

Udeep Shakya

Using a Framework to develop Client-Side App

A Javascript Framework for cross-platform application

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Degree Programme in Media Engineering

Bachelor’s Thesis

6 November 2014

 Abstract

Author
Title

Number of Pages
Date

Udeep Shakya
Using a Framework to develop Client-Side App

40 pages + 1 appendix
6 November 2014

Degree Bachelor of Engineering

Degree Programme Media Engineering

Specialisation option JAVA and .NET Application Development

Instructors

Kari Salo, Project Manager/Principal Lecturer
Petri Vesikivi, Principal Lecturer

This project aims to study the comfort of using a framework to develop client side applica-
tions based on Hypertext Markup Language 5 (HTML5), Cascading Style Sheets (CSS)
and JavaScript technology. The application tends to serve both as a web client application
and a mobile client application for multiple platforms. A survey answering application which
fetches questions (texts) from an Application Programming Interface (API) in the applica-
tion server and uploads text, sound, video and picture answer to the server was built to
test the framework on.

The application serves as a client application for Contextual Activity Sampling System
(CASS) developed by Metropolia University of Applied Sciences for the Doctoral Students
of Department of Psychology of Helsinki University. The Doctoral students use the System
to study Human behavior for different researches. Helsinki University is also a contractor
for CASS client (CASS-Q) project.

AngularJS, an open source JavaScript framework, maintained by Google Incorporation is
the chosen framework. It was released in 2009 and has evolved with many modules de-
veloped by the community. The results of this study suggests that the easy to learn frame-
work can be a very good choice to solve global variable scope issue present in applica-
tions developed using most of the other JavaScript libraries.

The Doctoral students sensed a great benefit of cross-platform CASS client as compared
to that of the only Android Native Client they had earlier. Though the web client developed
during this project could only upload text answers, they found it already usable for their
researches which required only text answers. The mobile device application versions,
which has not been released yet, will able them to receive media files too.

Keywords JavaScript framework, HTML5, CSS, AngularJS, CASS,
CASS-Q

Contents

1 Introduction 1

2 JavaScript Frameworks 2

2.1 JavaScript, Libraries and Frameworks 2

2.2 JavaScript Framework Selection 2

3 Technologies used 5

3.1 HTML5 5

3.1.1 Semantic Structure Elements 5

3.1.2 New Form Tools 6

3.1.3 Video and Audio 7

3.1.4 Data Storage 7

3.2 AngularJS and JavaScript libraries. 8

4 The Project 9

4.1 The Architecture 9

4.2 Data models 10

5 The AngularJS in the project 12

5.1 Directory Structure 12

5.2 Application module 13

5.3 Routing 14

5.4 Model, View and Controller 16

5.5 Recipe 19

5.6 Communicating with the Backend 20

5.6.1 $http Service 20

5.6.2 XML Handling 21

5.6.3 Cross Origin Resource Sharing (CORS) 23

5.7 Presentation 24

5.7.1 Localization 24

5.7.2 Polyfills 27

5.7.3 Display Layout and Swipe feature 30

6 Mobile Application 31

6.1 PhoneGap 31

6.2 Converting to Android application 32

6.3 Accessing device feature 33

7 Conclusion 35

References 37

Appendices

Appendix 1. Screen shots of main views

1

1 Introduction

Contextual Activity Sampling System (CASS) is a system for collecting data involving a

process of repeated sampling of activities. It is being used by doctoral students of Hel-

sinki University to devise a design practice by investigating human activity, social inter-

action, and changes in location as well as the emotional dimensions of their experi-

ences. A PHP powered CASS admin console was built in 2008 as a backbone for the

system. However, this thesis is not about the PHP CASS admin console but it is about

the CASS-Q client side web application, a cross platform JavaScript application. Never-

theless, this document would be incomplete if the CASS System is not introduced. This

paper documents the process of building the CASS-Q application using the AngularJS

framework. [1]

CASS admin console allows user to create surveys which would be delivered to ex-

perimental subjects at selected times of the days for specified duration. Before CASS-

Q web application was developed, the subjects could obtain the survey only on their

mobile phones. The android client application was working fairly well, unlike iOS and

Windows phone client application. Having several client applications for different plat-

forms is costly and time consuming when the application needs to be upgraded or

amended. Further, it cannot be guaranteed that a technician has the knowledge of all

the different platforms. Over and above, there wasn’t any client application for the

desktop environment. So, it was decided to address this issue by developing a client

web (HTML5) application, CASS-Q, which could be executed in any browser in the

desktop environment and the mobile domain. More than that, the application would

also be coupled with phonegap to produce native application for phones with different

platforms. [2]

Hypertext Markup Language (HTML5), JavaScript, and CSS were the main technolo-

gies used to build the CASS-Q application. AngularJS, the JavaScript framework used

in the project and its architecture were the main subject to study for this thesis. On the

side, the capability of HTML5 was also examined.

2

2 JavaScript Frameworks

2.1 JavaScript, Libraries and Frameworks

JavaScript is one of the most extensively used components in web browsers today. Not

only for the client side data validation, but it is being used even for designing the web

application. [3,1] In fact, a whole stand-alone application can be built with JavaScript

and HTML which can run on browsers even offline. Client-Side Scripting Languages

like JavaScript is interpreted in the user’s device (client) rather than in the server com-

puter. It means, once the Script is downloaded to client, the execution is faster and

may not need connection to server anymore.

As the JavaScript became popular, libraries and frameworks of JavaScript started de-

veloping too. The libraries consist of predefined objects or functions that can be used

repeatedly. Using library features saves time as there is no need code from scratch.

JavaScript libraries can also be used by server side web application to perform actions

in client side. There are numerous JavaScript libraries available associated with

Graphical User Interaction, Visualization, Unit Test, Template Systems, even Server

Side, DOM (Document Object models) handling, and web application development [4].

A framework is not too different from libraries. An important difference between them is

that the framework provides the skeleton codes for an application. It defines technical

structure of the application. [2, 336] The libraries contain just reusable codes and have

nothing to do with the structure of main application. The code written by developer uses

the library functions. On the other side, the backbone codes of a framework use the

code written by developer to build an application. A framework defines ways of coding

while library is just a tool. A framework may also contain reusable features just like the

libraries do. Using a JavaScript library functions to use client’s computer processing

could be a good choice when developing a server side application but when a whole

client side application is being built, it is worth to choose a JavaScript framework.

2.2 JavaScript Framework Selection

One of the serious problems with JavaScript libraries is the lack of modular structure.

The objectives of CASS-Q project was to have a modular, organized, extensible and

maintainable codebase. Different frameworks address this challenge in different ways.

3

It is also possible that, a certain framework is better suited for a project of certain type.

Of the many JavaScript frameworks; AngularJS, Ember and Knockout were the frame-

works that were considered for selection before the implementation. The comparison

among them is shown in Table 1.

Table 1. Comparison of frameworks [2,340]

Features AngularJS Knockout.JS Ember

Learning curve and

documentation

Medium learning

curve and Well

documented

Easy learning

curve and well

documented

High learning

curve and

Framework/Patterns

followed

Model-View-

Controller, Model-

View-ViewModel

Model-View-
ViewModel

Pure MVC

2 Way data binding Yes Yes Yes

Modularity/Code or-

ganization

Yes Yes Yes

Rout-

ing/Bookmarking

capability

Yes Yes Yes

Directives Yes No No

Opinionated Yes No Very much

Ability to work with

other libraries

Yes Yes Not easy

Browser support

Yes and goes back

till IE8

Yes and goes back

till IE6

Yes but has some

issues with IE8,

IE9

Maturity and size of

the community

14, 000 Git Hub

Watchers

4, 153 Git Hub

Watchers

8, 154 Git Hub

Watchers

Templating mecha-

nism

DOM Based Tem-

plating

DOM or String-
Based Templating

Uses Handlebars

Testability 5 4 4

Leadership Google Steve Sanderson TILDE INC.

4

As suggested by the results in Table 1, the AngularJS was chosen considering its ad-

vantage in component organization, data binding ability, modularity, extensibility,

browser support, easy learning curve and documentation, routing capability, ability to

work with other libraries, maturity and size of the community, template mechanism,

support for localization and testability. It can also be seen from the table that it offers

almost all the features that other frameworks do.

5

3 Technologies used

3.1 HTML5

The latest version of Hypertext Markup Language (HTML5) standardizes many new

structural elements including those for presenting videos and drawings in the World

Wide Web. It also defines new Document Object Model (DOM) APIs (Application Pro-

gramming Interface) for events like server communication and mouse events. Improved

web form, Persistent Local Storage, Geolocation, Microdata, Interactivity and animation

are other new features of HTML5. [5] This not only has eased developers from depend-

ing upon Third Party plugins but also assisted browsers to include open standard fea-

tures to deliver more desktop like application in their interface [6,xv]. A few new fea-

tures of HTML5 are introduced in this section.

3.1.1 Semantic Structure Elements

New semantic elements like <footer>, <content>, <header>, <logo>, <con-

tainer>, <nav> have given more concrete structure to HTML compared to <div>

element in previous HTML version. These elements have allowed repurposing the con-

tents, for example when the web page is rendered in various sized screens. They allow

easier page design and also enhance, search engine optimization for a site. Besides

new elements, HTML5 also allows developers to add custom data attributes to the

elements, the values of which can be accessed using JavaScript APIs or CSS. [6,1-9;7]

Figure 1 shows the use of new elements to describe contents.

6

Figure 1. New semantic HTML5 elements. [8,10]

An HTML tag can have different meaning when it is placed inside different semantic

elements depending on the hierarchy of elements shown in Figure 1 [8,48].

3.1.2 New Form Tools

Input verification which used to be done earlier with JavaScript or Server Side Script is

no longer required for several new input types in HTML5. datetime, date, month, week,

time, number, range, email, url, datalists are few of the new types that comes with the

with the validation rules in the HTML5 Web Forms 2.0. In addition, custom validation

criteria can also be specified. Frequently used scripted properties such as placeholder,

autofocus, required are included as attributes in the HTML5. [9] As the HTML5 features

takes place in the browser itself, they execute faster than traditional JavaScript. Deliv-

ering a native feel even in different devices (especially in mobile devices) is another

7

advantage of the HTML5 form elements. However, there are compatibility issues with

few browsers regarding few of the new elements. [8,120-129]

3.1.3 Video and Audio

As smart phones evolved, mobile browsing boomed too. Media player plugins that

used to present audio and video in the desktop and laptop browsers for about a decade

couldn’t be a solution for mobile browsers. HTML5 offers native video and audio fea-

tures which plays without any plugin and this eliminates the hassle of updating media

player plugin frequently. [8,145] MPEG4 files with H.264 video codec and AAC audio

codec is most commonly used video format for HTML5, however, the old version of

most of the browsers do not support this feature. Regarding audio, mp3 formats are

played by most of the browsers along with ogg and wav formats. The <audio> and

<video> tags come with attributes such as autoplay, autobuffer, loop, preload which

looks after the presentation of the media. Apart from that, events generated from the

player such as play, pause, abort, error, volumechange can be used by JavaScript to

control functionalities. [10]

3.1.4 Data Storage

Session Storage and local storage are two new storages introduced at client side in

HTML5. Earlier versions had cookies as client side data storage which is limited to size

of 4KB. Cookies also slow down the application and makes the communication vulner-

able as it is included in every HTTP (Hypertext Transfer Protocol) request which is un-

encrypted. [11] The size of new data storages depend on the browsers. A limit of five

megabytes for each storage area is recommended by W3C which is quite large for

texts only. [12] Session storage stores data for only one session while local storage is

persistent until the user or the script deletes the data explicitly. This development is

especially very useful in cases where users are not connected to internet all the time

when they are using the browsers. Especially in case of mobile phones, the connection

cannot be always reliable. Local storage has also allowed users to browse web appli-

cation even when they are offline. There are already HTML5 games which can be

played offline in the browsers. [13,278]

8

3.2 AngularJS and JavaScript libraries.

AngularJS is the framework technology used in the project. It uses the scripting lan-

guage JavaScript which fills in with the HTML technology to build client side web appli-

cations. The HTML is a strong declarative language but it lacks the capability of creat-

ing applications. Google Inc, the developer of the framework boasts AngularJS as what

the HTML would have been if the technology was designed for applications. Using

AngularJS, HTML’s syntax can be extended to articulate components of an application.

Angular’s data binding capability and dependency injection feature helps reducing lots

of codes. AngularJS can be considered a complete client side solution. [14]

A few components of other JavaScript libraries like jQuery, number polyfill, Cordova

(PhoneGap framework) are also used. The designing technology, Cascading Style

Sheet (CSS) is used for presenting elements in web. The CSS and JavaScript of the

Bootstrap library is used for responsive design in this project. A version control system,

Git is used for managing code versions during the development. Bitbucket

(www.bitbucket.org) was used to save the project in the cloud.

AngularJS and APIs used from other libraries is discussed in detail in the later section

of this document.

9

4 The Project

4.1 The Architecture

This section discusses the technical aspect of the Cass-Q project. Cass-Q application

communicates with CASS backend application to download survey questions and up-

load text answers using Hypertext Tranfer Protocol (HTTP). The data is transferred in

XML format. The CASS backend is hosted in Amazon server which can be accessed

using web browsers in a local machine. The CASS-Q client app can be accessed in the

same way but in addition, it also has a hybrid version for mobile devices. The system

architecture is shown in Figure 2.

Figure 2. CASS architecture [2,335].

The hybrid apps produced by connecting web app with PhoneGap library are some-

times referred as native apps in some articles [15,17]. Figure 3 shows the plan of hy-

brid CASS-Q system.

10

Figure 3. CASS-Q plan [2,342]

The PhoneGap library contains the APIs which can be used by the web-application to

access the device features.

4.2 Data models

The customers of the CASS application wish the client application to run offline even

for several days. At the moment, the current version of backend does not provide

enough information to develop such client. At present, the application must connect

online every time to get a survey and the answers should be sent to the server before

fetching another survey. The persistent storage is not used for survey questions and

answer at this stage.

The data model is designed considering a possibility that the client application can de-

velop further into an application which could connect to different question server de-

pending on client’s choice, fetch more than one survey (queries) at a time and upload

answers for more than one survey in batch. With more information from the backend

and more processing at the client-end, the application can be transformed into better

offline application in the future. The use of persistent storage like IndexedDB or local

storage for survey information would be required for that purpose. The data model

looks like as it is shown in Figure 4.

11

Figure 4. Data models for CASS-Q.

The data is modeled as JavaScript objects in this project. The entities shown in the

Figure 4 are objects containing array or collection of objects. The settings object con-

tains server information. At present, only one setting is hardcoded in the application as

there is only one instance of server the researchers in Helsinki University are using. If

they use more than one instance of CASS backend in the same or different server in

future, the settings model can be used to store information of multiple setting models.

Research object in the collection Researches is associated to Query object by “Id” key

in Research object which is mapped as “localResearchId” in Query object. The Query

object contains Array of Questions which further contains Array of options. Answers are

stored as Answer object in the collection Answers. It is associated with a Query object

by “Id” key of Query object and “localQueryId” in Answer object. The answer object

contains array of answers for the questions in a query.

12

5 The AngularJS in the project

5.1 Directory Structure

As AngularJS is a structural framework [16]. The directories in an AngularJS project

can be arranged in a very comprehensible way. Figure 5 shows the directory structure

of the CASS-Q application.

Figure 5. CASS-Q directory structure.

In an Angular application, it is very convenient to locate custom functions such as con-

trollers, directories, factories, services, filters in the ‘js’ folder. These codes are related

to the CASS-Q application and are used as fillings by the Angular Framework codes

which are contained in the folder ‘lib’. The ‘lib’ folder is also home to library files and

modules developed by other developers.

Folder “Partials” contains the HTML templates which are displayed to the clients. A

template and its respective controller along with its dependencies are used by the ap-

plication controller to present a view to a client when a user request certain route in the

13

application. All the templates in “Partials” folder are partial views for the main html file

“index.html” in the root folder.

5.2 Application module

A module specifies how an application should be loaded or how an application should

function. It helps to keep the global context clean as the data as the functions defined

inside a module cannot be accessed from global namespace. It makes writing tests

easier. Modules are reusable. It can be shared between applications. [17,18;18] A

module can contain various parts or functions as shown in figure 6.

Figure 6. Module as a container of functions [19,57]

The parts of a module shown in Figure 6 are introduced in next section of this docu-

ment but it would be sensible to mention ng-app directive of angular framework be-

cause the use of this directive bootstraps the module to a part of HTML document.

Directives are markers on a DOM element (such as an attribute, element name,

comment or CSS class) that tell AngularJS's HTML compiler ($compile) to at-

tach a specified behaviour to that DOM element or even transform the DOM ele-
ment and its children. [20]

ng-app directive is a built-in Angular directive which makes the web application an An-

gular application. A custom module can also be connected with ng-app directive. As

shown in Figure 6, this custom module could then contain configuration for routes, cus-

tom filters, directives or functions like Factory, Service, Provider, and Value which

https://docs.angularjs.org/api/ng/service/$compile

14

could serve data from different sources. [19,57] An application module is defined in the

way shown below for this project.

var cassApp = angular.module('cassApp', ['ngRoute','ngResource','ui-

rangeSlider','pascalprecht.translate']);

cassApp mentioned between the quotes in above code is the name of the module and

the ones mentioned in the square brackets are the dependency modules for cassApp.

The HTML file is coupled to angularJS by the following code in ‘index.html’ file in this

project.

<html lang="en" ng-app='cassApp'>

Angular uses spinal-case for its custom attributes but corresponding directives which

implement them are named using camelCase. Only the portion inside the DOM ele-

ment where ng-app directive is defined is treated as Angular application. This coupling

loads the module and allows the segment of the HTML to be manipulated by the func-

tions and properties. [21]

5.3 Routing

Config function of app module is used to create routes in the app as in the code below.

cassApp.config(function($routeProvider) {

 $routeProvider.

 when('/',

 {

 templateUrl: 'partials/appHomePartial.html',

 controller: 'AppController'

 }).

 when('/questions',

 {

 templateUrl: 'partials/appPartial.html',

 controller: 'AppController'

 }).

 when('/answerform',

 {

 templateUrl: 'partials/appPartial.html',

 controller: 'AppController'

 }).

 otherwise({

 templateUrl: 'partials/appHomePartial.html',

 controller: 'AppController'

15

 });

});

In the above configuration, the ‘when’ method is used to add specific routes, while ‘oth-

erwise’ method points to the default route. The first parameter taken by the when

method is the path that appears on the URL address. The second parameter is an ob-

ject which contains the template (a view) the application should access and the con-

figuration object which can be properties like a controller, template, templateURL, re-

solve or redirectTo and reloadOnSearch. [17,138] The DOM element, which would con-

tain the partial template, should contain the directive ‘ng-view’.

<div ng-view class="container slide {{layout}}" id="cass-content-

container">

The routes can be changed in the controller using $location object. For instance, the

code below directs the application to the URL containing ‘/questions’ to the root ad-

dress.

 $location.path('/questions');

Routing therefore is one of important settings in an Angular app as it connects the sev-

eral properties of Angular App. Figure 7 shows a big picture of how the various func-

tions and properties are related in a module.

Figure 7. Big picture of an Angular Module [19,55]

16

A module can contain configuration function which defines the routes. A route specifies

a view and a controller for a path. The View and Controller uses the $scope object for

two way data binding. $scope object is the View Model. A View uses a Directive or Fil-

ter to access an angular function or property in the View. The Controller uses factories,

services, provider or value to access data from data sources.

5.4 Model, View and Controller

Model, View and Controller (MVC) architecture allows the developer to keep the pres-

entation logic, business logic and database interaction separate. A view is a projection

of HTML Template which contains presentation logic. Models are the data displayed in

the Views. The Controller is an instance of JavaScript object which contains the busi-

ness logic. It loads Models from different data sources and provides them to the View.

AngularJS offers automatic data binding, meaning that any change in the model hap-

pening in the controller would be automatically reflected in the View. The feature also

works the other way from the view to the database interaction logic via the controller.

$scope object or simply called Scope, is glue between View and Controller and plays

an important role in data binding. It is also referred to as ViewModel by some develop-

ers. [17,11-13;19,46]

There are two controllers defined in the cassApp module – the application controller

and the language controller.

cassApp.controller('AppController',function($scope, $route, $http,

$window, $location, layoutService, settingsService, researchService,

fileService, $filter) {

 $scope.changeToken = function() {

 if ($scope.Token != null && $scope.Token != "")

 {

 researchService.setCurrentToken($scope.Token);

 $scope.fetchXmlMakeObjNavigate();

 }

 };

In the above code, a controller function called ‘AppController’ is defined in the ‘cas-

sApp’ module. Necessary dependencies are listed as parameters while defining con-

troller function. In above case, they are custom data providers (layoutService, set-

tingsService, researchService, fileService), angular services ($route, $http, $window,

$location, $filter). The scope object must be listed as one of the parameters if the con-

17

troller function needs to augment the ViewModel. As shown in above code, the control-

ler function can create or change properties (a function or value) in Scope object which

can be used by View Template.

Controller can be assigned to a DOM section of the HTML using ng-controller directive.

An angular application can use more than one controller.

<body ng-controller="AppController" >

<div ng-controller="langController" style="margin-bottom: 42px; text-

align: center; position: fixed; bottom: 0">

 <div id="contentarea" class={{layout}}>

 <form ng-submit="changeToken()"

 <input type="text" ng-model="Token" >

 Current Token = {{currentToken}}

</div>

</body>

If the Scope properties needs to be passed to non angular features, for instance to be

viewed in the HTML page or to DOM attributes, they are enclosed by double curly

braces. Curly braces denote bindings. In above example, {{layout}} and {{cur-

rentToken}} are properties of scope object and are bound to reflect to any changes

that would occur anywhere in the module. A view can access properties of scope ob-

ject using any angular or custom directive such as ng-submit, ng-if, ng-click. A view

can create or change a property of the scope by using ng-model directive. In above

snippet of code, a text input field is bound to Scope property “Token” by the ng-model

directive.

While discussing about scope, it should be noted that it is not just the controller which

can have its scope. ng-app directive and ng-repeat directive also creates their own

scope. Figure 8 shows scope inheritance in an Angular application.

18

Figure 8. Scope inheritance [22]

Every angular application has a single root scope created by ng-app directive. The

properties in root scope can be created or accessed by using $rootscope from any of

its child scopes. However, using $rootscope as a viewmodel is not recommended as it

pollutes the JavaScript global scope with too much data and logic. All other scope de-

scends from the application scope. In the above figure, repeater scopes are child

scopes of the controller scope. A property ‘questionsArray’ is an array in the Controller

Scope but each array element is projected as an object ‘item’ in corresponding re-

peater scope. The properties of Controller Scope can be accessed in repeater scope

by using keyword ‘parent’. However, there is no way to access properties defined in a

child scope from a parent scope. [17,21;23,24]

The other controller defined in the cassApp module is the language controller, created

mainly to make ‘$translate’ filter change the language to the one chosen by a user.

More about this feature is explained in localization section of this document.

cassApp.controller('langController', function($scope,$translate){

 $scope.changeLanguage = function(lang_code){

 $translate.use(lang_code);

 };

});

19

5.5 Recipe

Factory, Service, Provider and Value encapsulates data functionality and are called

Recipes in AngularJS. They can be injected as a parameter when controllers or other

Recipes are created. And this is how they provide data to multiple functions. The Reci-

pes are singleton objects that are created just once and are cached for all future needs.

Recipes might be interacting with a database or a XML/JSON request or a file contain-

ing XML/JSON as a data source. Factory, Service and Provider serves common func-

tionality but the way they create the object that fetches the data are different. [19,18;

25]

 In case of the factory, an object is created inside it and is passed to the controller.

A factory can have dependencies to other Recipes.

 In case of the service, the service itself is an object. The standard functions and

properties are defined in the service using this keyword.

 In the Provider, a $get property is used to get the object that provides the data.

 A value is a way of defining a constant. Unlike the previous three, it can’t contain

any functions.

Four services are used in this project.

cassApp.service('settingsService', function() {

});

settingsService contains functions to insert, delete and provide a setting that would

contain URLs to question Server, answer Server and media Server that the application

will communicate to.

cassApp.service('layoutService', function() {

});

layoutService checks whether the application is running in a browser or as a hybrid

application and returns a value to the controller to change to the application layout ac-

cording to the screen size.

cassApp.service('researchService', function($http, $window, set-

tingsService, fileService, $location, layoutService, $filter) {

});

20

researchService is the main recipe of the application which contains the main logic like

making objects of the xml data received from the Question Server. It also contains

functions which saves answers to the object and upload answer to the answer server.

cassApp.service('fileService', function(settingsService) {

});

fileService contains functions which create names for media files, add files to an object,

and upload the media files to the Media server.

5.6 Communicating with the Backend

The client-side CASS-Q application contains logic to show questions contained in a

query and obtain the input as answers for them. It cannot save the questions or the

answers at the client side. It has to communicate to Backend every time to fetch ques-

tions and upload answers to save the answers in the Backend. Among the several

methods offered by AngularJS to communicate with a remote server, a simple service

$http is used for this project.

5.6.1 $http Service

In a simple HTML/JavaScript web application, browser supported XMLHttpRequest

(XHR) object would be used to upload or download data to remote server. $http is a

core angular service which is just a wrapper function around the XHR object. It is an

asysnchronous method, meaning that it doesn’t wait for the result from server to exe-

cute the next code of the application. $http service takes an argument which should be

a configuration object that would be used to produce an HTTP request. The configura-

tion object may contain keys like method, url, params, data, headers, timeout, reponse

type depending upon the method and necessity of the request. If the HTTP request is

fulfilled, a function in Success method executes. If the HTTP request fails to connect to

a server then the error method is returned. [17,173;26]

$http({

method: "GET",

url: settingsService.getSetting().questionServer + token //URL

}).success(function(data) {

 researchService.makeObjects(data);

 if ($scope.isQuestionPage == true) {

 $route.reload();

 }

21

 else

 $location.path('/questions');

}).error(function(data, status, headers, config) {

 $window.alert($filter('translate')('CONNECTION_ERROR_INFO'));

});

Above code from CASS-Q application sends a GET request to the backend to

download a query. The query is downloaded as a parameter ‘data’ to the success func-

tion. To send answers to the server, a POST method of $http service is used as fol-

lows.

$http({

 url: settingsService.getSetting().answerServer,

 method: "POST",

 data: dat,

 headers: {'Content-Type': 'text/xml; charset=ISO-8859-1'}

 }).success(function(response, status, headers, config) {

 $window.alert($filter('translate')('ANSWER_SENT_ALERT'));

 $location.path('/');

 }).error(function(data, status, headers, config) {

 this.msgfromServer = "Error - " + status;

 $window.alert($filter('translate')('SUBMIT_ERROR') + status);

 });

5.6.2 XML Handling

Had the backend used JSON for data transfer, the JavaScript would automatically load

the JSON to JSON object when the XHR request succeeds and Angular would resolve

it to corresponding JavaScript objects automatically. But the CASS backend sends the

data in an XML format and Angular requires JavaScript objects to work with. Therefore,

and external XML parser is required. [17,217-218] An open-source library “X2JS” li-

brary [27] is used to parse XML to JavaScript in this project.

 <script src="lib/x2js/xml2json.js"></script>

The XML sent from the backend contains all the data which is delivered in single XHR

request. Shown below is one of such XML response.

<survey username="ushar" uid="1304" surveyId="655"

surveyCount="1" surveyTotal="NaN">

<item category="0" type="1" q_id="15525">open text question</item>

<item category="0" type="2" q_id="15526" min="5" max="9">open num-

ber</item>

22

<item category="0" type="9" q_id="15527"

min="1" max="10" minlabel="cold" maxlabel="hot">slider question</item>

<item category="0" type="7" q_id="15528">add a picture</item>

<item category="0" type="10" q_id="15813">

multiple choices

<option value="option1" o_id="24762"/>

<option value="option2" o_id="24763"/>

</item>

</survey>

The X2JS library parses the above xml to one JavaScript object.

var x2js = new X2JS();

var wholeObject = (x2js.xml_str2json(decodeURIComponent(xml))).survey;

The angular way of doing this would be creating x2js object in a separate factory or

service dedicated only for parsing xml [17,218]. The JavaScript object created by the

parser is then split to three objects (Researches, Queries, Answers) as proposed by

the data models for this application. The objects are shown in Figure 9.

Figure 9. Three JavaScript object stores constructed from XML.

Just like the download format, the upload format for CASS backend is also an XML. A

custom XML maker is created to generate XML text from JavaScript object store ‘An-

swers’.

23

5.6.3 Cross Origin Resource Sharing (CORS)

The client side CASS-Q application is independent of Backend CASS application ex-

cept for the exchange of data which requires running a script at the backend. It should

be possible to host the client application from any domain (Internet Protocol address)

and communicate with Backend which can be originating from other domain. However,

normally the web browsers do not allow fetching and executing scripts on cross do-

mains unlike in the same origin policy. The same-origin policy allows the browsers to

run scripts on pages that are hosted from same domain. The CASS-Q web application

is at the moment hosted from same origin as the Backend application, so no CORS

functionality is implemented. However, it is worth to have an idea of applying CORS

methodology in AngularJS in case the hosting environment changes. [17,211]

The CORS specification allows JavaScript to make cross-domain XHR calls. It actually

sends a preflight to the foreign server and asks for the permission to send the request.

The server can accept or reject any request from all servers, a select server, or set of

servers during the preflight. The client and server application both needs to have coor-

dinating preflight settings to transfer data to either side. In an Angular app, cross do-

main (XDomain) feature is set to true to in the config() method of the application mod-

ule so that the application can use the feature.[17,211-213] An example is shown in

code below.

angular.module('myApp')

.config(function($httpProvider) {

$httpProvider.defaults.useXDomain = true;

delete $httpProvider.defaults.headers

.common['X-Requested-With'];

});

Code example in ng-book, page 213

In the above code the configuration setting makes sure that X-Requested-With header

is removed from all XHR calls. It has been removed from the common header defaults,

but it is recommended to ensure in the configuration to make CORS possible.

A simple setup is also required at server side too to support the CORS. The file at the

server which the client app is communicating to, must respond with few access control

headers to the preflight request as shown below. [17,214-216]

24

header("Access-Control-Allow-Origin: *");

header("Access-Control-Allow-Methods: GET,POST");

header("Access-Control-Allow-Headers: X-Requested-With, Content-Type\n");

Code example in CASS Backend PHP application

In the above code, The Access-Control-Allow-Origin header is set to * which means

it allows any kind of requests from any origin. If it needs to allow a particular foreign

domain only, then the domain is mentioned instead of *. The value of Access-

Control-Allow-Headers should be same as the header type in the XHR request made

by the client side. The server must respond with Access-Control-Allow-Methods

header if client makes request with Access-Control-Request-Headers header. It lists the

allowed HTTP methods. Use of this header allows the request to be cached in the cli-

ent which makes preflight not required for future requests. [17,214-216]

5.7 Presentation

5.7.1 Localization

An AngularJS module, angular-translate [28] allows to switch languages in the web-

page on the fly in the runtime, without a need to refresh the page or load different URL.

It reduces the work of building new templates for different languages. The module is

not contained in core angular framework, so it should be embedded in the HTML

document manually. [17,482]

<script

src="lib/angular-translate/angular-translate.min.js"></script>

The angular-translate module is declared as pascalprecht.translate in its definition file.

Pascal Precht is an active member of the AngularJS community and the developer of

the module. Angular-translate library must be mentioned as dependency module to be

loaded in the application module.

var cassApp = angular.module('cassApp', ['ngRoute','ngResource','ui-

rangeSlider','pascalprecht.translate']);

The application is taught a new language by injecting $translateProvider in the config()

function of the app. $translateProvider is a Provider in angular-translate module which

is used to configure translation data. There are different ways to load translation data

but the one that has been used in the CASS-Q app is shown below.

cassApp.config(['$translateProvider', function($translateProvider) {

25

 $translateProvider.preferredLanguage('en_EN');

 $translateProvider.useStaticFilesLoader({

 prefix: 'languages/',

 suffix: '.json'

 });

Code example in CASS-Q application

$translateProvider can load a separate file which contains translation table using useS-

taticFilesLoader function as in the case in above code. This helps to keep the trans-

lations for each language in a separate file. The prefix and suffix attributes passed to

the file loader function forms the path to the file containing translation table in JSON

format as shown in below.

JSON data in the file languages/en_EN. json

{

 "GET_SURVEY_BUTTON": "Get Survey",

 "WELCOME_TEXT": "Welcome to CASSQ",

 "FETCH_SURVEY_TEXT": "Enter a token to fetch a survey"

}

JSON data in the file languages/fi_FI. json

{

 "GET_SURVEY_BUTTON" : "Hae kysely",

 "WELCOME_TEXT" : "Tervetuloa CASS-Q:n",

 "FETCH_SURVEY_TEXT" : "Anna Token kyselyn hakua varten"

}

The key in the JSON represents translation ID and the value represents the translated

text for a particular language. Translation ID and translate filter that comes within

the angular-translate module is used in the view template to show the concrete texts.

 <div >

 {{ 'WELCOME_TEXT' | translate }}

 {{ 'FETCH_SURVEY_TEXT' | translate }}

 </div>

Figure 10 shows CASS-Q application using translation texts to present the application

in Finnish language.

26

Figure 10. Angular-translate used to change language in the application

Switching the language in the run time requires a function to be implemented in a con-

troller. It is actually use() method of $translate service of angular-translate module

which performs the action.

cassApp.controller('langController', function($scope,$translate){

 $scope.changeLanguage = function(lang_code){

 $translate.use(lang_code);

 };

});

The function can then be called from a view when a user clicks a button or a link. A

language code is passed to the function when it is called as shown in the code below.

[17,482-488]

<div ng-controller="langController" ><div ng-cloak>

 English

 Finnish

</div>

27

The raw Angular html template can be briefly displayed while switching to a different

language in the browser. This happens when the compilation of JavaScript is slower

than the compilation of HTML. ngCloak directive of AngularJS solves this problem by

hiding the raw content when the transition takes place [29].

5.7.2 Polyfills

HTML5 has considerably evolved compared to its predecessor. However, a few new

elements of HTML5 are not supported in old browser. At the time of this project imple-

mentation, it was noticed that the new elements didn’t work as it was supposed to work

even in few latest browsers. The delivery of the features is important for the mobile

browsers in the touch devices for the CASS-Q application. The performance of the

HTML5 elements that are needed for CASS-Q application was tested in several brows-

ers during the project and the result is summarized in Table 2.

28

Table 2. HTML5 element test results. [2,343]

HTML5
element

Device/OS Browser
Test
result

Notes

Number
Input

Windows PC Firefox 26.0 Failed
HTML5 number type deliv-
ered as normal text box

Windows PC Chrome 32.0 OK

Windows PC IE 10.0 Failed
HTML5 number type deliv-
ered as normal text box

iMAC Safari 6.0.5 OK

MacBook Pro Safari 7.0.1 OK

Samsung Galaxy S4 Native browser OK

Nexus 7 Chrome32.0 OK

iPhone 5s iOS 7.0.5 Safari Failed
HTML5 number type deliv-
ered as normal text box

iPad mini iOS 7.0.5 Safari Failed
HTML5 number type deliv-
ered as normal text box

Nokia Lumia 920 win 8 Internet Explorer Failed
HTML5 number type deliv-
ered as normal text box

Range
Input

Windows PC Firefox 26.0 OK

Windows PC Chrome 32.0 OK

Windows PC IE 10.0 Failed
Input delivered by user is not
acknowledged

iMAC Safari 6.0.5 OK

MacBook Pro Safari 7.0.1 OK

Samsung Galaxy S4 Native browser OK

Nexus 7 Chrome32.0 OK

iPhone 5s iOS 7.0.5 Safari Partial
The slider in range input
doesn't respond touch readily

iPad mini iOS 7.0.5 Safari OK

Nokia Lumia 920 win 8 Internet Explorer Failed
Input delivered by user is not
acknowledged

Polyfill fills the gap between the browser and the elements not supported by it, meaning

that it helps to deliver the functionality that the browser is supposed to deliver. It is just

a piece of codes (usually JavaScript/CSS) that could be added in a web application. An

ideal polyfill would take care of backward compatibility in browsers in a quiet way with-

out the developer needing to work around. There are many open source lightweight

polyfills available for a particular input element. [30;31,258;32]. This sort of polyfill is

exactly suitable for CASS-Q application.

29

An open source Number Polyfill written by Jonathan Stipe available in GitHub system

[33] is used in the CASS-Q project. It is very simple to use. The HTML page just needs

to include number-polyfill.js file as its helper file and <input type="number" />

element can be used without any bother. The polyfill comes with a default CSS file

which can be edited to style the looks.

Polyfills are easy to use but AngularJS provides another tool too to augment the HTML

elements. A directive called angular-rangeslider is used to style the Range input in the

application. The module is developed by Daniel Crisp and should be separately in-

stalled. This directive actually makes <div> element to show a range slider and not

<input type =”range”> element. The angular-rangeslider can have 2 handles form

minimum and maximum values. The values can be attached to modal in the angular

scope. The slider can be displayed in vertical or horizontal orientation. Having the slider

orientation in vertical orientation is mainly useful in touch devices as the activity doesn’t

collide with the swipe activity. The HTML page should include a file angu-

lar.rangeSlider.js and the application module must list range-slider module as its de-

pendency when it is loaded. jQuery library is also required. [34] The codes used for

range-slider directive is shown below and its output is shown in Figure 11.

<div range-slider min="selecteditem.minValue"

max="selecteditem.maxValue" orientation= "vertical" decimal-places="1"

model-max="selecteditem.answer" pin-handle="min" >

</div>
Code example from CASS-Q application

Figure 11. HTML5 range input and Angular range-slider

30

5.7.3 Display Layout and Swipe feature

Cascading Style Sheets from Bootstrap (http://getbootstrap.com/) is used to make the

application responsive to mobile, iPad and desktops. The layout designed for large

screen shows question list and answers form in the same web page giving a user an

overall view of the application. While, in the small screen devices, like phone and tab-

let, the layout is different. The welcome page, question list and answer forms are put in

three different pages so that the elements appear large enough for users to understand

easily. The layout changes on the fly during the runtime when the browser is resized.

The application also supports swipe functionality in touch devices to traverse through

the questions. Angular has an extension module Angular-Touch that provides touch

event for touch-enabled devices. [35] In fact, the swipe feature of angular-touch module

also extends to mouse drag events in non-touch devices. The feature isn’t a merit for

CASS-Q application as it might conflict with other mouse activity like dragging handle in

a slider. jQuery Touchwipe plugin came very handy for this case. It is interesting to find

out how a jQuery callback function could be defined inside a controller of Angular mod-

ule and access other functions of the Angular Scope. It is shown in the code below.

$("#question-form").touchwipe({

 wipeLeft: function() {

 if (angular.isDefined(researchService.getCurrentToken()))

 $scope.showNext();

 },

 wipeRight: function() {

 if (angular.isDefined(researchService.getCurrentToken()))

 $scope.showPrevious();

 },

 preventDefaultEvents: false

});

Code example from CASS-Q application

http://getbootstrap.com/

31

6 Mobile Application

6.1 PhoneGap

PhoneGap is a framework that is used to develop mobile applications using web tech-

nologies. Mainly User Interface, application logic and exchange of data to servers are

based on web technology (HTML, CSS, and JavaScript) but the component of the ap-

plication that handles the device features is based on the native language for that plat-

form. The device handling JavaScript API is provided by the PhoneGap. The native

component of PhoneGap framework works behind the scene and so a developer can

concentrate on business logic and User Interface worrying less about accessing device

capabilities. [15,17-19] Figure 12 shows the Architecture of a PhoneGap Application.

Figure 12. PhoneGap Application Architecture [15,18]

The PhoneGap Bridge is device specific meaning that there are separate PhoneGap

frameworks for different mobile platforms but the same web application can be used to

build mobile application for different platforms. [15,17-19]

32

6.2 Converting to Android application

PhoneGap is a just a framework. It doesn’t provide any development environments. A

developer has to setup mobile platform related development environment by himself.

Xcode Integrated Development Environment is needed to develop an iPhone applica-

tion whereas android application is developed in Eclipse. Eclipse requires several other

plugins to be able to develop an Android application. They are listed below.

1. Java Development Kit (JDK)

2. Android Software Development Kit (SDK)

3. Android Development Tools (ADT) plugins for Eclipse

4. Android Virtual Device (AVD)

5. PhoneGap Software Development Kit (for hybrid applications only)

It is recommended to have the latest version of plugins that are needed. Fortunately,

there is no need to setup above plugins separately anymore. Android Development

community provides ADT Bundle which contains the following tools as a set. [36]

 Eclipse + ADT plugin

 Android SDK Tools

 Android Platform-tools

 A version of the Android platform

 A version of the Android system image for the emulator

Java Development Kit [37] needs to be installed separately. Eclipse application can be

run readily just after extracting the bundle and an application can be developed for the

Android version that comes with the bundle without needing any other tools. To de-

velop an application for other Android versions, ADT Plugin and AVD of the same ver-

sion is needed. This can be done by running Android SDK manager to update Android

SDK Tools and Android SDK Platforms-tools and then by selecting the required version

of Android. Android Virtual Device is easy to create by using Android Virtual Device

Manager that comes with the bundle. [15,19-27]

The PhoneGap [38] framework can be downloaded from http://phonegap.com/install/ .

The package contains an example and framework for android, blackberry, iOS, and

windows platform. To develop a PhoneGap application, a normal android project is

http://phonegap.com/install/

33

created in the Eclipse and the PhoneGap is injected by copying files from PhoneGap

framework for android to the project folder in Eclipse. The web application is developed

in assets/www folder of PhoneGap framework. Then, in the main activity of the android

application, the URL to the web application should be loaded when the activity is cre-

ated.

import android.os.Bundle;

import org.apache.cordova.*;

public class MainActivity extends DroidGap {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 super.loadUrl("file:///android_asset/www/index.html");

 }

}

The Cordova library that comes with PhoneGap framework must be imported to the

MainActivity. It contains the APIs which communicate with device features. MainActivity

must extend DroidGap class. DroidGap is a class defined in Cordova package.

6.3 Accessing device feature

Cordova library of PhoneGap provides limited Plugin APIs for accessing device fea-

tures. Battery Status, Camera, Console, Contacts, Device information, Accelerometer,

Device Orientation, Visual Device notifications, File System, File Transfer, Geolocation,

Globalization, Media recording and playback, Vibration are among them. For other

functionalities, PhoneGap recommends other third party plugins. Camera and File

Transfer plugin are used in the CASS-Q project and a general idea of using the plugins

is discussed in this section. [39]

By default, the function camera.getPicture of Cordova library opens the default camera

application of the device. The camera application closes when the photo is taken and

the main application restores. If Camera.sourceType is set to Photolibrary or Saved-

photoalbum, a photo chooser dialog appears instead of the camera. [40]

$scope.launchPictureTask = function() {

 navigator.camera.getPicture(function(imageURI) {

34

 document.getElementById("pic").src = imageURI;

 var pictureScope = angular.

 element(document.getElementById('pic')).scope();

 pictureScope.nameAndAddPictureFile(imageURI);

 },function(message) {

 alert('Failed because: ' + message);

 },{

 quality : 70,

 destinationType : Camera.DestinationType.FILE_URI,

 sourceType : navigator.camera.PictureSourceType.CAMERA

 });

 };

If camera capture is a success, the first function parameter of naviga-

tor.camera.getPicture is called. imageURI is the captured image and can be assigned

as source for image DOM element. To pass the image to an angular scope function,

first the scope object should be identified. It can be done by using angu-

lar.element(DOM).scope() function on the any DOM element inside targeted scope.

Then, it is possible to call the function of the scope and pass values to it. The second

function is called if there is an Error and the third object is for configuring camera op-

tions.

File Transfer is an object in File API in PhoneGap that allows the application to upload

files to a server using an HTTP multi-part POST request. In iOS and Android, it also

supports downloading a file from a server and saving it. Function upload() of File

Transfer object is used to upload files. It takes five parameters- filePath, server, suc-

cessCallback function, errorCallback functions and options. options is an object which

contains parameters such as fileKey, filename, mimeType. [41]

35

7 Conclusion

The prime objective of this project was to explore the usage of a Javascript framework

to build client side application. The known available JavaScript frameworks were com-

pared and AngularJS was chosen for the project. As it was expected, AngularJS was

found to be learnt easily. AngularJS is not just suitable for developing Single Page Ap-

plication (SPA) for which it is praised, but it was found during the project that the

framework can perfectly utilize back buttons in web-browser to go to previous pages

giving a feel of familiar handling in the smart phones with back button. The two-way

data binding capability of Angular helps to reduce the amount of codes and keep the

building procedure focused towards more serious logic. By presenting the changes on

the fly, the data binding ability makes the application’s performance appear swifter.

In my personal opinion, the Angular framework is very light and fast executing. The

MVC structure and the modular structure is easy to understand. The Developer Guide

and API references provided by Angular Team in www.angularjs.org are very helpful to

understand the concept. However, I sensed a need for other learning resources, like a

book to teach a new developer how to structure functions in an angular way, especially

when creating custom dependency services. Unfortunately, there were not many books

written on AngularJS [16] when the project was taking place and those too, were not

very easy to find in market. Discussion rooms in the internet broke the deadlocks

sometimes but it could always be felt that better or more solutions to the problem could

be lying somewhere else. However, the lack of materials on AngularJS did not cloud

the advantages of using a framework to build a client side application. The use of

framework reduced a significant amount of thinking and code to write for me during this

project which resulted in quick development of the application.

The open source framework, AngularJS has a big community and it offers many exten-

sions. Some of the external modules, for instance, angular-translate, is recognized by

the Angular Team itself [16]. The offerings from the community certainly made my

work a lot easier when it came to implementing localization and substituting incompati-

ble HTML5 feature. I had not realized the benefit of a big community before running

into trouble myself. The ability of AngularJS to work along well with non-AngularJS li-

braries also helped this project to include extra features. Swipe feature is one of them.

The client side application, CASS-Q developed during the project is hosted at

http://www.angularjs.org/

36

http://54.247.115.29/cassQ. The application is being tested by the Doctoral Students of

Department of Psychology in Helsinki University. Thanks to HTML technology, CASS-

Q cross platform web application provided them with wide range of client devices, al-

most all the devices which has a web browser installed in it. With this development at

the client side, they can now invite more test subjects to their research and carry out

more surveys. The frequency of tests is crucial for a developing system like Contextual

Activity Sampling System because more tests help realize the needed features at the

Admin Console quicker.

The integration of the CASS-Q application with PhoneGap framework to produce a

hybrid application for mobile devices has also been studied. Angular structure works

well in the Cordova library of PhoneGap in Android app and the CASS-Q application is

already successful to communicate with camera and upload picture to the CASS

Backend. However, in the short time of three and half months, the audio-video re-

cording features required for CASS were not looked into. The remaining features are

aimed to be dealt with during future development. The granular structure of the frame-

work is easier to understand. Also, as modular nature of framework does not let ex-

tended features mess with the business logic of the main application, I believe, the

succeeding developers will grab the application concept effortlessly in short time.

http://54.247.115.29/cassQ

37

References

1 Muukkonen H, Inkinen M, Kosonen K, Hakkarainen K, Vesikivi P, Lachmann H,
Karlgren K. Research on knowledge practices with the Contextual Activity Sam-
pling System. In: O’Malley C, Suthers D, Reimann P, Dimitracopoulou A, editors.
Proceedings of the 9th international conference on Computer supported collabo-
rative learning - Volume 1. International Society of the Learning Sciences; 2009.
p. 385-394.

2 Salo K, Shakya U, Damena M. Device Agnostic CASS Client. In: Marcus A, edi-
tor. Design, User Experience, and Usability: User Experience Design for Diverse
Interaction Platforms and Enviroments. Switzerland: Springer International Pub-
lishing; 2014. p. 334-344.

3 Zakas NC. Professional JavaScipt for Web Developers. Indianapolis, Indiana:
Wiley Publishing Inc; 2005.

4 Muhaddisoglu U. 40 Useful JavaScript Libraries. [online]. Smashing Magazine. 2
March 2009.
URL: http://www.smashingmagazine.com/2009/03/02/40-stand-alone-javascript-
libraries-for-specific-purposes/
Accessed 9 October 2014.

5 Tutorials Point. HTML5 - Quick Guide. [online]. Website.
URL: http://www.tutorialspoint.com/html5/html5_quick_guide.htm
Accessed 9 October 2014.

6 Lawson B, Sharp R. Introducing HTML5. USA: Peachpit; 2012.

7 Tutorials Point. HTML5 Attributes. [online]. Website.
URL: http://www.tutorialspoint.com/html5/html5_attributes.htm
Accessed 9 October 2014.

8 Karlins D. HTML5 and CSS3 For Dummies. Somerset, NJ, USA: John Wiley &
Sons, 2013.

9 Tutorials Point. HTML5 - Web Forms 2.0. [online]. Website.
URL: http://www.tutorialspoint.com/html5/html5_web_forms2.htm
Accessed 9 October 2014.

10 Tutorials Point. HTML5 - Audio & Video. [online]. Website.
URL: http://www.tutorialspoint.com/html5/html5_audio_video.htm
Accessed 9 October 2014.

11 Tutorials Point. HTML5 - Web Storage. [online]. Website.
URL: http://www.tutorialspoint.com/html5/html5_web_storage.htm
Accessed 9 October 2014.

12 Hickson I. Web Storage. W3C Recommendation.[online]. www.w3.org; 2013.
URL: http://www.w3.org/TR/webstorage/#disk-space
Accessed 9 October 2014.

http://www.smashingmagazine.com/2009/03/02/40-stand-alone-javascript-libraries-for-specific-purposes/
http://www.smashingmagazine.com/2009/03/02/40-stand-alone-javascript-libraries-for-specific-purposes/
http://www.tutorialspoint.com/html5/html5_quick_guide.htm
http://www.tutorialspoint.com/html5/html5_attributes.htm
http://www.tutorialspoint.com/html5/html5_web_forms2.htm
http://www.tutorialspoint.com/html5/html5_audio_video.htm
http://www.tutorialspoint.com/html5/html5_web_storage.htm
http://www.w3.org/
http://www.w3.org/TR/webstorage/#disk-space

38

13 Lowery JW, Fletcher M. HTML5 24-Hour Trainer. Hoboken, NJ, USA: John Wiley
& Sons, 2011.

14 AngularJS.org . Introduction. [online]. Website.
URL: https://docs.angularjs.org/guide/introduction
Accessed 9 October 2014.

15 Ghatol R, Patel Y. Beginning PhoneGap: Mobile Web Framework for JavaScript
and HTML5. Apress; 2012.

16 AngularJS.org. Developer Guide. [online]. Website.
URL: https://docs.angularjs.org/guide/
Accessed 9 October 2014.

17 Lerner A. ng-book: The Complete Book on AngularJS. USA: Fullstack.io; 2013.

18 AngularJS.org . Modules. [online]. Website.
URL: https://docs.angularjs.org/guide/module
Accessed 9 October 2014.

19 Wahlin D. AngularJS in 60 Minutes. [online]. 2013.
URL: http://weblogs.asp.net/dwahlin/angularjs-in-60-ish-minutes-the-ebook
Accessed 9 October 2014.

20 AngularJS.org . Directives. [online]. Website.
URL: https://docs.angularjs.org/guide/directive
Accessed 9 October 2014.

21 AngularJS.org . Bootstrapping. [online]. Website.
URL: https://docs.angularjs.org/tutorial/step_00
Accessed 9 October 2014.

22 AngularJS.org . Angular Templates. [online]. Website.
URL: https://docs.angularjs.org/tutorial/step_02
Accessed 9 October 2014.

23 AngularJS.org . $rootScope. [online]. Website.
URL: https://docs.angularjs.org/api/ng/service/$rootScope
Accessed 9 October 2014.

24 AngularJS.org . $rootScope.Scope. [online]. Website.
URL: https://docs.angularjs.org/api/ng/type/$rootScope.Scope
Accessed 9 October 2014.

25 AngularJS.org . Providers. [online]. Website.
URL: https://docs.angularjs.org/guide/providers
Accessed 9 October 2014.

26 AngularJS.org . $http. [online]. Website.
URL: https://docs.angularjs.org/api/ng/service/$http
Accessed 9 October 2014.

https://docs.angularjs.org/guide/introduction
https://docs.angularjs.org/guide/
https://docs.angularjs.org/guide/module
http://weblogs.asp.net/dwahlin/angularjs-in-60-ish-minutes-the-ebook
https://docs.angularjs.org/guide/directive
https://docs.angularjs.org/tutorial/step_00
https://docs.angularjs.org/tutorial/step_02
https://docs.angularjs.org/api/ng/service/$rootScope
https://docs.angularjs.org/api/ng/type/$rootScope.Scope
https://docs.angularjs.org/guide/providers
https://docs.angularjs.org/api/ng/service/$http

39

27 x2js. [online].
URL: https://code.google.com/p/x2js/
Accessed 9 October 2014.

28 Angular Translate. [online].
URL: http://angular-translate.github.io/
Accessed 9 October 2014.

29 AngularJS.org . ngCloak. [online]. Website.
URL: https://docs.angularjs.org/api/ng/directive/ngCloak
Accessed 9 October 2014.

30 Sharp R. What is a Polyfill? [online].
URL: https://remysharp.com/2010/10/08/what-is-a-polyfill
Accessed 9 October 2014.

31 Frain B. Responsive Web Design with HTML5 and CSS3. Olton, Birmingham,
GBR: Packt Publishing, 2012.

32 Isrih P. HTML5 Cross Browser Polyfills. [online].
URL: https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
Accessed 9 October 2014.

33 Stipe J. Number polyfill. [online].
URL: https://github.com/jonstipe/number-polyfill
Accessed 9 October 2014.

34 Crisp D. AngularJS RangeSlider. [online].
URL: http://danielcrisp.github.io/angular-rangeslider/
Accessed 9 October 2014.

35 AngularJS.org . ngTouch. [online]. Website.
URL: https://docs.angularjs.org/api/ngTouch
Accessed 9 October 2014.

36 Android Developers Guide. Get the Android SDK. [online].
URL: https://developer.android.com/sdk/index.html
Accessed 9 October 2014.

37 Oracle. Java SE Development Kit 7 Downloads. [online].
URL: http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-
1880260.html
Accessed 9 October 2014.

38 PhoneGap. [online].
URL: http://phonegap.com/
Accessed 9 October 2014.

39 Plugin APIs. PhoneGap Documentaion. [online].
URL:http://docs.phonegap.com/en/edge/cordova_plugins_pluginapis.md.html#Pl
ugin%20APIs
Accessed 9 October 2014.

https://code.google.com/p/x2js/
http://angular-translate.github.io/
https://docs.angularjs.org/api/ng/directive/ngCloak
https://remysharp.com/2010/10/08/what-is-a-polyfill
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
https://github.com/jonstipe/number-polyfill
http://danielcrisp.github.io/angular-rangeslider/
https://docs.angularjs.org/api/ngTouch
https://developer.android.com/sdk/index.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://phonegap.com/
http://docs.phonegap.com/en/edge/cordova_plugins_pluginapis.md.html#Plugin%20APIs
http://docs.phonegap.com/en/edge/cordova_plugins_pluginapis.md.html#Plugin%20APIs

40

40 Camera. PhoneGap Documentaion. [online].
URL:http://docs.phonegap.com/en/2.0.0/cordova_camera_camera.md.html#cam
era.getPicture
Accessed 9 October 2014.

41 File. PhoneGap Documentaion. [online].
URL: http://docs.phonegap.com/en/2.0.0/cordova_file_file.md.html#FileTransfer
Accessed 9 October 2014.

http://docs.phonegap.com/en/2.0.0/cordova_camera_camera.md.html#camera.getPicture
http://docs.phonegap.com/en/2.0.0/cordova_camera_camera.md.html#camera.getPicture
http://docs.phonegap.com/en/2.0.0/cordova_file_file.md.html#FileTransfer

Appendix 2

1 (5)

Screen shots of main views

Figure 13. Home Page Implementation of CASS-Q web application in a desktop

Figure 14. Questions downloaded from CASS backend.

Appendix 2

2 (5)

Figure 15. HTML 5 input number type used for open number answer.

Figure 16. Media capturing not implemented in browsers.

Appendix 2

3 (5)

Figure 17. $http service of AngularJS uses POST method to send answers to backend.

Figure 18. Application layout in iPad (horizontal mode).

Appendix 2

4 (5)

Figure 19. Application layout in iPad (vertical mode).

Figure 20. Separate answer page in vertical mode

Appendix 2

5 (5)

Figure 21. Layout in Hybrid Application in Android

Figure 22. Taking a picture with the hybrid application in Android.

