

Hans-Jürgen Krupp

Harvest Survive

Game Mechanics of Unity 2D Game

Helsinki Metropolia University of Applied Sciences

Degree Bachelor of Engineering

Degree Programme Information Technology

Thesis

Date 25.9.2014

 Abstract

Author(s)
Title

Number of Pages
Date

Hans-Jürgen Krupp
Harvest Survive : Game Mechanics of Unity 2D Game

70 pages + 0 appendices
25 September 2014

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor

Juha Huhtakallio

The purpose of this project was to learn how to create Games in Unity 2D, to see the work-
flow and to test if the new Unity 2D feature of the Unity engine was a good alternative for
developing 2D games. A further aspect was to learn the different steps and mechanics of
the Unity environment.

The goal was to create a survival game, in which the player would have to grow plants in
order to get food and money to stay alive in a hostile environment. The player has to sur-
vive in six different areas with different monsters and one final boss in the last area. The
player wins the game when the last boss is killed. To achieve this, the player has to grow a
large number of crops and survive the roaming monsters and earn money to get the best
equipment.

As for the technology used in the project, the game engine Unity was used with the plugins
Toolkit2D for the tilemaps, Navmesh2D for the pathfinding of the monsters and the Nec-
romancers skin for the user interface.

The result of the project was a working Unity 2D game, which can be played on Windows
systems. Moreover it is the first step into making Unity games and provides useful experi-
ence for future Unity projects.

Keywords Unity, 2D, Game, Navmesh2D, Toolkit2D

Contents

1 Introduction 1

2 Theoretical Background 2

2.1 Overview 2

2.2 Unity 2

2.2.1 History 2

2.2.2 Features 3

2.2.3 Unity 2D 8

2.3 Summary 8

3 Technology Presentation 8

3.1 2Dtoolkit 9

3.2 Navmesh2D 10

4 Harvest Survive 10

4.1 Basic Structure 10

4.2 Map 11

4.3 Player 15

4.3.1 Movement and Animations 16

4.3.2 Inventory and Equipment System 18

4.3.3 Character System 27

4.3.4 Attack System 28

4.4 Planting 33

4.5 Monsters 35

4.5.1 Basics 35

4.5.2 Path Finding 37

4.5.3 Health Bar System 44

4.5.4 Spawner 46

4.6 Audio 49

4.7 User Interface 50

4.8 Game Scenes 61

5 Results and Discussion 61

6 Conclusions 67

References 68

1

1 Introduction

The project is a survival game with a focus on planting and harvesting crops while de-

feating monsters. This was made with Unity 2D and the target platform was Windows.

The project was a single-person project. Moreover the topic was chosen because Unity

is becoming more famous among Indie developers because of its free license, which

can be used to publish games until an annual gross revenue of 100,000 $. [1]

Of course not all features are included in the free version, but it is enough for Indie

game development, especially if it is used for 2D development. Moreover Unity focuses

mainly on portability, which means it is possible with the same project to release it to

Windows, Linux, Mac, Web, Android, Ios, Windows phone, Blackberry, Xbox360, Xbox

One, Playstation3 and Playstation4, without a big effort for porting it manually. This

makes it easy to reach more customers and in the end it means more money for the

developers. [1]

Unity 3D is a well known game engine and has been released for many years, but it

has never supported 2D development. It changed when they released Unity 2D at the

end of 2013, so it was interesting to get started with it and see its advantages and dis-

advantages in making a 2D game with it.

In the plot of this game the goal is to plant crops and wait until the plants grow, then

harvest them and use the grown fruits and vegetables as food or sell them at a store to

earn money. With the money the player can buy new seeds, equipment and weapons.

The equipment and weapons are necessary to fight the monsters which roam the

areas. In the last area there will be a boss monster which has to be defeated in order to

win the game. The game will be lost when the player dies because of receiving dam-

age from monsters or losing health from starving.

2

2 Theoretical Background

2.1 Overview

In this section I will briefly explain the history of Unity and the development and rea-

sons for the success of the game engine. After that I will briefly discuss the features of

the Unity game engine in the focus of the 3D technology. At last I will present the new

features of the Unity 2D engine, which was released at the end of 2013.

Most of the information regarding the Unity engine I found on the official Unity web-

page, as in literature the authors usually just reference to the webpage for more and

current information. Additional source material I found on the developers’ webpages of

the tools I used.

2.2 Unity

2.2.1 History

In this chapter I will briefly tell about the history of Unity after a short explanation of

what Unity is. Unity is a cross-platform game engine and integrated development envi-

ronment (IDE) developed by Unity Technologies. The company was founded in 2004

by David Helgason, Nicholas Francis and Joachim Ante in Copenhagen, Denmark after

their first game failed to be a financial success. They noticed the value in creating tools

and an engine to create games. Additionally they wanted to make their engine afford-

able for Indie developers and any other game programming enthusiast. Their project

received funding from big investment partners and gained success because of its sup-

port for independent developers who were unable to either create their own game en-

gine or purchase one. [2]

The first release version of Unity was launched at Apple’s Worldwide Developers Con-

ference in the year 2005. At that time it was built only to function and build projects on

the Mac platform but still got enough success to continue the development of the en-

gine and tools. The next release with Unity 3 was in September 2010 and focused on

introducing more tools, which high-end game studios usually need for their projects.

This made bigger development studios interested in Unity, but smaller ones as well

because they provided a game engine with an affordable price. [2]

3

Unity continued developing since that day and with the introduction of the Unity version

4.3, support for 2D games started at the end of 2013. This version came with a large

amount of new features especially concentrating on the new 2D area. The latest ver-

sion 4.5, which is the latest version at the moment, was released last summer 2014.

However already this autumn Unity Technologies wants to release the next generation

with version 5.0 with a large number of new features to come. [1]

2.2.2 Features

There are a large number of features in the Unity game engine so I will only briefly ex-

plain them. The Unity editor is one of the core components of the engine. This is the

visual user interface which connects the coding with the assets and so makes it possi-

ble to easier see the result of the coding directly in the interface.

The most common views in the Unity editor are the project browser, which shows all

assets in a list, which makes it easy to keep track of all the assets in the current Unity

project. Another important view is the Inspector, in which it is possible to change prop-

erties of game objects in the scene and assets in the project. Moreover the scene view

is the sandbox to create the game in. The game view is as the name says the view

where it is possible to start the game directly in Unity and preview how it will look and

run on the target devices. The last introduced view is the hierarchy window, which

shows all game objects of the scene. [3]

Another feature for the Unity editor is that it is possible to extend it with one’s own edi-

tor tools and build them directly into the Unity editor interface. That means that it can

be extended with new functionality added to the existing views or with new customized

windows and inspectors. The new editor windows can be moved and docked like any

of the Unity’s windows. Custom inspectors make it possible to completely control how

users view and edit the custom components. This can be used for debugging purposes

or increasing productivity in the workflow. [3]

Moreover in Unity it is easy to import models, textures, audio, scripts, sprites and other

assets into the Unity project. The assets will be automatically imported when they are

saved in the project folder. In addition assets can be modified at any time and the

change can be seen immediately in the game. Additionally Unity can import 3D models,

4

bones and animations from almost any 3D program, for example from Maya, 3ds Max,

Modo, Cinema 4D, Cheetah3D or Blender. [4]

Unity also features the height-map to normal-map conversion, which means that any

texture can automatically be converted into a normal-map, even when the image files

are changed later. Moreover Unity supports several different mipmap generation meth-

ods like detail fade, Kaiser filters and gamma correction. Moreover multi-layer photo-

shop files are automatically compressed in Unity and Unity includes five different pre-

sets to quickly set up the textures. Furthermore it is possible to override size and com-

pression settings for each platform, so one source file is enough for all the different

platforms. [4]

Moreover Unity can import any audio format which is supported by FMOD. This en-

sures audio is consistent between all of Unity’s supported platforms. For reducing the

file size it can be internally converted into Ogg Vorbis. Another feature is the native

support for allegorithmic substances. These are hybrid assets, which can have multiple

outputs to generate complete texture sets based on the same set of parameters. With

use of the substance importer class, it improves the substance-related workflow with

asset post-processing and it gives direct access to the imported procedural material

instances. [4]

Another feature is the new project browser. With it it is possible to search and preview

assets in large projects. Additionally favorite asset searches can be saved and it is

possible to bookmark all important folders and pre-defining categories of assets. Fur-

thermore it is possible to preview free and paid content from the asset store in the

project window. The asset store is integrated in Unity where artwork, editor plugins,

scripts and many other things can be directly downloaded and installed into Unity. Ad-

ditionally Unity offers a large number of tutorials to get started with. [4]

In every Unity scene empty game objects, which are empty containers, are added. It is

possible to add components to the game objects to add functionality such as light,

physics, audio, cameras and particle effects. Their core values can be changed directly

in the inspector and for more control they can be changed with scripts. [5]

Another function is that components can easily be added to game objects with a drop-

down button, and with a copy and paste ability it is easy to move components between

5

the game objects. For using complex objects repeatedly, they can be turned into a pre-

fab, which can be put anywhere in the game or accessed with scripts. The advantage

is that if this original prefab is changed, all other prefab objects in the scene will be

changed as well. Other objects such as spheres, boxes, capsules and meshes can be

positioned, scaled and rotated and created directly in the Unity editor. There are many

features such as grid, surface and vertex snapping tools, which ensure that the posi-

tioning of the game objects are correct. [5]

Moreover Unity has with the “Play” mode a development tool for fast editing while play-

ing the game. In the Unity editor, if the play button is pressed, the game starts imme-

diately and gives a preview of the real game which is developed. It is also possible to

alter values while testing the prototype and see the results immediately. As well Unity

has tools for debugging every frame of the game and with the profiler showing the parts

of the game which have the biggest impact on the game performance. It reports which

areas of the game most time is spent on and it can be used to find and remove bottle-

necks which cost a large amount of performance and make the game run slowly. This

tool can be used on any development platform. [6]

For scripting Unity offers three languages to use, C#, JavaScript or Boo. Any of those

languages is supported and they run on the Open Source .NET platform Mono. How-

ever it is not possible to use scripts to call each other, so it is best to use just one of

them throughout the game project. MonoDevelop has the standard debugging features

like most IDEs. To change game objects in the game it is important to reference them

from the game scene in the Unity editor with the scripts. Then values of objects such as

scale or position can be easily accessed and changed. The referencing can be done by

name, tag and type of the object. [7]

Another important part is networking, which is integrated in Unity and features real-time

networking which can be accessed with only a few lines of code. For synchronization

between game objects values, Unity uses a delta compression algorithm or uncom-

pressed unreliable strategies. Moreover the .NET socket libraries are used for real time

networking and to open TCP/IP sockets or send UDP messages. It is also possible to

access databases with those libraries. Furthermore if the game is run in a browser, the

Unity web player communicates with the container web page and has JavaScript and

AJAX capabilities. Regarding networks Unity supports also remote procedure calls,

which is an essential networking feature. [8]

6

Unity supports Windows DirectX 11 graphics API, which improves performance with

computing shaders, makes it possible to use GPU as a parallel CPU and supports

shader model 5.0, which allows the use of more complex shaders. Moreover Unity

uses light pre-pass technique for its lighting, as well as linear space lighting and HDR

rendering. Additionally Unity comes with a variety of 100 shaders from simple to very

advanced ones. Unity offers also access to the GL class in Unity, which is a low-level

graphics library with which active transformation matrices can be changed and render-

ing commands can be issued similarly to OpenGL. Another graphics feature is surface

shaders which help with rendering the graphics on multiple devices and ensures it

scales correctly. Additionally Unity offers occlusion culling tailor, which reduces the

number of rendered objects. [9]

The Unity lightmapping tool bakes lights into textures, which increase the performance

and it is possible to just bake parts of the scene, which is currently in use. Moreover

dual lightmapping is used, which uses one lightmap for distant scenery and a second

for only bounce light to improve the performance. Furthermore there are many addi-

tional light effects, which can be baked into the scene as well as light probes, which

bake lighting onto moving objects. Moreover Unity supports high-quality real-time

shadows for all types of lights. [10]

Unity uses special effects such as depth of field and motion blur, which are optimized

for DirectX 11 and post-processing effects such as Edge Detection, Bloom, Vignetting,

Tonemapping and Color correction. Another special effect is Render to Texture effect,

which makes it possible to add images and dynamic camera content to any surface.

Additionally it is possible to use special effects to create reflective or refractive water

surfaces. [11]

As particle system Unity uses Shuriken, which is a curve and gradient-driven modular

particle system tool. Moreover it gives the functionality for world collision such as Bent

normals, automatic culling and external forces, which can be used for example for hur-

ricanes, fireworks, explosions etc. [11]

Another tool in Unity is able to carve, raise and lower terrains. Additionally with this tool

it is possible to set up the trees within the Unity editor and to add branches, twigs and

leaves, which can be previewed in real-time in the editor. Moreover Unity will put all

7

textures together into an atlas and automatically calculate ambient occlusion and wind

factors for the trees. [12]

For audio Unity uses FMOD, one of the world’s most widely used libraries and toolkits.

With this it is possible to preview the sound directly in the Unity editor and adjust it to

the needs of the developers. Additionally it offers DSP filters, which make the sound

more realistic. It has also some advanced features such as lowpass and highpass fil-

ters, distortion filters, chorus filter, echo filter and reverb filter. Moreover to make the

distribution size smaller, Unity uses the most common tracker file formats such as

MOD, IT, S3M and XM. One of these module files can contain many samples or pat-

terns, without taking a large amount of space and all filters can be used on them. If ogg

video and audio files are used, they can be streamed from the net, which reduces the

size of the web player. [13]

Another feature Unity offers is the 3D physics engine NVIDIA PhysX, which makes it

possible to simulate correctly moving hair and clothes, explosions and other physical

effects. This system makes use of rigidbodies, joints and colliders which simulate the

physics effects. It features also a ragdoll wizard with which it is possible to implement a

full ragdoll from an animated character. [14]

Moreover Unity has an integrated pathfinding system, which automatically generates a

NavMesh. Those describe the borders of any navigable space in the game and at run-

time calculate the paths for the game objects. Since Unity 4 it is possible to use also

NavMesh obstacles, which react to changing environments in runtime. [15]

For animations Unity uses Mecanim, which is a flexible animation system that makes

fluid and natural motion possible. This animation system is integrated in the Unity en-

gine, so there is no need for 3rd party tools. With this tool it is possible to produce

muscle clips, blend trees, state machines and controllers directly inside Unity. Addi-

tionally Mecanim can be used to animate many different elements such as sprites,

blend shapes or light intensity. Additionally there are two different ways to use anima-

tion clips. The first is a multilevel blend tree, which makes it possible to create a wide

variety of motions from just a few motion clips. The second is the hierarchical state

machine, which defines with conditions when each state is being executed. It is also

possible to have several different state machines as layers which makes it possible to

have more complex conditions for certain animations. Moreover in Unity there are IK

8

rigs which are automatically generated to adjust for example feet on the ground and

hands on a ledge. [16]

2.2.3 Unity 2D

After listing all the main features of Unity 3D I will list the new features of the 2D part of

Unity which were released at the end of 2013. With this release Unity supports the

creation of 2D games natively for the first time without the need of using 3rd party tools.

One of the new features is the automatic sprite splicing, which makes it easy to slice a

spritesheet into its single sprites. This can be done also manually, which has to be

done in certain cases. Another new feature is the 2D physics system, which uses the

same system of rigidbodies, joints and colliders as in the 3D solution but is driven by

Box2D, which is the physics engine making all the 2D physics possible. It is also possi-

ble to mix 2D and 3D physics without getting problems or using 3D models in the 2D

environment. [17]

Moreover the animation system Mecanim now supports also 2D animations and with its

state machine makes it an important tool for any moving 2D characters and objects.

Furthermore it is now possible to easily create animation clips by using several sprites

and then adjust them with the Animation editor. Additionally in the Unity editor is an

extra 2D view, which makes it easy to edit and create 2D Objects. [17]

2.3 Summary

After introducing the Unity game engine, its features and the new 2D capabilities in the

next chapter I will show the additional tools I used for my project and then the project

itself. This project has been chosen to examine the capabilities of Unity in making a 2D

game with the new introduced 2D tools it offer and to get experience with an often used

game engine, which can help work in future projects in the game industry.

3 Technology Presentation

The technologies used include the Unity game engine with MonoDevelop as integrated

development environment (IDE), 2Dtoolkit for helping with the tilemaps, in other words

9

creating the game map and Navmesh2D for the pathfinding of the monsters. Addition-

ally Graphics have been mainly used from RPG maker VX Ace and its downloadable

contents. Moreover for the Graphical User Interface (GUI) skin the Necromancer GUI

from the Unity asset store has been used.

3.1 2Dtoolkit

2Dtoolkit has been developed by Unikron Software, which is an independent software

developer based in Newcastle in England. They have released, until now, only this

plugin for Unity and before it has been an important tool for being able to create 2D

games with Unity 3D. Now with the new Unity 2D features it is still a good tool, which

helps with the development of 2D games and offers several features, which Unity 2D is

not capable of. The most important feature is to be able to create tilemaps. This makes

it easy to create a map without having to be afraid that the sprites were overlapping

each other. [18]

This plugin also gives the complete C# source code, so it makes it possible to tweak

the tool to the needs of the developers. Another feature is creating sprites, which can

have platform-specific size. This is practical for publishing on several platforms. The

plugin alos has an own camera tool, which can help with solving resolution and aspect

ratio problems. Additionally the plugin offers to slice, tile or clip sprites and also offers

dicing of large images, which cuts them into small pieces, helping the performance.

Moreover another feature is box and custom shape colliders which will work in the fu-

ture with the Unity 2D physics. Furthermore 2Dtoolkit offers atlasing, which rebuilds

sprite collections for better performance. [18]

Another feature is a static sprite batcher, which can merge large numbers of sprites

and colliders into one mesh. This is useful for static backgrounds. The 2Dtoolkit also

has sprite animations, which can be used with any sprite collections. Moreover this

plugin offers the use of User Interface (UI) components. However the most important

feature for my project was the tilemap editor. With this tool it is possible to directly paint

in the Unity editor sprites, such as in a paint program. This makes it very easy to create

a map. Moreover the tiles in the tilemap can be exchanged with prefabs. [18]

3.2 Navmesh2D

Navmesh2D is a pat

game company which

for their own game an

generate and navigat

navigation system Un

4 Harvest Surviv

4.1 Basic Structure

The game project too

used to Unity. For th

because JavaScript h

syntax. Even my last

learn the new syntax

gramming and a little

the Navmesh2D tool

First I will give a shor

Figure 1. The structur

Figure 1 shows

lider_sprites_collectio

is used for the Navm

collection prefab. The

for path finding in tha

The “plugins” folder a

the source code. The

own game scripts wh

athfinding plugin for Unity developed by Pige

ich does not have its own homepage yet. They

 and then released it to the Unity asset store. T

ate navmeshes for 2D projects, which works

nity 3D uses but which cannot be used for 2D

ive

re

took half a year to finish and it was a large a

the game I used mainly JavaScript, which I w

t has many different versions unlike C# which h

st game project was written in JavaScript. It t

tax used in Unity. Moreover I used mainly U

le bit of C# for the path finding scripts. This wa

l is written in C# and it did not have any JavaS

ort overview of the structure of the game.

ture of the “Assets” folder.

 the structure of the game. The

tiondata” has the sprite collection data for the

mesh2D and path finding. This is connected

he next folder with the name “mainscene” sav

at folder. “PigeonCoop” folder has the code of

r and the “TK2Droot” are both folders for the

he “Ressources” folder contains all graphic file

which are used in the game. The “World Dat

10

geon Coop. It is a new

ey developed the plugin

. This plugin is a tool to

s similarly to the built-in

D projects. [19]

 amount of work to get

I would call Unityscript,

h has a fixed library and

t took me some time to

Unityscript for the pro-

was necessary because

aScript converter.

e first folder “Col-

e collider tilemap, which

d with the collider sprite

aves the Navmesh data

 of the Navmesh2D tool.

e 2DToolkit and contain

iles, animations and my

ata” folder contains the

spritesheet data for th

file has data about th

scenes. One of them

the game. Additiona

played. Then there i

game from the main

and winning and “Ma

Next I will show the s

Figure 2. The structur

Figure 2 shows the s

the sounds and musi

character sprites insi

all the animations an

the pictures for the in

prefabs such as collid

tains all the monster

the plant sprites, icon

self-written code for

shop prefab. Next is

faces such as inven

won screen and lost s

the sprites which hav

folder consists of all

“UI” folder contains s

last folder “Weapons”

4.2 Map

In the game there is

zones have all differe

 the main tilemap and is connected with the wo

the 2Dtoolkit tilemaps used. The items with th

m is the main scene “Game” which contains

ally “Instructions” is the scene, which expla

 is “Intro”, which is the first introduction scr

in menu. Additionally “Lost” and “Won” are th

ainmenu” is the main menu scene.

 structure of the “Resources” folder.

ture of the “Resources” folder.

 structure of the “Resources” folder. The “Aud

sic which is used in the game. The next folder

side and its animations. Moreover the “Equip

and sprites for the equipment. The “Instructio

nstructions in the game. Then the “Map prefab

llider prefabs for the tilemaps. Additionally the

er sprites, prefabs and animations. The “Plan

ons, vegetable sprites and icons. The “Scripts”

r the game. The next folder “Shops” has all

is the “Skins” folder, which contains all GUI s

ntory, character, equipment, status, in game

t screen. The “tilemap data” folder contains da

ave been painted and the positions. The “Tile

ll the environment spritesheets which are us

some UI sprites such as the health bar for en

” contains all weapon sprites, animations and

is only one big map which is divided into six d

rent terrains, monsters and shops. For creatin

11

world prefab. The “tk2d”

the Unity sign are Unity

s everything related to

lains how the game is

creen after starting the

 the scenes for loosing

udio” folder contains all

er “Characters” has the

ipment” folder contains

tions” folder includes all

fab” folder contains map

e “Monsters” folder con-

ants” folder includes all

” folder contains all the

ll shop sprites and the

I skins for all GUI inter-

e options menu, intro,

data for the tilemaps, all

ilemap sprite collection”

sed for the game. The

 enemies and finally the

nd prefabs.

 different zones. These

ting this map I used the

2Dtoolkit to help with

using the tilemaps

spritesheets I wanted

Figure 3. The “SpriteC

Figure 3 shows the “

sheet. On the right si

the tool can cut the s

game all tiles are of t

in the whole tilemap.

choosing the value i

sprites will not be sav

is possible to move to

ith the creation of tilemaps, which is not possi

 first I had to create a tilemap sprite co

ed to use for the map.

teCollection” window.

 “SpriteCollection” window with the settings

side it is possible to choose the width and heig

 spritesheets into single sprites with a fixed v

the size of 32 width and 32 height. This has

. Otherwise it will not fit and there will be s

 it was important to click the commit button

aved in the sprite collection. After adding all th

 to the editing part of the tilemaps.

12

sible with Unity 2D. For

ollection and add the

s of the imported sprite

eight of the tiles, so that

 value. Moreover in my

s to be the same value

 some problems. After

on. Otherwise the new

 the necessary sprites it

Figure 4. The “Tilema

Figure 4 shows the til

tile map editor data

data contains the dat

saves the editor prefe

Figure 5. The Paint w

Figure 5 shows the

sprites added to the

painted on the scene

ing the delete functio

tilemap. Additionally

useful for making bloc

ap” in the Unity editor.

 tilemap settings and that it is important to add

a and the sprite collection, which was added

ata, position of the single tiles and prefabs an

ferences. [20]

 window of the tilemap.

e painting process of the tilemap. On the rig

e sprite collection and can be easily marked w

e on the left side. It is also possible to delete

tion on the top left. This makes it quite easy

y it is also possible to replace a sprite with a

locked tiles such as the mountains on the scen

13

dd the tile map data, the

d before. The tile map

and the map editor data

right side there are the

 with left click and then

e sprites just with mark-

y to paint sprites to the

 a prefab, which is very

ene in figure 5.

 Figure 6. Declaring p

Figure 6 shows how

will be replaced by th

the prefab Blocking. T

Unity and makes it p

which can be defined

be walked on by the p

On the map I use s

movement as explain

seeds and harvest cr

ing prefab, so it block

is killed, the gate will

prefab in tile map.

 to declare a prefab for the saved sprite so

 the defined prefab. In this case I replace the

. This prefab has a boxcollider2D, which is a

 possible to block other objects from moving

ed at the blocking prefab. With this the map h

e player and monsters.

 several prefabs, one for blocking player mo

ained above then plant fields, which are fields

crops on. The last one is the gate prefab, whic

cks the path of monsters and the player. Howe

ill open and the player can move on to another

14

o all sprites of this type

he mountain sprite with

a physics component in

g through the box area,

 has tiles which cannot

ovement and monster

lds the player can plant

ich is basically a block-

wever if a boss monster

er area.

Figure 7. The Map of

Figure 7 shows the r

The starting area is

Then there is the leve

is the level 3 area on

area, which is on the

level 5 and then ther

the final boss of the g

4.3 Player

The player is one the

most important featu

tem, movement, wea

movement for the pla

of the game.

 ready map of the game with the easily visib

s marked as level 1 area and is the grass ar

vel 2 area, a desert, which is on the bottom ri

on the left which contains forest. The next are

he top left. Moreover the second last area is

ere is the last area, the shadow area, which is

 game.

the most important parts of the game, so I wi

tures such as inventory system, character sy

eapon system and attack system. At first I w

layer.

15

ible six different zones.

area at the bottom left.

right. Additionally there

rea, level 4, is the snow

s the fire area, which is

 is level 6 and contains

will explain in detail the

system, equipment sys-

 will explain the simple

4.3.1 Movement an

The movement is don

the player. Additiona

player, it takes care

which change fast. A

which has to be plac

animations. The anim

which is a state mach

Figure 8. The public m

Figure 8 shows the p

and buying and the s

Figure 9. The Animat

Figure 9 shows the

player.

nd Animations

one in the “Mainchar” script, which has most

nally it is important to have an Animator as

e of the change of the animations, which are

Another component which is needed is an

aced into the animator that Unity knows the c

nimation controller has to be edited with the

chine and it is possible to define each possible

c movement variables.

 public variables for moving the player and also

 speed of the player.

ator of the player.

e animator for the player and the controller

16

t functionality related to

 a component for the

are simply three sprites

an animation controller

 conditions of changing

the “Mecanim” of Unity

le state with conditions.

lso the key for attacking

er which is also called

Figure 10. The Mecan

Figure 10 shows the

one for each directio

has to be assigned a

rows show in which d

conditions for changi

tion variable which is

for one of the movem

when the character is

Now I will show the c

of the animations.

Figure 11. Moving up

Figure 11 shows the

move_up button is pr

anim animation tool from Unity: Player movem

e different states of the player. There are five

tion and one when the player dies. Of course

 an animation clip which contains the animati

 direction the state can change and on the lin

ging the state. Additionally for the four directio

is an integer and has the values from zero to t

ement states. Moreover there is a Boolean

 is dead and then the dead animation will be p

 code in the “Mainchar” script relating to the m

p and weapon position of the player in the “Ma

e movement code for the player. In the first li

pressed. If it is true, last_key will be assigne

17

ment.

ive different animations,

se each of those states

ation. The lines with ar-

lines itself there are the

tions there is the Direc-

o three. Each number is

n “Dead” which is true,

 played.

 movement and change

Mainchar” script.

t line it is checked if the

ned with the movement

direction, which is ne

and adjust the weapo

adjust the speed for

course only the y var

the y axis, not the x a

to another integer va

played in the anima

weapon equipped an

player movement.

4.3.2 Inventory and

Next I will explain the

sists of an array of ga

Figure 12. The add_i

Figure 12 shows the

Item array. The impo

with the items of the

new item is added to

ated with the new item

ated JavaScript array

the arrays with the Ja

which is more efficien

needed for knowing which was the last key p

pon in the same direction. Additionally lines 14

or the rigidbody, which is a physics compon

ariable will get speed, because if the player m

x axis. Then in line 148 the animator compone

alue and as shown before, this has an effect

ation controller. Additionally line 150 check

nd when it is true, then it will turn the weapon

d Equipment System

he inventory and item system. The inventory

game objects and has an add_item and a de

item function of the “Inventory” script.

e short add_item function, which simply adds

portant thing about this function is that first a

e already existing items in the inventory. Then

to the new array and in the last line the invento

tem. That means that the arrays change betwe

ay and a static array. This way makes it poss

 JavaScript functionality and then change it ba

ent.

18

 pressed by the player

44 and 146 of the code

onent of the player. Of

r moves up it is only on

nent of the player is set

t on which animation is

ks if the player has a

n in the direction of the

y system basically con-

elete_item function.

ds a game object to the

a new array is created

en as the next step the

tory array will be recre-

ween a dynamically cre-

ssible to easily change

back to the static array,

Figure 13. Part of the

Figure 13 shows the

important part. Basic

the item instead of ad

the newItems array,

we found the item we

the index location. I

condition is executed

dynamic array. Then

player is updated, wh

is removed from the G

Next is the “Item” sc

cated. The “Item” scr

item. There are man

food and equipment,

e delete_item function of the “Inventory” sc

he delete_item function, which has been s

ically it is done as the add_item function jus

 adding it. The first step is to search for the ite

, which is a dynamical array as in the add_i

e would use the built-in RemoveAt function a

. If the item is found, shouldend will be set

ed and the Items array is again rebuilt with th

n the item is destroyed and in line 59 the “inv

which means, that the GUI of the inventory is

 GUI list. This is the main concept of the “Inve

script, in which all the functionality of the item

cript has several public variables, which dete

ny different types of items in the game such

t, so it is necessary to make them different.

19

 script.

 shortened to its more

just finding and deleting

item with the for loop in

item function. Then if

 and remove the item at

t to true and the next if

 the new content of the

inventory display” of the

is updated and the item

ventory” script.

tems in the game is lo-

termine the type of the

ch as weapons, seeds,

Figure 14. The “Item”

Figure 14 shows an e

the image and the to

which displays the ite

is the prefab name f

Additionally “Can Ge

Type” informs the “Eq

equipment and weap

and “Max Stack” how

the inventory. Moreo

following Booleans sh

Boolean “Planting” re

planted. Next is the “

The “Buy_value” an

“Plant_zone” refers to

“Equipment_speed” g

the player when equip

The most important

enables together with

The “first_person_pic

distance to the playe

” script in Unity for item “Stick”.

 example item which is a stick. “Item_content”

 tooltip of the item. It is important later for th

item sprite with the name and tooltip there. “W

 for the weapon which will be created when

et” shows if the item can be taken from the f

quipment” script to which slot to put the item,

apons. The “stackable” variable means if the

ow many items of the same name can be sta

eover “Stack” shows how many stacks the it

 shows if the item is an equipment, a weapon,

refers to, if the player is close enough to a field

Can_be_sold” Boolean which shows if the ite

nd “Sell_value” are the gold value for sel

 to where the plant can be planted. Moreover

” give the bonus defense and bonus speed, w

uipped.

 function for the item script is the Pickup_

ith the “first_person_pickup” script to pick up it

ickup” script basically just checks every fram

yer is smaller than the pickup distance and

20

” contains the name of

 the “inventory display”,

Weapon_prefab_name”

n the item is equipped.

 floor or not. The “Item

, which is important for

e item can be stacked

tacked into one field in

 item already has. The

n, a seed or a fruit. The

eld where seeds can be

 item can be sold or not.

elling and buying and

er “Equipment_def” and

 which the item adds to

_item function, which

 items from the ground.

ame of the game if the

d then if the “e” key is

pressed the Pickup_

to the player’s invento

Figure 15. The Picku

Figure 15 shows the

checked if the item is

already in the invento

inventory. If it gets lo

the item will be destr

ventory is not yet full

play” GUI. As well th

anymore in the game

moved outside of the

_item function of the “Item” script is called a

ntory.

up_item function of the “Item” script.

e Pickup_item function. At the beginning of

 is stackable or not. If it is stackable it will be

ntory, so that it can be stacked without creati

located, the stack variable of the item will be

stroyed. Moreover If the item is not yet in the

ull, it will be added to the inventory and added

he SpriteRenderer is disabled, so that it

e and the “Item” script will be disabled. Additi

e map.

21

and the item is moved

of the function it will be

e checked if the item is

ting a new entry in the

e increased by one and

e inventory and the in-

ed to the “inventory dis-

 it will not be displayed

itionally the item will be

Another important sc

functionality of clickin

dles all the item effec

Figure 16. First part o

Figure 16 shows the

is a seed and if it is tr

will play the “planting

planting ground is alr

the ground occupied

from the plants folder

set_grownow is call

detail later in the plan

the item when it is us

script related to items is the “Item_Effect” scri

ing items in the inventory and equipment wind

ects. It has one important function UseEffect

of the UseEffect function of the “Item_Effec

e first part of the UseEffect function. This p

 true, then it will check if the player is on the pl

ing sound” when the condition is true. Moreo

lready occupied by a plant or not. If that is not

d and then in line 55 an object will be create

er and it is given the position and scale and t

alled, which activates the growing process. Th

anting chapter. Additionally the DeleteUsedI

sed or subtracts the stack if its stack is more t

22

cript, which does all the

indow. Moreover it han-

t, shown in figure 16.

ect” script.

 part will test if the item

planting ground. Then it

over it will check if the

ot the case, it will make

ted by loading a prefab

 then the plant function

This will be explained in

Item function deletes

e than one.

Figure 17. Second pa

Figure 17 shows the

used for eatable item

planted. Moreover it c

an “eating sound”. Ad

and in line 82 it adju

over the code always

mum.

Figure 18. Third part

Figure 18 shows the

In this case it will che

Then it will sell the ite

Additionally the text

part of the UseEffect function of the “Item_E

e second part of the UseEffect function, bu

ms, such as the fruits the player can harves

it checks as well if the player is not on a shop.

Additionally the health and food is added from

justs the new player health as well on the pla

ys checks that the food and health value cann

 of the UseEffect function of the “Item_Effe

e third part of the UseEffect function, which

heck if the item can be sold and the player is

 item, the player will get the money and it will p

t at the inventory display will change for a s

23

Effect” script.

but this time this part is

est from the plants, he

p. Then the game plays

m the fruit to the player

layer health bar. More-

nnot get over the maxi-

fect” script.

h is about selling items.

 is standing on a shop.

ll play a “selling sound”.

 short duration and will

display what has bee

again.

Figure 19. Fourth par

Figure 19 shows the

equipment which will

standing on a shop

ment_on function wil

Figure 20. The “Equip

Figure 20 shows the

the equipment size i

“Cape”, “Gloves”, “Sh

in the equipment win

time and get bonuse

equipment, “Equiped

ment_fields” has field

field.

een sold and for how much gold. In the end th

art of the UseEffect function of the “Item_Eff

e last part of the UseEffect function. This i

ill be put on if clicked with the mouse and w

p. The next topic is the equipment system

ill be explained.

uipment” script in Unity.

e most important parts of the public variables f

 is six and the names are all predefined w

Shoes” and “Weapon”. These are the six differ

indow. It means the player can wear those s

ses from them. The “Gridcontent” is for the

d_items” are the items which are currently e

elds with type names of the items which can

24

 the item will be deleted

ffect” script.

s is important for all the

 when the player is not

m, where the Equip-

s for this script. It shows

with “Helmet”, “Armor”,

ferent equipment places

 six items at the same

he GUI window of the

equipped and “Equip-

n be equipped on each

Figure 21. The Equip

Figure 21 shows the

are equipment. In thi

equipment is placed,

yet and has the same

and placed in the em

Place_weapon func

copying to the equipm

that not two equipme

bonuses for defence

equipment will be add

the equipment and w

pment_on function of the “Equipment” script

e Equipment_on function, which handles e

this function at first the “equipment sound” wi

 then the equipment array will be searched a

me type as the empty equipment slot, the equ

mpty slot. Additionally if the equipment is a w

nction. Next the item from the inventory will

ment array and the equipment slot will be ma

ents of same type can be equipped at the sam

e and speed will be added to the player an

dded to the Gridcontent array, which holds

will be displayed to the player.

25

ipt.

 equipping items, which

will be played when the

 and if it is not occupied

quipment will be copied

 weapon, it will call the

ill be deleted after the

marked as occupied, so

ame time. Moreover the

nd in the end the new

s the information about

Figure 22. The Equip

Figure 22 shows the

Equipment_on func

and then it searches

When the equipmen

nuses on defence an

array with setting it to

to “not occupied” and

field, and with that the

Figure 23. The Place

pment_off function of the Equipment script

e Equipment_off function. This does basica

nction. At first it again plays the sound when

s for the equipped items and checks if the it

nt is found, which should be unequipped th

nd speed. Additionally the item will be remove

 to null. Then the Equipment_field_occu

nd in the end the Gridcontent will be chan

the item has been unequipped.

eWeapon and RemoveWeapon functions of th

26

pt.

cally the opposite of the

n unequipping the item

 item is the same type.

then it reduces the bo-

ved from the equipment

upied array will be set

anged to default for the

f the “Equipment” script.

Figure 23 shows th

Weapon function firs

weapon with the wea

new created weapon

function. Additionally

abled, which makes

Then this game objec

later destroyed. More

function, which sets

functionality. At last it

In the RemoveWeapo

“Mainchar” script that

4.3.3 Character Sys

In the next part I will e

parts in detail.

Figure 24.First part o

Figure 24 shows the

lic variables. The firs

the player is in differ

when he gains a leve

points by killing mon

between the four diff

damage to monsters.

vive more monster a

the PlaceWeapon and RemoveWeapon fun

irst gets the x and y position of the player

eapon prefab name of the item which has bee

n will be adjusted to the player’s direction w

lly this object will be activated and the “BoxC

s it impossible to damage any monsters wi

ject will be stored in the variable weapon_in_

reover in the “Mainchar” script it calls the se

s this weapon as the current weapon which

t it tells the “Mainchar” script that the player ha

pon function it just destroys the weapon ob

at the player wears no weapon anymore.

ystem

ll explain the character system for the player w

 of “Character” script in Unity.

e first part of the “Character” script in Unity an

irst four variables are the character values, wh

ferent areas. The player can put points in th

vel. This happens when the player has collecte

nsters. For each level up the player gains fi

ifferent areas. If the player puts points in stre

rs. If he chooses vitality, he will get more heal

 attacks. Additionally the planting attribute wi

27

unctions. The Place-

r and then creates the

een equipped. Next the

with the turn_weapon

Collider2D” will be dis-

without attacking them.

_hand so that it can be

et_current_weapon

h is used for the attack

as equipped a weapon.

object and notifies the

 with the important code

and shows several pub-

which show how strong

the different categories

cted enough experience

 five points to distribute

trength he will do more

alth points and will sur-

will reduce the planting

time for growing crop

food, which makes it

ables in figure 24 sh

game. Then it shows

exp which is needed

each point in the attri

Figure 25. Second pa

Figure 25 shows the

“Gridcontent” which i

the different attribute

acter script is the lev

ence is high enough t

Moreover after reach

next one.

4.3.4 Attack System

The next part is the

attack button, the pla

the character shows.

strength of the charac

Figure 26. The attac

ops. The last attribute survival gives the playe

 it easier for the player to survive in the game

how the current level of the player which is o

ws the variable “exp_level” which can be cha

ed for each level. Then the attribute factors

tributes has for the player.

part of “Character” script in Unity.

he second part of the character script in Un

 is used for the character display window in

tes with name and tooltip. The most importan

evel_up function, which checks every frame

h to level up and gives the five stat points for e

ching a level, the player will need more exper

m

e attack functionality for the player. When th

layer’s character will attack with its current w

. If the weapon hits a monster, it will get da

acter and the damage value of the weapon.

ck function call in Update function of the “M

28

yer a higher capacity of

e. Then the other vari-

 one at the start of the

hanged to increase the

s tell how strong effect

Unity, which shows the

in the game and shows

ant function in the char-

e if the player’s experi-

r each level he reached.

erience for reaching the

 the player presses the

weapon in the direction

damaged based on the

Mainchar” script.

Figure 26 shows wh

“Mainchar” script. Thi

delay is over and if th

calls the attack func

Figure 27. First part o

Figure 27 shows the

calls, which are “Coro

and then continue wh

ter those three functi

direction the player la

code is for each direc

Figure 28. Second pa

Figure 28 shows the

weapon is placed ba

again done for every

Figure 29. The anima

here the attack function is called in the Up

his code will check if the player presses the a

 the character has an equipped weapon. Then

nction.

t of the attack function of the “Mainchar” scri

e first part of the attack function which shows

routines”, in which it is possible to make the f

where they left off. This is important for this ki

ctions the weapon animation will be displayed

 last watched. In figure 27 it is only shown fo

ection.

part of the attack function of the “Mainchar” s

e second part of attack function, which sho

ack to the normal sprite after the attack anim

y direction.

ator_time function of the “Mainchar” script

29

pdate function of the

 attack key, if the attack

en it plays a sound and

ript.

s the first three function

 function wait for a time

kind of functionality. Af-

ed depending on which

for the left side, but the

script.

hows the code how the

imation. Of course it is

pt.

Figure 29 shows the

duration and then

The weapon_colli

almost the same cod

tion, the difference is

which makes it p

stop_move_player

true or false, which m

The next point is how

character can attack

Figure 30. The OnTri

Figure 30 shows the

with a trigger enters t

if the object it collides

So if the weapon coll

tell the function how m

Figure 31. The damag

he animator_time function which enables

n disables it again, so that the animation is sto

ider_time and the stop_move_player_

ode as this function. In the case of the weapo

 is, that the function just activates and disables

possible to hit monsters. Moreover the

r_time function is, that it changes the st

 makes the character unable to move for the du

w the character can damage the monster. No

k but not yet how the damage gets transferred

iggerEnter2D function of the “Weapons” s

e OnTriggerEnter2D function, which check

s the area of the weapon and collides. In this c

es with is tagged as “Enemy”, which are the m

llides with a monster, it will call the damage_m

 much damage the monster receives.

ge_monster function of the “Monster” script

30

es the animator for the

topped after the attack.

_time function have

pon_collider_time func-

s the “BoxCollider2D”,

he difference in the

top_move variable to

 duration of the attack.

ow it is known how the

d to the monster.

script.

cks if a “BoxCollider2D”

s case it will collide only

monsters in the game.

monster function and

ipt.

Figure 31 shows the

sure the monster is n

and got_damaged is

in the game. Addition

the function call.

Next I will explain how

the monster touches

lider2D” collides with

Figure 32. The OnCol

Figure 32 shows the

object collides with th

tion is called in the “M

Figure 33. The damag

he damage_monster function, which has at

 not hit in each frame from the weapon. Then t

is set to true, which then displays the damage

onally the health of the monster is reduced by

ow the character can be damaged by monster

es the character, or in more detail, when th

th the character’s “BoxCollider2D”.

llisionEnter2D function of the “Mainchar

e OnCollisionEnter2D function, which is

 the character and it is tagged as “Enemy”. Th

Mainchar” script with the damage of the mons

ged function of the “Mainchar” script.

31

at first a timer to make

n the hit sound is played

e_amount on the GUI

 by the damage sent by

ers. This happens when

the monster’s “BoxCol-

ar” script.

is called when a game

hen the damaged func-

nster.

Figure 33 shows the

the character collides

hit yet for a certain a

sound will be played

damage on the GUI w

zero it will play anoth

of the player will be

defense of the playe

Moreover if the playe

function play_playe

the health of the play

char” script and then

34.

Figure 34. Health che

Figure 34 shows the

zero or less. Then it

variable to true, whic

character’s death sou

just waits for the ani

screen.

These were the most

item system, equipm

tions and player dea

fruits.

e damaged function in the “Mainchar” script,

es with the monster. At first it makes sure the

 amount of time. Then if the condition is fulfille

ed and the got_damaged variable will be se

I with the damage of damage_amount. Additio

ther sound than when the player is hit with dam

e reduced by the damage of the monster, wh

yer, which can be obtained by equipping ar

yer’s health is less than 20 percent of the max

yer_almost_dead will be called, which play

ayer is zero, it will be checked in the update

n will change the game to the “Lost” screen. T

heck in the Update function of the “Mainchar”

e code which checks each frame if the charac

it sets the animator to the death animation an

hich makes sure that this condtion is not ent

ound is played and the “Coroutine” dead is sta

nimation to play and then changes the gam

st important aspects of the character with mov

ment system, character system, attack functi

ath check. The following section 4.4 is abou

32

, which is called when

he player has not been

illed, the monster attack

set to true to show the

itionally if the damage is

amage. Next the health

hich is reduced by the

armor and other items.

aximum health, then the

ays a warning sound. If

 function of the “Main-

. This is shown in figure

 script.

cter’s health is equal to

and sets the end_game

ntered again. Then the

tarted. This “Coroutine”

me scene to the “Lost”

ovement, inventory and

ctionality, damage func-

out planting, plants and

4.4 Planting

In this section all rele

explained. The plantin

where it is possible to

After some time the

player to harvest it wi

Figure 35. The OnTri

Figure 35 shows the

plants can be plante

body” enters the area

tagged with the Strin

player enters the are

“Mainchar” script, wh

the code changes th

notifies the “Mainchar

the field with the Stri

on. The other functio

called when the playe

the “Mainchar” script

Next when the player

it will call the UseEff

section 4.3.2, howev

were not explained ye

levant functions and functionality of planting, p

ting works in the following way. The player ha

 to plant and then clicks the left mouse button o

e plant will grow, and when it is ready, it w

with the press of a button, which is the “e” key.

iggerEnter2D function of the “Ground” scr

e code in the “Ground” script, which is attac

ted on. The OnTriggerEnter2D function is

ea of the field. In this case with the condition

ring player has an effect on the ground field

rea of the field, it will add one to the plan

hich notifies it that the player is on the growa

the plant_area variable into the zone in w

ar” script which plants can be planted on the f

tring “on”, which marks the field which the pla

tion OnTriggerExit2D is the opposite of the

yer leaves the area of the field and then the

t is subtracted by one and the tag on the field

er clicks with the left mouse button on the see

fect function. Most parts of this function we

ever the set_grownow function and how th

 yet and will be explained next.

33

, plants and fruits will be

has to move on the field

n on the seed to plant it.

will be possible for the

.

cript.

ched to the tiles which

is called when a “rigid-

n only the game object

ld. Moreover when the

nting variable in the

wable field. Additionally

 which the field is. This

 field. The last line tags

plant should be planted

the function before. It is

e planting variable in

ld is removed.

eed in the inventory UI,

ere explained before in

the plants are growing

 Figure 36. The Upda

Figure 36 shows the

every frame of the ga

true when the set_

improved_grow con

improved his planting

function is called, whi

Figure 37. The grow

Figure 37 shows the

At first a timer is nee

first condition checks

the first phase, it

grow_ready variabl

are. Additionally that

ing over one of the g

same as the condition

ate function of the “Plants” script.

he Update function of the “Plants” script. T

game and checks if the grow_now variable is

_grownow function is called, as mentioned

ondition will change the growing time of the p

ing attribute, which he can do when he level

hich can be seen in figure 37.

 function of the “Plants” script.

e grow function of the “Plants” script, which m

eeded to make the plant grow in a certain am

s if half of the growing time of the plant is reac

t will change the plants sprite to the se

ble is incremented, which tells in which grow

t makes sure that the growing proceeds step

 growing phases. Furthermore the second c

ion before, just that it will replace the sprite of t

34

 This function is called

is true, which becomes

d in section 4.3.2. The

 plant, if the player has

els up. Then the grow

 makes the plant grow.

mount of seconds. The

ached. When it is still in

econd sprite and the

owing phase the plants

p by step without jump-

condition is almost the

f the plant with the third

sprite when the whol

In the end, the last co

already grown.

Then back at the Up

when the player is on

the keyboard.

Figure 38. The creat

Figure 38 shows the

of the plant is created

the plant and then ad

rything is done the pl

plant was before. Th

discussed in section 4

4.5 Monsters

4.5.1 Basics

In this section I will

game. There are thre

The hunters are only

eaters are focusing o

bosses are bigger an

try to kill the player if

the Unity built-in Mec

ole growing time is over and if the first phase

 condition makes sure that the plant is not grow

pdate function in figure 36, the create_fr

on the field with the ready grown plant and the

te_fruit function of the “Plants” script.

e create_fruit function of the “Plants” scr

ed. At first it creates a clone of the fruit prefab

adjusts the location and scale of the new crea

plant will be destroyed and only the fruit is on

These are the basics of the planting mechan

n 4.5.

ll explain the most important functionalities o

hree different types of enemies: hunters, plan

ly interested in the player and try to kill him.

 on eating plants and have no interest in th

and stronger and usually protect the gate to a

 if he attracts their attention. At first I will sho

canim tool.

35

e had been completed.

rowing again after it has

ruit function is called

he “e” key is pressed on

cript with which the fruit

b with the fruit name of

ated object. When eve-

n the ground where the

anics. Monsters will be

 of the monsters in the

lant eaters and bosses.

. Additionally the plant

the player himself. The

 another area and only

ow the animations with

Figure 39. The Mecan

Figure 39 shows the

imations in each dire

same as for the playe

Figure 40. The Updat

anim animation tool from Unity: Monster move

e animations for the monsters. Each monster

irection, which can change between each oth

yer movement, which has been shown in secti

te function of the “Monsters” script.

36

vement.

er has four different an-

ther. So it is almost the

ction 4.3.1.

Figure 40 shows the

part of the script. In th

than or equal to zero

gold variable and the

by the monster’s valu

back to normal if the

ster’s name contains

then the code will

play_music functio

tionally it will change

only once. The next f

at the boss fight. For

gate has to be reope

function from the “Ma

then destroys the mo

4.5.2 Path Finding

Another important pa

Navmesh2D. This too

walked on and which

on each other, one of

the monsters.

Figure 41. Second tile

e Update function of the “Monsters” script,

 the first part of the code it is checked, if the m

ro. If the condition is fulfilled then the health

he exp variable in the “Mainchar” script are ch

lue. Moreover the next part of the code is abo

e monster is a boss and is dead. So the condi

s the String “boss” and the Boolean once_ch

ill find the game object with string “Gam

ion from this object with the variable which sh

ge the Boolean variable to true so that the m

t five conditions are opening the gate again, w

or this the condition checks the name of the b

pened. The last part of the code calls the p

Mainchar” script, which plays a sound when

onster.

part of the monsters is the path-finding system

ool is used combined with 2Dtoolkit to mark th

ch are blocked for the monsters. So basically

of which is the visible map and the other one

tilemap for path-finding.

37

t, which is the essential

 monster’s health is less

h is set to zero and the

changed and increased

out changing the music

dition is that if the mon-

hange_music is false,

me” and will call the

should be played. Addi-

 music will be changed

 which has been closed

 boss to be sure which

play_monster_dead

n the monster dies and

tem, which is done with

 the areas which can be

lly I create two tilemaps

e is for the navigation of

Figure 41 shows the

cannot be walked on

have the layer “Block

portant for the next st

Figure 42. Navmesh2

Figure 42 shows the

layer settings, which

Then it is necessary

blocked. In this case

struction” layer. More

precise for the devel

subdividing circle col

tionally the “Float Pre

calculated with. It nee

“navmesh” will be cre

big the padding is aro

colliders are. Next is

are miter, square and

better performance. “

he second tilemap, which contains red for a

n and a grey area, which can be walked on. E

cked” and each of the grey objects the layer “

 step with Navmesh2D.

h2D options in Unity.

e Navmesh2D options in the Unity editor. Th

h shows all the Unity default layers and all m

y to mark the layer which can be walked on a

e it is “Walkable” for the “Walkable” layer and

reover “Generation Settings” are used to make

eloper’s needs. The “Circle Subdivision Facto

olliders and the higher the value the less is

recision” defines how many decimal places th

eeds to be the higher the smaller the colliders

reated correctly. Moreover the “Obstruction P

ound the colliders. In this case it is zero to be

is the “Join Type” which defines how the colli

nd round to choose from but in this game the s

“Bake Grid” enables to bake the navmesh, wh

38

a blocked area, which

Each of the red objects

“Walkable”. This is im-

he first part shows the

manually added layers.

 and the layer which is

d “Blocked” for the “Ob-

ke the “navmesh” more

tor” is the multiplier for

s the subdivision. Addi-

 the float operations are

rs are, to make sure the

 Padding” defines how

be exactly as big as the

llider edges are. There

square type is used for

which means it is saved

in a data file which th

size of the tiles in the

for the used options a

ing the navmesh. Th

this project where it ta

Figure 43. Navmesh2

Figure 43 shows the

the area in which the

sters cannot walk on.

a problem for the bal

path. Next I will expla

Figure 44. The “Path

 then does not need to be calculated again a

he map. With the current navmash2D propertie

s and in the end it is necessary to click the ba

his process can take a long time, if the map

t takes arround 30 minutes to finish baking.

h2D in map.

e ready baked “navmesh” in the map, in whic

he monsters can move and the mountains is

n. This limits monsters from entering another

alance of the game. Above I explained how to

lain how the path-finding works with the scripts

th Follower” script in Unity editor.

39

 and the grid size is the

rties is a short summary

ake button to start bak-

p has a big area, as in

hich the marked area is

is the area where mon-

er area, which would be

to create the navigation

pts.

Figure 44 shows the

“Pathing Target” is th

of the variables. The

the start of the game.

and the “Max_distan

monster until the mo

values which define i

and y values specify

script is in C# code.

Figure 45. The Start

Figure 45 shows the

if the monster attacks

monster will be the p

tance between the m

Figure 46. First part o

Figure 46 shows the

this part it shows th

player. So in the first

e “Path Follower” script in the Unity editor w

the goal of the monster to move to, which is th

e default value is none because not all monste

e. Additionally the speed value defines how fa

ance” value is the maximal distance betwee

onster still follows the target. The next two a

 if the monster attacks the player or plants. M

ify the area in which the monster moves ran

t function of the “Path Follower” script.

e Start function of the “Path Follower” script.

ks the player or not. If the condition is fulfilled

 player. Then the next lines of code are defi

monster and the target, if it has not been set ye

t of the Update function of the “Path Follower”

e first part of the Update function of the “Pa

the functionality of the monsters which attac

rst line of code it checks if the monster attack

40

with the attributes. The

 the most essential part

sters have a target from

 fast the monster moves

een the target and the

 attributes are Boolean

 Moreover the random x

andomly. The following

t. In this script it checks

 then the target for the

fining the maximal dis-

 yet.

” script.

Path Follower” script. In

ack plants and not the

cks plants and if that is

true, it will find all ga

plants array. Additi

distances between th

found, it will set this p

Figure 47. The OnTr

Figure 47 shows the

ject tagged as “Enem

true. So when monst

eating sound” will be

growing will be set ag

again. In the end the

Figure 48. Second pa

Figure 48 shows the

This part of the scrip

game objects in the game tagged “Plant” and

itionally if one or more plants have been fou

 the monster and all found plants and then wh

 plant object as a target.

riggerEnter2D function of the “Plants” scri

e OnTriggerEnter2D function, which is cal

my” and if the Boolean of the “Monster” scrip

sters which have plants as targets collide with

be played in the “Monster” script. The groun

again to unoccupied so that new plants can b

e plant will be destroyed.

part of the Update function of the “Path Follow

e second part of the Update function of the

ript shows what happens when the monster h

41

nd saves them into the

und, it will calculate all

hen the closest plant is

ript.

alled when a game ob-

ript attack_plants is

ith the plant, a “monster

und where the plant is

 be planted on this field

ower” script.

“Path Follower” script.

r has a target. If this is

fulfilled, then the dist

then another conditio

ster. When this is true

contains boss, which

the game object and

gate, which will be cl

the final boss monste

monster is already fo

monster follows. Mor

calculated path over

ues the monster and

set to true and the

once_path variable

the player moves, the

before. In this case th

culates a new path fo

the movement of the

Figure 49. Third part

Figure 49 shows the

part is activated whe

no path yet. Additiona

thermore if the monst

istance between the monster and the target w

tion will check if the distance is in the maxima

ue there will be another condition check. If the

h means it is the final boss monster and so it

d defines the boss music, speed maximal dist

closed and disables the “Path Follower” script

ter, then it will check the once_path Boolea

following a path, because there can be only o

oreover if the monster does not have a path

r the Navmesh2D function GetSmoothedPat

d the target’s position. Additionally the once_

en the “Coroutine” path_delay will be ca

le again to false after a short time. This is done

the monster will walk the whole way where the

 the monster would never catch the player. So

 for the monster in a short time gap to make

e player.

rt of the Update function of the “Path Follower

e third part of the Update function of the “Path

en the target is not in range of the monster a

nally it calculates a random position for the m

ster has no target, it will move randomly as sh

42

t will be calculated and

al distance of the mon-

he name of the monster

it gets the script boss to

istance, and defines the

ipt. If the monster is not

an, which defines if the

 one path at a time the

th yet, then it will get a

th, which gets as val-

_path variable will be

called, which sets the

ne because otherwise if

the player was standing

o this code always cal-

e the monsters react to

er” script.

th Follower” script. This

 and if the monster has

monster to walk to. Fur-

shown in the code.

Figure 50. Last part o

Figure 50 shows the

part contains the mo

has a path and the

monster and lets it m

with deltaTime, wh

conditions are chang

The last if condition c

smaller than 0.01 “Flo

in the end changes th

or no path is assigned

Another script which

almost same as the

boss monster when t

follows until it or the p

Figure 51. Changes f

t of the Update function of the “Path Follower”

e last part of the Update function of the “Path

ovement and animation changes. At first it c

e path has at least one node. Next it change

 move towards the next node of the path with

hich moves depending on time not frames. M

ging the monsters animation depending on t

 checks if the distance from the monster to th

loat” and then removes this node of the path.

 the once_path variable to false, if the end o

ed to the monster.

h is important for boss monsters is the “Boss

e “Path Follower” script but it changes the ma

 the player once comes too close to it and th

 player dies.

 from “Path follower” script in the “Boss” script

43

” script.

th Follower” script. This

it checks if the monster

ges the position of the

ith the speed multiplied

 Moreover the next four

 the direction it moves.

 the node of the path is

th. The “else” statement

d of the path is reached

ss” script. This script is

aximal distance of the

 then the boss monster

ipt.

Figure 51 shows the

changes are that if th

sic once. Moreover it

that the player canno

the maximal distance

monster. If the playe

figure 40 and a new

script.

Figure 52. The Updat

Figure 52 shows the

one boss in the boss

the “Boxcollider2D” o

ics, are disabled. This

area.

4.5.3 Health Bar Sy

Another important sc

health bar showing up

Figure 53. Health bar

e changes in the “Boss” script from the “Path

the player is in the range of the boss monster,

 it activates the gate defined in the Unity edit

ot leave this zone before defeating the boss. A

ce to 50 which is the whole area, so the pla

er kills the monster the old gate will reopen,

 gate will open to the next area, which is sho

te function of the “Gate” script.

e Update function of the “Gate” script. The ga

s variable. So if the boss is equal to null, wh

of the gate and the “MeshRenderer”, which d

his results in an open path for the player to wa

ystem

script is the “texture follower” script, which

 up over the monsters and the player.

ar of monster in Unity editor.

44

ath follower” script. The

, it starts the boss mu-

ditor, which makes sure

. Additionally it changes

layer has to defeat the

, which can be seen in

hown next in the “Gate”

gate object is related to

which means it is dead,

 draws the gate graph-

walk through to the next

h is necessary for the

Figure 53 shows the

graphic “Healthbar_fu

red and the “Pixel Ins

the rectangle. The fo

scale. Additionally th

target, the texture is f

Figure 54. The Updat

Figure 54 shows the

variable wantedPos

be done because Un

system, screen point

change the location t

is put to the position o

Figure 55. Part of the

Figure 55 shows the

This code checks at

player. Then if it is a

true, then the width o

the current health div

monster but the play

player got damaged a

e health bar object in the Unity editor. The

full” as texture, which is just a red rectangle. T

Inset” defines the position with x and y and th

four border attributes define the pixels which a

the “Texture_follow” script has the “Target”

s following.

te function of the “Texture_follow” script.

e Update function of the “Texture_follow” scri

 is assigned with the translated position of t

nity uses three different coordinate systems,

int system and view-port system. So it is som

 to a different coordinate system. In the end t

n of the monster.

e OnGUI function of the “Texture_follow” scrip

e important part of the OnGUI function of the “

t the beginning if this script is a component o

 a monster and the variable got_damaged in

 of the GUI texture is changed to the percent,

ivided by the maximum health of the monster.

yer, then it is done the same way. If the “Ma

and then the health bar is adjusted.

45

e “GUITexture” has the

. The “Color” attribute is

 the width and height of

 are not affected by the

t” variable which is the

cript. In this function the

f the target. This has to

s, which are world point

ometimes necessary to

 the health bar position

ript.

“Texture_follow” script.

t of a monster or of the

in the Monster script is

t, which is calculated by

r. Moreover if it is not a

ainchar” script tells the

4.5.4 Spawner

The last part of the m

with the “Spawn_mo

Each area in the gam

always the same num

monsters of the area

Figure 56. The “Spaw

Figure 56 shows the

refers to the number

the delay in seconds

adjusted to size two w

which are in the start

tor, which define the

tionally the “Spawn_

abled, then deletes a

Figure 57. The Updat

 monster section is about the monster spawn

onster” script spawns the defined types of m

ame has one monster spawner, which make

mber of monsters in the same area and create

a randomly.

awn_monster” script in the Unity editor.

e variables of the “Spawn_monster” script. T

r of monsters which should be spawned and

s between creating the monsters. Moreover th

 with two different monsters in this case it is th

rting area. The next four values are for the ran

e minimum and maximum, where the monst

_active” variable activates to spawn the mon

 all monsters from this spawner.

te function of the “Spawn_monster” script.

46

wner. This game object

 monsters and number.

kes sure that there are

ates the different kind of

 The “Number” variable

d the “Delay” variable is

 the “Monsters” array is

 the “Bat” and the “Rat”,

andom position genera-

sters can spawn. Addi-

onsters and if it is dis-

Figure 57 shows the

first condition checks

maximal number of m

checks first with the c

loop is executed. Thi

means the monster is

be spawned at the pla

Figure 58. The Spawn

Figure 58 shows the

first the timer is initial

bigger than the “dela

the monsters array is

as seen in figure 56

checked if the random

top layer tile, which m

with the monster pre

monster is inserted in

tion. Furthermore the

adjusted to the curren

e Update function of the “Spawn_monster” s

ks if the number is not reached yet and then s

f monsters has not been reached yet. The se

condition if the spawner is active and if this i

his checks if one element of the monster list

 is dead. Additionally when this is the case, th

place in the array where the monster died.

n function of the “Spawn_monster” script.

e spawn function of the “Spawn_monster” sc

ialized and then in the condition is checked if t

lay” variable. Then a random number between

 is created, which defines the type of monster

6. Additionally a random x and y value are c

om position is inside the tilemap and that it is

 means a blocked tile. If this is the case, a ne

refab and the random x and y positions. More

 into the Monster array at the position defined

he count variable is incremented by one and

ent time.

47

script. In this code the

 spawns monsters if the

econd part of the code

s is fulfilled, then the for

t is equal to null, which

then a new monster will

script. In this function at

if the “timer1” variable is

en zero and the size of

r for example rat or bat

 created and then it is

 is not on any tile with a

new monster is created

reover the new created

d at the call of the func-

nd the start_time is

At any time of the g

done because of perf

another zone, which

“Spawn_activate” scr

Figure 59. The “Spaw

Figure 59 shows th

“Old_spawner” varia

“New_spawner” varia

the “Boss_name” as

In the Update functio

vator is only active wh

Figure 60. The OnTri

Figure 60 shows the

which is called when

already dead. Then i

one. Next it calls th

“Spawn_monster” sc

which was not active

from one zone to an

 game there is only one spawner active at th

rformance reasons. So in the map there is a t

h changes the spawning of the monsters. T

cript, which is explained next.

awn_activate” script in the Unity editor.

the public variables of the “Spawn_activat

riable, which is the spawner from the

riable, which is the spawner from the new ar

s variable which is the boss, and which is betw

tion of the “Spawn_activate” script it is ensure

when the boss is already dead.

iggerEnter2D function of the “Spawn_activ

the OnTriggerEnter2D function in the “Sp

n the player is in the area between the two z

 it checks which of the spawners is active, th

 the delete function, which deletes the m

script of the active spawner and then activat

ve before. This is a toggle function, so every

nother, it changes the active spawner and th

48

 the same time. This is

a trigger at each gate to

. This is done with the

ate” script. It has the

e old area and the

area. Additionally it has

tween those two areas.

red that this spawn acti-

tivate” script.

Spawn_activate” script,

 zones and the boss is

the old one or the new

 monster list from the

ates the other spawner

ry time the player goes

there will be only mon-

sters in the same are

are not spawning.

4.6 Audio

This section shows h

The music and soun

file size is not too big

“Audio Source” comp

Figure 61. “Audio Sou

Figure 61 shows the

dio Clip” is the audio

component if the “Pla

audio file will loop en

the volume and the p

the “Zone1” music wh

Figure 62. The Play_

Figure 62 shows the

for changing the mu

rea as the player. The only exception is of cou

 how the sound files and music files are imple

nd files are all in the OGG compressed form

ig. For playing sounds and music in Unity it is

ponent at the game object which should play

ource” in the Unity editor.

e “Audio Source” component of the “Game” g

io file, which can be started to play in a scri

lay On Awake” variable is true. Moreover it ca

endlessy with the variable “Loop”. Here it is a

 pitch of the sound. In this case this “Audio So

when the game is started.

_music function of the “Music” script.

e Play_music function in the “Music” script.

usic of the “Audio Source” of the game ob

49

ourse the bosses which

plemented in the game.

mat, which ensures the

is necessary to have an

y the audio file.

game object. The “Au-

cript or directly with the

 can be chosen that this

 also possible to define

Source” will start to play

t. This function is called

object, for example the

“Game” object, which

be changed to anoth

changed to the new m

makes the sound file

“Audio Source”. Next

zones.

Figure 63. The OnTri

Figure 63 shows the

music change script

player steps into the

which is playing at th

boss music. The bos

those two conditions

explained in section 4

4.7 User Interface

In the game there are

shows information ab

which shows the wor

window which shows

is the inventory wind

thermore another wi

menu window and at

they are done in the g

ch plays the background music. With this scrip

ther music file. In the code the audio clip of

 music and so replaces the current music with

ile loop and the Play function starts to play t

xt will be shown how the game music is cha

iggerEnter2D function of the “Music_chan

e OnTriggerEnter2D function in the “Musi

t is connected with an area located between

e area, it will call this function. At first the cod

the moment is not the same as the new musi

ss music always plays when the player figh

s are met, then the new music will be played.

 4.7.

re a large number of windows. There is the ch

about the attributes of the character, then th

orn equipment and weapon. Moreover anothe

s the players health, food, gold and experien

dow which shows the carried items, the play

window is the sound and music button wind

at last the shop window. All those windows w

 game.

50

ript the music can easily

f the “Audio Source” is

ith the new one. Then it

 the music file from the

hanged for the different

nge” script.

sic_change” script. The

en two zones. So if the

ode checks if the music

sic and that it is not the

ghts a boss monster. If

. User Interface will be

character window which

 the equipment window

er window is the status

ence. Additionally there

ayer has with him. Fur-

ndow and the in-game

 will be shown and how

Figure 64. The OnGUI

Figure 64 shows the

called every frame of

OnGUI function is for

the function it is ma

which ensures they s

defined for this GUI. A

is pressed for openin

plays Gridcontent

ton of the array is d

I function of the “Character” script.

e OnGUI function of the “Character” script. T

 of the game, so it is quiet similar to the Upda

or drawing the interface or other GUI element

ade sure, that all the UI elements adjust to

y stay the same size in relation to the resolu

I. Additionally the Update function of this scrip

ing or closing the character window. If the w

 which is the content of a button array. So th

defined with the String and the value which

51

 The OnGUI function is

ate function. Just the

nts. In the beginning of

to the given resolution,

lution. Then the skin is

ript checks if the “c” key

 window is open, it dis-

the content of each but-

h is transformed into a

string. The next line d

tion. Moreover the ne

condition checks if it

adds a point to the a

attributes as well in th

Figure 65. The DoMyW

Figure 65 shows the

elements of the wind

with the content “Divi

label is created with t

other divider. Moreov

which is used to defin

the remaining level u

ferent buttons.

 defines the window with a GUI window and th

next four conditions are about the different a

 its button has been clicked and then if there

 attribute and calls the function with SendMe

 the “Mainchar” script.

Window function of the “Character” script.

e DoMyWindow function in the “Character” sc

ndow. At first it inserts space into the layout t

ivider”, which is defined in the skin and which i

h the “Character Level” and the value, which is

over the next line creates the button array and

fine which button is pressed. Additionally ther

 up points. The last condition shows tooltips if

52

 the DoMyWindow func-

 attribute buttons. Each

re are levelup points, it

essage to update the

cript, which defines the

t then it creates a label

is a line. Then another

 is closed then with an-

d defines selGridInt

ere is another label with

 if hovered over the dif-

Figure 66. Part of the

Figure 66 shows in th

it checks if the windo

one of the equipment

Next the code check

equipped item is a w

the weapon. Addition

the inventory and the

function. The DoMyW

headline label betwe

three additional label

char” script. The toolt

e OnGUI and DoMyWindow function of the “Eq

 the beginning the OnGUI function of the “Equ

dow is open and then creates the window. A

nt buttons has been clicked and if the button h

cks if the inventory is not full yet. If this is the

 weapon, then it calls the RemoveWeapon fun

nally the pickup function of the item is called,

then the equipment is put off with the call of

Window function shows the configuration of

een two divider labels. Then there is again

els with attack, defense and speed with the v

oltips are displayed when the mouse is hovere

53

Equipment” script.

quipment” script. At first

 Additionally it checks if

n has an equipped item.

he case it checks if the

unction, which removes

, which puts the item in

f the Equipment_off

of the window with the

in the button array and

 values from the “Main-

red over the buttons.

Figure 67. Part of the

Figure 67 shows part

If the window is open

maximum food, gold

Then the window for

function. In this funct

the labels and display

e OnGUI function of the “UI” script.

rt of the OnGUI function which is for the status

en, the text strings are filled with the health, m

ld, current experience and the experience n

r the status window is created with the conten

ction all the strings which have been created

layed.

54

tus window in the game.

 maximum health, food,

 needed for next level.

ent of the DoMyWindow

ed before are written in

Figure 68. The butto

Figure 68 shows the

sound button and mu

and then there is a

clicked the condition

check if the sound is

date_audiosource

the toggle_all_so

tons from each other.

sic is on already and

activates it.

on_window function of the “UI” script.

e button_window function in the “UI” scrip

music button window. In the beginning there

 condition with a button with the label “So

n is fulfilled and toggles the sound. For togg

 is on or off at the time the button is clicked

es function is called, which updates all the au

ounds function is called. Then another labe

er. Moreover if the music button is clicked, it ch

nd then gets the “Audio Source” of this game

55

ript, which contains the

e are two empty labels

ound”. If this button is

gling it is necessary to

d. Additionally the up-

 audio sources and then

bel divides the two but-

 checks again if the mu-

e object and mutes or

Figure 69. The updat

Figure 69 shows th

date_audio_sourc

game and saves the

builtin array system.

and puts it out of the

abled when the soun

is on and then it mute

off, it will activate all “

te_audio_sources and toggle_all_sou

the two functions, which have been used

ces function the code searches for all the “A

hem in an “Audio Source” array, which is the

. Additionally it searches for the “Audio Sourc

he array. This has to be done so that the mu

nd is disabled. Then in the next function it firs

utes all “Audio Sources” which are in the array

“Audio Sources”.

56

ounds function.

d before. In the up-

“Audio Sources” in the

then translated into the

rce” of this game object

usic would not be dis-

first checks if the sound

ay. In case the sound is

Figure 70. OnGUI fun

Figure 70 shows the

the items in the inven

tent.text is writte

stackable but is only

displayed. Additionall

over in the next few

and then calls the Us

in section 4.3.2.

unction of the “inventory_display” script.

e OnGUI function of the “Inventory_display” sc

entory array have stacks. If this is the case, th

ten the number of the same items as a strin

ly one item, it writes the name on the string, th

ally when the display window is open, the win

w lines it checks if any of the items is clicked

seEffect function in the “Item_Effect” script

57

script. At first it checks if

then into the Gridcon-

ing. Then if the item is

 that there is no number

indow is created. More-

d and if it can be used

pt, which was explained

Figure 71. Several im

Figure 71 shows the

The add_content_

in the Pickup_item

remove_content_g

is searched for the g

index and the array i

the layout for the inv

is embedded betwee

and if an item is sold

of the the inventory w

important functions of the “inventory_display” s

e code of other important functions of the “Inv

_grid function adds a new item to the butto

m function, which has been explained in se

grid function removes one item from the bu

 given content and if a match is found, the ma

 is rebuilt in the end. Then the last function D

ventory window. It has a headline with the na

en two “Dividers”. Furthermore the button arr

ld, a text is written at the tooltip window, whic

 window.

58

script.

ventory_display” script.

ton array. This is called

section 4.3.2. Then the

utton array. Moreover it

atch is removed at the

DoMyWindow contains

name “Inventory” which

rray is drawn after that

ich is located at the top

Figure 72. The DoMyW

Figure 72 shows the

creates the in-game

shows the main func

bedded of two “Divide

ton which stops the b

cation.LoadLevel

tionally the second b

calls the Applicati

the game. The last bu

the game. Moreover t

Window of the “Optionsingame” script.

e DoMyWindow function of the “Optionsingam

e menu, which pauses the game when it is

nctionality of the script. As before it has “Opti

iders”. Then there are three buttons. The first

 break and sets the time back to one and uses

l which calls the scene with the name defin

 button is the end game button. When the bu

ion.Quit function, which is an Unity integrat

 button is the cancel button, which closes the w

r the last line of code makes the window dragg

59

ame” script. This script

 is opened. This figure

ptions” as headline em-

t is the main menu but-

es the function Appli-

fined in brackets. Addi-

button is clicked, it just

rated function for exiting

e window and continues

ggable.

Figure 73. Part of the

Figure 73 shows the

the code creates aga

is clicked by the play

has enough money a

item which has been

adds this item to the

the item and a soun

short time the item w

button is again deact

more in this script it i

“b” key, the shop will

This section gave an

the next section the d

plained.

e OnGUI function of the “Shop” script.

e important part of the OnGUI function of the

gain the window and then it checks which butt

ayer, which means which item the player want

 and the item of the player is not yet full, it c

en clicked. Additionally the Pickup_item fun

e inventory array. Next the player’s gold is re

nd is played. Moreover the tooltip is change

 which has been bought and how much gold

ctivated as well if the player did not have en

it is checked if the player is in the shop or not

ill open.

n overview over the UI and how it was implem

e different game scenes briefly and how they

60

he “Shop” script. At first

tton of the button array

nts to buy. If the player

t creates a clone of the

unction is called, which

reduced by the price of

ged and it shows for a

d it cost. In the end the

nough money. Further-

ot and if he presses the

mented in this game. In

y were used will be ex-

61

4.8 Game Scenes

The game scenes are an essential part of the game. In this game there are six scenes

which are used. There is the game scene, which is the main part of the game. All the

game related content is in this scene. Then there is the Instructions scene, which ex-

plains the game mechanics to the player with text and pictures. Additionally there is the

Intro which is another scene and displays the introduction story after starting the game.

Then there is the win and lost screen which have also their own scenes, which are

changed to when the game is over. Moreover the last scene is the main menu scene,

which is the start screen of the game with three buttons start game, instructions and

quit game.

5 Results and Discussion

The result of this project is a working Unity 2D game, which was developed for the

Windows platform. The project itself took approximately six months, included with find-

ing software, platform, graphics, sound, music and tools. Moreover doing tutorials and

learning how to use the Unity engine and third party tools such as 2D toolkit and

Navmesh2D were included in this time. In this chapter some pictures of the game will

be shown and advantages and drawbacks of using Unity 2D for development of a 2D

game.

For a better insight in the development process of this game project figure 74 shows

the whole workflow in a Gantt chart.

62

Figure 74. Gantt chart of the project.

Figure 74 shows the Gannt chart of the development progress of the game project. It

began in March with ideas of the game and the platform. Moreover it took quite an

amount of time for me to actually start with the project itself. After approximately two

months of planning and doing tutorials the real project started with first creating the

map. That was followed mainly by the programming for the player and the inventory

system and other related features. Next was the Planting system and Monster imple-

mentation which took quite some time. Furthermore path finding took a longer time

than expected even with the use of a third party tool. User interface and audio were

slightly difficult to implement. In the end after the map design was done debugging and

balancing took a longer period, even I was always debugging during the whole devel-

opment process. It took approximately half a year to finish the project. Next the game

itself will be shown with the main menu and a short insight in the ready game.

14

7

7

7

28

7

14

14

7

14

14

14

7

7

21

14

1-Mar 22-Mar 12-Apr 3-May 24-May 14-Jun 5-Jul 26-Jul 16-Aug 6-Sep

Game type

Decide Platform

Decide IDE

Find tools

Tutorials

Map

Player

Item system

Planting

Monsters

Path finding (AI)

User interface

Audio

Map design

Debugging

Balancing

Figure 75. Main menu

Figure 75 shows the

With Start Game the

structions button is cl

player the basics of t

clicked, the game will

Figure 76. The final v

Figure 76 shows the

green health bar floa

the player’s and mon

nu of the game.

he main menu of the game Harvest Survive.

e game will switch to the Intro and then sta

 clicked it will change to the instructions of the

f the game in text and pictures. Moreover if th

ill exit and return to windows.

l version of the game.

e final version of the game. In the center the

ating over his head. Then there are mountain

nsters’ movement. The bat in the map is a mo

63

e. It has three buttons.

tart the game. If the in-

e game and explain the

 the end game button is

ere is the player with a

ins around which block

onster which is hunting

64

the player and has a red health bar over its head. At the bottom there is the GUI, which

contains the character window, equipment window, status window, inventory window

and sound window. Each of them has been explained in section 4.7. The player starts

with only a stick and two carrot seeds and 100 gold coins. With this he has to grow the

plants and sell the harvested fruit to the shop to earn money. With enough money it is

possible to buy weapons and armor which will help to fight the monsters and bosses.

The game has six different zones and for entering each zone a boss has to be de-

feated. The final boss is waiting in the last zone and if he is defeated, the player will win

the game.

The background story is as follows. A farmer lives alone with his sister in a mysterious

kingdom. There is a legend going around that if a person is at the brink of death, death

himself will come to visit and give a choice to die soon, or try to challenge him in his

own world. The farmer never believed it to be true, but one day when his sister was out

selling her goods a dark traveller knocked his door and told him he is death and he

asked him what he would choose. He decides to stay alive for his sister’s sake, who

would have a hard time living alone as a farmer. So you accept the challenge and enter

the realm of death. Death created the world so, that the farmer’s skills which is a vast

knowledge of farming can be used. Death said he would wait for the farmer in the last

area of the world and if he managed to defeat him he would live a long life. With this

promise in mind the farmer starts to walk around in this unknown world.

Of course in the development process there were various problems which were solved

and a large number of bugs which were fixed. In the following the biggest problems,

which occurred in the development of the game will be discussed. In the beginning the

first major issue was to create the map without overlapping sprite, in other words a

tilemap. This feature is not included in Unity 2D, so it was difficult to create a more fea-

ture-rich map with it. That is the reason toolkit2D was used to solve this problem. This

tool solved the problem with creating tilemaps and made it easy to edit them. However

of course every third party tool had to be learned and especially if the documentation

and examples lacked information. So it was difficult to access a single tile of the tile-

map, which was quite a big issue.

Another major problem was the pathfinding for the monsters in the game, especially

because there were a large number of mountains and other objects which blocked the

monsters and player from moving over them. At first I tried to use the in-built navigation

65

system from Unity, but it is not working with Unity 2D, which made it necessary to use

another third party tool. The tool was Navmesh2D, which used the built-in pathfinding

system from Unity and is based on the A* algorithm. Additionally with using the

Navmesh2D tool there was another issue regarding the programming, because I used

JavaScript for most programming. However because the whole code of Navmesh2D

was in C# and accessing this code from JavaScript and the other way around is quite

difficult, I had to use also C# scripts just for the pathfinding. Moreover there was a

problem with my pathfinding script, which made the monster follow the player but al-

ways calculated a new path when the player moved. So the player could easily move in

circles around the player while the monster would be stuck calculating the new path.

For solving this problem I made that the monster calculate the path after a certain de-

lay, which made the monster move fluently after the player.

A further problem was making the weapon animations. There was only one weapon

sprite for each weapon, so I had to move and turn them with a graphic tool but with

rotating pixels the weapon pixels blurred. There was not a really good solution for this

problem, so basically all sprites for the animation would need to be created from

scratch or copy single or multiple pixels from the graphic and paste it to create the new

sprites of the animation. Moreover with creating this big map and each area with mon-

sters spawning and walking around led to a huge performance issue. As solution only

in the area the player is at that moment the monsters spawn and move around, which

made the game fluent.

The next problem which occurred was the inventory system I created. For this system I

used the selectiongrid from built-in Unity, which is basically an array of buttons. So for

each item added there was another button. The only issue with this approach was that

it only supported a left click but no right click or other mouse buttons. This limited some

functionalities and made them more complicated. Finally, an issue also was the colli-

sion detection for the fighting system. Basically the collision happens when the weapon

touches the monster, but this happens of course a large number of times each second,

because the collision is called by every frame. So it was important to limit the detection

to a certain amount of time, which was quite difficult. In the end I used several co-

routine functions to solve this problem.

As regards Unity 2D and its advantages and disadvantages for developing a 2D game,

Unity 2D is going the right way with the first support for native 2D games. It comes al-

66

ready with many tools, such as the easy sprite editor, the 2D physics and collision de-

tection, the 2D animation tool Mecanim and the 2D camera. All those tools are very

useful in developing a 2D game with Unity. However there are still some features miss-

ing which should be included in a 2D game engine. The missing features are especially

the tilemap feature and the navigation system, which are not yet supported by Unity

2D. Those two features are very essential for developers, since they save time in creat-

ing games. Moreover if these features are not included it can easily become expensive

to pay for third-party tools, which provide the lacking features. So in the current state, if

there is a need for pathfinding or tilemaps and the game should be programmed with-

out any costs for the programming part, it will probably be better to look for an alterna-

tive. Otherwise Unity is quite a reliable game engine, which will probably be also a

good choice to develop 2D games with in the future.

67

6 Conclusion

In this thesis I showed the game mechanics of the 2D Unity game I developed and I

gave insight into programming with Unity 2D and the advantages and disadvantages to

program with this game engine. Furthermore the result of the project was a working

Unity 2D game for Windows. Moreover developing this game project in half a year’s

time, gave a good insight into the game development process. Especially it showed me

how important it is to plan well before starting the project and choosing the platform

and the game engine wisely. No game engine is the best and it should be chosen ac-

cording to the developer’s needs. That means it is important to collect much informa-

tion about the engines before choosing one of them and get already some idea if the

game project is possible with these tools or not and if there is a need for additional

third-party tools. The more planning is done before starting the project, the less chance

of failure for the project and less problems will arise during the development process.

As regards Unity 2D, I am sure it will be further developed and improved, so perhaps at

some point there will be less need for third party tools. This would make the develop-

ment easier and more efficient.

68

References

1 Unity Technologies. Unity [online]. San Francisco United States, Unity Technolo-
gies, 2 August 2014.
URL: http://unity3d.com/unity.
Accessed 2.8.2014.

2 Corazza, Seraphina. History of the Unity Engine Freerunner 3D Animation project
[online]. Seraphina Corazza, 14 February 2013.
URL: http://seraphinacorazza.wordpress.com/2013/02/14/history-of-the-unity-
engine-freerunner-3d-animation-project/
Accessed 2.8.2014.

3 Unity Technologies. Integrated Editor [online]. San Francisco United States, Unity
Technologies, 2 August 2014.
URL: http://unity3d.com/unity/workflow/integrated-editor.
Accessed 2.8.2014.

4 Unity Technologies. Asset Workflow [online]. San Francisco United States, Unity
Technologies, 2 August 2014.
URL: http://unity3d.com/unity/workflow/asset-workflow.
Accessed 2.8.2014.

5 Unity Technologies. Scene Building [online]. San Francisco United States, Unity
Technologies, 2 August 2014.
URL: http://unity3d.com/unity/workflow/scene-building.
Accessed 2.8.2014.

6 Unity Technologies. Rapid Iteration [online]. San Francisco United States, Unity
Technologies, 2 August 2014.
URL: http://unity3d.com/unity/workflow/rapid-iteration.
Accessed 2.8.2014.

7 Unity Technologies. Scripting [online]. San Francisco United States, Unity Tech-
nologies, 2 August 2014.
URL: http://unity3d.com/unity/workflow/scripting.
Accessed 2.8.2014.

8 Unity Technologies. Networking [online]. San Francisco United States, Unity
Technologies, 2 August 2014.
URL: http://unity3d.com/unity/workflow/networking.
Accessed 2.8.2014.

69

9 Unity Technologies. Rendering [online]. San Francisco United States, Unity
Technologies, 2 August 2014.
URL: http://unity3d.com/unity/quality/rendering.
Accessed 2.8.2014.

10 Unity Technologies. Lighting [online]. San Francisco United States, Unity Tech-
nologies, 2 August 2014.
URL: http://unity3d.com/unity/quality/lighting.
Accessed 2.8.2014.

11 Unity Technologies. Special Effects [online]. San Francisco United States, Unity
Technologies, 2 August 2014.
URL: http://unity3d.com/unity/quality/special-effects.
Accessed 2.8.2014.

12 Unity Technologies. Terrains [online]. San Francisco United States, Unity Tech-
nologies, 2 August 2014.
URL: http://unity3d.com/unity/quality/terrains.
Accessed 2.8.2014.

13 Unity Technologies. Audio [online]. San Francisco United States, Unity Tech-
nologies, 2 August 2014.
URL: http://unity3d.com/unity/quality/audio.
Accessed 2.8.2014.

14 Unity Technologies. Physics [online]. San Francisco United States, Unity Tech-
nologies, 2 August 2014.
URL: http://unity3d.com/unity/quality/physics.
Accessed 2.8.2014.

15 Unity Technologies. AI [online]. San Francisco United States, Unity Technologies,
2 August 2014.
URL: http://unity3d.com/unity/quality/ai.
Accessed 2.8.2014.

16 Unity Technologies. Animation [online]. San Francisco United States, Unity
Technologies, 2 August 2014.
URL: http://unity3d.com/unity/animation.
Accessed 2.8.2014.

17 Unity Technologies. 2D-3D [online]. San Francisco United States, Unity Tech-
nologies, 2 August 2014.
URL: http://unity3d.com/unity/2d-3d.
Accessed 2.8.2014.

70

18 Unicron Software. 2dtoolkit [online]. Newcastle England, Unicron Software, 2
August 2014.
URL: http://www.unikronsoftware.com/2dtoolkit/
Accessed 2.8.2014.

19 Pigeon Coop. Navmesh2D for Unity [online]. Melbourne Australia, Pigeon Coop,
5 March 2014.
URL: http://forum.unity3d.com/threads/navmesh2d-navmesh-generation-and-
navigation-for-your-2d-projects-released.231022/
Accessed 2.8.2014.

20 Unicron Software. Tilemap Tutorial [online]. Newcastle England, Unicron Soft-
ware, 2 August 2014.
URL: http://www.unikronsoftware.com/2dtoolkit/docs/latest/tilemap/tutorial.html
Accessed 2.8.2014.

