, Linux, Mac, Web, Android, los, Windows phone, Blackberry, Xbox360, Xbox
One, Playstation3 and Playstation4, without a big effort for porting it manually. This
makes it easy to reach more customers and in the end it means more money for the

developers. [1]

Unity 3D is a well known game engine and has been released for many years, but it
has never supported 2D development. It changed when they released Unity 2D at the
end of 2013, so it was interesting to get started with it and see its advantages and dis-
advantages in making a 2D game with it.

In the plot of this game the goal is to plant crops and wait until the plants grow, then
harvest them and use the grown fruits and vegetables as food or sell them at a store to
earn money. With the money the player can buy new seeds, equipment and weapons.
The equipment and weapons are necessary to fight the monsters which roam the
areas. In the last area there will be a boss monster which has to be defeated in order to
win the game. The game will be lost when the player dies because of receiving dam-

age from monsters or losing health from starving.

2 Theoretical Background

2.1 Overview

In this section | will briefly explain the history of Unity and the development and rea-
sons for the success of the game engine. After that | will briefly discuss the features of
the Unity game engine in the focus of the 3D technology. At last | will present the new
features of the Unity 2D engine, which was released at the end of 2013.

Most of the information regarding the Unity engine | found on the official Unity web-
page, as in literature the authors usually just reference to the webpage for more and
current information. Additional source material | found on the developers’ webpages of
the tools | used.

2.2 Unity
2.2.1 History

In this chapter | will briefly tell about the history of Unity after a short explanation of
what Unity is. Unity is a cross-platform game engine and integrated development envi-
ronment (IDE) developed by Unity Technologies. The company was founded in 2004
by David Helgason, Nicholas Francis and Joachim Ante in Copenhagen, Denmark after
their first game failed to be a financial success. They noticed the value in creating tools
and an engine to create games. Additionally they wanted to make their engine afford-
able for Indie developers and any other game programming enthusiast. Their project
received funding from big investment partners and gained success because of its sup-
port for independent developers who were unable to either create their own game en-
gine or purchase one. [2]

The first release version of Unity was launched at Apple’s Worldwide Developers Con-
ference in the year 2005. At that time it was built only to function and build projects on
the Mac platform but still got enough success to continue the development of the en-
gine and tools. The next release with Unity 3 was in September 2010 and focused on
introducing more tools, which high-end game studios usually need for their projects.
This made bigger development studios interested in Unity, but smaller ones as well
because they provided a game engine with an affordable price. [2]

Unity continued developing since that day and with the introduction of the Unity version
4.3, support for 2D games started at the end of 2013. This version came with a large
amount of new features especially concentrating on the new 2D area. The latest ver-
sion 4.5, which is the latest version at the moment, was released last summer 2014.
However already this autumn Unity Technologies wants to release the next generation

with version 5.0 with a large number of new features to come. [1]

2.2.2 Features

There are a large number of features in the Unity game engine so | will only briefly ex-
plain them. The Unity editor is one of the core components of the engine. This is the
visual user interface which connects the coding with the assets and so makes it possi-
ble to easier see the result of the coding directly in the interface.

The most common views in the Unity editor are the project browser, which shows all
assets in a list, which makes it easy to keep track of all the assets in the current Unity
project. Another important view is the Inspector, in which it is possible to change prop-
erties of game objects in the scene and assets in the project. Moreover the scene view
is the sandbox to create the game in. The game view is as the name says the view
where it is possible to start the game directly in Unity and preview how it will look and
run on the target devices. The last introduced view is the hierarchy window, which
shows all game objects of the scene. [3]

Another feature for the Unity editor is that it is possible to extend it with one’s own edi-
tor tools and build them directly into the Unity editor interface. That means that it can
be extended with new functionality added to the existing views or with new customized
windows and inspectors. The new editor windows can be moved and docked like any
of the Unity’s windows. Custom inspectors make it possible to completely control how
users view and edit the custom components. This can be used for debugging purposes
or increasing productivity in the workflow. [3]

Moreover in Unity it is easy to import models, textures, audio, scripts, sprites and other
assets into the Unity project. The assets will be automatically imported when they are
saved in the project folder. In addition assets can be modified at any time and the
change can be seen immediately in the game. Additionally Unity can import 3D models,

bones and animations from almost any 3D program, for example from Maya, 3ds Max,
Modo, Cinema 4D, Cheetah3D or Blender. [4]

Unity also features the height-map to normal-map conversion, which means that any
texture can automatically be converted into a normal-map, even when the image files
are changed later. Moreover Unity supports several different mipmap generation meth-
ods like detail fade, Kaiser filters and gamma correction. Moreover multi-layer photo-
shop files are automatically compressed in Unity and Unity includes five different pre-
sets to quickly set up the textures. Furthermore it is possible to override size and com-
pression settings for each platform, so one source file is enough for all the different
platforms. [4]

Moreover Unity can import any audio format which is supported by FMOD. This en-
sures audio is consistent between all of Unity’s supported platforms. For reducing the
file size it can be internally converted into Ogg Vorbis. Another feature is the native
support for allegorithmic substances. These are hybrid assets, which can have multiple
outputs to generate complete texture sets based on the same set of parameters. With
use of the substance importer class, it improves the substance-related workflow with
asset post-processing and it gives direct access to the imported procedural material
instances. [4]

Another feature is the new project browser. With it it is possible to search and preview
assets in large projects. Additionally favorite asset searches can be saved and it is
possible to bookmark all important folders and pre-defining categories of assets. Fur-
thermore it is possible to preview free and paid content from the asset store in the
project window. The asset store is integrated in Unity where artwork, editor plugins,
scripts and many other things can be directly downloaded and installed into Unity. Ad-
ditionally Unity offers a large number of tutorials to get started with. [4]

In every Unity scene empty game objects, which are empty containers, are added. It is
possible to add components to the game objects to add functionality such as light,
physics, audio, cameras and particle effects. Their core values can be changed directly
in the inspector and for more control they can be changed with scripts. [5]

Another function is that components can easily be added to game objects with a drop-
down button, and with a copy and paste ability it is easy to move components between

the game objects. For using complex objects repeatedly, they can be turned into a pre-
fab, which can be put anywhere in the game or accessed with scripts. The advantage
is that if this original prefab is changed, all other prefab objects in the scene will be
changed as well. Other objects such as spheres, boxes, capsules and meshes can be
positioned, scaled and rotated and created directly in the Unity editor. There are many
features such as grid, surface and vertex snapping tools, which ensure that the posi-
tioning of the game objects are correct. [5]

Moreover Unity has with the “Play” mode a development tool for fast editing while play-
ing the game. In the Unity editor, if the play button is pressed, the game starts imme-
diately and gives a preview of the real game which is developed. It is also possible to
alter values while testing the prototype and see the results immediately. As well Unity
has tools for debugging every frame of the game and with the profiler showing the parts
of the game which have the biggest impact on the game performance. It reports which
areas of the game most time is spent on and it can be used to find and remove bottle-
necks which cost a large amount of performance and make the game run slowly. This
tool can be used on any development platform. [6]

For scripting Unity offers three languages to use, C#, JavaScript or Boo. Any of those
languages is supported and they run on the Open Source .NET platform Mono. How-
ever it is not possible to use scripts to call each other, so it is best to use just one of
them throughout the game project. MonoDevelop has the standard debugging features
like most IDEs. To change game objects in the game it is important to reference them
from the game scene in the Unity editor with the scripts. Then values of objects such as
scale or position can be easily accessed and changed. The referencing can be done by
name, tag and type of the object. [7]

Another important part is networking, which is integrated in Unity and features real-time
networking which can be accessed with only a few lines of code. For synchronization
between game objects values, Unity uses a delta compression algorithm or uncom-
pressed unreliable strategies. Moreover the .NET socket libraries are used for real time
networking and to open TCP/IP sockets or send UDP messages. It is also possible to
access databases with those libraries. Furthermore if the game is run in a browser, the
Unity web player communicates with the container web page and has JavaScript and
AJAX capabilities. Regarding networks Unity supports also remote procedure calls,
which is an essential networking feature. [8]

Unity supports Windows DirectX 11 graphics API, which improves performance with
computing shaders, makes it possible to use GPU as a parallel CPU and supports
shader model 5.0, which allows the use of more complex shaders. Moreover Unity
uses light pre-pass technique for its lighting, as well as linear space lighting and HDR
rendering. Additionally Unity comes with a variety of 100 shaders from simple to very
advanced ones. Unity offers also access to the GL class in Unity, which is a low-level
graphics library with which active transformation matrices can be changed and render-
ing commands can be issued similarly to OpenGL. Another graphics feature is surface
shaders which help with rendering the graphics on multiple devices and ensures it
scales correctly. Additionally Unity offers occlusion culling tailor, which reduces the
number of rendered objects. [9]

The Unity lightmapping tool bakes lights into textures, which increase the performance
and it is possible to just bake parts of the scene, which is currently in use. Moreover
dual lightmapping is used, which uses one lightmap for distant scenery and a second
for only bounce light to improve the performance. Furthermore there are many addi-
tional light effects, which can be baked into the scene as well as light probes, which
bake lighting onto moving objects. Moreover Unity supports high-quality real-time
shadows for all types of lights. [10]

Unity uses special effects such as depth of field and motion blur, which are optimized
for DirectX 11 and post-processing effects such as Edge Detection, Bloom, Vignetting,
Tonemapping and Color correction. Another special effect is Render to Texture effect,
which makes it possible to add images and dynamic camera content to any surface.
Additionally it is possible to use special effects to create reflective or refractive water
surfaces. [11]

As particle system Unity uses Shuriken, which is a curve and gradient-driven modular
particle system tool. Moreover it gives the functionality for world collision such as Bent
normals, automatic culling and external forces, which can be used for example for hur-

ricanes, fireworks, explosions etc. [11]

Another tool in Unity is able to carve, raise and lower terrains. Additionally with this tool
it is possible to set up the trees within the Unity editor and to add branches, twigs and
leaves, which can be previewed in real-time in the editor. Moreover Unity will put all

textures together into an atlas and automatically calculate ambient occlusion and wind
factors for the trees. [12]

For audio Unity uses FMOD, one of the world’s most widely used libraries and toolkits.
With this it is possible to preview the sound directly in the Unity editor and adjust it to
the needs of the developers. Additionally it offers DSP filters, which make the sound
more realistic. It has also some advanced features such as lowpass and highpass fil-
ters, distortion filters, chorus filter, echo filter and reverb filter. Moreover to make the
distribution size smaller, Unity uses the most common tracker file formats such as
MOD, IT, S3M and XM. One of these module files can contain many samples or pat-
terns, without taking a large amount of space and all filters can be used on them. If ogg
video and audio files are used, they can be streamed from the net, which reduces the
size of the web player. [13]

Another feature Unity offers is the 3D physics engine NVIDIA PhysX, which makes it
possible to simulate correctly moving hair and clothes, explosions and other physical
effects. This system makes use of rigidbodies, joints and colliders which simulate the
physics effects. It features also a ragdoll wizard with which it is possible to implement a
full ragdoll from an animated character. [14]

Moreover Unity has an integrated pathfinding system, which automatically generates a
NavMesh. Those describe the borders of any navigable space in the game and at run-
time calculate the paths for the game objects. Since Unity 4 it is possible to use also
NavMesh obstacles, which react to changing environments in runtime. [15]

For animations Unity uses Mecanim, which is a flexible animation system that makes
fluid and natural motion possible. This animation system is integrated in the Unity en-
gine, so there is no need for 3rd party tools. With this tool it is possible to produce
muscle clips, blend trees, state machines and controllers directly inside Unity. Addi-
tionally Mecanim can be used to animate many different elements such as sprites,
blend shapes or light intensity. Additionally there are two different ways to use anima-
tion clips. The first is a multilevel blend tree, which makes it possible to create a wide
variety of motions from just a few motion clips. The second is the hierarchical state
machine, which defines with conditions when each state is being executed. It is also
possible to have several different state machines as layers which makes it possible to

have more complex conditions for certain animations. Moreover in Unity there are IK

rigs which are automatically generated to adjust for example feet on the ground and
hands on a ledge. [16]

2.2.3 Unity 2D

After listing all the main features of Unity 3D | will list the new features of the 2D part of
Unity which were released at the end of 2013. With this release Unity supports the
creation of 2D games natively for the first time without the need of using 3rd party tools.
One of the new features is the automatic sprite splicing, which makes it easy to slice a
spritesheet into its single sprites. This can be done also manually, which has to be
done in certain cases. Another new feature is the 2D physics system, which uses the
same system of rigidbodies, joints and colliders as in the 3D solution but is driven by
Box2D, which is the physics engine making all the 2D physics possible. It is also possi-
ble to mix 2D and 3D physics without getting problems or using 3D models in the 2D

environment. [17]

Moreover the animation system Mecanim now supports also 2D animations and with its
state machine makes it an important tool for any moving 2D characters and objects.
Furthermore it is now possible to easily create animation clips by using several sprites
and then adjust them with the Animation editor. Additionally in the Unity editor is an
extra 2D view, which makes it easy to edit and create 2D Objects. [17]

2.3 Summary

After introducing the Unity game engine, its features and the new 2D capabilities in the
next chapter | will show the additional tools | used for my project and then the project
itself. This project has been chosen to examine the capabilities of Unity in making a 2D
game with the new introduced 2D tools it offer and to get experience with an often used
game engine, which can help work in future projects in the game industry.

3 Technology Presentation

The technologies used include the Unity game engine with MonoDevelop as integrated
development environment (IDE), 2Dtoolkit for helping with the tilemaps, in other words

creating the game map and Navmesh2D for the pathfinding of the monsters. Addition-
ally Graphics have been mainly used from RPG maker VX Ace and its downloadable
contents. Moreover for the Graphical User Interface (GUI) skin the Necromancer GUI
from the Unity asset store has been used.

3.1 2Dtoolkit

2Dtoolkit has been developed by Unikron Software, which is an independent software
developer based in Newcastle in England. They have released, until now, only this
plugin for Unity and before it has been an important tool for being able to create 2D
games with Unity 3D. Now with the new Unity 2D features it is still a good tool, which
helps with the development of 2D games and offers several features, which Unity 2D is
not capable of. The most important feature is to be able to create tilemaps. This makes
it easy to create a map without having to be afraid that the sprites were overlapping
each other. [18]

This plugin also gives the complete C# source code, so it makes it possible to tweak
the tool to the needs of the developers. Another feature is creating sprites, which can
have platform-specific size. This is practical for publishing on several platforms. The
plugin alos has an own camera tool, which can help with solving resolution and aspect
ratio problems. Additionally the plugin offers to slice, tile or clip sprites and also offers
dicing of large images, which cuts them into small pieces, helping the performance.
Moreover another feature is box and custom shape colliders which will work in the fu-
ture with the Unity 2D physics. Furthermore 2Dtoolkit offers atlasing, which rebuilds
sprite collections for better performance. [18]

Another feature is a static sprite batcher, which can merge large numbers of sprites
and colliders into one mesh. This is useful for static backgrounds. The 2Dtoolkit also
has sprite animations, which can be used with any sprite collections. Moreover this
plugin offers the use of User Interface (Ul) components. However the most important
feature for my project was the tilemap editor. With this tool it is possible to directly paint
in the Unity editor sprites, such as in a paint program. This makes it very easy to create
a map. Moreover the tiles in the tilemap can be exchanged with prefabs. [18]

10

3.2 Navmesh2D

Navmesh2D is a pathfinding plugin for Unity developed by Pigeon Coop. It is a new
game company which does not have its own homepage yet. They developed the plugin
for their own game and then released it to the Unity asset store. This plugin is a tool to
generate and navigate navmeshes for 2D projects, which works similarly to the built-in
navigation system Unity 3D uses but which cannot be used for 2D projects. [19]

4 Harvest Survive

4.1 Basic Structure

The game project took half a year to finish and it was a large amount of work to get
used to Unity. For the game | used mainly JavaScript, which | would call Unityscript,
because JavaScript has many different versions unlike C# which has a fixed library and
syntax. Even my last game project was written in JavaScript. It took me some time to
learn the new syntax used in Unity. Moreover | used mainly Unityscript for the pro-
gramming and a little bit of C# for the path finding scripts. This was necessary because
the Navmesh2D tool is written in C# and it did not have any JavaScript converter.

First I will give a short overview of the structure of the game.

SEEssssllvgqQaQaqq

Collider_spr.. mainscene PigeanCao Plugins Resaurces TKZDROOT Warld Data -tkad Collider_spr Game 1 Mainmenu

Figure 1. The structure of the “Assets” folder.

Figure 1 shows the structure of the game. The first folder “Col-
lider_sprites_collectiondata” has the sprite collection data for the collider tilemap, which
is used for the Navmesh2D and path finding. This is connected with the collider sprite
collection prefab. The next folder with the name “mainscene” saves the Navmesh data
for path finding in that folder. “PigeonCoop” folder has the code of the Navmesh2D tool.
The “plugins” folder and the “TK2Droot” are both folders for the 2DToolkit and contain
the source code. The “Ressources” folder contains all graphic files, animations and my
own game scripts which are used in the game. The “World Data” folder contains the

11

spritesheet data for the main tilemap and is connected with the world prefab. The “tk2d”
file has data about the 2Dtoolkit tilemaps used. The items with the Unity sign are Unity
scenes. One of them is the main scene “Game” which contains everything related to
the game. Additionally “Instructions” is the scene, which explains how the game is
played. Then there is “Intro”, which is the first introduction screen after starting the
game from the main menu. Additionally “Lost” and “Won” are the scenes for loosing

and winning and “Mainmenu” is the main menu scene.

Next | will show the structure of the “Resources” folder.

Assets . ﬁésnur:es 2

5 Equipment Instructio Map prefab Mans ns tilemap data Tilemapspr.. Ul Weapons

Figure 2. The structure of the “Resources” folder.

Figure 2 shows the structure of the “Resources” folder. The “Audio” folder contains all
the sounds and music which is used in the game. The next folder “Characters” has the
character sprites inside and its animations. Moreover the “Equipment” folder contains
all the animations and sprites for the equipment. The “Instructions” folder includes all
the pictures for the instructions in the game. Then the “Map prefab” folder contains map
prefabs such as collider prefabs for the tilemaps. Additionally the “Monsters” folder con-
tains all the monster sprites, prefabs and animations. The “Plants” folder includes all
the plant sprites, icons, vegetable sprites and icons. The “Scripts” folder contains all the
self-written code for the game. The next folder “Shops” has all shop sprites and the
shop prefab. Next is the “Skins” folder, which contains all GUI skins for all GUI inter-
faces such as inventory, character, equipment, status, in game options menu, intro,
won screen and lost screen. The “tilemap data” folder contains data for the tilemaps, all
the sprites which have been painted and the positions. The “Tilemap sprite collection”
folder consists of all the environment spritesheets which are used for the game. The
“UI” folder contains some Ul sprites such as the health bar for enemies and finally the
last folder “Weapons” contains all weapon sprites, animations and prefabs.

42 Map

In the game there is only one big map which is divided into six different zones. These
zones have all different terrains, monsters and shops. For creating this map | used the

12

2Dtoolkit to help with the creation of tilemaps, which is not possible with Unity 2D. For
using the tilemaps first | had to create a tilemap sprite collection and add the

spritesheets | wanted to use for the map.

Sprite Collectior |
Craate | (@

World_B/233
World_B/234
World_B/235
World_B/236
World_B/237
World_8/238
World_B/239
World_B/240
World_B/241
World_8/242
World_B/243
World_8/244
World_B/245
World_8/245
World_B/247
World_B/248
World_B/249
World_B/250
World_B/251
World_B/252
World_8/253
World_B/254
World_B/255

Sprite Sheets

I$crops_3
Dungeon_AL
Dungeon_a4
Inside_AZ
Outside_az
TileAZ
Tileaz_2
TileAS
Waorld_a1
World_A2
World_B

Figure 3. The “SpriteCollection” window.

Figure 3 shows the “SpriteCollection” window with the settings of the imported sprite
sheet. On the right side it is possible to choose the width and height of the tiles, so that
the tool can cut the spritesheets into single sprites with a fixed value. Moreover in my
game all tiles are of the size of 32 width and 32 height. This has to be the same value
in the whole tilemap. Otherwise it will not fit and there will be some problems. After
choosing the value it was important to click the commit button. Otherwise the new
sprites will not be saved in the sprite collection. After adding all the necessary sprites it

is possible to move to the editing part of the tilemaps.

13

© Inspector [avigation 20—

M [Tilemap | Clstatic «
Tag | Untagged +] Layer [Default :

x[0.33 v[0.33
%[0 ¥[o
%[z [[2

Commit

B Paint \ Calor | _Data . Settings

sg_?jr,u Collection [Warld

Tile ata WtileMapDatanen lo
c a HtileMapEditor Datanen lo

Tilemap Render Data | © [unlink |
Dimensions T
Layers. =
Info =
| Tile Properties -
Palette Properties d
~ Tiles Per Row 16 |
H || Reset

Figure 4. The “Tilemap” in the Unity editor.

Figure 4 shows the tilemap settings and that it is important to add the tile map data, the
tile map editor data and the sprite collection, which was added before. The tile map
data contains the data, position of the single tiles and prefabs and the map editor data
saves the editor preferences. [20]

#:Scene ! © Inspector

™ [Tilemap
Tag [Untagged
T

Data | settings

oring,Please ensure your prites /
sort praperly - they don' I

y
ing layer/order of the parent,

Figure 5. The Paint window of the tilemap.

Figure 5 shows the painting process of the tilemap. On the right side there are the
sprites added to the sprite collection and can be easily marked with left click and then
painted on the scene on the left side. It is also possible to delete sprites just with mark-
ing the delete function on the top left. This makes it quite easy to paint sprites to the
tilemap. Additionally it is also possible to replace a sprite with a prefab, which is very
useful for making blocked tiles such as the mountains on the scene in figure 5.

14

Figure 6. Declaring prefab in tile map.

Figure 6 shows how to declare a prefab for the saved sprite so all sprites of this type
will be replaced by the defined prefab. In this case | replace the mountain sprite with
the prefab Blocking. This prefab has a boxcollider2D, which is a physics component in
Unity and makes it possible to block other objects from moving through the box area,
which can be defined at the blocking prefab. With this the map has tiles which cannot
be walked on by the player and monsters.

On the map | use several prefabs, one for blocking player movement and monster
movement as explained above then plant fields, which are fields the player can plant
seeds and harvest crops on. The last one is the gate prefab, which is basically a block-
ing prefab, so it blocks the path of monsters and the player. However if a boss monster
is killed, the gate will open and the player can move on to another area.

15

’,l
+ | |
L

3
s

i

EI
e

.

e

Tyoow
fe

Figure 7. The Map of the game.

Figure 7 shows the ready map of the game with the easily visible six different zones.
The starting area is marked as level 1 area and is the grass area at the bottom left.
Then there is the level 2 area, a desert, which is on the bottom right. Additionally there
is the level 3 area on the left which contains forest. The next area, level 4, is the snow
area, which is on the top left. Moreover the second last area is the fire area, which is
level 5 and then there is the last area, the shadow area, which is level 6 and contains

the final boss of the game.

4.3 Player

The player is one the most important parts of the game, so | will explain in detail the
most important features such as inventory system, character system, equipment sys-
tem, movement, weapon system and attack system. At first | will explain the simple

movement for the player.

16

4.3.1 Movement and Animations

The movement is done in the “Mainchar” script, which has most functionality related to
the player. Additionally it is important to have an Animator as a component for the
player, it takes care of the change of the animations, which are simply three sprites
which change fast. Another component which is needed is an animation controller
which has to be placed into the animator that Unity knows the conditions of changing
animations. The animation controller has to be edited with the “Mecanim” of Unity
which is a state machine and it is possible to define each possible state with conditions.

Move_up | W %
Move_down |s #]
Move_left [A 4|
Maove_right | D $]
Attack_lkey | Space ™
Buy_key | B i |
Speed 150

Figure 8. The public movement variables.

Figure 8 shows the public variables for moving the player and also the key for attacking
and buying and the speed of the player.

v §& M Animator @ %
Controller e player @
Avatar Mone (Avatar) o]
Apply Root Motion -

Animate Physics -
Culling Mode | Based On Renderers

Figure 9. The Animator of the player.

Figure 9 shows the animator for the player and the controller which is also called

player.

17

Base Layer Auto Liva Link

> Base Layer
Layers

Resources/Characters/Player/player.controller

Figure 10. The Mecanim animation tool from Unity: Player movement.

Figure 10 shows the different states of the player. There are five different animations,
one for each direction and one when the player dies. Of course each of those states
has to be assigned an animation clip which contains the animation. The lines with ar-
rows show in which direction the state can change and on the lines itself there are the
conditions for changing the state. Additionally for the four directions there is the Direc-
tion variable which is an integer and has the values from zero to three. Each number is
for one of the movement states. Moreover there is a Boolean “Dead” which is true,
when the character is dead and then the dead animation will be played.

Now | will show the code in the “Mainchar” script relating to the movement and change

of the animations.

140 if (Input.GetKey(move up)){

142 last key = "up":

144 rigidbody2D.velocity.y = speed * Time.deltaTime;

146 rigidbody2D.velocity.x

148 animator.SetInteger ("Direction", 2);

149

150 if (has_weapon == true){

151 change weapon in right direction

152 Current_weapon.GetComponent (Weapons) .turn_weapon("up", transform.position.x+0. 4, transform.position. y+0.1);

Figure 11. Moving up and weapon position of the player in the “Mainchar” script.

Figure 11 shows the movement code for the player. In the first line it is checked if the
move_up button is pressed. If it is true, 1ast_key will be assigned with the movement

18

direction, which is needed for knowing which was the last key pressed by the player
and adjust the weapon in the same direction. Additionally lines 144 and 146 of the code
adjust the speed for the rigidbody, which is a physics component of the player. Of
course only the y variable will get speed, because if the player moves up it is only on
the y axis, not the x axis. Then in line 148 the animator component of the player is set
to another integer value and as shown before, this has an effect on which animation is
played in the animation controller. Additionally line 150 checks if the player has a
weapon equipped and when it is true, then it will turn the weapon in the direction of the

player movement.

4.3.2 Inventory and Equipment System

Next | will explain the inventory and item system. The inventory system basically con-
sists of an array of game objects and has an add_item and a delete_item function.

30 function add Item (item :

2 var newltems = new Array(Iltems);

3 newltems.Add(item) ;
34 Items=newltems.ToBuiltin (GameCbhject) ;

Figure 12. The add_item function of the “Inventory” script.

Figure 12 shows the short add_item function, which simply adds a game object to the
Item array. The important thing about this function is that first a new array is created
with the items of the already existing items in the inventory. Then as the next step the
new item is added to the new array and in the last line the inventory array will be recre-
ated with the new item. That means that the arrays change between a dynamically cre-
ated JavaScript array and a static array. This way makes it possible to easily change
the arrays with the JavaScript functionality and then change it back to the static array,

which is more efficient.

19

ject in newltems){

45 for(var i:GameChb

- if{i == item}{

4 item for delete=i;
newltems.Removeldt (index) ;
shouldend=true;

24 index++;
if {shouldend) {
Items = newltems.ToBuiltin (GameCbject):

Destroy(item for delete);

e b
LELULIl,

Figure 13. Part of the delete_item function of the “Inventory” script.

Figure 13 shows the delete_item function, which has been shortened to its more
important part. Basically it is done as the add_item function just finding and deleting
the item instead of adding it. The first step is to search for the item with the for loop in
the newItems array, which is a dynamical array as in the add_item function. Then if
we found the item we would use the built-in Removeat function and remove the item at
the index location. If the item is found, shouldend will be set to true and the next if
condition is executed and the Items array is again rebuilt with the new content of the
dynamic array. Then the item is destroyed and in line 59 the “inventory display” of the
player is updated, which means, that the GUI of the inventory is updated and the item
is removed from the GUI list. This is the main concept of the “Inventory” script.

Next is the “ltem” script, in which all the functionality of the items in the game is lo-
cated. The “ltem” script has several public variables, which determine the type of the
item. There are many different types of items in the game such as weapons, seeds,
food and equipment, so it is necessary to make them different.

20

¥ [Is| M Item (Script) @ #
Secript s Item @
¥ Item_content
Text Stick
Image Aright Q
Tooltip Stick can be used to attack monsters
Weapon_prefab_name Stick
Can Get)
Item Type Weapon
Stackable O
Max Stack 20
Stack 1
Is Equipment (7]
Is Weapon (%]
Is Seed O
Planting]
Is Fruit -
Can_be_sold 7]
Buy_wvalue 20
sell_wvalue 10
Plant_zone 0
Equipment_def 0
Equipment_speed 0

Figure 14. The “ltem” script in Unity for item “Stick”.

Figure 14 shows an example item which is a stick. “ltem_content” contains the name of
the image and the tooltip of the item. It is important later for the “inventory display”,
which displays the item sprite with the name and tooltip there. “Weapon_prefab_name”
is the prefab name for the weapon which will be created when the item is equipped.
Additionally “Can Get” shows if the item can be taken from the floor or not. The “ltem
Type” informs the “Equipment” script to which slot to put the item, which is important for
equipment and weapons. The “stackable” variable means if the item can be stacked
and “Max Stack” how many items of the same name can be stacked into one field in
the inventory. Moreover “Stack” shows how many stacks the item already has. The
following Booleans shows if the item is an equipment, a weapon, a seed or a fruit. The
Boolean “Planting” refers to, if the player is close enough to a field where seeds can be
planted. Next is the “Can_be_sold” Boolean which shows if the item can be sold or not.
The “Buy_value” and “Sell_value” are the gold value for selling and buying and
“Plant_zone” refers to where the plant can be planted. Moreover “Equipment_def” and
“Equipment_speed” give the bonus defense and bonus speed, which the item adds to
the player when equipped.

The most important function for the item script is the Pickup_item function, which
enables together with the “first_person_pickup” script to pick up items from the ground.
The “first_person_pickup” script basically just checks every frame of the game if the
distance to the player is smaller than the pickup distance and then if the “e” key is

21

pressed the Pickup_item function of the “ltem” script is called and the item is moved

to the player’s inventory.

51 function Pickup item (){

53 var unique = true;
54 if (=tackable == true) {
5 var located it : Item;
for(var i : GameObject in player_inventory.Iltems){
57 if (i.GetComponent (Tran=sform) .name == this.transform.name) {
var j : Item = i.GetComponent (Item);

58 if({j.stack < j.maxStack){
;ccated_;t=j;

if(located it!=null){
unigue = false;
located_it.stack+=1;

] Destroy(this.gameObject)

7 else

72 unique = true

76 1L ((unigue == true)&s& (player inventory.Items.length <€ player inventory.size)){

player inventory.add Item(this.gameOCbject);:

if (GetComponent (SpriteRenderer) != null)
34 GetComponent (SpriteRenderer) .enabled = false;

GetConponent (Item) .enabled = false;

canGet =false;
39 transform.position.x =

a0 transform.position.y

Figure 15. The Pickup_item function of the “ltem” script.

Figure 15 shows the Pickup_item function. At the beginning of the function it will be
checked if the item is stackable or not. If it is stackable it will be checked if the item is
already in the inventory, so that it can be stacked without creating a new entry in the
inventory. If it gets located, the stack variable of the item will be increased by one and
the item will be destroyed. Moreover If the item is not yet in the inventory and the in-
ventory is not yet full, it will be added to the inventory and added to the “inventory dis-
play” GUI. As well the spriteRenderer is disabled, so that it will not be displayed
anymore in the game and the “ltem” script will be disabled. Additionally the item will be

moved outside of the map.

22

Another important script related to items is the “ltem_Effect” script, which does all the
functionality of clicking items in the inventory and equipment window. Moreover it han-

dles all the item effects. It has one important function UseEf fect, shown in figure 16.

if (item.isSeed
1f{(Player.GetComponent (Mainchar).planting »0)&& item.plant zone == Player.GetComponent (Mainchar).plant area)

player inventory.GetComponent (Inventory display).play audio use ssed (;

var tile = Gamelbject.FindWithTag()i
var tile ground = tile.GetComponent (Ground);
if{tile ground.occupied==false)

ile ground.occupied=true;
var seed= this.gameCbject.GetComponent (Seed);
var instance : GameObject = Instantiate (Resources.Lload(+geed.plant name, GameCbject));
instance.transform.parent= tile.transform;
instance,transform.position,x=tile.transform.position.x;
instance.transform.position,y=tile.transform.position.y+0.32;
instance.transform. localScale. x=2;
instance.transform.localScale.y=2;
instance.CetComponent (Plants).set grownow();

if (deletelnUse == true)

DeleteloedIten();

Figure 16. First part of the UseEf fect function of the “ltem_Effect” script.

Figure 16 shows the first part of the UseEffect function. This part will test if the item
is a seed and if it is true, then it will check if the player is on the planting ground. Then it
will play the “planting sound” when the condition is true. Moreover it will check if the
planting ground is already occupied by a plant or not. If that is not the case, it will make
the ground occupied and then in line 55 an object will be created by loading a prefab
from the plants folder and it is given the position and scale and then the plant function
set_grownow is called, which activates the growing process. This will be explained in
detail later in the planting chapter. Additionally the DeleteUsedItem function deletes

the item when it is used or subtracts the stack if its stack is more than one.

23

72 if((item.isFruit == true)s&is (Player.GetComponent (Mainchar) .get shop() == false)){

73 if (Flayer.GetComponent (Mainchar) .health > Player.GetComponent (Mainchar).max health){
79 Player.GetComponent (Mainchar) .health = Player.GetComponent (Mainchar) .max_health;

82 nd ("Flayerhealth") .GetComponent (texture follow) .update player health (};
a4 r.GetComponent (Mainchar) . food+= GetComponent (Fruit) . food;

36 if (Player.GetComponent (Mainchar) .food > Flayer.GetComponent (Mainchar) .max food) {

87 Player.GetComponent (Mainchar) .food = Player.GetComponent (Mainchar) .max food:

89 if (deletelnlUse == true)

91 DeleteUsedIltem() ;

92

Figure 17. Second part of the UseEf fect function of the “ltem_Effect” script.

Figure 17 shows the second part of the UseEf fect function, but this time this part is
used for eatable items, such as the fruits the player can harvest from the plants, he
planted. Moreover it checks as well if the player is not on a shop. Then the game plays
an “eating sound”. Additionally the health and food is added from the fruit to the player
and in line 82 it adjusts the new player health as well on the player health bar. More-
over the code always checks that the food and health value cannot get over the maxi-

mum.
;; :iiéiii;;mf;;i_géiasid;;;-t;;é];;;b;;y;;.éétgogéage:t(Mai:cha:].get_shopij == true)){
;; P;;;;;.ée;éunpo:ezt[Mai:cha:].go;d += item.zell value;
?? éeé:é&ﬁaééggE;:?E:tory_diap;ay].p;ay_a:diutj:
:; p;;yer i:?E:tur?f;eééé;p;;é;t(Z:?e:tory display).Item sold = true;
103 p;ayer:i:?e:tory.GetCowpD:e:t(Z:?e:tory:diap;ay].Ltem:ao;d_cozte:t = item.item content;

player inventory.GetComponent (Inventory display).item sold value = item.s3ell value;

=N
[R

DeleteUsedItem() ;

Figure 18. Third part of the UseEffect function of the “ltem_Effect” script.

Figure 18 shows the third part of the UseEf fect function, which is about selling items.
In this case it will check if the item can be sold and the player is standing on a shop.
Then it will sell the item, the player will get the money and it will play a “selling sound”.
Additionally the text at the inventory display will change for a short duration and will

24

display what has been sold and for how much gold. In the end the item will be deleted
again.

if({item.isEquipment == true)&&(Player.GetComponent (Mainchar).get shop() == falze)}{

equipment .Equipment on(this.gameCbject);

Figure 19. Fourth part of the UseEf fect function of the “ltem_Effect” script.

Figure 19 shows the last part of the UseEffect function. This is important for all the
equipment which will be put on if clicked with the mouse and when the player is not
standing on a shop. The next topic is the equipment system, where the Equip-

ment_on function will be explained.

¥ 5| M Equipment (Script) @ %
Script & Equipment [0}
Size_equipment [}
¥ Gridcontent
Size 6
» Helmet
= Armor
» Cape
b Gloves
> Shoes
= Weapon
¥ Equiped_items
Size 0
¥ Equipment_fields
Size 6
Element 0 Helmet
Element 1 Armor
Element 2 Cape
Element 3 Gloves
Element 4 Shoes
Element 5 Weapaon

Figure 20. The “Equipment” script in Unity.

Figure 20 shows the most important parts of the public variables for this script. It shows

the equipment size is six and the names are all predefined with “Helmet”, “Armor”,
“Cape”, “Gloves”, “Shoes” and “Weapon”. These are the six different equipment places
in the equipment window. It means the player can wear those six items at the same
time and get bonuses from them. The “Gridcontent” is for the GUI window of the
equipment, “Equiped_items” are the items which are currently equipped and “Equip-
ment_fields” has fields with type names of the items which can be equipped on each

field.

25

119 function Eq:'_prr.e:t_c: (item : GameQbject) {

play audio();
for(var i=0; i<size equipment; i+){

if (Equipnent field occupied[i]==Ialsz){
if(Equipment fields[i] == item.GetComponent (Item).itenType) |

if {item.GetComponent (Item).isWeapan == true){
PlaceWNezapon(item);

var clone = Instantiate(item, item.GetComponent (Transform).position, item.GetComponent (Transform).rotation);
clone.name = item.name;

player inventory.delete Item(item);
Equipment field occupied[i] = true;

player.GetCompanent (Mainchar) .defense += item.CGetComponent (Item).equipnent def;
player.GetCompanent (Mainchar) .speed += item.GetComponent (Item).equipment speed;
Grideontent[1]= item.GetComponent (Item) . item content;

Figure 21. The Equipment_on function of the “Equipment” script.

Figure 21 shows the Equipment_on function, which handles equipping items, which
are equipment. In this function at first the “equipment sound” will be played when the
equipment is placed, then the equipment array will be searched and if it is not occupied
yet and has the same type as the empty equipment slot, the equipment will be copied
and placed in the empty slot. Additionally if the equipment is a weapon, it will call the
Place_weapon function. Next the item from the inventory will be deleted after the
copying to the equipment array and the equipment slot will be marked as occupied, so
that not two equipments of same type can be equipped at the same time. Moreover the
bonuses for defence and speed will be added to the player and in the end the new
equipment will be added to the Gridcontent array, which holds the information about

the equipment and will be displayed to the player.

) function Equipment off (item : GameObject)
{

R

play aadlo{]
for (var i=0; i<size equipment; i++)

B Ca

oot
o (=]

26

{
7 _f{ [Eq.uprre"xt fleld | ccoupled[i]==true))
3 {
160 _f(Eq.lelTE"lt f.‘LEldS[l] == item. GetCorrpo'le’lt(IterrJ :LterrTy}_:e]
161 {
162 subtracts egquipment bonil def and speed
163 player.GetComponent (Mainchar) .defense -= item.GetComponent (Item).equipment def;
164 player.GetComponent (Mainchar) .speed —= item.GetComponent (Item) .egquipment speed;
65 re s item fr SXray
166 Eq.uped J.terr.s[:l.]—
168 Eq.:u.prreqt field occupled[i] = fa E=H
70 Grldco‘itent[l] image = null;
171 Gridcontent[i].text = Equipment fields[i]:
172 Gridcontent[i] .tooltip = "";

Figure 22. The Equipment_of f function of the Equipment script.

Figure 22 shows the Equipment_off function. This does basically the opposite of the

Equipment_on function. At first it again plays the sound when unequipping the item

and then it searches for the equipped items and checks if the item is the same type.

When the equipment is found, which should be unequipped then it reduces the bo-

nuses on defence and speed. Additionally the item will be removed from the equipment

array with setting it to nul1l. Then the Equipment_field_occupied array will be set

to “not occupied” and in the end the Gridcontent will be changed to default for the

field, and with that the item has been unequipped.

173 function PlaceWeapon (item :
7 {

GameCbjeect)

182 vec.x = player.GetComponent (Transform) .position.x;
VEeC.y = player GetComponent (Transform) .position.y;

5 var instance : GameCbject = I‘]EEEﬂElaEEfﬂ’SC;ZCﬂs Load ("W
vec,player. Get,Corrpo’le‘nt (Transform) .rotation);

instance.GetComponent (Weapons) . turn_weapon (plaver.GetComponent (Mainchar) .get_last_key(),vec.x,vec.y):

ons/"+item.GetComponent (Item) .weapon_prefab name, GameCbject),

189 instance.GetComponent (Weapons) .active(),

190 instance.GetComponent (BoxCollider2D) .enabled=false;

191 weapon_in hand = instance;

192 player.GetComponent (Mainchar) .set_current weapon (inatance):

193 player.GetComponent fHEl“xC‘lar] set_has weapon (true);

199 Destroy (weapon_in hand):

200 player.GetComponent (Mainchar) .set_has weapon (false):
201 player.GetComponent (Hai’lcﬂar] set_current_weapon (null);
202 player.SendMessage ("update_attack"):

Figure 23. The PlaceWeapon and RemoveWeapon functions of the “Equipment” script.

27

Figure 23 shows the PlaceWeapon and RemoveWeapon functions. The Place-
Weapon function first gets the x and y position of the player and then creates the
weapon with the weapon prefab name of the item which has been equipped. Next the
new created weapon will be adjusted to the player’s direction with the turn_weapon
function. Additionally this object will be activated and the “BoxCollider2D” will be dis-
abled, which makes it impossible to damage any monsters without attacking them.
Then this game object will be stored in the variable weapon_in_hand so that it can be
later destroyed. Moreover in the “Mainchar” script it calls the set_current_weapon
function, which sets this weapon as the current weapon which is used for the attack
functionality. At last it tells the “Mainchar” script that the player has equipped a weapon.
In the RemoveWeapon function it just destroys the weapon object and notifies the

“Mainchar” script that the player wears no weapon anymore.

4.3.3 Character System

In the next part | will explain the character system for the player with the important code

parts in detail.

L J |J_5| [character (Script)

Script & Character
Strength 0
Vitality 0
Planting [i}
Survival]
Level 1
Exp_level [i}
Strength_factor il
Vitality_factor 5
Planting_factor 0.015
Survival_factor 10

Figure 24.First part of “Character” script in Unity.

Figure 24 shows the first part of the “Character” script in Unity and shows several pub-
lic variables. The first four variables are the character values, which show how strong
the player is in different areas. The player can put points in the different categories
when he gains a level. This happens when the player has collected enough experience
points by killing monsters. For each level up the player gains five points to distribute
between the four different areas. If the player puts points in strength he will do more
damage to monsters. If he chooses vitality, he will get more health points and will sur-
vive more monster attacks. Additionally the planting attribute will reduce the planting

28

time for growing crops. The last attribute survival gives the player a higher capacity of
food, which makes it easier for the player to survive in the game. Then the other vari-
ables in figure 24 show the current level of the player which is one at the start of the
game. Then it shows the variable “exp_level” which can be changed to increase the
exp which is needed for each level. Then the attribute factors tell how strong effect
each point in the attributes has for the player.

¥ Gridcontent

Size 4
¥ Strength
Text Strength
Image Mone (Texture) (o]
Tooltip Strength improves the damage of Weapons and ma
b Vitality
b Planting

» Survival

Figure 25. Second part of “Character” script in Unity.

Figure 25 shows the second part of the character script in Unity, which shows the
“Gridcontent” which is used for the character display window in the game and shows
the different attributes with name and tooltip. The most important function in the char-
acter script is the 1evel_up function, which checks every frame if the player’s experi-
ence is high enough to level up and gives the five stat points for each level he reached.
Moreover after reaching a level, the player will need more experience for reaching the

next one.

4.3.4 Attack System

The next part is the attack functionality for the player. When the player presses the
attack button, the player’s character will attack with its current weapon in the direction
the character shows. If the weapon hits a monster, it will get damaged based on the
strength of the character and the damage value of the weapon.

if (Input.GetKeyDown (attack key)&& (Time.time>next attack) && (has_weapon == true))
next attack = Time.time + Current weapon.GetComponent (Weapons) .speed;

play audio attack sword ():

attack ()

Figure 26. The attack function call in Update function of the “Mainchar” script.

29

Figure 26 shows where the attack function is called in the Update function of the

“Mainchar” script. This code will check if the player presses the attack key, if the attack

delay is over and if the character has an equipped weapon. Then it plays a sound and

calls the attack function.

B unction attack ()

;; StartCoroutine (animator time | 1)z

;; StartCoroutine (weapon collider time | 1)

;' StartCoroutine (stop_move player time | 1Yy:

;; if{last key = IR

-= Cd:;_:t_weapc:.Eethnpc:e:t[L:;matc:].Set?:;ggert)

Figure 27. First part of the attack function of the “Mainchar” script.

Figure 27 shows the first part of the attack function which shows the first three function

calls, which are “Coroutines”, in which it is possible to make the function wait for a time

and then continue where they left off. This is important for this kind of functionality. Af-

ter those three functions the weapon animation will be displayed depending on which

direction the player last watched. In figure 27 it is only shown for the left side, but the

code is for each direction.

47 1f(last key =)

479 Current weapon.GetConponent (Neapons) .turn weapon tranaform.position.x- tranaform.position.y);
_ / - ! ! 1

Figure 28. Second part of the attack function of the “Mainchar” script.

Figure 28 shows the second part of attack function, which shows the code how the

weapon is placed back to the normal sprite after the attack animation. Of course it is

again done for every direction.

424 function animator time (duration : float){

425 Current weapon.GetComponent (Animator) .enabled = true;
495 vield WaitForSeconds (duration)

497 Current weapon.GetComponent (Animator) .enabled = false

Figure 29. The animator_time function of the “Mainchar” script.

30

Figure 29 shows the animator_time function which enables the animator for the
duration and then disables it again, so that the animation is stopped after the attack.
The weapon_collider_time and the stop_move_player_time function have
almost the same code as this function. In the case of the weapon_collider_time func-
tion, the difference is, that the function just activates and disables the “BoxCollider2D”,
which makes it possible to hit monsters. Moreover the difference in the
stop_move_player_time function is, that it changes the stop_move variable to

true or false, which makes the character unable to move for the duration of the attack.

The next point is how the character can damage the monster. Now it is known how the
character can attack but not yet how the damage gets transferred to the monster.

21 function OnTriggerEnter2D(coll: Collider2D) {

if (coll.gamelbject.tag ==)

coll.gameObject.GetComponent (Monster) .damage monster (Damage+ (player.GetComponent (Character).strength *
player.GetComponent (Character).strength factor));

Figure 30. The onTriggerEnter2D function of the “Weapons” script.

Figure 30 shows the onTriggerEnter2D function, which checks if a “BoxCollider2D”
with a trigger enters the area of the weapon and collides. In this case it will collide only
if the object it collides with is tagged as “Enemy”, which are the monsters in the game.
So if the weapon collides with a monster, it will call the damage_monster function and

tell the function how much damage the monster receives.

109 function damage monster (Damage @ int) {
110 var timerl = Time.time - start_time;

1 1f (timerl>1l){
Flayer.GetComponent (Mainchar) .play audio sword hit ()
got_damaged = true:
damage amount = Damage;
health -= Damage;
start time = Time.time;

Figure 31. The damage_monster function of the “Monster” script.

31

Figure 31 shows the damage_monster function, which has at first a timer to make

sure the monster is not hit in each frame from the weapon. Then the hit sound is played

and got_damaged is set to true, which then displays the damage_amount on the GUI

in the game. Additionally the health of the monster is reduced by the damage sent by

the function call.

Next | will explain how the character can be damaged by monsters.

the monster touches the character, or in more detail, when the
lider2D” collides with the character’s “BoxCollider2D”.

unction OnCollisionEnter2D(coll: Collision2D)

369 if (coll.gameChject.tag ==)

This happens when
monster's “BoxCol-

Figure 32. The OnCollisionEnter2D function of the “Mainchar” script.

Figure 32 shows the OnCollisionEnter2D function, which is called when a game

object collides with the character and it is tagged as “Enemy”. Then the damaged func-

tion is called in the “Mainchar” script with the damage of the monster.

377 function damaged (dam : int){

378 var timerl = Time.time - start_time;
379 if (cimerl>3) {

play monster attack ():

damage_amount = dam - defense;

if (damage_amount <= 0){
damage_amount =0;

389 play no_damage () ;

391 elsed

393 play player damaged():;

395 if (health < * max_health]) {

396 play player almost_dead ();

399 health -= damage amount;
400 if(health <=0}

401 health =

403 start_time = Time.time;

Figure 33. The damaged function of the “Mainchar” script.

32

Figure 33 shows the damaged function in the “Mainchar” script, which is called when
the character collides with the monster. At first it makes sure the player has not been
hit yet for a certain amount of time. Then if the condition is fulfilled, the monster attack
sound will be played and the got_damaged variable will be set to true to show the
damage on the GUI with the damage of damage_amount. Additionally if the damage is
zero it will play another sound than when the player is hit with damage. Next the health
of the player will be reduced by the damage of the monster, which is reduced by the
defense of the player, which can be obtained by equipping armor and other items.
Moreover if the player’s health is less than 20 percent of the maximum health, then the
function play_player_almost_dead will be called, which plays a warning sound. If
the health of the player is zero, it will be checked in the update function of the “Main-
char” script and then will change the game to the “Lost” screen. This is shown in figure
34.

298 1if | (health<=0)} &£& (end game == false))
2 animator.S5etBool { , Erue) ;
3 end game = true;

StartCoroutine (dead ()}) :

Figure 34. Health check in the Update function of the “Mainchar” script.

Figure 34 shows the code which checks each frame if the character’s health is equal to
zero or less. Then it sets the animator to the death animation and sets the end_game
variable to true, which makes sure that this condtion is not entered again. Then the
character’s death sound is played and the “Coroutine” dead is started. This “Coroutine”
just waits for the animation to play and then changes the game scene to the “Lost”

screen.

These were the most important aspects of the character with movement, inventory and
item system, equipment system, character system, attack functionality, damage func-
tions and player death check. The following section 4.4 is about planting, plants and

fruits.

33

4.4 Planting

In this section all relevant functions and functionality of planting, plants and fruits will be
explained. The planting works in the following way. The player has to move on the field
where it is possible to plant and then clicks the left mouse button on the seed to plant it.
After some time the plant will grow, and when it is ready, it will be possible for the
player to harvest it with the press of a button, which is the “e” key.

15 function CnTriggerEnter2D(other: Collider2D)

if (other.gameCbject.tag ==)

other.gameCbject.GetComponent (Mainchar) .plant_area = zone;

other.gameCbject.GetComponent (Mainchar) .planting +=1;

25 function OnTriggerExit2D (other: Collider2D)

if (other.gameCbject.tag ==)

other.gameCbject.GetComponent (Mainchar) .planting -= 1;
gameCbject.tag=

Figure 35. The onTriggerEnter2D function of the “Ground” script.

Figure 35 shows the code in the “Ground” script, which is attached to the tiles which
plants can be planted on. The onTriggerEnter2D function is called when a “rigid-
body” enters the area of the field. In this case with the condition only the game object
tagged with the String player has an effect on the ground field. Moreover when the
player enters the area of the field, it will add one to the planting variable in the
“Mainchar” script, which notifies it that the player is on the growable field. Additionally
the code changes the plant_area variable into the zone in which the field is. This
notifies the “Mainchar” script which plants can be planted on the field. The last line tags
the field with the String “on”, which marks the field which the plant should be planted
on. The other function onTriggerExit2D is the opposite of the function before. It is
called when the player leaves the area of the field and then the planting variable in

the “Mainchar” script is subtracted by one and the tag on the field is removed.

Next when the player clicks with the left mouse button on the seed in the inventory Ul,
it will call the UseEffect function. Most parts of this function were explained before in
section 4.3.2, however the set_grownow function and how the plants are growing

were not explained yet and will be explained next.

34

33 function Update () {
if(grow_now == true){
if (improved grow == true){
grow_time = grow time - Mathf.Round(player.GetComponent (Character).planting factor *
player.GetComponent (Character) .planting * grow_time);
improved grow = false;

grow().:

if (Input.GetKeyDown (ButtonToPress)&é (grow ready==2)&& (transform.parent.tag=— DR
create fruit();

Figure 36. The Update function of the “Plants” script.

Figure 36 shows the Update function of the “Plants” script. This function is called
every frame of the game and checks if the grow_now variable is true, which becomes
true when the set_grownow function is called, as mentioned in section 4.3.2. The
improved_grow condition will change the growing time of the plant, if the player has
improved his planting attribute, which he can do when he levels up. Then the grow

function is called, which can be seen in figure 37.

453 function grow(){
49 var timerl = Time.time - start_time;

if((cimerl>grow_time/2) && (grow_ready==0)){

GetComponent (SpriteRenderer) .sprite = spritel;

grow_ready+=1;
if((timerl>grow time) && (grow_ready==1)){

GetComponent (SpriteRenderer) .sprite = sprited;
grow_ready+=1;

if (grow ready ==2){
grow now =false;

Figure 37. The grow function of the “Plants” script.

Figure 37 shows the grow function of the “Plants” script, which makes the plant grow.
At first a timer is needed to make the plant grow in a certain amount of seconds. The
first condition checks if half of the growing time of the plant is reached. When it is still in
the first phase, it will change the plants sprite to the second sprite and the
grow_ready variable is incremented, which tells in which growing phase the plants
are. Additionally that makes sure that the growing proceeds step by step without jump-
ing over one of the growing phases. Furthermore the second condition is almost the
same as the condition before, just that it will replace the sprite of the plant with the third

35

sprite when the whole growing time is over and if the first phase had been completed.
In the end, the last condition makes sure that the plant is not growing again after it has

already grown.

Then back at the Update function in figure 36, the create_fruit function is called
when the player is on the field with the ready grown plant and the “e” key is pressed on

the keyboard.

71 function create fruit () {

73 var instance @ GameCbject = Instantiate (Resources.Load| +fruit_name, GameChbject)):
ce.transform.position.x=transform.position.x;
instance.transform.position. y=transform.position.y-
ce.transform.localScale.x =
.transform.localScale.y =
.name = fruit name;

grow_ready =0;
Destroy (gameCbject):

Figure 38. The create_fruit function of the “Plants” script.

Figure 38 shows the create_fruit function of the “Plants” script with which the fruit
of the plant is created. At first it creates a clone of the fruit prefab with the fruit name of
the plant and then adjusts the location and scale of the new created object. When eve-
rything is done the plant will be destroyed and only the fruit is on the ground where the
plant was before. These are the basics of the planting mechanics. Monsters will be

discussed in section 4.5.

4.5 Monsters
4.5.1 Basics

In this section | will explain the most important functionalities of the monsters in the
game. There are three different types of enemies: hunters, plant eaters and bosses.
The hunters are only interested in the player and try to kill him. Additionally the plant
eaters are focusing on eating plants and have no interest in the player himself. The
bosses are bigger and stronger and usually protect the gate to another area and only
try to kill the player if he attracts their attention. At first | will show the animations with
the Unity built-in Mecanim tool.

36

Figure 39. The Mecanim animation tool from Unity: Monster movement.

Figure 39 shows the animations for the monsters. Each monster has four different an-

imations in each direction, which can change between each other. So it is almost the

same as for the player movement, which has been shown in section 4.3.1.

g6 function Update () {

o8
9

99
100
101
102
103

104 }

if (health <=0)

health
Player.GetConponent (Mainchar) .gold += gold;
give =xXp

Player.GetConponent (Mainchar) .exp += exXp;

to player

checks 1f monster 1s 3 boss then changes back music to normal
if | (gameCbject . name.Contains ("b == true)&& (once_change music == false)){
GameCbject.Find ("Game") .GetComponent (Music) .play music (GameCbject.Find ("Game"
GetComponent (Music) .current _music);
once_change mmsic = true;
open gate agsin whick closed in the boss fight
if{ (gameCbiject .name == } && (GameCbject .Find ("Plant boss") == null)){
GameCbhject.Find ("Gatez2") .GetComponent (BoxCollider2D) .enabled = false;
GameCbject.Find ("Gate2") .GetComponent (MeshRenderer) .enabled = false;
if{ (gameCbhject . .name == "Plant boss")&& (GameCbject.Find ("Eve boszs") == null)){
Gamelkbject .Find ("Gatel") .GecComponent (BoxCollider2D) .enabled = false;
GameCbject .Find ("Gatel") .GecComponent (MeshRenderer) .enabled = false;
if (gameCbject.name == "Gargoyle boss"){
GameCbhject.Find ("Gatez2") .GetComponent (BoxCollider2D) .enabled = false;
GameCkbject.Find ("Gate2") .GetConponent (MeshRenderer) .enabled = false;
if (gameCbject.name == "Dragon bozz") {
GameCbject.Find ("Gateld") .GetComponent (BoxCollider2D) .enabled = false;
GameCkbject.Find ("Gatel3") .GetConponent (MeshRenderer) .enabled = false;
if (gameCbject.name == "Shadow bozz") {
GameCkbject.Find ("Gated4") .GetComponent (BoxCollider2D) .enabled = false;
GameCkbject.Find ted") | GetComponent (MeshRenderer) .enabled = false;
play monster dead sound and destrovs cbjsct after plaving sound

Player.GecComponent (Mainchar) .play_monster_dead (monster_dead):;
De=stroy (gamelbject):

Figure 40. The update function of the “Monsters” script.

37

Figure 40 shows the Update function of the “Monsters” script, which is the essential
part of the script. In the first part of the code it is checked, if the monster’s health is less
than or equal to zero. If the condition is fulfilled then the health is set to zero and the
gold variable and the exp variable in the “Mainchar” script are changed and increased
by the monster’s value. Moreover the next part of the code is about changing the music
back to normal if the monster is a boss and is dead. So the condition is that if the mon-
ster’s name contains the String “boss” and the Boolean once_change_music is false,
then the code will find the game object with string “Game” and will call the
play_music function from this object with the variable which should be played. Addi-
tionally it will change the Boolean variable to true so that the music will be changed
only once. The next five conditions are opening the gate again, which has been closed
at the boss fight. For this the condition checks the name of the boss to be sure which
gate has to be reopened. The last part of the code calls the play_monster_dead
function from the “Mainchar” script, which plays a sound when the monster dies and
then destroys the monster.

4.5.2 Path Finding

Another important part of the monsters is the path-finding system, which is done with
Navmesh2D. This tool is used combined with 2Dtoolkit to mark the areas which can be
walked on and which are blocked for the monsters. So basically | create two tilemaps
on each other, one of which is the visible map and the other one is for the navigation of

the monsters.

[0
3

Figure 41. Second tilemap for path-finding.

38

Figure 41 shows the second tilemap, which contains red for a blocked area, which
cannot be walked on and a grey area, which can be walked on. Each of the red objects
have the layer “Blocked” and each of the grey objects the layer “Walkable”. This is im-
portant for the next step with Navmesh2D.

NAVMESH 2D

Layer settings

Walkable Layer Obstruction Layer
Nothing
Default
TransparentFX
Ignore Raycast

3
E0000000000
ngoaHE:E
UEODODO0D00

Current NavMesh2D Praperties

Figure 42. Navmesh2D options in Unity.

Figure 42 shows the Navmesh2D options in the Unity editor. The first part shows the
layer settings, which shows all the Unity default layers and all manually added layers.
Then it is necessary to mark the layer which can be walked on and the layer which is
blocked. In this case it is “Walkable” for the “Walkable” layer and “Blocked” for the “Ob-
struction” layer. Moreover “Generation Settings” are used to make the “navmesh” more
precise for the developer’s needs. The “Circle Subdivision Factor” is the multiplier for
subdividing circle colliders and the higher the value the less is the subdivision. Addi-
tionally the “Float Precision” defines how many decimal places the float operations are
calculated with. It needs to be the higher the smaller the colliders are, to make sure the
“navmesh” will be created correctly. Moreover the “Obstruction Padding” defines how
big the padding is around the colliders. In this case it is zero to be exactly as big as the
colliders are. Next is the “Join Type” which defines how the collider edges are. There
are miter, square and round to choose from but in this game the square type is used for
better performance. “Bake Grid” enables to bake the navmesh, which means it is saved

39

in a data file which then does not need to be calculated again and the grid size is the
size of the tiles in the map. With the current navmash2D properties is a short summary
for the used options and in the end it is necessary to click the bake button to start bak-
ing the navmesh. This process can take a long time, if the map has a big area, as in

this project where it takes arround 30 minutes to finish baking.

T T Ty S SR s
Bl

Figure 43. Navmesh2D in map.

Figure 43 shows the ready baked “navmesh” in the map, in which the marked area is
the area in which the monsters can move and the mountains is the area where mon-
sters cannot walk on. This limits monsters from entering another area, which would be
a problem for the balance of the game. Above | explained how to create the navigation
path. Next | will explain how the path-finding works with the scripts.

PathFollower

z|

one (Transform)

ninn.ﬂ'ﬂul—-

+ Endfight o

S S

Figure 44. The “Path Follower” script in Unity editor.

40

Figure 44 shows the “Path Follower” script in the Unity editor with the attributes. The
“Pathing Target” is the goal of the monster to move to, which is the most essential part
of the variables. The default value is none because not all monsters have a target from
the start of the game. Additionally the speed value defines how fast the monster moves
and the “Max_distance” value is the maximal distance between the target and the
monster until the monster still follows the target. The next two attributes are Boolean
values which define if the monster attacks the player or plants. Moreover the random x
and y values specify the area in which the monster moves randomly. The following

script is in C# code.

41 public wvoid Start(){
42 if (attack player == true){
Chject.FindWithTag(} GetComponent<Transforme>() ;

43 pathingTarget = Game

45 if (max distance == 0){
45 max distance =

Figure 45. The start function of the “Path Follower” script.

Figure 45 shows the start function of the “Path Follower” script. In this script it checks
if the monster attacks the player or not. If the condition is fulfilled then the target for the
monster will be the player. Then the next lines of code are defining the maximal dis-
tance between the monster and the target, if it has not been set yet.

void Update () {
if (attack plants == ue) {
plants = Game(Cl t.FindGameCkbjectsWithTag | Vi
if (plants.Length!=0) {
for{int i=0; i<plants.Length; i++ }{
float distance = VectorZ.Distance (plants[i].GetComponent<Transform>() .position,
transform.position) ;
if (closest_distance > distance){
clogest_distance = distance;
position_in list = i;
pathingTarget = plants[position in list].GetComponent<Transform>():

clozest_distance=
Figure 46. First part of the Update function of the “Path Follower” script.

Figure 46 shows the first part of the Update function of the “Path Follower” script. In
this part it shows the functionality of the monsters which attack plants and not the
player. So in the first line of code it checks if the monster attacks plants and if that is

41

true, it will find all game objects in the game tagged “Plant” and saves them into the
plants array. Additionally if one or more plants have been found, it will calculate all
distances between the monster and all found plants and then when the closest plant is
found, it will set this plant object as a target.

39 function OnTriggerEnter2D(other: Collider2D){
a0 if ((other.gameCbject.tag == "Enemy")&E (other.gamelbject.GetComponent (Monster) .attack plants==true)) {

32 other.ganeObject.GetComponent (Monster) .play monster eat plant();
a4 transform.parent.GetComponent (Ground) . occupied = false;

96 Destroy (gameCbject):

Figure 47. The OnTriggerEnter2D function of the “Plants” script.

Figure 47 shows the onTriggerEnter2D function, which is called when a game ob-
ject tagged as “Enemy” and if the Boolean of the “Monster” script attack_plants is
true. So when monsters which have plants as targets collide with the plant, a “monster
eating sound” will be played in the “Monster” script. The ground where the plant is
growing will be set again to unoccupied so that new plants can be planted on this field
again. In the end the plant will be destroyed.

9 float distance = Vectord.Distance (pathingTarget.position, transform.position);
if (max distance > distance){

if (gamefbject.name.Contains ("boss")== true) {
a4 gameCbject.RddComponent<Boss> () ;
gamelbject.GetComponent<Boss> () .boss music = boss music;
gameCbject.GetConponent<Boss> () .speed =1;
gamelbject.GetComponent<Boss> () .max distance = 50;
gameCbject.GetConponent<Boss> () .gate = GameCbject.Find ("Gatei");
89 gameCbject.GetConponent<PathFollower®> ()} .enabled = false;

91 if (once path == false) {

93 once _path = true;
94 StartCoroutine(path delay ()):

Figure 48. Second part of the Update function of the “Path Follower” script.

Figure 48 shows the second part of the Update function of the “Path Follower” script.

This part of the script shows what happens when the monster has a target. If this is

42

fulfilled, then the distance between the monster and the target will be calculated and
then another condition will check if the distance is in the maximal distance of the mon-
ster. When this is true there will be another condition check. If the name of the monster
contains boss, which means it is the final boss monster and so it gets the script boss to
the game object and defines the boss music, speed maximal distance, and defines the
gate, which will be closed and disables the “Path Follower” script. If the monster is not
the final boss monster, then it will check the once_path Boolean, which defines if the
monster is already following a path, because there can be only one path at a time the
monster follows. Moreover if the monster does not have a path yet, then it will get a
calculated path over the Navmesh2D function Get SmoothedPath, which gets as val-
ues the monster and the target’s position. Additionally the once_path variable will be
set to true and then the “Coroutine” path_delay will be called, which sets the
once_path variable again to false after a short time. This is done because otherwise if
the player moves, the monster will walk the whole way where the player was standing
before. In this case the monster would never catch the player. So this code always cal-
culates a new path for the monster in a short time gap to make the monsters react to
the movement of the player.

elsef

if (once path == falze}{
Vector3 random position = new Vector3 (Random.Range (transform.position.x+random x min,
transform.position.x+random X max),
Random.Range (transform.position. y+random v min,
transform.position. y+random y max),0};
path = NavMesh2D.GetSmoothedPath (transform.position, random position);
once path = true;

Figure 49. Third part of the Update function of the “Path Follower” script.

Figure 49 shows the third part of the Update function of the “Path Follower” script. This
part is activated when the target is not in range of the monster and if the monster has
no path yet. Additionally it calculates a random position for the monster to walk to. Fur-

thermore if the monster has no target, it will move randomly as shown in the code.

43

if (path '= null && path.Count !'= 0){
transform.position = Vector2.MoveTowards (transform.position, path[0], speed*Ti

if (transform.position.y < path[0].v){
GetComponent<Animator> () . SetInteger | . 22

if (transform.position.y > path[0].v){
GetComponent<Animator> () . SetInteger | ’ ¥

if (transform.position.x > path[0] .x){
GetComponent<Animator> () .5etInteger| . Y

if (transform.position.x < path[0] .x){
GetComponent<Animator> () .5etInteger| . Y

if (Vector2.Distance (transform.position,path[0]) <)

path.Removelt (0);

Figure 50. Last part of the Update function of the “Path Follower” script.

Figure 50 shows the last part of the Update function of the “Path Follower” script. This
part contains the movement and animation changes. At first it checks if the monster
has a path and the path has at least one node. Next it changes the position of the
monster and lets it move towards the next node of the path with the speed multiplied
with deltaTime, which moves depending on time not frames. Moreover the next four
conditions are changing the monsters animation depending on the direction it moves.
The last if condition checks if the distance from the monster to the node of the path is
smaller than 0.01 “Float” and then removes this node of the path. The “else” statement
in the end changes the once_path variable to false, if the end of the path is reached

or no path is assigned to the monster.

Another script which is important for boss monsters is the “Boss” script. This script is
almost same as the “Path Follower” script but it changes the maximal distance of the
boss monster when the player once comes too close to it and then the boss monster
follows until it or the player dies.

49 if (max distance > distance)({

if (once == false){
play boss_music ()’
2 once = true;
4 GameCbiject.Find (gate.name) . GetComponent<BoxCollider2D> () .enabled = true;
GameCbject.Find (gate.name) . GetComponent<MeshRenderer> () .enabled = true;

max_distance =

Figure 51. Changes from “Path follower” script in the “Boss” script.

44

Figure 51 shows the changes in the “Boss” script from the “Path follower” script. The
changes are that if the player is in the range of the boss monster, it starts the boss mu-
sic once. Moreover it activates the gate defined in the Unity editor, which makes sure
that the player cannot leave this zone before defeating the boss. Additionally it changes
the maximal distance to 50 which is the whole area, so the player has to defeat the
monster. If the player kills the monster the old gate will reopen, which can be seen in
figure 40 and a new gate will open to the next area, which is shown next in the “Gate”
script.

unction Update ()
12 if((GameCbject.Find (boss.name) == null) &&(once == false)) {
3 GetComponent (BoxCollider2D) .enabled = false;
GetComponent (MeshRenderer) .enabled = false

once = TIrue;

[T,

Figure 52. The Update function of the “Gate” script.

Figure 52 shows the Update function of the “Gate” script. The gate object is related to
one boss in the boss variable. So if the boss is equal to null, which means it is dead,
the “Boxcollider2D” of the gate and the “MeshRenderer”, which draws the gate graph-

ics, are disabled. This results in an open path for the player to walk through to the next
area.

4.5.3 Health Bar System

Another important script is the “texture follower” script, which is necessary for the
health bar showing up over the monsters and the player.

v B ¥ GUuITenture) #.
Texture BHealthbar_full @
Color I
Pixel Inset ¥ |-30 75

W a0 H 10
Left Border o
Right Border 4]
Top Border 8]
Bottormn Border o

¥ [Is| M Texture_follow (Script) £,
Script ks texture_follow o]
Target Gargoyle boss @

Figure 53. Health bar of monster in Unity editor.

45

Figure 53 shows the health bar object in the Unity editor. The “GUITexture” has the
graphic “Healthbar_full” as texture, which is just a red rectangle. The “Color” attribute is
red and the “Pixel Inset” defines the position with x and y and the width and height of
the rectangle. The four border attributes define the pixels which are not affected by the
scale. Additionally the “Texture_follow” script has the “Target” variable which is the
target, the texture is following.

unction Update () {
wantedPos = Camera.main.WorldToViewportPolint (target.GetComponent (Transform) .position) ;!

33 transform.position = wantedPos;

I:_igUre 54. The Update function of the “Texture_follow” script.

Figure 54 shows the Update function of the “Texture_follow” script. In this function the
variable wantedPos is assigned with the translated position of the target. This has to
be done because Unity uses three different coordinate systems, which are world point
system, screen point system and view-port system. So it is sometimes necessary to
change the location to a different coordinate system. In the end the health bar position
is put to the position of the monster.

if (monster == true){
if((target.GetComponent (Monster).got_damaged == true)){
GetComponent (GUITexture) .guiTexture.pixelInset.width =
target.GetComponent (Monster) .health/target.GetComponent (Monster) .max_health * original_width;
else{
if (varget.GetComponent (Mainchar) .got damaged == true){
GetComponent (GUITexture) .guiTexture.pixellnset.width =

target.GetComponent (Mainchar) .health/target.GetConponent (Mainchar) .max health * original width;

Figure 55. Part of the onGUT function of the “Texture_follow” script.

Figure 55 shows the important part of the onGUTI function of the “Texture_follow” script.
This code checks at the beginning if this script is a component of a monster or of the
player. Then if it is a monster and the variable got_damaged in the Monster script is
true, then the width of the GUI texture is changed to the percent, which is calculated by
the current health divided by the maximum health of the monster. Moreover if it is not a
monster but the player, then it is done the same way. If the “Mainchar” script tells the
player got damaged and then the health bar is adjusted.

46

4.5.4 Spawner

The last part of the monster section is about the monster spawner. This game object
with the “Spawn_monster” script spawns the defined types of monsters and number.
Each area in the game has one monster spawner, which makes sure that there are
always the same number of monsters in the same area and creates the different kind of

monsters of the area randomly.

¥ @I [M spawn_monster (Script) ﬁ i,
Script s Spawn_manster o]
Mumber 10
Delay 1

¥ Monsters

Size

Element 0

Element 1

Random_y_max

Random_x_min

Random_y_min

Spawn_active

Tilemap = Tilemap (tk2dTileMap) (o]

2
Bat
Rat
Random_x_max 40
|25
1
1
i)

Figure 56. The “Spawn_monster” script in the Unity editor.

Figure 56 shows the variables of the “Spawn_monster” script. The “Number” variable
refers to the number of monsters which should be spawned and the “Delay” variable is
the delay in seconds between creating the monsters. Moreover the “Monsters” array is
adjusted to size two with two different monsters in this case it is the “Bat” and the “Rat”,
which are in the starting area. The next four values are for the random position genera-
tor, which define the minimum and maximum, where the monsters can spawn. Addi-
tionally the “Spawn_active” variable activates to spawn the monsters and if it is dis-
abled, then deletes all monsters from this spawner.

2 unction Update ()
if (count < number) {
spawn [(count);
3 if (spawn_active == true) {
34 for(var i=0; i< Monster list.length; i++){
if (Mon=ster list[i]=—null} {

35 spawn (i)

Figure 57. The Update function of the “Spawn_monster” script.

47

Figure 57 shows the Update function of the “Spawn_monster” script. In this code the
first condition checks if the number is not reached yet and then spawns monsters if the
maximal number of monsters has not been reached yet. The second part of the code
checks first with the condition if the spawner is active and if this is fulfilled, then the for
loop is executed. This checks if one element of the monster list is equal to null, which
means the monster is dead. Additionally when this is the case, then a new monster will
be spawned at the place in the array where the monster died.

43 function spawn (array pos : int)

44 var timerl = Time.time - =start_time;
45 if (timerl > delav){

b

=

4 var random : in onsters.Length) ;

random x min, random X max);

43 ar random loat = Random.BRange (random v min, random vy max);
ar vec ! Vector3; o o
vec.Xx = random X
2 vec = random
VEC.Z =
var tile id : int = tilemap.GetTileldAtPosition (wvec,l):
if(tile_id == -1} {
7 var new monster ! GameCbject = Instantiate (Monsters[random]):
new_monster.transform.pogition.® = random X!
5g new _monster.transform.position.y = random y;
Monster list[array pos]= new mOnster:
count++;
2 start_time = Time.time;

Figure 58. The Spawn function of the “Spawn_monster” script.

Figure 58 shows the spawn function of the “Spawn_monster” script. In this function at
first the timer is initialized and then in the condition is checked if the “timer1” variable is
bigger than the “delay” variable. Then a random number between zero and the size of
the monsters array is created, which defines the type of monster for example rat or bat
as seen in figure 56. Additionally a random x and y value are created and then it is
checked if the random position is inside the tilemap and that it is not on any tile with a
top layer tile, which means a blocked tile. If this is the case, a new monster is created
with the monster prefab and the random x and y positions. Moreover the new created
monster is inserted into the Monster array at the position defined at the call of the func-
tion. Furthermore the count variable is incremented by one and the start_time is

adjusted to the current time.

48

At any time of the game there is only one spawner active at the same time. This is
done because of performance reasons. So in the map there is a trigger at each gate to
another zone, which changes the spawning of the monsters. This is done with the
“Spawn_activate” script, which is explained next.

L4 |]ﬂ [Spawn_activate (Script)

Script s Spawn_activate
Old_spawner |Spawner [vi1
Mew_spawner |Spawner lv|2
Boss_name Eyve boss

Figure 59. The “Spawn_activate” script in the Unity editor.

Figure 59 shows the public variables of the “Spawn_activate” script. It has the
“Old_spawner” variable, which is the spawner from the old area and the
“New_spawner” variable, which is the spawner from the new area. Additionally it has
the “Boss_name” as variable which is the boss, and which is between those two areas.
In the Update function of the “Spawn_activate” script it is ensured that this spawn acti-

vator is only active when the boss is already dead.

17 function CnTriggerEnter2D(coll: Collider2D)

19 if ((coll.gameCbject.tag ==) && (once == true))

2 t.Find(0ld spawner.name).GetComponent (Spawn monster).enabled == true)

22 ind(old spawner.name) .GetComponent (Spawn monster).delete();

2 .Find (new_spawner.name) .GetComponent (Spawn_monster).enabled = true;

24 .Find (new_spawner.name) .GetComponent (Spawn_monster).spawn_active = true;

2 else if (GameCbject.Find(new spawner.name).GetComponent (Spawn monster).enabled == true){
27 GameQbject.Find (new spawner.name) .GetComponent (Spawn monster) .delete();

2 Game .Find (old spawner.name) .GetComponent (Spawn_monster).enabled = true;

29 Game .Find(old spawner.name) .GetComponent (Spawn Monster).spawn active = true;

Figure 60. The onTriggerEnter2D function of the “Spawn_activate” script.

Figure 60 shows the OnTriggerEnter2D function in the “Spawn_activate” script,
which is called when the player is in the area between the two zones and the boss is
already dead. Then it checks which of the spawners is active, the old one or the new
one. Next it calls the delete function, which deletes the monster list from the
“Spawn_monster” script of the active spawner and then activates the other spawner
which was not active before. This is a toggle function, so every time the player goes
from one zone to another, it changes the active spawner and there will be only mon-

49

sters in the same area as the player. The only exception is of course the bosses which

are not spawning.

4.6 Audio

This section shows how the sound files and music files are implemented in the game.
The music and sound files are all in the OGG compressed format, which ensures the
file size is not too big. For playing sounds and music in Unity it is necessary to have an
“Audio Source” component at the game object which should play the audio file.

v =] M Audio Source ﬁ *,

Audio Clip w Zonel]
| This is a 2D Sound. |

Mute]
Bypass Effects -
Bypass Listener Effects -
Bypass Reverb Zones -
Play On Awake 7]
Loop ()
Priarity 128
Volume - 052
Pitch ak

Figure 61. “Audio Source” in the Unity editor.

Figure 61 shows the “Audio Source” component of the “Game” game object. The “Au-
dio Clip” is the audio file, which can be started to play in a script or directly with the
component if the “Play On Awake” variable is true. Moreover it can be chosen that this
audio file will loop endlessy with the variable “Loop”. Here it is also possible to define
the volume and the pitch of the sound. In this case this “Audio Source” will start to play

the “Zone1” music when the game is started.

public var current music AudioClip:

5 function play music (new music AndioClip)
var new_source @ AudiocSource = GetComponent (AudiocSource);
GetComponent (AudioSource) .clip = new _music:

3 current music = new music:

9 new_source.loop = true;

1 new_source.Flay():

Figure 62. The P1ay_music function of the “Music” script.

Figure 62 shows the Play_music function in the “Music” script. This function is called

for changing the music of the “Audio Source” of the game object, for example the

50

“Game” object, which plays the background music. With this script the music can easily
be changed to another music file. In the code the audio clip of the “Audio Source” is
changed to the new music and so replaces the current music with the new one. Then it
makes the sound file loop and the play function starts to play the music file from the
“Audio Source”. Next will be shown how the game music is changed for the different

zones.

function OnTriggerEnter2D{coll: Collider2D) {

if {(coll.gameCbject.tag == }
2 if { (GameCkbject.Find |) .GetComponent (Music) .current music != new music)&é
GameCbhject.Find {) -GetComponent (Music) .current music != boss music))
- GameCbject.Find () .GetComponent (Music) .play music (new_music):

Figure 63. The onTriggerEnter2D function of the “Music_change” script.

Figure 63 shows the OnTriggerEnter2D function in the “Music_change” script. The
music change script is connected with an area located between two zones. So if the
player steps into the area, it will call this function. At first the code checks if the music
which is playing at the moment is not the same as the new music and that it is not the
boss music. The boss music always plays when the player fights a boss monster. If
those two conditions are met, then the new music will be played. User Interface will be
explained in section 4.7.

4.7 User Interface

In the game there are a large number of windows. There is the character window which
shows information about the attributes of the character, then the equipment window
which shows the worn equipment and weapon. Moreover another window is the status
window which shows the players health, food, gold and experience. Additionally there
is the inventory window which shows the carried items, the player has with him. Fur-
thermore another window is the sound and music button window and the in-game
menu window and at last the shop window. All those windows will be shown and how

they are done in the game.

Gridcontent [T] .
Gridcontent[1l].
Gridcontentc[2] .]
Gridcontent[3].text = "Survival

90 function OnGUI () {

92 wvar rx float Screen.width / nativeWidth;
93 var ry : float = Screen.height / nativeHeight:
94 GUIl .matrix = Matrix4x4.TR5 (Vector3(o, ©, 0},
95 Vector3 (rx, rvy, 1l)):

95 GUI.=skin = skin:

37 if (character open == true){

n

[a]
0]

104 if Grid button is

if { (selGridInt ==
strength +=1:

0) && (level up points>0)){

107 level up points —=L;
player.SendMessage ("update
strength updated = true;
110 3elGridInt = -1;

else

1172 =
3

if
vitality +=1;

114 level up points —=1;

115 vitality updated = true;

116 player.SendMessage ("update vitalitv"):
117 selGridInt = -1;

1 2lze if ((2elGridInt == Z)&&(level up pointa>

(=}

planting +=1;

level up points —=L;
planting updated =
gelGridInt = -1;

[l el
L [L% B

else if ((selGridInt
survival +=1;

level up points -=1;

-
= "

5]

survival updated = tru
player.SendMessage [("up
gelGridInt = -1;

27

..
(=]

L I N

selGridInt = -1;

Figure 64. The onGUT function of the “Character” script.

| L

[(2elGridInt == l)&&(level up points>C

== Z)&&(level up points>C

51

Puaternion.identitcy,

"+ztrength.ToString () ;
"tvitality.ToString() ;
"+planting.ToString ()
"+zurvival .ToString () ;
windowRect = GUI.Window (3, windowRect, DoMyWindow, ““]4

Figure 64 shows the onGUI function of the “Character” script. The onGUI function is

called every frame of the game, so it is quiet similar to the Update function. Just the

onGUTI function is for drawing the interface or other GUI elements. In the beginning of

the function it is made sure, that all the Ul elements adjust to the given resolution,

which ensures they stay the same size in relation to the resolution. Then the skin is

defined for this GUI. Additionally the Update function of this script checks if the “c” key

is pressed for opening or closing the character window. If the window is open, it dis-

plays Gridcontent which is the content of a button array. So the content of each but-

ton of the array is defined with the String and the value which is transformed into a

52

string. The next line defines the window with a GUI window and the DoMyWindow func-
tion. Moreover the next four conditions are about the different attribute buttons. Each
condition checks if its button has been clicked and then if there are levelup points, it
adds a point to the attribute and calls the function with sendMessage to update the
attributes as well in the “Mainchar” script.

164 function DoMyWindow (windowID : int)

GUILayout.

]
LT

GUILayout.

_‘
L]

[a]
T

GUILayout. +level):

| S i N e N 7
[}
[ni]

[a]
T

1]
[

m m M 0
I

4= ~TTTT . L
189 GUILayout.)z

-

gelGridInt = GUILayout.SelectionGrid(=selGridiInt, Gridcontent, 1);
GUILayout.Label + level up points);

173 if (GUI.tooltip !'=)

174 GUIL.Label (Rect (0, -30, w, }y, GUL.tooltip):

Figure 65. The boMyWindow function of the “Character” script.

Figure 65 shows the DoMyWindow function in the “Character” script, which defines the
elements of the window. At first it inserts space into the layout then it creates a label
with the content “Divider”, which is defined in the skin and which is a line. Then another
label is created with the “Character Level” and the value, which is closed then with an-
other divider. Moreover the next line creates the button array and defines se1GridInt
which is used to define which button is pressed. Additionally there is another label with
the remaining level up points. The last condition shows tooltips if hovered over the dif-
ferent buttons.

53

79 if (Equipment open == true) {

a0 windowRect = GUI.Window (2, windowRect, DoMyWindow, "");:

g2 for(var i=0; i<size equipment;i++){

83 if((2elGridInt==i)&& (Equiped items[i]!=null}){

85 if (player inventory.is full()== false){

87 if (Equiped item=[i].GetComponent (Item) .isWeapon == true) {
3a BemoveWeapon() ;

91 Equiped items[i].GetComponent (Item).Pickup item():

93 Equipment off (Equiped items[i]):

97 selGridInt = -1;

1 function DoMyWindow (windowID : int)

103 GUILayout.Space(3);

104 GUILayout.Label (""", "Divider™):
105 GUILayout.Label ("Equig "y
106 GUILayout.Label ("", "Diwvider™};

03 g2elGridInt = GUILayout.SelectionGrid(=zelGridInt, Gridecontent, 32}

"+ player.GetComponent (Mainchar) .damage) ;
"+ player.GetComponent (Mainchar) .defense) ;
"+ player.GetComponent (Mainchar) . speed) ;

if (GUI.tooltip !'= "") {
114 GUI.Label (Rect (0, -50, w, 200), GUI.tooltip):

Figure 66. Part of the onGUI and DoMyWindow function of the “Equipment” script.

Figure 66 shows in the beginning the onGUI function of the “Equipment” script. At first
it checks if the window is open and then creates the window. Additionally it checks if
one of the equipment buttons has been clicked and if the button has an equipped item.
Next the code checks if the inventory is not full yet. If this is the case it checks if the
equipped item is a weapon, then it calls the RemoveWeapon function, which removes
the weapon. Additionally the pickup function of the item is called, which puts the item in
the inventory and then the equipment is put off with the call of the Equipment_off
function. The boMyWindow function shows the configuration of the window with the
headline label between two divider labels. Then there is again the button array and
three additional labels with attack, defense and speed with the values from the “Main-
char” script. The tooltips are displayed when the mouse is hovered over the buttons.

54

g9 if (stat window open == trug){

70 hp.text = "Health "+player.GetComponent (Mainchar).max health.To3tring()+" | "
71 +player.GetComponent (Mainchar) .health.ToString()

72 food.text = "Food "+player.GetComponent (Mainchar).max food.ToString()+" | "

73 +player.GetComponent (Mainchar) .food.ToString();

74 gold.text = "Gold "+player.GetComponent (Mainchar) .gold.ToString():;

75 exp.text = "Exp "+player.GetComponent (Mainchar) .exp.ToString|);

7a needed exp.text = "Hext "+player.GetComponent (Character).exp level.ToString();

windowRect = GUI.Window (0, windowRect, DoMyWindow, "");

e]
(W' B)

windowRect2 = GUI.Window (20, windowRect2, button window, "");

co

function DoMyWindow (windowID : int)
{

—

[2=]

EUILayout.Space(0);
GUILayout.Label ("", "Divider"};
GUILayout.Label ("3tata: ")
GUILayout.Label("", "Divider"};
GUILayout.Label (hp.text);
GUILayout.Label (food. text);
GUILayout.Label (gold.text):
GUILayout.Label (exp.text);
GUILayout.Label (needed exp.text);

Ll

5

o

[N R o = T = I s T = = I = = R = B s R = s]
o Co o

[N}
—

gy IR
-Fa |

Figure 67. Part of the onGUT function of the “UI” script.

Figure 67 shows part of the onGUT function which is for the status window in the game.
If the window is open, the text strings are filled with the health, maximum health, food,
maximum food, gold, current experience and the experience needed for next level.
Then the window for the status window is created with the content of the boMyWindow
function. In this function all the strings which have been created before are written in
the labels and displayed.

55

94 function button window (windowID : int)

GUILayout.Label ("")

j o

97 GUILayout.Label ("", "Dividerx"):
99 if (GUILayout.Button ("Sound™)) {
if (sound on == true) {

102 update audioc sources():
104 toggle _all sounds();

05 sound on = false;
07 else

109 update audioc sources():

toggle _all sounds();
112 sound on = true;
5 GUILavout.Label ("7, "Divider™);
116 if (GUILayout.Button ("Music™)) {
7 if (music_on == true)
119 GetConponent (AudicSource) .mute = true;
0 music_on = false;
2 elsed

GetComponent (AudioSource) .mute fal=e;

music _on = true;

.,.,.,.,.,.,.
[U U A U T T
(]

(a5}

Figure 68. The button_window function of the “Ul” script.

Figure 68 shows the button_window function in the “Ul” script, which contains the
sound button and music button window. In the beginning there are two empty labels
and then there is a condition with a button with the label “Sound”. If this button is
clicked the condition is fulfilled and toggles the sound. For toggling it is necessary to
check if the sound is on or off at the time the button is clicked. Additionally the up-
date_audiosources function is called, which updates all the audio sources and then
the toggle_all_sounds function is called. Then another label divides the two but-
tons from each other. Moreover if the music button is clicked, it checks again if the mu-
sic is on already and then gets the “Audio Source” of this game object and mutes or
activates it.

56

130 function update audioc sources ()
131 var position : int =0;

132 211 audioc sources = FindObjects0fType (AudicSource) as AudiocSource[]:;
133 var audioc sources = new Array(all audic sources):

135 for(var i=0; i< a2ll audio sources.Length; i++)

136 if({all audio_ sources[i] == GetComponent (AudicSource)) {
137 position = 1i;

140 audio_ sources.Removelht (position):;

141 211 audioc sources = audioc sources.ToBuiltin (AundiocSource);
142

143 function toggle all sounds ()

144 if (gsound on == true) {

145 or (var audioc : AudicSource in all audic sources)
145 audio.mate = true;

149 else

150 or (var audioc : AudicSource in all audic sources)

audio.mate = false;

ol
L[5 B R B S)
L5 R L

Figure 69. The update_audio_sources and toggle_all_sounds function.

Figure 69 shows the two functions, which have been used before. In the up-
date_audio_sources function the code searches for all the “Audio Sources” in the
game and saves them in an “Audio Source” array, which is then translated into the
builtin array system. Additionally it searches for the “Audio Source” of this game object
and puts it out of the array. This has to be done so that the music would not be dis-
abled when the sound is disabled. Then in the next function it first checks if the sound
is on and then it mutes all “Audio Sources” which are in the array. In case the sound is
off, it will activate all “Audio Sources”.

57

71 for(var j=0; j<Gridcontent.length; j++){
72 if (player inventory.ltems[]].GetComponent (Item).stack > 1}{

73 Gridcontent[]j].text= player inventory.Items[j].name +" "+ player inventory.ltems[j].

74 GetComponent (Item) .stack.ToString()

78 else {

77 if(player inventory.ltems[j].GetComponent (Item).stackable == true){

78 Gridcontent[j].text = player inventory.ltems[]].name;

a0 elzef

31 Gridcontent[j].text = player inventory.ltems[]].GetComponent (Item).item content.text;

85 if (inventory open == true){

86 windowRect = GUI.Window (1, windowRect, DoMyWindow, ""}:
a3 for(var i=0; i<play inventory.Items.length;i++) {
89 if(zelGridInt==i){

91 player inventory.Items[i].GetComponent (Item Effect).UseEffect();

- 3elGridInt = -1;

Figure 70. onGUI function of the “inventory_display” script.

Figure 70 shows the onGUI function of the “Inventory_display” script. At first it checks if
the items in the inventory array have stacks. If this is the case, then into the Gridcon-
tent.text is written the number of the same items as a string. Then if the item is
stackable but is only one item, it writes the name on the string, that there is no number
displayed. Additionally when the display window is open, the window is created. More-
over in the next few lines it checks if any of the items is clicked and if it can be used
and then calls the UseEffect function in the “ltem_Effect” script, which was explained

in section 4.3.2.

58

105 function add content grid (insert : GUIContent)
105 var new Gridcontent = new Array(Gridcontent);

new_Gridcontent.Add(insert);
108 Gridcontent=new Gridcontent.ToBuiltin (GUIContent);:

function remove content grid (content : GUIContent)
111 var index = 0;
112 var new_Gridcontent = new Array(Gridcontent):

1 or(var 1:GUIContent in new Gridecontent) {
114 if (i == content) {

115 new_Gridcontent.Removelt (index);
116 break;

118 index++;

120 Gridcontent = new Gridcontent.ToBuiltin(GUIContent);
122 function DoMyWindow (WwindowID : int)

124 GUILayout.Space (3);
125 GUILayout.Label ("™, "Divider"™);
176 GUILavout.Label {("Inventory: ")

127 GUILayout.Label ("", "Divider"):;

leg J/0OLLOIL grid
129 2elGridInt = GUILayout.SelectionGrid(selGridInt, Gridcontent, 3);

131 if(Item so0ld == true){

132 GUI.Label (Rect (0, -30, 200, 200}, "Sold Item "+item sold content.text+
133 " for "+ item sold wvalue):

134 StartCoroutine (item sold()):

136 if (GUIL.tooltip != ""){

137 GUI.Label (Rect (0, -50, 800, 200), GUI.tooltip):

Figure 71. Several important functions of the “inventory_display” script.

Figure 71 shows the code of other important functions of the “Inventory_display” script.
The add_content_grid function adds a new item to the button array. This is called
in the Pickup_item function, which has been explained in section 4.3.2. Then the
remove_content_grid function removes one item from the button array. Moreover it
is searched for the given content and if a match is found, the match is removed at the
index and the array is rebuilt in the end. Then the last function DoMyWindow contains
the layout for the inventory window. It has a headline with the name “Inventory” which
is embedded between two “Dividers”. Furthermore the button array is drawn after that
and if an item is sold, a text is written at the tooltip window, which is located at the top
of the the inventory window.

59

function DoMyvWindow (windowID : int)

EUILayout.Space (0)

o

56 GUILayvout.Label (""", "Divider™):
57 GUILayout.Label ("Cption=: ") ;
58 GUILayout.Label (""", "Divider™):
61 if{ GUILayout.Button("Back to Main Menu")== true) {
62 Time.timeScale = 1.0;
3 Application.LoadLevel ("Mainmenu™) ;

o h

o h
0youn I

if (G0ILayout.Button ("End Games")) {
Application.Quitc():

o h

if{ GUILayout.Button("Cancel")== true) {
options window open = false;
Time.timeScale =

1 WO Co

e LA 5]

[
I
LTl

[

GUI.DragWindow (Rect (0,0,10000,10000}}:;

Figure 72. The DoMyWindow of the “Optionsingame” script.

Figure 72 shows the DoMyWindow function of the “Optionsingame” script. This script
creates the in-game menu, which pauses the game when it is opened. This figure
shows the main functionality of the script. As before it has “Options” as headline em-
bedded of two “Dividers”. Then there are three buttons. The first is the main menu but-
ton which stops the break and sets the time back to one and uses the function Appli-
cation.LoadLevel which calls the scene with the name defined in brackets. Addi-
tionally the second button is the end game button. When the button is clicked, it just
calls the application.Quit function, which is an Unity integrated function for exiting
the game. The last button is the cancel button, which closes the window and continues
the game. Moreover the last line of code makes the window draggable.

60

windowRect = GUI.Window (6, windowRect, DoMyWindow, ""};

for(var i=0; i< selGridcontent.length; i++ }{

if ((selGridInt == 1i)&&(player.GetComponent (Mainchar).gold »= items[i].GetComponent (Item).
buy value) &k (player inventory.is full()== falae)|{
var clone : GameCbject = Instantiate(items[i]);

clone.name = items[i].name;
clone.GetComponent (Item) .Pickup item();

player,GetComponent (Mainchar) .gold -= items[i].GetComponent (Item).buy value;
play audio ();
StartCoroutine (change tooltip back(selGridlnt, + items[i] .name +
+ items[i].GetComponent (Item).buy value));
selGridInt = -1;
glse if ((selGridInt = i)&é&(player.GetComponent (Mainchar).gold < items[i].GetComponent (Item).
buy value)] {

selGridInt = -1;

Figure 73. Part of the onGUI function of the “Shop” script.

Figure 73 shows the important part of the onGUI function of the “Shop” script. At first
the code creates again the window and then it checks which button of the button array
is clicked by the player, which means which item the player wants to buy. If the player
has enough money and the item of the player is not yet full, it creates a clone of the
item which has been clicked. Additionally the Pickup_item function is called, which
adds this item to the inventory array. Next the player’s gold is reduced by the price of
the item and a sound is played. Moreover the tooltip is changed and it shows for a
short time the item which has been bought and how much gold it cost. In the end the
button is again deactivated as well if the player did not have enough money. Further-
more in this script it is checked if the player is in the shop or not and if he presses the
“b” key, the shop will open.

This section gave an overview over the Ul and how it was implemented in this game. In
the next section the different game scenes briefly and how they were used will be ex-

plained.

61

4.8 Game Scenes

The game scenes are an essential part of the game. In this game there are six scenes
which are used. There is the game scene, which is the main part of the game. All the
game related content is in this scene. Then there is the Instructions scene, which ex-
plains the game mechanics to the player with text and pictures. Additionally there is the
Intro which is another scene and displays the introduction story after starting the game.
Then there is the win and lost screen which have also their own scenes, which are
changed to when the game is over. Moreover the last scene is the main menu scene,
which is the start screen of the game with three buttons start game, instructions and
quit game.

5 Results and Discussion

The result of this project is a working Unity 2D game, which was developed for the
Windows platform. The project itself took approximately six months, included with find-
ing software, platform, graphics, sound, music and tools. Moreover doing tutorials and
learning how to use the Unity engine and third party tools such as 2D toolkit and
Navmesh2D were included in this time. In this chapter some pictures of the game will
be shown and advantages and drawbacks of using Unity 2D for development of a 2D

game.

For a better insight in the development process of this game project figure 74 shows
the whole workflow in a Gantt chart.

62

1-Mar 22-Mar 12-Apr 3-May 24-May 14-Jun 5-Jul 26-Jul 16-Aug 6-Sep

Game type 14

Decide Platform
Decide IDE | IL
Find tools w7

Tutorials
Map | L
Player
Item system | 1
Planting

Monsters | L
Path finding (Al) 14

User interface | ﬂ
Audio

Map design L2
Debugging |
Balancing 14

Figure 74. Gantt chart of the project.

Figure 74 shows the Gannt chart of the development progress of the game project. It
began in March with ideas of the game and the platform. Moreover it took quite an
amount of time for me to actually start with the project itself. After approximately two
months of planning and doing tutorials the real project started with first creating the
map. That was followed mainly by the programming for the player and the inventory
system and other related features. Next was the Planting system and Monster imple-
mentation which took quite some time. Furthermore path finding took a longer time
than expected even with the use of a third party tool. User interface and audio were
slightly difficult to implement. In the end after the map design was done debugging and
balancing took a longer period, even | was always debugging during the whole devel-
opment process. It took approximately half a year to finish the project. Next the game
itself will be shown with the main menu and a short insight in the ready game.

63

Figure 75. Main menu of the game.

Figure 75 shows the main menu of the game Harvest Survive. It has three buttons.
With Start Game the game will switch to the Intro and then start the game. If the in-
structions button is clicked it will change to the instructions of the game and explain the
player the basics of the game in text and pictures. Moreover if the end game button is
clicked, the game will exit and return to windows.

Sy

55y
>0
>0
>y
»H
>y
>0y
>y
>0y
>y
WM B WA :)"\i)

1
Ll

»

A
.‘A.w

P

& v
»

‘o

N

e

[N

Figure 76. The final version of the game.

Figure 76 shows the final version of the game. In the center there is the player with a
green health bar floating over his head. Then there are mountains around which block
the player’s and monsters’ movement. The bat in the map is a monster which is hunting

64

the player and has a red health bar over its head. At the bottom there is the GUI, which
contains the character window, equipment window, status window, inventory window
and sound window. Each of them has been explained in section 4.7. The player starts
with only a stick and two carrot seeds and 100 gold coins. With this he has to grow the
plants and sell the harvested fruit to the shop to earn money. With enough money it is
possible to buy weapons and armor which will help to fight the monsters and bosses.
The game has six different zones and for entering each zone a boss has to be de-
feated. The final boss is waiting in the last zone and if he is defeated, the player will win
the game.

The background story is as follows. A farmer lives alone with his sister in a mysterious
kingdom. There is a legend going around that if a person is at the brink of death, death
himself will come to visit and give a choice to die soon, or try to challenge him in his
own world. The farmer never believed it to be true, but one day when his sister was out
selling her goods a dark traveller knocked his door and told him he is death and he
asked him what he would choose. He decides to stay alive for his sister’s sake, who
would have a hard time living alone as a farmer. So you accept the challenge and enter
the realm of death. Death created the world so, that the farmer’s skills which is a vast
knowledge of farming can be used. Death said he would wait for the farmer in the last
area of the world and if he managed to defeat him he would live a long life. With this

promise in mind the farmer starts to walk around in this unknown world.

Of course in the development process there were various problems which were solved
and a large number of bugs which were fixed. In the following the biggest problems,
which occurred in the development of the game will be discussed. In the beginning the
first major issue was to create the map without overlapping sprite, in other words a
tilemap. This feature is not included in Unity 2D, so it was difficult to create a more fea-
ture-rich map with it. That is the reason toolkit2D was used to solve this problem. This
tool solved the problem with creating tilemaps and made it easy to edit them. However
of course every third party tool had to be learned and especially if the documentation
and examples lacked information. So it was difficult to access a single tile of the tile-
map, which was quite a big issue.

Another major problem was the pathfinding for the monsters in the game, especially
because there were a large number of mountains and other objects which blocked the
monsters and player from moving over them. At first | tried to use the in-built navigation

65

system from Unity, but it is not working with Unity 2D, which made it necessary to use
another third party tool. The tool was Navmesh2D, which used the built-in pathfinding
system from Unity and is based on the A* algorithm. Additionally with using the
Navmesh2D tool there was another issue regarding the programming, because | used
JavaScript for most programming. However because the whole code of Navmesh2D
was in C# and accessing this code from JavaScript and the other way around is quite
difficult, | had to use also C# scripts just for the pathfinding. Moreover there was a
problem with my pathfinding script, which made the monster follow the player but al-
ways calculated a new path when the player moved. So the player could easily move in
circles around the player while the monster would be stuck calculating the new path.
For solving this problem | made that the monster calculate the path after a certain de-
lay, which made the monster move fluently after the player.

A further problem was making the weapon animations. There was only one weapon
sprite for each weapon, so | had to move and turn them with a graphic tool but with
rotating pixels the weapon pixels blurred. There was not a really good solution for this
problem, so basically all sprites for the animation would need to be created from
scratch or copy single or multiple pixels from the graphic and paste it to create the new
sprites of the animation. Moreover with creating this big map and each area with mon-
sters spawning and walking around led to a huge performance issue. As solution only
in the area the player is at that moment the monsters spawn and move around, which

made the game fluent.

The next problem which occurred was the inventory system | created. For this system |
used the selectiongrid from built-in Unity, which is basically an array of buttons. So for
each item added there was another button. The only issue with this approach was that
it only supported a left click but no right click or other mouse buttons. This limited some
functionalities and made them more complicated. Finally, an issue also was the colli-
sion detection for the fighting system. Basically the collision happens when the weapon
touches the monster, but this happens of course a large number of times each second,
because the collision is called by every frame. So it was important to limit the detection
to a certain amount of time, which was quite difficult. In the end | used several co-
routine functions to solve this problem.

As regards Unity 2D and its advantages and disadvantages for developing a 2D game,
Unity 2D is going the right way with the first support for native 2D games. It comes al-

66

ready with many tools, such as the easy sprite editor, the 2D physics and collision de-
tection, the 2D animation tool Mecanim and the 2D camera. All those tools are very
useful in developing a 2D game with Unity. However there are still some features miss-
ing which should be included in a 2D game engine. The missing features are especially
the tilemap feature and the navigation system, which are not yet supported by Unity
2D. Those two features are very essential for developers, since they save time in creat-
ing games. Moreover if these features are not included it can easily become expensive
to pay for third-party tools, which provide the lacking features. So in the current state, if
there is a need for pathfinding or tilemaps and the game should be programmed with-
out any costs for the programming part, it will probably be better to look for an alterna-
tive. Otherwise Unity is quite a reliable game engine, which will probably be also a
good choice to develop 2D games with in the future.

67

6 Conclusion

In this thesis | showed the game mechanics of the 2D Unity game | developed and |
gave insight into programming with Unity 2D and the advantages and disadvantages to
program with this game engine. Furthermore the result of the project was a working
Unity 2D game for Windows. Moreover developing this game project in half a year’s
time, gave a good insight into the game development process. Especially it showed me
how important it is to plan well before starting the project and choosing the platform
and the game engine wisely. No game engine is the best and it should be chosen ac-
cording to the developer’s needs. That means it is important to collect much informa-
tion about the engines before choosing one of them and get already some idea if the
game project is possible with these tools or not and if there is a need for additional
third-party tools. The more planning is done before starting the project, the less chance
of failure for the project and less problems will arise during the development process.

As regards Unity 2D, | am sure it will be further developed and improved, so perhaps at
some point there will be less need for third party tools. This would make the develop-

ment easier and more efficient.

68

References

1 Unity Technologies. Unity [online]. San Francisco United States, Unity Technolo-
gies, 2 August 2014.
URL: http://unity3d.com/unity.
Accessed 2.8.2014.

2 Corazza, Seraphina. History of the Unity Engine Freerunner 3D Animation project
[online]. Seraphina Corazza, 14 February 2013.
URL: http://seraphinacorazza.wordpress.com/2013/02/14/history-of-the-unity-
engine-freerunner-3d-animation-project/
Accessed 2.8.2014.

3 Unity Technologies. Integrated Editor [online]. San Francisco United States, Unity
Technologies, 2 August 2014.
URL: http://unity3d.com/unity/workflow/integrated-editor.
Accessed 2.8.2014.

4 Unity Technologies. Asset Workflow [online]. San Francisco United States, Unity
Technologies, 2 August 2014.
URL: http://unity3d.com/unity/workflow/asset-workflow.
Accessed 2.8.2014.

5 Unity Technologies. Scene Building [online]. San Francisco United States, Unity
Technologies, 2 August 2014.
URL: http://unity3d.com/unity/workflow/scene-building.
Accessed 2.8.2014.

6 Unity Technologies. Rapid Iteration [online]. San Francisco United States, Unity
Technologies, 2 August 2014.
URL: http://unity3d.com/unity/workflow/rapid-iteration.
Accessed 2.8.2014.

7 Unity Technologies. Scripting [online]. San Francisco United States, Unity Tech-
nologies, 2 August 2014.
URL: http://unity3d.com/unity/workflow/scripting.
Accessed 2.8.2014.

8 Unity Technologies. Networking [online]. San Francisco United States, Unity
Technologies, 2 August 2014.
URL: http://unity3d.com/unity/workflow/networking.
Accessed 2.8.2014.

10

11

12

13

14

15

16

17

69

Unity Technologies. Rendering [online]. San Francisco United States, Unity
Technologies, 2 August 2014.

URL: http://unity3d.com/unity/quality/rendering.

Accessed 2.8.2014.

Unity Technologies. Lighting [online]. San Francisco United States, Unity Tech-
nologies, 2 August 2014.

URL: http://unity3d.com/unity/quality/lighting.

Accessed 2.8.2014.

Unity Technologies. Special Effects [online]. San Francisco United States, Unity
Technologies, 2 August 2014.

URL: http://unity3d.com/unity/quality/special-effects.

Accessed 2.8.2014.

Unity Technologies. Terrains [online]. San Francisco United States, Unity Tech-
nologies, 2 August 2014.

URL: http://unity3d.com/unity/quality/terrains.

Accessed 2.8.2014.

Unity Technologies. Audio [online]. San Francisco United States, Unity Tech-
nologies, 2 August 2014.

URL: http://unity3d.com/unity/quality/audio.

Accessed 2.8.2014.

Unity Technologies. Physics [online]. San Francisco United States, Unity Tech-
nologies, 2 August 2014.

URL: http://unity3d.com/unity/quality/physics.

Accessed 2.8.2014.

Unity Technologies. Al [online]. San Francisco United States, Unity Technologies,
2 August 2014.

URL: http://unity3d.com/unity/quality/ai.
Accessed 2.8.2014.

Unity Technologies. Animation [online]. San Francisco United States, Unity
Technologies, 2 August 2014.

URL: http://unity3d.com/unity/animation.

Accessed 2.8.2014.

Unity Technologies. 2D-3D [online]. San Francisco United States, Unity Tech-
nologies, 2 August 2014.

URL: http://unity3d.com/unity/2d-3d.

Accessed 2.8.2014.

18

19

20

70

Unicron Software. 2dtoolkit [online]. Newcastle England, Unicron Software, 2
August 2014.

URL: http://www.unikronsoftware.com/2dtoolkit/

Accessed 2.8.2014.

Pigeon Coop. Navmesh2D for Unity [online]. Melbourne Australia, Pigeon Coop,
5 March 2014.

URL: http://forum.unity3d.com/threads/navmesh2d-navmesh-generation-and-
navigation-for-your-2d-projects-released.231022/

Accessed 2.8.2014.

Unicron Software. Tilemap Tutorial [online]. Newcastle England, Unicron Soft-
ware, 2 August 2014.

URL: http://www.unikronsoftware.com/2dtoolkit/docs/latest/tilemap/tutorial.html
Accessed 2.8.2014.

