

Jari Pohjanen

CROSS PLATFORM APPLICATION DEVELOPMENT WITH

HTML5 FOR IOS AND ANDROID OPERATING SYSTEMS

CROSS PLATFORM APPLICATION DEVELOPMENT WITH

HTML5 FOR IOS AND ANDROID OPERATING SYSTEMS

 Jari Pohjanen
 Master’s thesis
 Autumn 2014
 Degree Programme in Information Technology

 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology

Author: Jari Pohjanen
Title of thesis: Cross Platform Application Development with HTML5 for iOS and
Android Operating Systems
Supervisor: Kari Laitinen
Term and year of completion: Autumn 2014 Pages: 41

The main aim of this thesis was to describe how a single UI code could be used
in different operating systems. The objective in this thesis was to bring out the
main key points how a hybrid HTML5 application can be implemented by using
iOS’s NSWebView and Android’s WebView components as a container for a
hybrid application. This thesis also describes how a data transfer is done
between HTML, JavaScript and native code.

As a starting point, a hybrid application was implemented in both Android
and iOS platforms. I wanted to implement an application, which would give
value for the end users. I studied some time for open web APIs and found out
that Finnkino Movie Company was providing a free XML API for their services
and the application idea was found. I interviewed some of my friends about the
functional needs for the application and also about how the UI should look like.
The application itself was designed to use only one platform specific native
WebView component. The User Interface was built with the HTML elements
and JavaScript because the UI should look the same in both platforms. In my
application the native code handles the XML data parsing from the Finnkino’s
web API and sends the parsed data to the calling JavaScript function, which will
then place the data into the HTML elements dynamically.
When the application was completed, all the differences between the platforms
were studied and documented into this thesis.

As a result iOS’s NSWebView and Android’s WebView components provide
a good support for a hybrid application development with some minor
differences. The main difference is the performance and how responsive the UI
is in these platforms. From the development point of view, I see a great
opportunity to implement mobile applications with a web technology, as it is a
fast evolving environment introducing new possibilities for the developers in a
very fast phase. And from the business point of view, I can see a great
opportunity for smaller companies, or individual developers because with a
single effort the application UI can be created for multiple platforms and this
saves money and resources.

Keywords:
HTML5, Hybrid, mobile application, JavaScript, Objective-C, java, Android, iOS,
cross platform, jQuery mobile UI

4

TERMS AND ABBREVIATIONS

JSON JavaScript Object Notation

HTML Hypertext Markup Language

CSS Cascading Style Sheets

iOS iPhone operating system

IDE Integrated Development Environment

Xcode Apple’s IDE

Eclipse Android’s IDE

XML Extensible Markup Language

ADT Android Development Tools

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

5

TABLE OF CONTENTS

 ABSTRACT 3

TERMS AND ABBREVIATIONS 4

1 INTRODUCTION 7

2 WHAT IS HTML5 9

2.1 What is new in HTML5 9

2.2 What is HTML5 good for 11

2.3 The most essential technologies used with HTML5 11

2.3.1 JavaScript 12

2.3.2 CSS 12

2.3.3 jQuery 13

3 COMPARISON OF MOBILE APPLICATIONS 15

3.1 Native application 15

3.2 HTML5 application 16

3.3 Hybrid application 17

4 THE DEMO APPLICATION FKINO 18

4.1 Making the design draft 18

4.2 End user’s needs and opinions about the design and functionality 20

4.3 Fine-tuning the design for the specification 20

4.4 fKino hybrid application data flow description 22

5 APPLICATION MAIN FRAME 23

6 PASSING DATA BETWEEN HTML AND NATIVE CODE 24

6.1 Communication layer for iOS 24

6.2 Communication layer for Android 25

6.3 Using xml data in iOS 26

6.4 Using xml data in Android 27

6.5 Injecting data from native code to webview component 28

6.6 Injecting data from WebView component to native code 28

7 FKINO APPLICATION UI STRUCTURE 30

8 DYNAMIC HTML UI 33

8.1 HTML UI events 34

6

8.2 Debugging JavaScript 35

9 APPLICATION PERFORMANCE 36

 REFERENCES 41

7

1 INTRODUCTION

One of the biggest challenges in the mobile application development is how to

maintain and get the same user experience between different operating

systems and handheld units with the minimum work of changing the source

code. Nowadays as there are three major mobile operating systems in the

markets – iOS, Android and Windows Phone – developers want to ensure that

their applications are spread to as many mobile users as possible. If an

application developer wants to gain a maximum benefit from the application

markets, he/she must select the technology carefully because it is vital from the

development and maintenance point of view.

One approach for developing an application is to use native libraries and UI

components of the target platform and then port the code to another platform.

This approach requires a lot of manpower and resources because the UI and

library component behaviour may differ quite a lot between different operating

systems. Also testing and verifying the application against the specification and

the wanted behaviour can be difficult. And usually the UI components do not

give the same look and feel between the platforms and this may change the end

user experience resulting into a situation where the application itself is not any

more what it should be. If porting the application to other platform is not

required, then this is the best choice.

One approach for creating a multi-platform support is to implement a web

application. This means that the whole application is hosted somewhere in the

web and the end user a uses mobile web browser to access the application.

Web applications can be implemented by using almost any programming

language and the web server shares the application services. Web applications

can be implemented for example with the Microsoft C# programming language

and the application itself is hosted in IIS (Internet Information Server) server and

the application is accessible for example with Android or iOS devices. A web

application can use all the resources that the web server has. It can use

databases and possible reporting services. A web application can be extended

with the latest technologies like Node.js or HTML5 to get a fancy look and feel

8

and nice animations. Still the biggest problem with the web application is the

cost of testing the application with different web browsers. It is not cheap to host

a web server and the server hardware is not cheap either. Another problem with

a web application is that it does not give a true native application look and feel.

It can also be quite difficult for the web application to use mobile platform

specific features like camera or radio.

Another way for creating a multi-platform support is to implement a platform

specific native application and create the UI in a way that the same UI code can

be used with multiple operating systems. And the answer for the UI is HTML.

These combined native and HTML applications are called Hybrid Mobile

Applications [1]. A Hybrid application is still a web application but the UI is

wrapped inside a container that provides an access to native platforms features.

PhoneGap is at the moment the most popular container wrapper for creating

Hybrid HTML5 Applications. PhoneGap provides components to create hybrid

applications for iOS, Android, Windows Phone, Blackberry and webOS.

In this document I am going to describe how to create a native HTML5 Hybrid

Mobile Application but I am not going to use any ready-made wrapper

containers like PhoneGap or Titanium. However I am going to dig deeper and

show and describe how iOS’ NSWebView and Android’s WebView components

are used to get a full access to the platform’s native functionality from a cross

platform UI. I am going to show and describe how to implement a

communication layer between the platform’s native code and HTML elements

and JavaScript. With Hybrid Application a software developer can create the UI,

which will give the same end user experience in different platforms.

When I started to study this subject and implement the software I selected only

iOS and Android platforms because Windows Phone’s (7.5) WebView Class

was not mature enough for this kind of application development, a better

support for the Hybrid Application development came later with Windows Phone

version 8.0. Even though the Windows Phone platform is not described in this

document, the same principles will apply there.

9

2 WHAT IS HTML5

HTML5 is the latest version of HTML standard. HTML version 4.01 came out in

1999 and the way that the Internet is being used nowadays has changed

significantly since then. HTML5 is going to replace HTML4, XHTML and the

HTML DOM level 2 [2] (more information about DOM level 2 can be found at

http://www.w3.org/TR/DOM-Level-2-Core/).

HTML5 was designed to deliver rich content like graphics and animations or

music and movies without additional plugins. HTML5 also supports the cross-

platform application development. It is designed to work whether the target

platform is PC, tablet, smartphone or smart TV [2].

2.1 What is new in HTML5

As the Internet has changed significantly since 1999, when HTML4 became a

standard, HTML5 has replaced several HTML 4.01 elements [4]. Those

elements are removed or re-written in HTML5 as the old elements were never

used or not used as they were intended [3]. Nowadays, the Internet is more and

more rich of dynamic content like animations, videos and music. This is what

HTML5 is designed to accomplish. HTML5 also includes several APIs like drag

and drop, get a user geographical position, local data storage and more [3].

HTML5 introduced a lot of new elements and they can be found at:

http://www.w3schools.com/html/html5_new_elements.asp

The following are the most important new elements [2]

<article> Defines an article in the document

<aside> Defines content aside from the page

content

<header>, <footer> Defines a header or footer for the

http://www.w3schools.com/html/html5_new_elements.asp

10

document or a section

<nav> Defines navigation links in the

document

<section> Defines a section in the document

<audio>, <video> Defines sound or music content or

video or movie

<embed> Defines containers for external

applications (like plug-ins)

<canvas> Defines graphic drawing using

JavaScript

For example, showing a video on a web page can be done with the following

sample piece of HTML5 code [5].

<!DOCTYPE html>

<html>

<body>

 <video width="320" height="240" controls>

 <source src="movie.mp4" type="video/mp4">

 </video>

</body>

</html>

New rich elements bring a great advantage for the developer. As the elements

themselves support a rich content, the developer can concentrate on creating

good looking and well working applications instead of implementing plug-ins

and maintaining those plug-ins as the web browsers evolve.

11

2.2 What is HTML5 good for

HTML5 is designed to bring a rich content for the Internet. Web pages no longer

need to look or act like static web pages. Web pages can be implemented to

work as desktop or mobile applications where tools like Adobe Flash is no

longer needed to bring a rich content for the user. Animations and media

content can be easily added to the web pages by using the new HTML5 tags.

All the major web browsers support HTML5 including mobile browsers. This is a

big advantage because web pages designed for desktop browsers work in

mobile browsers, too. HTML5 is well supported by the mobile devices. As the

HTML5 is lightweight and fast and replacing e.g. Adobe Flash in animations and

transitions, the same kind of user experience is now available for mobile

devices as there is in desktop browsers via HTML5 and a CSS3 style sheet and

of course with improved JavaScript APIs.

As the new kinds of smart devices evolve and come to market, HTML5 and web

technologies can give a great asset for the consumers. For example household

appliances like refrigerator, freezer, dishwasher or washing machine can all be

manufactured by a different brand but if these devices are built with a computer

like a device including a screen and web browser, then all these devices could

use one single application located e.g. in the Internet and create a service for

that one device and its purpose.

2.3 The most essential technologies used with HTML5

HTML code itself is a plain static text that web browsers can render by using

browser specific build-in styling for HTML elements. This means that HTML

elements themselves can draw a graphical UI but that is not an application yet.

To create a web application with HTML we need JavaScript for handling the UI

events, data transfers and different UI manipulations. To create HTML UI to

look and feel fresh and modern we need CSS (Cascading Style Sheets), which

tells the web browser how specific elements in the HTML file should be styled

and positioned in a web browser. But if we want to take the best advantage of

styling the UI, handling the UI events and data transfers and UI manipulations

then the jQuery libraries comes in. When all these technologies, JavaScript,

12

CSS and jQuery are included in a single HTML web application, then all the UI

handling, animations, data transfers and styling are quite straightforward.

2.3.1 JavaScript

JavaScript is a dynamically typed object oriented scripting language, the syntax

of which is derived from the C programming language. JavaScript is designed to

work with HTML DOM (the Document Object Model). JavaScript can manipulate

all the elements in an HTML file meaning that an element’s layout or context

can change dynamically [10]. For example, if we want to change

<div id=”myDiv”>some text</div> text it is done it is done with JavaScript like

this:

document.getElementById(“myDiv”).innerHTML = “some other text”;

JavaScript can also change the element styling dynamically. If the text is

wanted to be displayed with a bigger font we can change the div element font

size attribute like this:

document.getElementById(“myDiv”).style.fontSize = “30px”;

2.3.2 CSS

Giving the desired attributes and properties for the HTML elements does HTML

styling. This means that using the style definition in a CSS file for the elements

can change the visual impression throughout the application. Typically style

definitions are placed in CSS files, which are then included in HTML file, so that

the browser can render the elements correctly. External CSS files are

recommended because the same CSS file can be used in different HTML files.

HTML file itself can include CSS definitions for example directly in div element’s

style attribute:

<div id=”myDiv” style=”fontSize:30px;”></div>

13

Same thing done via CSS file is defined like this:

#myDiv{ fontSize: 30px; }

The # (hash) means that the selector points to the element’s ID. If the element

has a class attribute, then the selector is done by using a dot notation

.myDiv{…}. And if there are no hash or dot at the beginning of the selector, then

the selection belongs to a tag element. For example, if we have an input

element CSS definition, that element is written as input{…} [11]

CSS also allows you to combine selectors to pinpoint the wanted element. This

can be done e.g. [11]

#myDiv.innerClass{}

Where the styling is done only for the innerClass div.

<div id=”myDiv” style=”fontSize:30px;”>

 <div class=”innerClass”></div>

</div>

2.3.3 jQuery

jQuery is an open source JavaScript library freely available for everyone. jQuery

enables an easy web page data handling, animations, a DOM element selection

and Ajax (Asynchronous JavaScript And XML) application implementation.

jQuery also provides a lot of different kinds of ready made components such as

lists, data tables, dialogs, menus etc. [12]. jQuery’s syntax is also easy. The

basic syntax is $(selector).action(), where $ sign tells to access or define a

jQuery object and a selector to get (or find) HTML element. In the same way as

in a CSS the selector, . (dot) is for class, # is for ids and if there are no front

characters, then the selector is for a tag element, e.g. <p>. One of the most

important features in jQuery library is the ability to create Ajax calls. This means

that the client (web browser) JavaScript can send asynchronous function calls

to a server. A call from JavaScript to server is done for example like this:

14

var dataSet = {name:"fKino",version:"1.0"}; //Array object

$.ajax({

 url : "url/to/server/controllerMethod",

 type: "POST",

 data : dataSet,

 success: function(data) { //data - response from server } });

When the Ajax starts its execution the options define what the Ajax call should

do. An option url tells where the called function is located. A type option can be

GET or POST. Option data includes the parameters that will be sending to the

server. Success and error options are for handling the event after the server

sends the response back to the client. When the send operation is taking place,

the client UI does not freeze waiting for the response from the server.

Sometimes it can take quite a long time before the server gets its calculations or

database operations finished and at the same time the UI is still responsive.

The Ajax code example before could have a server side controller like this:

public ActionResult controllerMethod (dataSetDTO model)

{

 // where dataSetSTO class holds the same data model as set in JavaScript

 // side:

 // public string name {get; set;}

 // public double version {get; set}

 // return Json(true);

 }

So when the controller method is executed, the parameter model gets its values

model.name = “fKino” and model.version = 1.0 for a further usage.

15

3 COMPARISON OF MOBILE APPLICATIONS

When creating mobile applications, the developer must consider different

options and technologies that are available. The developer must decide if the

application is going to be implemented on multiple platforms, and how the

cross-platform support is going to be done. Or if there is a lot of heavy

calculation needed for the application, then server implementation must be

considered. Also the required device functionality, the importance of security,

offline capability and interoperability must be taken into account.

The best way to achieve a cross-platform support in mobile applications is to

use web technologies. In a normal web application development the application

consists of two different parts, the server and client parts of the application. The

server side holds the business logic and for example the database routines and

all heavy calculations. The client part is also located in a server but it is loaded

into the web browser, which holds the UI and logic for the UI behaviour. In this

chapter I will describe some of the key points and differences between native

and web applications.

3.1 Native application

Native applications are specific to a given mobile platform (iOS or Android)

using the development tools and language that the respective platform supports

(e.g., Xcode and Objective-C with iOS, Eclipse and Java with Android). Native

apps look and perform the best. Some application features are only available in

native applications. Native applications support multi touch, double taps, and

other UI gestures. A native application also gives the fastest graphics APIs.

Fast graphics are not a big deal when showing a static screen with only a few

elements. But when using a lot of data and when a screen is requiring a fast

refresh, then fast graphics APIs are needed. The fast graphics API gives the

ability to have a fluid animation. This is especially important in gaming, highly

interactive reporting, or intensely computational algorithms for transforming

photos and sounds. Platform specific build-in components like camera, address

16

book, geolocation, and other features native to the device can be seamlessly

integrated into mobile applications. Another important built-in component is an

encrypted storage, which is not supported directly by the web technologies.

3.2 HTML5 application

HTML5 applications use standard web technologies—typically HTML5,

JavaScript and CSS. This “write-once-run-anywhere” approach to a mobile

development creates cross-platform mobile applications that work on multiple

devices. While developers can create sophisticated applications with HTML5

and JavaScript alone, there are still some vital limitations. These limitations are

session management, secure offline storage, and access to native device

functionality (e.g. camera, calendar, geolocation) [6, p. 34, p. 48, p. 184].

An HTML5 mobile app is basically a web page, or a series of web pages, that

are designed to work on a small screen. As such, HTML5 applications are

device agnostic and can be opened with any modern mobile browser. And

because the application content is on the web, it is searchable. This can be a

huge benefit depending on the application (e.g. shopping).

An important part of the "write-once-run-anywhere" HTML5 methodology is that

distribution and support is much easier than for native applications. If you need

to fix a bug or add a new feature, deployment is done for all the users at the

same time. For a native application, there are longer development and testing

cycles, after which the consumer typically must log into a store and download a

new version to get the latest fix.

17

3.3 Hybrid application

Hybrid applications make it possible to embed an HTML5 application inside a

thin native container, combining the best elements of native and HTML5

applications [7]. In Hybrid development combines the best (or worst) of both the

native and HTML5 worlds. An Hybrid application can be defined as a web

application, primarily built using HTML5 and JavaScript that is then wrapped

inside a thin native container which provides an access to native platform

features. PhoneGap is an example of the most popular container for creating

hybrid mobile apps.

A hybrid application can be implemented in two different ways:

Local - You can package HTML and JavaScript code inside the mobile

application binary, in a manner similar to the structure of a native application. In

this scenario you use REST (Representational state transfer) APIs to move data

back and forth between the device and the web service.

Server - Alternatively you can implement a full web application from the server

(with an optional caching for better performance), simply using the container as

a thin shell over the WebView component.

18

4 THE DEMO APPLICATION FKINO

Creating and developing a mobile application is always a fun and interesting

thing to do. However it is sometimes quite hard to find the idea for your mobile

application. One reason for this might be that there are so many mobile

applications already in the market that it is hard to come up with something new

and original. One good starting point for creating an application could be to think

about a solution that serves you and you only. If the idea is doable and serves

you, it might serve somebody else, too. Another way to go is to start digging

free APIs from different web services. These free APIs can lead you to find your

idea for the application.

In my case I found out that the Finnish cinema company Finnkino was providing

a free XML API about the currently showing films. The API provided me the

exact information I was looking for and the idea was ready. I would create an

application, which shows me what Finnkino movies are being shown in my

town. And the nice thing was that the Finnkino application was missing from

Apple’s App Store. This experimental application is called fKino.

4.1 Making the design draft

As the idea was forming in my mind I created the first sketch about the views

and application behaviour using Apple’s Xcode IDE.

What I wanted to show in the application was today’s movies shown in the city

that I had selected, an option to change the city or theatre and the list of

upcoming movies and of course detailed information about the movie. I wanted

to have a clean-and-easy-to use approach for my application and this is the first

sketch about the application. These prerequisites were used as user stories for

my project.

 As a user I want to see a list of now shown movies in my city or theatre.

 As a user I want to change my preferred city or theatre.

 As a user I want to see upcoming events.

19

 As a user I want to see detailed information about the movie.

FIGURE 1. First demo application views

The first view is the main view where today’s movies are listed from the theatre I

have selected. The second view is for the upcoming events and the last one is

for selecting the theatre or city.

Because I used Xcode storyboards for sketching the draft the look and feel is

for the Apple products. At this point I did not that to bother me because I knew

that the design would change dramatically during the development process as

the application was planned to be implemented on both iPhone and Android

devices. The first version of the application was a pure Objective-C with no

content at all including only the views shown in figure 1 and a small demo on

how to navigate in views and the main idea for the application.

20

4.2 End user’s needs and opinions about the design and functionality

After demonstrating the concept to a couple of my friends, the design turned

into the view shown in figure 2.

FIGURE 2. Main view with navigation buttons

After discussing the concept we decided to move buttons from up to down to

give a better look and feel in different operating systems. Some of my friends

are using Android and some iPhone mobile devices. In picture 2 the empty area

above the buttons is the Apple’s NSWebView control, the container for the

Hybrid application. That is the place where all the application content is going to

be displayed.

4.3 Fine-tuning the design for the specification

Because fKino was designed to be used in two different platforms I decided to

remove the button row totally (Figure 2). I wanted to have the same user

experience in both platforms and I did not want to have any native parts

controlling the views. Figure 3 below shows the forming application in Android

21

and iOS simulators. The left-hand side is Android and on the right you can see

the same code running on an iOS simulator.

FIGURE 3. Android and iOS simulators running the same HTML code

At this point the application did not have any buttons but instead the controls

were hidden on the left side of the view. The controls came visible when the

user swiped the screen to the right. My friends did not like that so I had to

change the UI once again. After discussing with my friends about the UI and the

application functionality, I made the design to look fresh and modern according

to my friends’ needs and specifications. I demonstrated a couple of my ideas to

my friends and finally the layout and basic functionality were designed. I

decided to use jQuery Mobile UI styles and jQuery’s plugins to create the

application frame. Figure 4 shows the main views of the fKino application.

FIGURE 4. Main views of fKino application

22

4.4 fKino hybrid application data flow description

Figure 5 below describes how a hybrid application data flow works with the

fKino application. On top of Android or iOS operating system there is a

WebView control, which includes the HTML and JavaScript files. In a native

code side the WebView control is initialized and loaded. When the HTML page

is displayed, it calls a function in the native code side to fetch data from the

Finnkino server. When the native method gets the data, it will be parsed. The

parser will place the wanted data to json a object and send that object back to

JavaScript. JavaScript reads the json object and places the strings and images

to the HTML elements where they are needed. When this operation is done,

theWebView control displays a dynamically generated web page for the

application user.

FIGURE 5. fKino data flow

23

5 APPLICATION MAIN FRAME

The basic need of an Hybrid HTML5 application is to have a container for the

HTML UI code. In fKino’s case I created an empty application and filled it with a

WebView control. The WebView is initialized from the native code side and filled

with an HTML content. fKino uses a single page approach for the UI, which

means that all the views are in one HTML file and the navigation is handled by

the jQuery mobile libraries. As an example, the HTML code below is a part of

the whole file and this part is holding the content displayed in Figure 4, the

image on the left.

<div data-role="page" data-theme="a" id="main" class="ui-page">
 <div data-role="header" data-position="fixed" data-tap-toggle="false" >
 <div>
<button type="submit" data-icon="gear" data-inline="true" data- theme="e" name="submit"
value="Menu" id="showPanel" ></button>
<div id="playingNow" style="display:inline-block;position:absolute; "><h1 align="center">Ohjelmistossa
nyt</h1></div>
 </div>
 </div>
<div data-role="content" id="nowShowing" ></div>

The div id nowShowing is the placeholder for the movie list. All the content

images and texts are generated dynamically from the JavaScript side. In this

case when the document body element gets the onLoad event it will fire the

following JavaScript function, which starts loading the content.

function initElements() {
 if (window.navigator.onLine){
 $.mobile.showPageLoadingMsg("a", "Ladataan listaa", false);
 setTimeout(function(){
 document.location = "iphone::fillMovieInfo";
 },500);
 } else {…

What this function does is that it will first check if the network is available and if

it is, it will display a jQuery mobile wait indicator, and then it will demand the

document to move to a new location. In this case “iphone::fillMovieInfo”.

iOS and Android platforms differ from each other when communicating between

JavaScript and the native code, and this is the only part where my iOS and

Android HTML and JavaScript files are not the same.

The next chapter will describe how the communication is done in these

platforms.

24

6 PASSING DATA BETWEEN HTML AND NATIVE CODE

The fKino application was designed to use HTML for the UI and JavaScript to

the control UI events and also filling the UI content. All the data for the UI

comes from the native side of the application. In iOS the native code is

Objective-C and in Android Java. In my study I wanted to learn how these

platforms work and I wanted to understand the mechanism of passing data

between native the code and HTML. The hardest part in this study was to find

out the way that these platforms work when passing data between HTML and

the native code. In some cases it is not necessary at all to pass data between

the native code and HTML. But when heavy calculations are needed then the

native code is faster than JavaScript. Also when the application is designed to

store data inserted in the UI, then the native code is needed. JavaScript cannot

access a phone’s file system, for example when the user wants to save some

data into the device’s memory.

6.1 Communication layer for iOS

In iOS the communication layer is quite old and not so up to date for example

compared e.g. to Android. In iOS there is no actual API for communication

between native code and HTML or JavaScript. In the JavaScript side

commanding an NSWebView component to a new location will fire an event in

the native code side. This event is “shouldStartLoadWithRequest”. This event is

executed every time when the NSWebView document location (URL) is

changed. This event can also be used as a controller for passing data from the

UI to the native code.

For example from JavaScript side we can make a call

document.location = "iphone::fillMovieInfo";

which will tricker the event shouldStartLoadWithRequest to be executed. In

shouldStartLoadWithRequest function I created a parser, which splits the

paramenters by the separator ‘::’

25

NSString *requestString = [[request URL] absoluteString];
NSArray *components = [requestString componentsSeparatedByString:@"::"];

if ([components count] > 1 && [(NSString *)[components objectAtIndex:0] isEqualToString:@"iphone"]) {
 if([(NSString *)[components objectAtIndex:1] isEqualToString:@"fillMovieInfo"])
 {

objectAtIndex:0 = “iphone” and objectAtIndex:1 = “fillMovieInfo” as called from

JavaScript.

When this condition is true, the wanted iOS function can be called. In this case

we start to parse Finnkino’s event list of shows for the UI.

6.2 Communication layer for Android

In Android the communication layer is more modern and more user friendly

compared to iOS. Google has implemented an API for this. In an Android

application we can add the JavaScript interface for the WebView instance:

webView = (WebView)findViewById(R.id.webView);

webView.getSettings().setJavaScriptEnabled(true);

webView.loadUrl("file:///android_asset/www/mainview.html");

webView.addJavaScriptInterface(new JavaScriptInterface(this),

"Android");

When the WebView is initialized with JavasriptInterface we need to implement

the public class JavasriptInterface, which holds all the needed controller

functions.

public class JavaScriptInterface {

 public void fillMovieInfo() {

And then this fillMovieInfo Interface function can be called from the JavaScript

side by calling the introduced interface instance Android.fillMovieInfo(); and

after that fillMovieInfo is executed.

26

6.3 Using xml data in iOS

Parsing xml data in iOS can be done with many different third party libraries.

However I decided to use Apple’s own NSXMLParser class.

The basic functionality is that the parser reads the URI passed as a parameter

for the parser. URI holds the point for the location and also the needed extra

parameters for the WEB API, in my case Finnkino’s WEB API date, theatre

location etc.

The parser reads the whole xml document and my task is to take the wanted

information from that data by implementing the classes for different purposes.

The parser implementation includes four parts, which are:

-(id)readXMLfromURL:(NSString *)urlString

This is the starting point for the parser. It includes the initialization for the

NSXMLParser class

- (void) parser:(NSXMLParser *)parser didStartElement:…

When the parser reads the xml document, its event didStartElement is executed

every time when a new xml element is found. In this case I want to read only the

shows

if ([elementname isEqualToString:@"Show"])
 {
 event = [eventItem alloc];
 }

A new event array item is allocated for the show.

When the xml element ends the didEndElement event is executed

 - (void) parser:(NSXMLParser *)parser didEndElement:…

This function is the main part where the data is read. For example:

NSString *string = currentNode;
 NSString *trimmed = [string stringByTrimmingCharactersInSet:[NSCharacterSet
hitespaceAndNewlineCharacterSet]];
 if ([elementname isEqualToString:@"EventID"])
 { event.ID = trimmed; }

27

Here I trim the xml node string so that whitespaces and linefeed characters are

taken off and when the element is EventID I will save that data into the event

class ID property.

- (void) parser:(NSXMLParser *)parser foundCharacters:(NSString *)string

While parser reads the xml nodes every time when it founds characters the

foundCharacters event is executed. The current node is held here:

if(!currentNode)

 {

 currentNode = [[NSMutableString alloc] initWithCapacity:100];

 }

 else
 {
 [currentNode appendString:string];
 }

6.4 Using xml data in Android

In Android parsing the xml its much more easier. Like in iOS the xml parsing

can be done in many ways by using third party libraries. I decided to use a DOM

xml parser. The parsing itself with the DOM parser [8] is quite straightforward.

DocumentBuilder db = dbf.newDocumentBuilder();

Dcument doc = db.parse(new

URL(stringURL).openStream());doc.getDocumentElement().normalize();

NodeList showNodeList = doc.getElementsByTagName("Show");

for (int s = 0; s < showNodeList.getLength(); s++) {

 MovieItem item = new MovieItem();

 Node nodeInShowNodeList = showNodeList.item(s);

 if (nodeInShowNodeList.getNodeType() == Node.ELEMENT_NODE) {

Element elementInShow = (Element) nodeInShowNodeList;

item.setID(getTagValue("EventID", elementInShow));
item.setTitle(getTagValue("Title", elementInShow));

item.setOriginalTitle(getTagValue("OriginalTitle", elementInShow));

item.setProductionYear(getTagValue("ProductionYear", elementInShow));

With the DOM parser the xml document elements are read through with a loop,

and when the wanted element is found, for example “EventID”, its Tag value is

saved into the item class ID property for later use.

28

6.5 Injecting data from native code to webview component

When the xml is parsed into an object, the object is converted to a JSON object

so that the JavaScript can understand it. In Android I use the Gson library to do

so and in iOS Apple’s own NSJSONSerialization class [9]. And when the object

is converted to JSON it can be sent to the UI.

Here is an example how the JSON object is sent in Android to JavaScript:

Gson gson = new Gson();
ParseMovieList parser = new ParseMovieList();
ArrayList<MovieItem> events = new ArrayList<MovieItem>();
events = parser.parseMovieList();String jsonStr = gson.toJson(events);

webView.loadUrl("JavaScript:addListItem(" + jsonStr +");");

In iOS this is done in a similar way:

NSData *jsonData = [NSJSONSerialization dataWithJSONObject:events
options:NSJSONWritingPrettyPrinted error:nil];

NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8StringEncoding];
[webView stringByEvaluatingJavaScriptFromString:[NSString stringWithFormat:@"addListItem(%@)",

jsonString]];

The JSON object is then sent to the UI by calling a WebView component with

the wanted JavaScript function and passing the JSON object as a parameter to

that function. In the JavaScript side the object is handled as a regular object

where object properties are accessed by using a dot notation.

function addListItem(obj){

 var jsonObj = $.parseJSON('[' + obj + ']');

 var dttmShowStart = jsonObj[0].dttmShowStart;

All the parsed data is in object’s properties and can be used when filling the UI

with a content. The property names are the same as they are introduced in the

native code side.

6.6 Injecting data from WebView component to native code

In Android a JavaScript call to the native code is done by using the

JavaScriptInterface API e.g. android.someFunction(param1, param2).

29

In iOS we need to use document.location(“key::param1::param2)

The parameter also can be a JSON object but in my case I did not need to use

that. If you need to create an object with JavaScript, it is done like this:

var object = new Object();

object.value1 = “value1”;

object.value2 = “value2”;

And send that object to the native code, e.g. android.JSONFunction(object)

Then in the native code side this object is parsed as an JSON string

JSONObject jsonO = new JSONObject(jsonString);

Events events = new Events();

events.value1 = jsonO.getString("value1");

events.value2 = jsonO.getString("value2");

(This example uses an org.json package.)

30

7 FKINO APPLICATION UI STRUCTURE

The fKino uses jQuery mobile UI JavaScript libraries as a basis for its user

interface. jQuery mobile UI libraries offer many helper functions and methods

for creating the UI and handling the UI events. One of these methods is the

ability to create single-page applications where all the views are defined in one

single HTML-file and the navigation between the views (pages) is done simply

by giving a page data-role for a div element from which jQuery creates a single

view. The HTML code:

<div data-role="page" data-theme="a" id="comingSoon">

 <div data-role="header" data-position="fixed" data-tap-toggle="false">

 <div>

 <button type="submit" data-icon="arrow-l" value="Takaisin" data-inline="true" data-

theme="e" name="submit" id="comingSoonButton"></button>

 <div id="playingSoon" style="display:inline-block; position:absolute; ">

 <h1 align="center">Tulossa pian</h1></div>

 </div>

 </div>

 <div data-role="content" >

 <div id="soon" ></div>

 </div>

 </div>

is a placeholder for the view, which looks like figure 5 when running the

application. The Div element with ID = soon is a placeholder for the single

coming soon item e.g. the movie Dark Skies. All the items are filled dynamically

from the JavaScript side.

31

FIGURE 6. Coming soon view of the fKino application.

When the user presses the yellow back (“Takaisin”) button, the previous view is

loaded by calling a jQuery’s goBack() function, which will load the page

previously stored in the WebView component’s history. When we want to load

some specific page we will call

$.mobile.changePage($(#”ThePageIdWeWantToOpen”)).

The $(#”ThePageIdWeWantToOpen”) is the jQuery’s selector syntax when

some specific HTML element is needed to be found. In the pure JavaScript this

selection can be done by using document.getElementById("id").

the changePage function can be extended with animation properties, too. This

means that when the page is changed we can add for example a flip, rotate or

pop animation for the transition from one view to another. A transition animation

is added to the changePage function by adding the needed options for the

function:

$.mobile.changePage($(#”ThePageIdWeWantToOpen”), { transition: "flip",

changeHash: false })

32

At the time when I was writing the fKino application, transition animations were

not supported fully or they where immature. Only the transition flip worked

wheras pop and rotate transitions crashed the application randomly. The

goBack function was also immature at that point. When the changePage

function was extended with transitions, goBack should have remembered that

transition and when navigating back the transition should be done backwards.

However, when navigating back, the application crashed or displayed the wrong

transition animation.

33

8 DYNAMIC HTML UI

All the content displayed in the fKino application is generated dynamically. The

content for different pages are loaded only when the page is shown. When the

changePage function is called and the page is displayed the application starts

to generate the content for the page. The sequence for this is:

$.mobile.changePage($(“#comingSoon”))

At this point the comingSoon page turns visible and all its elements are ready.

The next step is to initialize the view by calling android.readComingSoonList();

This will execute a function in the native code side, which parses the xml

content from the Finnkino XML API into the json object, which is then sent back

to JavaScript.

In JavaScript the json object’s properties are placed in an HTML styled string

var soonContent='<div id="soonContainer" class="soonContainer" >'

+'<div id="menu" >'

+'<div class="frame" style="height:140px;">'

+''

+'</div>'

+'</div>'

+'<div class="contentSoon" id="contentSoon" movieID="'

+jsonObj[i].ID + '" date="' + dateStr +'" onclick="">'

+'<h1>' + jsonObj[i].title +'</h1>'

When the string with HTML elements is created it will be placed into the

element inside a page. In this case we will want to append a comingSoon

page’s soon div element with this content. The following code will do that:

var myDiv = document.getElementById('soon');

var newListItem = document.createElement('div');

newListItem.innerHTML = soonContent;

myDiv.appendChild(newListItem);

First we need to find the element with id = ‘soon’. After that an empty div

element is created and its innerHTML (the data inside the empty div) property is

appended with the string soonContent. After this newListItem is appended to

soon div and the content is now available in the UI.

34

8.1 HTML UI events

When the user interacts with the HTML, UI jQuery offers a nice and easy way to

get different UI events. UI events are handled with jQuery selectors. This means

that when an HTML element needs to react to user interactions we need to

implement an event handler for it. For example, a button or div element gets the

click event:

On the document level we can pin point the event like this:

 $(document).on("click",'#movieDetailButton',function(event, ui){

meaning that in a document scope when the element with the id

movieDetailButton is clicked, then this function is executed.

Another way to do this is to select the element with the id first:

 $('#showScheduleEvents').on('click', function(){

Both of these ways will execute a function when the click event is happened.

When the event needs to be bound for waiting some event to occur, it is done

on the document level:

$(document).on("swiperight", function(event, ui) {

This handler will wait on every page of the application and when the user

swipes the UI right this event will trick.

Or when the user changes the orientation of the phone the handler will look like

this:

$(window).bind('orientationchange', function(e){

And it is handling an orientational change on every page of the application.

A selector event can also be added to elements without id. Then the jQuery

selection is done like this:

$(document).on("click", 'div.soonContainer', function(event, ui) {

This means that when the div element with a class soonContainer is clicked, an

event is tricked.

35

8.2 Debugging JavaScript

When the application includes a lot of JavaScript code it is vital to get debug

information from it. Android and iOS environments differ quite a lot in this area.

In iOS it is impossible to get console.log (standard browser log) messages, as

the Xcode does not support that. However it is possible to use the native code

for printing JavaScript debug information in the iOS environment. This is done in

iOS by implementing a JavaScript function, which will call the native code with

the message as a parameter.

function debug(message) {
 document.location = "iphone::log::"+message;
}

The message parameter can be a JSON object or one string or integer that

needs to be investigated.

In Android debug information can be printed normally as in the web application

development. The only thing you need is to call console.log(“message: ” +

param); and Android Development Tools LogCat view displays the message.

The most important console log that is needed in JavaScript is the json object’s

content. To get the json object printed in a human readable form, the object

content can be converted to a string with the jQuery method stringify:

console.log(“object: “ + JSON.stringify(object));

If the stringify method is extended with parameters null and 2, the printout will

be even cleaner for the reader. JSON.Stringify(object) will put all the string

content in on a single line. When the stringify is called with parameters

stringify(object, null, 2) the printout will be intended and the object’s properties

are on different lines.

36

9 APPLICATION PERFORMANCE

Even though the iOS environment is more complex compared to Android, the

application performance in iOS is much better and responsive compared to

Android.

For example parsing and rendering the main view’s list in the iOS simulator

takes only 0.6 seconds and on a real iOS device 0.5 (Figure 6).

Same operation on Android simulator takes 7.2 seconds and on hardware 3.4

seconds. Even though, all the hardware acceleration tweaks were turned on in

the Android version of the application, the performance was poor. There was a

lot of latency when clicking the UI elements and scrolling the different lists. This

is the reason why I do not make the Android version of fKino public at this point.

Adding two timers to the code did the measurements. One timer was placed at

the beginning of the code where the list starts to generate and another timer

was added to where the generation is completed. By subtracting the end time

from the start time, I got the total time used when loading the list.

However, the iOS version is fast, it seems that Apple’s NSWebView component

is more mature compared to its Android counterpart. The iOS version of the

fKino has been available in public for some time already and it works on both

iPhone and iPad.

FIGURE 7. Performance metering when rendering the main view of the fKino

application.

37

CONCLUSIONS

Implementing the fKino application in both iOS and Android environments was

delightful and gave me a lot of new information on how to implement a cross

platform UI by using jQuery mobile JavaScript libraries. The biggest learning

curve with this project was the Objective-C language because it was totally new

to me. However, learning Objective-C has been one of my objectives for some

time so this project gave me a perfect opportunity to learn it. As a professional

web page developer, I am familiar with HTML and JavaScript languages and

they did not cause any problems during the implementation process. The

hardest part with JavaScript and the native codes was how to send data

between the UI and the native code, as the asynchronous jQuery Ajax calls are

not available.

The main purpose of this thesis and project was to learn and understand how

one single UI code could be used in multiple different platforms. The only

difference between the target applications was the native code part, which I

wanted to take with this thesis. I wanted to learn how to create PhoneGap, like

a library application, which could be later extended with new native code

methods when communicating between the native code and HTML/JavaScript. I

learned the mechanism how data is passed from the UI to the native code and

from the native code to the UI. I also learned how to create a responsive and

dynamic HTML with jQuery mobile JavaScript libraries. The only thing that is

missing from the hybrid application’s communication and more dynamic UI is

the ability to send asynchronous AJAX calls to the native code side. If

asynchronous communication would be available, the UI would be more

responsive and faster. In fKino’s case all the communication is done via

synchronous calls and this will slow down the UI and lock the UI for the time

when the execution is running in the native code side.

In my project I wanted to create a real phone application with a real content that

could also be useful and give value for the users. I interviewed some of my

friends about the needs because I wanted to make this application for the users

who use it and need this kind of service.

38

At the beginning of my project I created a sketch for my friends and

demonstrated the basic functionality of the application. After a couple of

interview rounds, the UI started to get its form and also the application

functionality started to get approved features from my friends and from me. At

the very beginning the UI included both native and Hybrid application parts,

where buttons were native and a WebView container holding the hybrid part of

the application. However, I decided to get rid of the native buttons and make the

whole UI with HTML and JavaScript. This decision turned out to be suitable for

my friends too, as they are using both Android and iOS devices. This also gives

a better feeling about the application, as the native parts look different in these

platforms.

The biggest problem, when I started to write the application, was to understand

how the native-UI-native communication worked in these platforms. Especially

iOS was hard to understand as most of Apple’s development guides are behind

the developer license. At first I did not buy the licence because I did not even

have the iPhone device. Android however was clear to me all the way from the

beginning. Maybe the reason for this easiness was my previous experience with

Android development tools and web page development with the Java

programming language. Also, the documentation is available for everyone

without any licences.

When the communication between the native and HTML/JavaScript was solved,

the application itself was implemented quite fast. As the iOS and Xcode

environment was totally new to me, I wanted to take this opportunity and learn

that development environment. So I decided to implement the whole application

first with Xcode and after that take the UI code and integrate it into the Android

version of the application. This way I also figured out all the differences and

modifications needed between these platforms. And it turned out that the only

difference is the communication from the UI to the native code if native code is

not taken into account. In iOS the communication is done by commanding the

document to a new location and handling the document navigation event in the

native code side as in Android there is an API for this making the

39

communication much easier. The rest of the UI code did not need any

modifications at all.

The biggest concern after implementing the fKino for iOS and starting with the

Android version was the Android’s performance to render the UI. Also,

Android’s WebView component was lagging and the UI events were not

responsive. I spent quite a long time solving what is the root cause for this. I

also tried to turn on all the possible acceleration tweaks I could find but without

success. Because I did not find out the cause for slowness, I decided not to

make the fKino application public in Google Play. However the iOS version has

been available in Apple’s App Store for some time now.

As a result of this project I see a lot of commercial potential by implementing

hybrid applications. The only code you need to maintain is the native code and

if the UI needs changes, the regression for the UI changes are minimal. I also

find it interesting that the UI in different operating systems looks and behaves

the same way. Of course this depends on the WebView component’s

performance too. Once the native library is mature enough, new applications

can easily be implemented on top of that, meaning that when the native code

base is extended with helper functions and support methods, during time the

only needed element for the application is the HTML and JavaScript.

If the fKino application had been implemented by using only the native UI

components, the application performance would have been better in both

environments. Also debugging the application would have been easier.

However, the application’s UI would have been different because the native UI

components look and behave differently in iOS and Android.

40

REFERENCES

[1] Korf, M., Oksman, E. 2014. Native, HTML5, or Hybrid: Understanding Your
Mobile Application Development Options
Date of retrieval 18.06.2014
http://wiki.developerforce.com/page/Native,_HTML5,_or_Hybrid:_Understandin
g_Your_Mobile_Application_Development_Options

[2] Satrom, B. 2014. Building Apps with HTML5: What You Need to Know
Date of retrieval 20.06.2014
http://msdn.microsoft.com/en-us/magazine/hh335062.aspx

[3] W3Schools Organization, 2014. HTML5 Introduction
Date of retrieval 20.06.2014
http://www.w3schools.com/html/html5_intro.asp

[4] W3Schools Organization, 2014. New Elements in HTML5
Date of retrieval 15.07.2014
http://www.w3schools.com/html/html5_new_elements.asp

[5] W3Schools Organization, 2014. HTML5 Video
Date of retrieval 16.07.2014
http://www.w3schools.com/html/html5_video.asp

[6] Crowther, R., Lennon, J., Blue, A., Wanish, G. 2014. HTML5 in Action

[7] WebPlatform Organization, 2014. HTML5 hybrid applications
Date of retrieval 22.06.2014
http://docs.webplatform.org/wiki/concepts/Internet_and_Web/html5_hybrid_appl
ications

[8] Tamada, R. 2014. Androidhive - Android XML Parsing Tutorial
Date of retrieval 28.06.2014
http://www.androidhive.info/2011/11/android-xml-parsing-tutorial/

[9] Apple Inc. 2014. NSJSONSerialization Class Reference
Date of retrieval 28.06.2014
https://developer.apple.com/library/iOS/documentation/foundation/reference/nsj
sonserialization_class/Reference/Reference.html

[10] W3Schools Organization, 2014. JavaScript Tutorial
Date of retrieval 17.06.2014
http://www.w3schools.com/js/

[11] W3Schools Organization, 2014. CSS Tutorial
Date of retrieval 17.06.2014
http://www.w3schools.com/css/

http://wiki.developerforce.com/page/Native,_HTML5,_or_Hybrid:_Understanding_Your_Mobile_Application_Development_Options
http://wiki.developerforce.com/page/Native,_HTML5,_or_Hybrid:_Understanding_Your_Mobile_Application_Development_Options
http://msdn.microsoft.com/en-us/magazine/hh335062.aspx
http://www.w3schools.com/html/html5_intro.asp
http://www.w3schools.com/html/html5_new_elements.asp
http://www.w3schools.com/html/html5_video.asp
http://docs.webplatform.org/wiki/concepts/Internet_and_Web/html5_hybrid_applications
http://docs.webplatform.org/wiki/concepts/Internet_and_Web/html5_hybrid_applications
http://www.androidhive.info/2011/11/android-xml-parsing-tutorial/
https://developer.apple.com/library/ios/documentation/foundation/reference/nsjsonserialization_class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/foundation/reference/nsjsonserialization_class/Reference/Reference.html
http://www.w3schools.com/js/
http://www.w3schools.com/css/

41

[12] jQuery Foundation, 2014. jQuery components
Date of retrieval 17.06.2014
http://plugins.jquery.com/

http://plugins.jquery.com/

