Martti Korpioksa

Cooperation between Unity and PLC

Comparison of different PLCs and OPC-servers

Thesis
Autumn 2014
School of engineering

Electric automation

#

Seindjoen ammattikorkeakoulu
SEINAJOKI UNIVERSITY OF APPLIED SCIENCES

1(42)

SEINAJOEN AMMATTIKORKEAKOULU
Opinnaytetyon tiivistelma
Koulutusyksikko: Tekniikan Yksikko
Koulutusohjelma: Automaatio
Suuntautumisvaihtoehto: Sahko automaatio
Tekija: Martti Korpioksa

Tyon nimi: Cooperation between Unity and PLC

Ohjaaja: Petteri Makela

Vuosi: 2014 Sivumaara: Liitteiden lukumaara:

Tassa opinnaytetydssa vertaillaan erillaisten ohjelmoitavien logiikoiden ja OPC-
palvelimien toimintaa. Porausasemasta on olemassa 3D-malli, joka on tehty Unity-
ohjelmalla. Talle mallille lahetetd&n komentoja ohjelmoitavalla logiikalla. Naméa
komennot siirtyvat Unityyn OPC-palvelimen ja soketti-palvelimen kautta. Téllainen
jarjestelma on tassa tyossa rakennettu 3 kertaa eri ohjelmoitavilla logiikoilla ja
OPC-palvelimilla. Kaytettavat logiikat ovat Omronin CPM1, CJ1M ja Beckhoffin
TwinCAT. Kaytetyt OPC-palvelimet ovat PLC data gateway ja Kepwaren
KEPServerEX5. Kun kaikki kolme jarjestelmaa oli rakennettu, niiltd mitattiin vaste-
ajat, eli kuinka kauan kestéaa signaalin kulku Unitysta logiikalle ja takaisin.

Avainsanat: ohjelmoitavat logiikat, 3D-mallinnus

Avainsanat: ohjelmoitavat logiikat, 3D-mallinnus

2(42)

SEINAJOKI UNIVERSITY OF APPLIED SCIENCES

Thesis abstract

Faculty: School of Engineering

Degree programme: Automation Engineering
Specialisation: Electric Automation

Author: Martti Korpioksa

Title of thesis: Cooperation between Unity and PLC

Supervisor: Petteri Makela

Year: 2014 Number of pages: Number of appendices:

In this thesis operations of different programmable logic controllers and OPCs are
compared. In this project there is a 3D-model of a drilling station in Unity, which
receives commands from a programmable logic controller. These commands are
then transferred to Unity via an OPC server and a socket server.

These kinds of setups are built three times with different programmable logic
controllers and OPC servers. The logics used are Omron’s CPM1, CJ1M and
Beckhoff's twincat. The OPC-servers used were PLC data gateway and Kepware’s
KEPServerEX5. When all these three setups had been built, their response times
were measured. In other words, it was studied how long it takes from the signal to
travel from Unity to logic and back.

Keywords: Programmable logic controller, 3D modelling

3(42)

CONTENT
OpiNNaytetyOn tVISTEIME.uueiii s 1
TheSIS @DSIIACTcoeeiiiii e 2
1 INErOTUCTION ..ottt ee e 5
1.1 GOBIS. ettt 6
1.2 TRESIS SITUCTUIE.....ceiiiiiiiiiiiiieee ettt ee e e eeeees 6
1.3 CAVE and Virtual-laboratorycccooeeiiiiiiiiiiiie e 6
2 TOOIS ¢ 8
2.1 Programmable LogiC CONLIOIErS..........uuuuiiiiiiiii e 8
2.2 O e 10
pZZC T U L 1Y PSS 14
2.4 3D-MOAEIING ...ceeeeeiieii e 15
3 Software and Hardwareeeeeuiiimiiiiiiiiiaes 17
3.1 Changing Unity SCript EQItOrcoooiiiiiiiiiieee e 20
A TSt SOIUPS ittt 23
R T £ A= (1 o RSP 23
4.1.1 PLC PrOGQIamuoiiieiiieeeiit et e et e e e e e e e e e eaa e e e eeena s 25
4.1.2 OPC Server, PLC Data GateWaycooeeeeuuuiieeieiiiiieeeeeiieeeeeeiinns 27
4.1.3 SOCKEL SEIVENeveiiiiiieiiiiiie ettt e e 28
4.1.4 Unity SIMUIALIONccoiiiiiiee e 30
4.2 SECONMA SBEUP. ...t ieeeieieiititia ettt e e e e e ettt s e e e e e e e eeaebbn e s e e e aaeeeeenne 31
4.2.1 OPC Server, KEPWAIE.ccuuuiieiiiiiieeeeii ettt e e 32
G T I o110 IS T = (] PSPPSR 33
5 Testing & RESUILSccouuiiiiieiiii e 35
B SUMMIAIY ...t e e e e e e e e e eans 38
SOUICES ..ttt ettt ettt e e e et e e et e e e e e e e e et e e ea e e ea e e eaneeeans 39

APPENDICES ... e 42

4(42)

Tables and figures

Figure 1. The interface of OPC test client, which uses .NET specification.

(AdvosOl, [Ref 15.10.2014]) .ceeeeeeeeeiiiee et e e e e e e e e e 13
Figure 2. OMron’'s CPML ... 17
Figure 3. OMIron’s CILMo i 17
Figure 4 An Interface of PLC Data Gateway Developer Environment................... 18
Figure 5. KEPServerEX and OPC quick Client.c.ccoovvviiiiiiiiiiee e 19
Figure 6. An interface of the Unity 3D ..o 20
Figure 7. Unity interface with edit tab open.ccoooiiiiiiii e, 21
Figure 8. Unity interface, external tooIS............ccovvvviiiiiiiiiiiiiiiiieeeeee 21
Figure 9. ChoOSING VWDEXPIESS. ...cvuuuiiiiieeeiieeeiiiiiieeeeeeeeeeeaann e e e e e e eeeeeannnnnneeeees 22
Figure 10. Connections between PLC, OPC, Socket Server and Unity. 23
Figure 11. The drilling station iN UNItY.........coooiiiiiiiiiieee e 24
Figure 12. The actual drilling Stationccooiiiiiiiiiiiiieeeeeeee e 24
Figure 13. A laptop is connected t0 PLC...........ouviiiiiii e 25
Figure 14. An 1/O list of @ PLC Program.oouuuiiiiiieiieieeiieee e 26
Figure 15. A program which is uploaded to the PLC...........ooiiiiiiiiiiiiee, 26

Figure 16.

OPC server made with PLC Data Gateway development Environment.27

Figure 17. Socket server making a connection to OPC-Server.cccccevvvvvvnnnnnn. 28
Figure 18. Socket server opening the StreamsS............cccovvvvviiiiii e 29
Figure 19. Socket server command handling. ... 29
Figure 20. The 3D model in UNILY.coooviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 30
1o T T2 N U 1Y O 1= o | 31
Figure 22. KEPSEIVEIEX. ...ttt e e e e e 32
Figure 23. OPC qQUICK ClIENT.ccoiiiiiiie e e 33
Figure 24. 1/O list of the program. ... 34
Figure 25. The program which was used in this setup.cccccccviii. 34
Figure 26. The program made for teStiNG..........uuuiiiiiiieiiiieecer e 35

Figure 27

. A code inserted to "kelkka ylempi” script, which gives a time when the

sledge changes dir€CHION.cooviiiiiiii e 35
Figure 28. A code inserted to ” Anturit” script, which gives a time when the sensor

LT 1)Y= 1 (<10 PP 36

5(42)

1 Introduction

There have not been any major studies about the cooperation between Unity and
programmable logic controller (PLC). This might also be why Unity does not have
any PLC add-ons like for example the Visual Components’ 3DCreate. Unlike
3DCreate, Unity has a built in real-time physics engine which would make Unity a
lot more useful than 3DCreate. Unity’s market share is also increasing, so it will
probably be a more popular software in the future. Unity is used mainly in video
game industry to develop different games. Despite that Unity has become quite
popular among independent game developers, but not among major gaming
studios.

In this thesis a test environment was built where a virtual drilling workstation is
controlled by a PLC. The virtual drilling workstation was modelled by Unity. The
PLC controls this 3D-model just like the real workstation. The data will be
transferred from PLC to Unity with OPC server. However, because Unity is not
capable of receiving data directly from the OPC server, there will also be an
additional server using TCP/IP socket communication. The socket server is a

program which receives the data from the OPC server and then sends it to Unity.

Even though there are not any major studies about this subject, there are
companies that have concentrated on building and designing virtual simulators.
One example of these companies is Mevea from Lappeenranta Finland. Mevea
was founded in 2005 and its main focus is dynamic simulation applications.
(Mevea Itd. 2013)

Mevea’'s product repertoire also includes education simulators like mining
simulators, forestry machine simulators, product development simulators, as well
as modelling and simulation services. Other simulation services are Mevea cabin
and Mevea Cave. (Mevea ltd. 2013)

6(42)

1.1 Goals

In this thesis a virtual learning environment of a mechatronic laboratory device will
be created with a Unity game engine. This learning environment gives a chance to
research the possibilities to control virtual device with a PLC. The information from
PLC to PC will be transferred with OPC. This whole setup would significantly ease
the designing of production lines. With this designers are able to test the
production lines before actually building them. Unity is equipped with a real time
physics engine, so the designer would also be able to test different scenarios that

could affect the production lines.

1.2 Thesis structure

Chapter 2 contains theory about PLCs and PLC programming, OPC servers, Unity
and 3D-modelling. Chapter 3 reviews all software and hardware used in this
project. Chapter 4 illustrates the work that was done and all different environments
what were used. Chapter 5 presents the results, how the response time of different
environments was measured and compared. Chapter 6 includes a summary of this

project. In the end all sources and attachments are listed.

1.3 CAVE and Virtual-laboratory

There was a plan in the early 2000s to build a new technology center in Seinajoki,
where also the school of engineering would be placed. At that time also an idea
about building CAVE was announced. By that time the only places to have similar
virtual-laboratories in Finland were the University of Jyvaskyla, Tampere University
of Technology and Helsinki University of Technology. The technology center in
Seingjoki was ready in 2003, but CAVE needed two more years and its opening
was on 10.February.2005. It was funded by Seingjoki University of Applied
Sciences, but some of the funding came from Western-Finland’s provincial
government EAKR-project. Even today SeAMK’s CAVE is one the most advanced

virtual rooms in Finland. (Hellman. 2014.)

7(42)

CAVE or Cave Automatic Virtual Environment is a real-time interactive 3-
dimensional computer graphics studio. In the CAVE a user can get the 3D-plans in
natural scale and in the most realistic form. A real-time interactive environment is
built around the user. This is done by scanning the location of the spectator’s eyes
and the picture is projected to each surface surrounding the spectator from all
directions of the visual field. This will fully cover the spectator's visual range.
(Hellman. 2014.)

CAVE and other equipment in the visual laboratory are used for education,
research and thesis work. CAVE can also be used in product development,
because with CAVE developed products can be kept in virtual form without any
physical prototypes. In CAVE motion capturing is also possible because of optical
localization. This data of motion capturing can be used to create character
animations by recording motion captured data to the computer to create a virtual
skeleton. This skeleton can then be utilized in animation, ergonomics research and
in robotics. There is also a haptic gadget, which is a 3-dimensional drawing -and
processing tool with a somatosensory system. This makes it possible to feel the
surfaces of virtual 3D-models by simulating the touch of the surface, liquid’s
viscosity, gravity, spring strength or inertia. There are several other pieces of
equipment in the virtual laboratory, for example Kinect-character sensing devices,
data gloves and leap motion-controllers. (Hellman. 2014.)

8(42)

2 Tools

This chapter introduces the tools which were used to build the virtual drilling

workstation. Also some basic information about the tools is presented.

2.1 Programmable Logic Controllers

Programmable logic controllers (PLC) were originally designed for car industry. In
the year 1968 General Motors gave five demands for PLCs: The device has to be
programmable and reprogrammable. It has to work perfectly in different
workshops. It must tolerate 120V voltage used in United States electrical grid. It
must stand the load of the electrical motors in continuous use as well as in
starting. Its price must be competitive as compared to solidly wired logics. The first
PLCs started to come to the markets already in 1968 - 1969. (Keinanen,
Kéarkkainen, Metso & Putkonen 2001, 241-242.)

Basically there are two different types of logics: Stepping logics and freely
programmable logics. In stepping logics the hierarchy of automation is
straightforward and it goes on step by step. The biggest difference between freely
programmable logics and stepping logics is that in freely programmable logics it
does not matter in which order the program is written. Nowadays most of the
logics are freely programmable logics. In freely programmable logic or shortly in
programmable logic, input ports are coupled with all plausible sensors and
buttons. Everything that is wanted to be controlled by the logic is coupled with the
outputs, like different motors or cylinders. The program is written into the PLC’s
memory that monitors the programs progress in real-time. Because of this, it does
not matter in what order you write the program. (Keinanen, Karkkainen, Metso &
Putkonen 2001, 243-244.)

PLC’s hardware consists of six different parts: inputs, a central processing unit,
outputs, a programming device, a program memory and a power input. All signals
that come from devices, like sensors, buttons and limit switches, are coupled into

the inputs. Central processing unit (CPU) executes the program which is written to

9(42)

the PLC. Usually microprocessors are used as central processing units, because
then PLCs are able to do arithmetic calculations. Outputs control the actual device.
These outputs send signals to the device’s motors, cylinders, indicator lights and
all components that move the device. Programming device is the device, which is
used to write the program to the PLC. Almost all programs are made with PCs, but
in the old times special programming devices were used. These somewhat
resembled a calculator. Program memory is a part of the PLC this is where the
actual program is stored, the CPU reads the program from there. Nowadays there
are basically three different memory types in use: CMOS-RAM, EPROM and
EEPROM. (Keindnen, Karkkainen, Metso & Putkonen 2001, 245-248.)

PLCs also contain other functions, like auxiliary memory bits, timers, counters,
shift registers, pulse functions and the main control functions. Auxiliary memory
bits are normally used to save data. They have two states, O=not in use and 1=in
use. Auxiliary memory bits can be used in several different options. For example,
all requirements which are needed to start the program can be connected to one
memory bit and then use this auxiliary memory bit in the actual program.
(Keindnen, Karkkainen, Metso & Putkonen 2001, 248-251.)

Timers are meant to delay the device’s work routine. Timers work on the principle
that, timer starts with some input condition. Its output turns on when the timer’s
time reaches the time set in the timer. Counters can be used for example, to set
an exact number of work routines for a device. Counter can also calculate the
passing product flow. This is used for example in reverse vending machines.
Counters usually have two input values: counter value and reset input. To the
counter value are set all the commands that are going to increase the counter
value. Reset input will reset the counter’s counter value back to zero. Counter’s
output stays normally off until its value reaches the set value and then the
counter’s output turns on. (Keindnen, Karkkainen, Metso & Putkonen 2001, 248-
251.)

There are four types of shift registers: SISO single input and single output, SIPO
single input and multiple outputs, PISO multiple inputs single output and PIPO
multiple inputs and multiple outputs. (Aalto-yliopisto 2003) Pulse of the pulse

10(42)

function is very short and it is used in functions that need extreme speed. Main
control function makes possible to stop the programs reading and by resetting
main control function makes possible to continue programs reading at the exact
point. (Keinanen, Karkkainen, Metso & Putkonen 2001, 251-255.)

Other common commands used in PLCs are for example LOAD, LOADNOT, AND,
ANDNOT, OR, ORNOT, AND-LOAD, OR-LOAD, OUT, SET, RESET, JUMP, FUN,
NOP and END. LOAD command is used to open the circuit, but for example
Hitachi uses ORG command. NOP “No Operation” means empty row in program
and END-command ends the program. In the most PLCs, commands are mostly
same. The Biggest differences are in German Siemens’s STEP 6 command list,
because they come from German words. Festo’'s PLCs command lists also differ
from others. They resemble more BASIC computer program. (Keinédnen,
Karkkainen, Metso & Putkonen 2001, 255-257.)

Programming languages that are approved by the IEC 61131-3 standard are
ladder diagram, function block diagram, sequential function charts, structured text
and instruction list. One PLC can support multiple different programming
languages so the designer can choose which one to use. Ladder diagram is the
most popular programming language when it comes to PLC. Ladder diagram
resembles the actual hardware of the PLC. Ladder diagram has several rungs
which are used to connect inputs to outputs. All PLC programs that are used in

this project have been written in ladder diagram. (Kronotech, [Ref. 7.10.2014])

2.2 OPC

OPC is a way to transfer data created by OPC-foundation, which fulfills OPC data
access specifications. Abbreviation OPC stands for OLE for process control,
where OLE stands for Object Linking and Embedding. OLE is an older name for
Microsofts COM data transfers. Originally OPC was meant to -capitalize
Microsoft's component technology for the automation industry. First version of

OPC came out in 1996. Most common OPC specifications are A&E (Alarms and

11(42)

Events), HDA (Historical Data Access) and DA (Data Access). (Automaatioseura
ry, [Ref. 16.9.2014])

Other specifications are, for example: Batch, Batch auto, Commands, Common,
CPX (Complex Data), DX (Data eXchange), Security, UA (Unified Architecture and
XMLDA (Honeywell international Inc., 2014). Data Access is meant for real-time
process data transfer between control systems and process machinery. Alarms
and Events are meant to transfer alarm and events data. For transferring historical
data, Historical Data access is used. Data exchange is meant for data transfer
between different OPC servers. XMLDA is similar to Data Access, but it uses
Webservices and XML for its data transfer. (Automaatioseura ry, [Ref. 16.9.2014])

OPC Unified Architecture was first released in 2009, but some parts were
published already in 2006 (OPCconnect.com, 2013). It was built so that, it would
surpass all the previous OPC specifications. It was more extensive, when talking
about hardware platforms and operating systems. Unified Architecture was
compatible with following hardware platforms: PC hardware, cloud-based servers,
PLCs and micro controllers. It was also compatible with these operating systems:
Microsoft Windows, Apple OSX, Android and all distributions of Linux. Security
was also a big concern when designing Unified Architecture. Its messages are
sent in 128 or 256 bit encryption levels without corrupting original messages. It
also uses sequencing to eliminate message replay attacks. Transport of the data
can be OPC binary transport or SOAP-HTTPS, but also other options are
available. Authentication is done by OpenSSL. In this OpenSSL all Unified
Architecture servers and clients will be identified. This will control which
applications and systems are allowed to connect with each other. All this can be

done without having any problems with firewalls. (OPC foundation, 2014)

There were a few main reasons why OPC foundation started creating Unified
Architecture. Microsoft's COM and DCOM were becoming old and web services
had risen to the main option for a data transfer between computers. In earlier OPC
specification data models were different in every specification and there wasn'’t
any consistency between them. There also was not any backward compatibility

between previous OPCs. (OPCconnect.com, 2013)

12(42)

Unified Architecture differs from previous specifications by using IEC multipart
specification and consists of twelve parts: Consepts, Address Space Model,
Services, information model, service mappings and profiles. These six parts are
core specifications and the other six parts are Access type specifications: Data
Access, Alarms and Events, Commands, Historical Data, Batch and Data
exchange. Unified architecture’s architecture core consists among other things:
object model, address space and profiles. In unified architecture they renewed
object model, address space and semantic information model. In Unified
Architecture the structure of address space was changed to be more versatile as

compared to older specifications. (Automaatioseura ry, [Ref. 16.9.2014])

When it comes to performance Unified Architecture does not reach the same level
as Data Access. This results from WebServices that are much heavier than
DCOM, what Data Access uses. Computer capacity’s rapid development will
decrease this problem. OPC has created its own binary coding for the Unified
Architecture, because binary coding xml would increase the performance of
WebServices. It also increased the speed of a data transfer, because xml in text

form wastes transfer resources. (Automaatioseura ry, [Ref. 16.9.2014])

The newest specification from OPC foundation is OPC.NET, which is based on
framework of Microsoft's WCF.NET (Windows Communication Foundation). OPC
.NET makes it possible to communicate easily through firewalls with quite a
simplistic data model and removes the need for .NET and DCOM wrappers.
OPC.NET enables access in both historical data and run-time data, events and
alarms. OPC .NET's user interface is also designed so that user can do mapping
to the OPC DA, HAD and A&E interfaces. For a comparison Unified Architecture is
more complex and is created for communication between several different
platforms. (OPC Training Institute, 2014)

OPC.Net has six goals:
e Security: all communication should be secure, but computers should also
be accessible through firewalls.
e Simplicity: servers and clients are needed to be easy to implement, deploy

and configure.

13(42)

e Robustness: all communication is needed to be able to recover from
errors.

e Backward compatibility: it is necessary to be able to connect previous OPC
servers with .NET interface.

e Plug-and-Play: it is necessary to be able to find servers automatically.

e Transparency protocols are needed for proper communication between

clients and servers.

Figurel shows an example of the OPC test client, which uses .NET specification.
(OPC Training Institute, 2014)

&8 OPCHDA.NET Test Client =3
Browse
HestNads ‘ j Date Time [UTC) M5
New Brawser Mz ~l[izoegoam =] From /44(2]
Browse Servers
F vz ~|[1zooooam = To ¢ A1
HD& Sever [Advosol HDAS ample 1 | foow =] Change Pos
F 17 vmos ~l[izovooam ~f Iterv./ A40]
| Disconnect ‘ |F\ J
lat > Browse
I Include Bounds Calbacks
Status ‘ Aggregates ‘ Attributes ‘ 15 Nurnber of Values I epne Mads
Get Pos |
‘] Fead
ol Licte o Fead Faw Advise Raw ‘ Fead &t Time. ‘
Data.Square
DataRamp: ey Read Processed | Advise Processed J Read Modified |
01/01/2004 0:00:00.0000000 500 0x400C0
/011 /2004 0:00-42 1000000 -453 3333333 040000 5
1401 421104 (6: (1124 000000 ~40F BRERSE? (A0000 1 Aggregate 5 = intervals/Upd e
01/01 /2004 06:02:05.0000000 360 0x400C0
0/01 /2004 0 02480000000 -313 3333333 040000
(11/01/2004 06:03:30.0000000 266 EEEEEE7 0x400C0 Riaad Attribute 123 Attr 1D's
01/01/2004 05:0412.0000000 220 0x400C0
0/011 /2004 0 04 54 0000000 -173 3333333 040000 T
01/ /2004 06.05.25.0000000 -126, 56EEEE7 040000 5
01/ /2004 06:05:18.0000000 80 0x400C0 Value Quality
/01 /2004 0 07000000000 -33 33333333 040000
01/01 /2004 06.07.42.0000000 13.33333333 0x400C0 [122 142
01/01/2004 06:08:24.0000000 60 0x400C0
/011 /2004 (6 03060000000 106 BEEEEE7 0x400CO
01/01/2004 0E:09-48.0000000 1533333333 0+400C0 L | o ‘ icAele ‘ fEplsce |
D ata Sine:
01/011 /2004 (06:00-00.0000000 0 Dx400C0 Delete Fiaw ‘ Delate 4T Tima | Cancel
01/01 /2004 0:00:42.0000000 144.5117591761 0x400C0
01/01/2004 06:01:24.0000000 276.6885717535 (x400CO
0./011 /2004 (1602 050000000 385 2483629113 (400C0 Annotations
01/01/2004 0:02:48.0000000 460.9248733059 (»400C0
01/011/2004 06:03:30.0000000 497.2586674005 (x400C0 ‘
01/011 /2004 (06-0412.0000000 4571 1484859376 (w400C0
01/01/2004 06:04:54.0000000 4431158113104 0x400C0
0170172004 DF/05-26.0000000 357, 2605407077 (40000 Sy ‘ Hazl ‘ losatt | Geped
0/011 /2004 (06 0F- 180000000 240 9109373643 (w400C0
01/01 /2004 0:07.00.0000000 103.9981385005 (%400C0 Plasback
01/01/2004 06:07.42.0000000 -41.7915261081 0x400C0
{01/01 /2004 05:02:24.0000000 -184.0140329531 0x400C0 1:0:0 Duration/Fesample Interval Raw
01/01/2004 0:03.06.0000000 -310, 5298368894 0x400C0
01/01 /2004 05:02:48.0000000 -410.5400541653 0x400C0 P 010 Update Interval Processed
fz3 Aagiegdes Cancel

Figure 1. The interface of OPC test client, which uses .NET specification. (Advosol, [Ref
15.10.2014])

In Finland in the spring 2005 the OPC committee was founded as a part of
Automaatioseura. OPC committee’s goals were to advance Finnish automation
education, research and entrepreneurship by sharing information about OPC
foundation’s activities and specifications. This was done by organizing education
and events and also by taking part in creating OPC specifications. One of the
reasons why the OPC committee was founded was the upcoming big specification
called Unified architecture. (Automaatioseura ry, [Ref. 16.9.2014])

14(42)

2.3 Unity

Unity (Unity technologies, 2014) is a multiplatform game-engine. It can be used to
develop games for the following platforms:

e iOS and Mac

e Android

e Windows Phone, Windows and Windows store apps

e Blackberry 10

e Linux

e Web Player

e Playstation 3, 4, vita and mobile

e Xbox 360 and one

e WiiU.

Unity uses NVIDIA's PhysX physics engine, which is able to handle real-time
physics (NVIDIA Corporation, 2014). The latest Unity version is Unity 4.5.3 which
had several bugs fixed and it also contains enhanced 2d physics. A beta version of
the Unity 4.6 is also available at the moment. Also Unity 5 has been announced. It
is available for a pre-order, but its official release date has not been announced
yet. In Unity 5 physics based shadings will be available also as a free version.
Other improvements in Unity 5 are improved audio and a new 64-bit editor which
will be beneficial when making large projects, a lighting system based on real-time
physics and WEBGL, which makes it possible to take all the content to the server

which uses WEBGL, without plugins. (Unity technologies, 2014)

Unity makes it possible to lay out levels and create menus. Also animating, making
scripts and organizing projects is possible, which makes Unity fully 3d compatible.
Unity’s interface consists of four different panels: The project panel, hierarchy
panel, inspector panel and scene panel. All the project’'s assets are stored in the
project panel. All imported assets also appear there. In the hierarchy panel the
assets of the scene can be arranged. In the inspector panel parameters for the

assets can be adjusted. For example the assets position and ability to cast

15(42)

shadows. The creation can be viewed from the scene panel. (Envato Pty Ltd.
2014)

Most of the assets like 3d models, textures, audio, scripts, fonts and materials,
have to be imported to Unity. This results that Unity cannot create itself these
assets, except from a few very basic models like spheres and cubes. Fortunately
Unity is very open to different 3d-modelling programs and allows the transfer of
files from other programs to Unity with all textures and materials intact. Unity
supports all common file types like: PNG, JPEG, TIFF and PSD files from
photoshop without any changes to the files. A list of all formats that Unity can
import can be found from their homepage. (Envato Pty Ltd. 2014)

2.4 3D-modelling

3D-modelling means that products are designed in three dimensions, what
happens by using x-, y-, and z- coordinates. So the designer can make the model
look more like the final product. Real physical and mechanical properties can also
be given to the 3D-model as in real life. x- , y- and z- coordinates are placed on
the pc screen so that the x-axis is in line with the screens bottom edge, the y-axis
is in line with the screens left edge and the z-axis points towards the designer. As
in 2D-modelling it is also very important in 3D-modelling to which coordinates are
positive and negative in direction. This information is needed to know in which
direction will the product rotate. This is used when pictures are placed on the
paper and when given assembly recommendations in degree form. (Tuhola &
Viitanen 2008, 17-18)

All 3D-modelling programs assume that all degrees are given in positive forms,
because programs will rotate the object in to a positive direction. The positive
rotation direction of x- and y-axis is direction of positive z-axis, so towards the
designer. The positive rotation direction of z-axis is negative y-axis so directly
down on the pc screen. (Tuhola & Viitanen 2008, 18-19)

16(42)

3D-model means a three dimensional product, which compares by look and
properties to the final product. 3D-model can be examined in different ways in
different programs. But most 3D-modelling programs use similar ways to examine
products. (Tuhola & Viitanen 2008, 20)

Wireframe model means that only the edges of the model are displayed. The
positive thing in this is that you can define points and edges through surfaces.
Negative side in this model is that, it is hard to know which surfaces are at the
back or at the front. It is difficult to know on which position the model is. Displaying
holes and threads is difficult. it is also messy and unpractical. (Tuhola & Viitanen
2008, 20-21) This is usually used when 3D-models have to be transformed into 2D
pictures (Tuhola & Viitanen 2008, 23).

3D-surface model displays only surfaces of the product. This is used usually only
for casted and extruded products. In this model the product can be sculpted more
freely than with the basic tools. However, it is possible to work only with visible
surfaces. (Tuhola & Viitanen 2008, 21)

3D-model contains information of the models shape and also which parts of the
model contain material. A good thing in 3D-model is that it is clear and easy to
comprehend. It can also be examined to how it would be in real life. The
disadvantages of this model are that it is not possible to choose surfaces that
aren't visible or grab a surface through other surfaces. (Tuhola & Viitanen 2008,
22)

There are several different 3D modeling programs, but one of the most popular is
the Blender. The Blender is a free 3D modeling program, which is being developed
by volunteers. Blender makes possible to model, rig, simulate, animate,
composite, render, and do motion tracking. Blender is a multiplatform program and

it works for Linux’, Mac’s and windows’ computers. (Blender, [Ref 22.10.2014])

17(42)

3 Software and Hardware

In this project the Omron’s Sysmac CPML1 (Figure 2), CJ1M (Figure 3) and
Beckhoff's soft PLC were used as PLCs. Several PLCs were used to find out
which PLC would work best. Omron PLCs were programmed by using a free trial

version of CX-Programmer version 9.4 and Bechoff's soft PLC with TwinCAT3.

Figure 2. Omron’s CPM1

Figure 3. Omron’s CJ1M
In this project Omron’s CPM1 and CJ1M were programmed by using a PC and a
tool bus to connect the PC to the PLC. The ladder diagram was the programming

18(42)

language used in this project. Unlike Omron’s PLCs, the Beckhoff's PLC used in
this project was not a physical PLC, it was only a software program inside the PC.
The Beckhoff's PLC was also programmed using a ladder diagram, but TwinCat3
was used instead of the CX-programmer. There was also no need to create a
connection between the PC and soft PLC, because TwinCAT3 made it

automatically.

OPC Labs’ QuickOPC 5.2 and PLC Data Gateway Developer Environment were
used to create the OPC server for the first setup (Figure 4). Kepware’'s
KEPServerEX 5 and OPC Quick Client were used to create the OPC server for the
second and third setup. (Figure 5).

[EIPLCD teway De it : |

No Selection

(-3 OmronExemple
‘% DigitalOutputd00
DigitalOutputs
PLC
-F= SerialChannel

Output. v 3
Create project 'as.gwypri' in folder 'C:\Users\Martti\Document3\PLC Data Gateway\a3'.
Copy 'C:\ProgramData\Fernhill Software\Sample Projects\Omron Serial\Main.taglst' -> 'C:\Users\Martti\Documents\FLC Data Gateway\as\Main.taglst'.
Copy 'C:\ProgramData\Fernhill Software\Sample Projects\Omron Serial\ReadMe.txt' -> "C:\Users\Martti\Documents\PLC Data Gateway\as\ReadMe.txt'.
Save project file 'C:\Users\Martti\Documents\PLC Data Gateway\as\as.gwyprj'...

» | 5

¢ 3
44 b ¥ \Build £Find [Tasks {Watch /

Ready Offline CAP NUM SCRL
> B = BT il o .
TR 8 Y 2RI

Figure 4 An Interface of PLC Data Gateway Developer Environment.

19(42)

EloeolelalalE]
Figure 5. KEPServerEX and OPC quick client.

In the first setup a PLC Data Gateway was used as the OPC server with Omron’s
CPM1, but in the second setup, the OPC server had to be changed to
KEPServerEX, because the PLC Data Gateway was not compatible with Omron’s
CJ1IM. KEPServerEX was also used in the third setup with the Beckhoff's soft
PLC.

Microsoft's Visual Studio Express 2013 for web was used for creating a socket
server and scripts for Unity. In this project a free version of Unity’s 4.5.4 was used
(Figure 6). All models used in Unity were imported from other 3D-modelling
programs, like Solid Edge or Blender. This means that complicated 3D-models
cannot be created in Unity.

i Uniy Unfied W URy Project 1 - PC, Vac &nux Standalene <OX11 on DIOGPU>

File Edit Assets GameObject Component Visual Studio Tools Window Help

i
i

| &% |*

¥ Standard Assets
G Standard Assets (Mobile)
i UnityVs.

uuuuuuuu

(7 Visual Studio Tools: Assembly UnityVs Ver
\2J

78 ® e <

Figure 6. An interface of the Unity 3D

3.1 Changing Unity Script Editor

Unity has a built in script editor, MonoDevelop, but in this project it was changed to
Microsoft’'s Visual studio Express 2013 for web. In this chapter it will be shown
how this can be done. First a plugin for the Unity, Visual Studio 2013 Tools for
Unity, needs to be downloaded. It can be downloaded from the web page:

http://unityvs.com/. In the following way: First select preferences from edit tab

(Figure 7). Then select external tools and browse from the script editor (Figure 8).
From there choose: C:\Program Files (x86)\Microsoft Visual
Studio12.00\Common7\IDE\VWDEXxpress (Figure 9). After this Visual Studio will be
used automatically every time, when writing scripts in Unity. (Scott Richmond,
2013)

21(42)

@ Uty Ut e Uty st Vi B S <

& Undo Selection Change CtileZ

=7 Redo Ctrl+Y e

[grad
Cut Ctrl+X @ fpscontroller Impart Settings &,
Copy CrieC [Open...|(Execution Order..
Paste Crl+V

using UnityEngine;
Dl Y using System.Collections;
Delete Shift+Del

public class fpscentroller : MonoBehaviour {

Frame Selected F /f Use this for initialization
Lock View to Selected Shift+F wvoid Start () {
Find CtF)
Select All Ctrl+A J// Update is called once per frame
void Update () {
‘ Preferences...
Modules... ¥
}
Play Cirl+P.) -
Pause CeshifteP | iy
Step Ctri+-Alt+P

Selection

Project Settings
Render Settings
Network Emulation
Graphics Emulation

Snap Settings..

Figure 7. Unity interface with edit tab open.

Q Unity - Untitled - New Unity Project - PC, Mac & Linux Standalone” <DX11 an DX10 GPU> —_— W = it — - = P9
File Edit Assets GameObject Component Window Help

@ fpscontroller Import Settings &
[Open.|

General 3
MonoDevelop (built-in) using UnityEngine;

— using System.Collections;
Micresoft Visual Studio Express 2013 for Web

Colors TCM Utility

vsdiag_regwef.exe // Use this for initialization

= wvoid Start () {
M
Cache Server e }

// Update is called once per frame
void Update () {

1

public class fpscontroller : MonoBehaviour {

Keys

Gl

; A

Figure 8. Unity interface, external tools.

22(42)

ml|

=

K Unity - Untitied - New Unity Project - PC, Mac & Linux Standalone® <DX11 on DK10 GPU> —— -
File Edit Assels GameObjecd Component Window Help

o (s — T

| « Common7 » IDE » « |43 | Hae: iDE | Inspector |
fpscontroller Import Settings &,

Uusiansio : = (Open Excuion o

e Suosikit * Nimi Muokkauspéivam... Tyyppi -
| Ladatut tiedostot vsdiag_regwef 510.20132:38 Sovellus F i z:::g g;:‘vfmnuér:”;mﬂ“
I Tyopayts viDifferge 5102013238 Sovellus ’ '
% Viimeisimmat s B72014 27 Sovellus public class fpscentroller : MonoBehaviour {
vshostd2 237014207 Sovellus // Use this for initialization
Kirjastot B vshost32-clr2 212018 2:27 Sovellus TS
&) Kuvat vshost-cli2 212018 2:27 Sovellus i
& Musildd 212018 2:27 Sovellus // Update is called once per frame
Tiedostot 510.2013 238 Sovellus U)
& videot | VSTST-FileConverter 5102013 2:38 Sovellus }
nd VSWebHandler 152014 1:50 Sovellus 1
18 Tietokone o VWDExpress 272014 2:27 Sovellus
& acer(C) ADesProc 2372014 227 Sovellus
-4

@ Project . .
Tiedostonimi:

G/ fpscontrolle

Figure 9. Choosing VWDEXxpress.

23(42)
4 Test Setups

Three test setups with different PLC’s and OPC servers were developed. In these
setups there is a connection between PLC and OPC and between OPC and Unity
(Figure 10). The socket server is a tool, which is used to transfer data from OPC to
Unity, because Unity cannot receive data directly from the OPC server. A socket
server might be integrated to Unity sometime in future. Data also flows backwards
from Unity to OPC. This makes it possible to simulate sensors in Unity. Sensors in

Unity send signals to PLC, which can be used in this program.

Output signal Output
from PLC ; I signals from
Focke
: | UNITY
Simulated Simulated
values from

values from
Unity

Unity

Figure 10. Connections between PLC, OPC, Socket Server and Unity.

4.1 First Setup

The drilling station (Figure 11), which is used to model the Unity model (Figure 12)
is a basic workstation. It has a sledge which is able to move all horizontal
directions. This sledge will carry an object which will be drilled. The drill is also a
very basic, it just moves down and up. There are some differences between the
actual drilling station and the Unity model. For example, the user interface is in

different location.

gy 31, T L e, v
File

Edit Assets GameObject Component Window Help

M| + B
€ Game
Standalone (1920x1080)

Alakelkan‘éfturikamera

EICICIEA o6V < B

Figure 11. The drilling station in Unity

) |
7] — o B) "“_'W.-,,”. B A 1 [THF] s
}‘ = L - -*_ Ty \ .

. e
Ll LE

Figure 12. The actual drilling station

25(42)

In the first setup of this project: there is a PLC connected to a laptop which has
OPC server, socket server and Unity. The PLC will run the Unity simulation. All the

PLC'’s signals will be transmitted to Unity with OPC and socket server. The Unity

model is a drilling station, which is R = N
replicating a real drilling station, which :
is located in a laboratory. In this setup,
PLC Data Gateway is used as an OPC
server and PLC is Omron’s CPML1.

B 2 C
Figure 13. A laptop is connected to PLC

4.1.1 PLC Program

In this project PLC has six inputs which are controlled with switches, in this
program they are named InputO0-Input05. Their addresses are 0.00-0.05. There
are also six digital inputs, these are built inside the PLC and only one of them is
used in this program, Digitallnput004, which moves the drill down. The others are
not used in this program. Digital input names are DigitallnputO00-Digitallnput005.
Their addresses are 1.00-1.05. There are also four digital outputs these are used
for moving the sledge of the drilling station. Their names are DigitalOutput000-
DigitalOutput003 and addresses 10.00-10.03. (Figure 13)

26(42)

Program Simulation Tools Window Help

leRsoTe

[Fie Edt View Insert PLC

DSH|® SR

mwm duenp to Error
. | Shift+l. | Shift+]

(& &8 o (% L0 |6

|88 | T

Jegaalz G b | —0 21 Lz o evus|gm
\Hm\wﬂaﬂﬂafn 2 pelsxd|B8saaranmienenass
“5?’733 2 4% n@\
21zl | Name Data Type Address / Value | Rack Locati.. | Usage | Comment
bisl g
=8 NewProject Digitallnputd00 BO0L 100
B EF OPNT[CPML(CPMLA)] Offline * Digitallnput00l B0OL 101
- 5} Symbols * Digitalinput002 BOOL 102
-l Settings * Digitallnput003 BOOL 103
L4 Memary * Digitallnput004 BOOL 1.04
- %8 Programs * Digitallnput005 BOOL 103
=} 9 grtalinp
B @ NewPrograml * DigitalOutput00 BOOL 10.00 Moves the sledge to forward / clie...
=] Symbols * DigitalQutput001 BOOL 1001 Moves the sledge to backward / c..
3 Program * DigitalOutput)02 BOOL 1002 IMoves the sledge to right / client .
3 D * DigitalQutput003 BOOL 1003 Moves the sledge to left / client in...
* Inputd0 BOOL 0.00 PLC'sinput port 0
* Inputdl BOOL 0,01 PLC's input port1
* Inputd2 BOOL 0.02 PLC's input port 2
* Inputd3 BOOL 0.03 PLC's input port 3
* Inputdd BOOL 0.04 PLC's input port4
* Input0s BOOL 0.05 PLC's input port 5
Puoec |
|
)
| [14T 4] ¥} Comple: A Compil Enor }, Find Report }, Transfer | K8 |
ForHe\p press FL] [OPNT(Net0, Noded) - Offline [[rung0 0,0) -100% | fmat | [

16:24

2692014

Flgure 14 An 1/0 list of a PLC program.

The actual program is very simple (Figure 15). It is made so that Inputs00-03
move the sledge. It was developed so it is not possible to move the sledge forward
and backward at the same time or left and right at the same time. It is also not
possible to move the sledge when the drill is down and when Input05 is true, it is
not possible to move the sledge or move the drill down. When connecting the CX-
programmer to PLC, the OPC must be turned off. Otherwise you are not able to

connect to the PLC with the CX-programmer.

Inputdd DigitalOutput001 Digitalinputd0d Inputds DigitalOutputd00
{ | {1 {1 {1 Moves the sledge to forward / clisnt input [0][1]
PLC's input po... Moves the sle... PLC's input po...
1 Input01 DigitalOutput000 Digitallnput004 Input0s DigitalOutput001
5 | .1 .1 .1 Moves the sledge to backward / client input [11[1]
PLC's input po... Moves the sle... PLC's input po...
2 Inputd2 DigitalOutput003 Digitalinput0d Inputds DigitalJutput002
10 { | {1 {1 {1 Woves the sledge to right / client input [2][1]
PLC's input po... Moves the sle... PLC's input po...
5 Input03 DigitalOutput002 Digitallnput004 Inputds DigitalQutput003
15 | 1 1 1 Moves the sledge to left / client input [3)[1]
PLC's input po... Moves the sle... PLC's input po...
4 Inputd4 DigitalCutput000 DigitalOutputddq DigitalOutputdl2 DigitalOutputdnl Inputds Digitallnput004
20 { } L L L {1 {1
PLC's input po... Movesthe sle.. Moves thesle.. Moves the sle.. Moves the sle.. PLC's input po...
prresssiieisssieies
5 i

Figure 15. A program which is uploaded to the PLC.

27(42)

4.1.2 OPC Server, PLC Data Gateway

Like the program for the PLC also the OPC server is very simple (Figure 16).
Digital inputs and outputs in this server have the same names and addresses as
the ones in the PLC program, so the OPC server is able to take those values from
the PLC program and transfer them to Unity. All digital inputs are mapped to the
digital inputs register block and all digital outputs are mapped to the digital outputs
register block. Where they are given their address’ start word. For digital inputs it
is 1 and for digital outputs it is 10. To map a tag to register block it must be done
individually for each tag. It can be done in properties section which is located at
left side of the screen and in the bottom of the properties section is register block,
there you need to write the address of the required register block. For example in
this server digital inputs address is Main.OmronExample.Digital Inputs. Just above
the register block it can set the bit off set and above that allow controls, which
must be set to true. Every register block must be given the device’s address and
the device channel's address, these can be given in same section as the register
block.

. PLC Data Gateway t Environme:
File Edit View Build Tools Window Help
=N A WE ST w0l ek ® B SO Re T
Tags v 3 X Output X |perties v X
TN o Identity
-3 Maintaglst BSEPY 1iain OrvonExample Dighallnpui000 | (Valus =FALSE. Qually, =24, Timestamp=1801-01-01-03:00:00.000, Bink =FALSE, IsForced=FALS || AR
=5 0 +/ %3 Main.0 1 { Value:=FALSE, Qualty'=24, Timestamp:=1601-01-01-03:00:00.000, Blink =FALSE, IsForced:=FALS. [l
g Digitallnput000] 4 nExample. Digtalinputoo2 (Value:=FALSE, Quaity:=24, = Typelabel
%, Digitallnput001 Eal ronExample Digtalinputoo3. (Value:=FALSE, Qualiy:=2¢, TypeName
D (Value:=FALSE, Quaity: p= - | Attributes
% (Value:=FALSE, Quaity:=24, Timestamp:=1601-01-01-03:00:00.000, Blink=FALSE, IsForced:i=FALS... | |Description
n in.OmronExample.Digtallnputs. 14-10-22-12:30:11.874, EventCount:=0, MissedEvents:=0, NextTimesta UserFieldl
lInput005 in. OmronExample. Digital0utput000 a Timestamp:=1601-01-01-03:00:00.000, Blink=FALSE, IsForced:=FALS... ||UserField2
Digitaloutput001 (Value:=FALSE, Quaity:=24, Timestamp:=1601-01-01-03.00:00.000, Blink =FALSE, IsForced:=FALS. UserRightsZone Zone A
10utputddd 3 nExample.Digitaldutput002 (Value:=FALSE, Qualiy: 1p:=1601-01-01-03:00:00.000, Biink =FALSE, IsForced:=FALS. Off State
10utputddl % nExample.Digitaldutput003 (Value:=FALSE, Quaity:= 1p:=1601-01-01-03:00:00.000, Biink =FALSE, IsForcer BlinkStated False
I0utputd02 nExample. DigialOutput00 (Value =FALSE, Quaity:=24, ColorStated I 00000
a0 PN Textstated off
talOutput00d %% Main.0 P
DigitalQutput005 +%¢ WMain.OmronExample. [enicieed Fatee
DigitalOutputs %% Main.OmronExample. SerialChannel (Qualty;=#, Timestamp:=2014-10-22-12:30:11.873, State:=", StateDescriotion:="Cannot open port’, .. [\~ I ooceoo
- TextStatel on
Source
\AllowControls True
BitOffset [
i Main.O Digitall.
| W 4 » ¥ "\Build {Find Tasks) Watch
Ready localhost:20692 CAP

2R =a & 1E
Figure 16. OPC server made with PLC Data Gateway development Environment.

28(42)

4.1.3 Socket Server

Socket server is a program which captures the data from the OPC server and
transfers it to Unity. In the future the socket server might be integrated to the OPC
or to Unity and would not be needed any more. The socket server was created in
Visual studio and is written in C#. Every time when PLC or OPC is changed,

modifications to the socket servers needs to be done.

The Socket Server program consist of two modules main program and Reader
class. First main program opens connection to OPC server and does all necessary

initializations. (Figure 17). The whole socket server can be found in attachments.

Reader reader = new Reader();

IPAddress ipAddress = IPAddress.Parse("127.0.8.1");
Tcplistener tcplistener = new Tcplistener(ipAddress, 8221);

Opclabs.Easy0Opc.Datafccess.EasyDAClient easyDAClientl =

easyDAClientl.ClientMode.AllowAsynchronousMethod = false; |

easyDAClientl.ClientMode.AllowAsynchronocusMethod = true;

easyDAClientl.ClientMode.DesiredMethod =
Opclabs.EasyOpc.Datafccess. DAReadWriteMethod. Synchronous;

//Wake up OPC client
easyDAClientl.ReadItemValue("", "Kepware.KEPServerEX.Vs",
“Channell.PLC.POU_1.DigitalOutput@aa”);

tecplistener.Start();
Figure 17. Socket server making a connection to OPC-server.

After that the main program waits for signals coming from the OPC server. When a

signal arrives all input and output streams are opened. (Figure 18).

29(42)

tcplistener.Start();

while (true)

1

TcpClient tcpClient = tcplistener.AcceptTcpClient();

NetworkStream ns = tcpClient.GetStream();
StreamiWriter sw = new StreamWriter(ns);
StreamReader sr = new StreamReader(ns);

sw. AutoFlush

true;

bool stopped = false;

while (!stopped)
1

Figure 18. Socket server opening the streams.

Next the program reads the commands from the OPC server. After READ
command all values from the PLC will be read. Write command means, that values

are written to OPC which transfers the values to PLC. (Figure 19)
while (!stopped)

1
if (ns.Datafwvailable)
1
string command = sr.ReadlLine();
string answer;
switch (command)
1
case “"read DigitalOutput@ea”:
answer = inputs[B8][1];
break;
/f other read commands...
case "write DigitalInput@e@ True™:
easyDAClientl.WriteItemValue(™", "Kepware.KEPServerEX.Vs",
['Channell.PLC.POU 1.DigitalInput@se”™, "Trus");
answer = "";
break;
// other write commands
case “quit":
answer = "quit”;
stopped = true;
break;
default:
answer = "default™;
break;
h
sw.WriteLine(answer);
h
Thread.Sleep(1);
h

Figure 19. Socket server command handling.

30(42)

4.1.4 Unity Simulation

The Unity model that is being simulated is a drilling station which has a movable
sledge (Figure 24). This sledge is moved by the PLC’s input ports 0-3. This sledge
is also carrying a brown cube. The drill is controlled with the PLC’s input port4 and
it doesn’t do any actual drilling. When it comes to contact with another object
during the simulation it just stops. The program inside the PLC does not allow

movement and drilling at the same time.

€ Gam
Standalone (1920%1080)

Alakelkan‘géfurikamera

-

Tme 2 JRNRNE - e =
Figure 20. The 3D model in Unity.
Commands that come from PLC will be implemented to Unity simulation with a

script. Also the values from Unity can be transferred to PLC with this same script.
At this particular model it comes to a client script and from there these commands
will be distributed to different parts of the simulation. The client opens streams and
updates outputs and inputs. (Figure 21) The whole Unity client can be found in

attachments.

31(42)

private static List<Sensori’> sensorit = new List<Sensorix>{():

public static string[][] inputs = new string[][]1{
new string[] {"DigitalCutputl00™, "Falsze™},

P] O .

private static bool DigitalInput000 = false;

public static wvoid EytkeSensori (Sensori sensori)
{

sensorit.hdd (zen=sori) ;

public static wvoid Paiwvital)
{
TcpClient client = new TcpClient ("localhost", 8221);

NetworkStream ns = client.GetStream():
StreamWriter sw = new StreamWriter (n=);
StreamReader sr = new StreamBeader (ns);
sw.AutoFlush = true:

foreach (S5ensori sensori in sensorit)

i
switch (=ensori.hnturinKytkenta)
{
case Sensorl.InputNumber.Input O:
if (sensori.Tila '= DigitalInput000)
{

DigitalInputl00 = sensori.Tila;

sw.Writeline ("write DigitalInputl00 "™ + DigitallInput000.ToString()):
sr.ReadLine () ;

i < inputs.Length; i++)

sw.WritelLine ("read "™ + inputs[i][C]):
input=[1i] [1] = sr.ReadLine ()

Figure 21. Unity Client.

4.2 Second Setup

This second setup is almost similar to the first one, but in this setup the OPC
server is Kepware’'s KEPServerEX5. Also the PLC is changed for this setup,

32(42)

because Omron’s CPML1 is not compatible with KEPServerEX5. In this setup
Omron’s CJ1M is used. The PLC’s program and Unity model are very similar as in
the first setup, but some small modifications are made, because CJ1M has more
outputs available than CPM1. Also the socket server is very silmilar as in the first
setup. The only thing that has to be changed is the OPC’s address. In the first
setup it was: (*”; “FernHillSoftware.PLCDataGateway”,
“localhost.Main.Omronexample.DigitalOutput000”) for DigitalOutput000. In the
second setup its address is: (*”, “Kepware.KEPServerEX.V5”,
“Channell.PLC.DigitalOutput000”).

4.2.1 OPC Server, Kepware

The interface of the KEPServerEX5 is similar to PLC Data Gateway Development
environment (Figure 29). This server has five digitalinputs and five digitaloutputs,

which are located in a device called PLC, which is connected to channell.

8 KePsenrd- Rumime (Do s 1S5S N T

File Edit View Tools Runtime Help

DEde|2M&Ea 5|9 8 0 |
‘E‘iF Channell Tag Name Address Data Type Scan Rate Scaling Description
PIC 71 DigitalOutput 005 Ci00010.05 Boolean 100 None
&2 DigitalOutput 004 CIOD010.04 Boolean 100 None
&2 DigitalQutput003 Clo0010.03 Boolean 100 hone
&2 DigitalOutput 002 Ci00010.02 Boolean 100 Nane
&1 DigitalOutput 001 Ci00010.01 Boolean 100 None
&1 DigitalOutput 000 CIo0010.00 Boolean 100 None
4] Digitalinput005 CIO0001.05 Boolean 100 None
& Digitalinput004 CloD001.04 Boolean 100 None
21 Digitalinput003 CloD001.03 Boolean 100 None
&1 Digitalinput002 Clo0001.02 Boolean 100 None
&1 Digitalinput001 Ciono0101 Boolean 100 None
2] Digitalinput000 CIOD001.00 Boolean 100 None

’E%” it

Date Time Source Event

_ﬂZ.'IDZDM 151201 Omron Toolbus Device Channel1.PLC with 1D 0.0.0i not responding

_ﬂZ.'IDZDM 151202 Omron Toolbus Device Channel1.PLC with 1D 0.0.0i not responding

_ﬂZJDZDM 151208 Omron Toalbus Device Channel1.PLC" with 1D 0.0.0is net responding

_!},2.1D2D14 151207 Omron Toalbus Device Channel1.PLC" with 1D 0.0.0is net responding

_AZ 102014 15:12.08 Omron Toolbus Device Channel1.PLC' with 1D 0.0.0is not responding

M 2102014 15:1209 Omron Toolbus Device Channel1.PLC" with 1D 0.0.0is not responding

_ﬂZ.'IDZDM 151209 Omron Toolbus Device Channel1.PLC with 1D 0.0.0i not responding

_ﬂZJDZDM 151212 Omron Toalbus Device Channel1.PLC" with 1D 0.0.0is net responding

_ﬂZJDZDM 151213 Omron Toalbus Device Channel1.PLC" with 1D 0.0.0is net responding

_AZ 102014 15:12:14 Omron Toolbus Device Channel1.PLC' with 1D 0.0.0is not responding

Mz2102014 151217 Omron Toolbus Device Channel1.PLC' with 1D 0.0.0is not responding

_ﬂZ.'IDZDM 151218 Omron Toolbus Device Channel1.PLC with 1D 0.0.0i not responding

_ﬂZJDZDM 151220 Omron Toolbus Device Channel1.PLC with 1D 0.0.0is net responding

_ﬂZJDZDM 151221 Omron Toalbus Device Channel1.PLC" with 1D 0.0.0is net responding

_ﬂz 102014 151222 Omron Toolbus Device Channel1.PLC" with 1D 0.0 0is not responding

_AZ 102014 151223 Omron Toolbus Device Channel1.PLC' with 1D 0.0.0is not responding E\

_ﬂZ.'IDZDM 151227 Omron Toolbus Device Channel1.PLC with 1D 0.0.0i not responding -

Ready Defautt User Clients: 1 Active tags: &7 of 87
= e —

:_: g “ - Ly ol (I

Figure 22. KEPServerEX.

33(42)

In the tools tab there is “Launch OPC Quick Client” and by clicking this, OPC
Quick Client can be started (Figure 30). All tag values can be monitored here. In
this screen, tags’ connection quality can be checked: If it is bad, it can be
improved in Channel Properties, by setting the right COM ID, baud rate, data bits,
parity and stop bits. Also adjusting the request timeout in the device properties

might help.

File Edit View Tools Help
DEHsded sBREX

1 +7] Kepware KEPServerEX.V5 tem 1D | Data Type | Vaiue | Tmestamp | Guaity | Update Court |
£ _System @0 Channel1.PLC Digtalinput000 Boclean 0 15:12:30.367 Good 4
i ' aﬂﬂﬂeﬂ-iﬂm 0 Charnel1.PLE Digtallout 01 Beclean 0 151230367 Goad “
R oy e i 0 Channel 1.PLC. Digtalinput012 Boclean] 151230367 Gaod “
] ' mm @ Channel 1.PLC Dighalinpui003 Boolean [16:12:30.367 Good 4“4
- u‘IEHHEH.FLC._SYS‘th @) Channel1.PLC Digtallnput 004 Boolean [} 15:12:30.367 Good 4“4
= 3 Channel1.PLC Digtalinput005 Boolean 0 15:12:30.367 Good 44
€ Charnel 1 PLC DigitalOutput000 Boolean 1 15:12:30.367 Good 4
€ Charnel1.PLC DigitalOutput 001 Boolean 0 15:12:30.367 Good 4
€ Channel 1.PLC DigitalOutput002 Boolean 0 15:12:30.367 Good 4
0 Channel 1.PLC DigtalOutput003 Boolean 0 15:12:30.367 Good 4
0 Channel 1.PLC DigtalOutput004 Boolean 0 15:12:30.367 Good 44
0 Channel1.PLC DigtalOutput 005 Boolsan [] 15:12:30.367 Good 44
Date | Tine | Event [
i PRLFII 15:11:52 Connected to server
i PRLF 15:11:52 Added group _Syste
i PRUFIEY 15:11:52 Added 21items to gr...
0210 2004 15:11:52 Added group Chann...
021DZD‘M 151152 Added group Chann...
Q210001 151152 Added 11 itemsto gr
Q2102 151152 Added group Chann
V21001 1511552 Added 16 items to gr.
ﬂZ]D 2014 15:11:52 Added group Chann...
ﬂZ]ﬂ 2014 15:11:52 Added 7 items to gro...
ﬂZ 102014 15:11:52 Added group Chann...
02 102004 15:11:52 Added 20items to ...
i PRLFIES 151153 Added 12items to gr...

Ready [tem Court: 87

Hg , UM

2102014

Figure 23. OPC quick client.

4.3 Third Setup

In this setup instead of using physical PLC a soft PLC was used. The soft PLC is
just a software, but it has all the same functions and capabilities as the normal
PLC. The soft PLC that was used was Beckhoff's. It was programmed by using

TwinCAT3 and was programmed by using ladder diagram.

= z VAR

20

PROGEAM FOTU_1

Inputd0: BOOL;
Input0l: BOOL;
Input02: BOOL;
Input03: BOOL;
Input04: BOOL;
Input0S: BOOL;

DigitalCutput000:
DigitalCutput00l:
DigitalCutput002:
DigitalCutput003:
DigitalCutput004:
Digitalfutput005:

DigitalInput000:
DigitalInput001l:
DigitalInput002:
DigitalInput003:
DigitalInput004:
DigitalInput005:

END_VAR

Figure 24. 1/0O list of the program.

BOOL;
BOOL;
BOOL;
BOOL;
BOOL;
BOOL;

BOOL;
BOOL;
BOOL;
BOOL;
BOOL;
BOOL;

34(42)

Even though all these PLCs were programmed with same programming language,

ladder diagram, the layout is still a little different. Especially with the I/O lists. The

actual program is basically the same which was used also in Omron’s PLCs.

Figure 25. The program which was used in this setup.

Input00 DigitalCutpu00l DigitalOutput004 Input05 DigitalOutput000
L 1,1 1,1 1,0)
I U/l /] 171 i
Input0l DigitalCurput000 DigitalOutput004 Input05 DigitalOutput00L
I 1 1,1 1,0]
I U/l U171 171 i
Input02 DigitalOurpucd03 DigitalOutput004 Input05 DigizalOuzpuc002
L 1,1 1,1 1,0 H]
I U/l U171 171 i
Input03 DigitalCurput00Z DigitalOutput004 Input05 DigitalOutput003
I 1 1,1 1,0]

I U/l U171 171 i
DigitalOutpuc000 DigitalOucpuc00l DigitalOutputd02 DigitalOutput003 DigizalOuzpuc00d
1,0 11 1,1 H]

171 U/l U171 i

The OPC server which was used in this setup was also Kepware’'s KepServerEX.

The only major difference in this setup and in setup 2 is that, when using

KepServereEX’s Beckhoff TwinCAT driver tags cannot be manually created, they

must be auto created. This can be done in device properties, database creation

and auto create. All the settings must be correct otherwise this would not work.

35(42)
5 Testing & Results

To determine which of these setups were most successful, some tests were done
to find out which setup had the fastest response time. Setup 2 was not included in
these, because it was not able to send signals from Unity back to OPC and PLC.
So setup 1 and 3 were only used in these tests. The program in PLC was altered
slightly for these experiments. The program was made so that it moves the sledge
in the Unity model to the left until it hits a sensor. When this sensor is activated the
sledge changes its direction. The picture below is the program made for the

Beckhoff, but the program for the Omron is basically same.

Inputto DigitalOutpuc00l DigitalOurpucd0d Input05 DigitalOurpucd0d

L. 1,0 1,1 i 3
U U U LEg1) LY

Input0l DigitalOutput000 DigitalOutput004 Input0s Digi talCutput0l
I+ 1/ 1 /[- 1 /[D
I 171 U/l 171 1|

Inputd2 DigitalOurpuc003 DigitalOurpucd0d Input05s DigitalOurpucd0z
I 10 1,1 00 3
I 171 U/l 141 i

Inputds Digitallnpucd02
L. 1,1
U LEa1)

Input03 DigitalOutput002 DigitalOutput004 Input0s DigitalCutput003
I+ I 1 /[- 1/[k D
I 171 U/l 171 1|

Input0s Digitallnputd02
I I
I 10

DigitalOucpucd0d DigitalOutpu00l DigitalOutpuc002 DigitalOutput003 Input0s Inpuzod DigitalOurpucd0d

1,1 1,0 11 1,1 1,1 11 3
U U U e U L) LY

Figure 26. The program made for testing.
The interval between activating sensor and moving direction is measured in these

experiments. The measurements were done in Unity, by adding Debug.Log twice
in the script. So it gave system time with accuracy of a millisecond when sensor
was activated and when it changed direction. Then the response time was

manually calculated with these two times.

if (Input.GetAxis() > Client.inputs[3][1] .Equals(})

movingState = MovingState,Left;
DateTime now = DateTime.Now;
atring Time = now.Hour.ToString() + + now.Minute.ToString() + + now. Second. ToString() + + now.Millizecond.ToString ()

Debug.Log (Time);

]
Figure 27. A code inserted to "kelkka ylempi” script, which gives a time when the sledge
changes direction.

36(42)

if (AnturinRytkenta == InputNumber.Input 2)

[ateTime now = Datelime,Now;
string Time = now.Hour.ToString() + + now, Minute,ToString() + + now.Second.ToString() + + now. Millisecond.ToString ();

Debug.Log (Time);

Figure 28. A code inserted to ” Anturit” script, which gives a time when the sensor is
activated.

These tests were performed twenty times for both setups. These setups were also
made in different PCs, so the results will not be fully comparable, but they will be
directional. The results are displayed in milliseconds. Also the first setup failed
twice in changing direction when the sensor was activated. This resulted from the
fact that, the first setup’s response time was so slow that the sledge was able to
pass the sensor before the signal to change direction came to Unity.

PLC BECKHOFF OMRON
TEST 1 49 825
TEST 2 55 1122
TEST 3 49 622
TEST 4 49 801
TEST S 65 639
TEST 6 33 534
TEST 7 49 465
TEST 8 33 935
TEST9 49 638
TEST 10 66 699
TEST 11 66 1366
TEST 12 49 886
TEST 13 33 915
TEST 14 33 798
TEST 15 49 733
TEST 16 49 493
TEST 17 49 835
TEST 18 66 689
TEST 19 65 1182
TEST 20 65 784
Average 51,05 798,05
Highest 66 1366

Lowest 33 465

37(42)

As the results show the third setup was almost 16 times faster than the first setup.
The third setup’s average response time was about 50ms, when the first setup’s
average response time was about 800ms. The big time difference most likely
originates from the fact that in the third setup there was a soft PLC, which makes

the response time so fast that it is possible to simulate pulse sensors in Unity.

38(42)

6 Summary

The outcome of this project was somewhat surprising. It was expected, that the
soft PLC would be much faster than Omron’s CPM1. The biggest surprise was
how slow the normal PLC was. Its response time was about 800ms, when its
response time was expected to be about 500ms. Also the response time of
Beckhoff’s soft PLC was shorter than expected.

Unfortunately Omron’s CJ1M did not work properly. It would have been interesting
to see how long its response time would have been. Most likely its response time
would been somewhere between CPM1 and the soft PLC. Overall these tests
gave a good knowledge about how much the response times depend on the PLC

and OPC server type.

This subject was overall very interesting and most likely very beneficial. It is
possible that these kinds of virtual models will become more popular in the near
future. Also the use of Unity will most likely increase in the future. At the moment
Unity is mainly used for making video games. Therefore, it has lots of potential if
these kinds of automation applications become more popular. It is also possible
that the upcoming Unity 5 has some functions which would ease the creating of
these kinds of setups.

39(42)

Sources

Aalto-yliopisto.2003 Siirtorekisterit (Web Page). Aalto-yliopisto Sahkdtekniikan
korkeakoulu. (Ref. 15.10.2014).Available: http://legacy.spa.aalto.fi/sig-

legacy/digis/luentol1/siirto.html

Advosol. No date. OPCHDA.NET. (Web Page). Advosol Inc. (Ref 15.10.2014).
Available: https://advosol.com/pc-11-3-opchdanet.aspx

Blender. No date. About. (Web Page). Blender Foundation. (Ref 22.10.2014).
Available: http://www.blender.org/about/

Envato Pty Ltd. 2014. Introduction to Unity 3D. (Web Page). Envato Pty Ltd. (Ref.
16.9.2014). Available: http://code.tutsplus.com/tutorials/introduction-to-unity3d--
mobile-10752

Honeywell International inc.2014 Specification Downloads. (Web Page).
Honeywell International inc. (Referenced16.9.2014).Available:

http://www.matrikonopc.com/downloads/types/specifications/index.aspx

Keindnen, T. Karkkainen, P. Metso, T. & Putkonen, K. 2001 Logiikat ja

ohjausjarjestelmat koneautomaatio 2. Porvoo: WSOY

Kronotech. No date. PLC languages. (Web Page). Kronotech. (Ref. 7.10.2014).

Available: http://www.kronotech.com/PLC/Lanquages.htm

Mevea. 2013. Tuotteet ja Palvelut. (Web Page). Mevea Itd. (Ref. 15.10.2014).

Available: http://www.mevea.com/fi/tuotteet ja palvelut

Mevea. 2013. Yrityksen tausta. (Web Page). Mevea Itd. (Ref. 16.10.2014).

Available: http://www.mevea.com/fi/yritys/historia

NVIDIA Corporation. 2014. PhysX FAQ. (Web Page). NVIDIA Corporation. (Ref
16.9.2014) Available: http://www.nvidia.com/object/physx_fag.html

40(42)

OPC foundation.2014 Unified Architecture. (Web Page). OPC Foundation (Ref
16.9.2014). Available: https://opcfoundation.org/about/opc-technologies/opc-ua/

OPC programmers’ connection. 2013 OPC Unified Architecture. (Web Page). OPC
Programmes’ Connection. (Ref 16.9.2014) Available:
http://www.opcconnect.com/ua.php

OPC Training Institute. 2007-2014 OPC .NET (OPC Xi) Specification. (Web Page).
OPC Training Institute. (Ref 16.9.2014) Available: http://www.opcti.com/opc-xi-

specification.aspx

Scott Richmond. 2013. Unity and Visual Studio 2012. (Web Page). Scott
Richmond. (Ref. 26.9.2014). Available: http://www.strichnet.com/unity-4-and-
visual-studio-2012/

Suomen Automaatioseura ry. No date. OPC:n uudet tuulet (PDF-file). Suomen
Automaatioseura ry. (Ref. 16.9.2014) Available:

http://www.automaatioseura.fi/index/tiedostot/OPC Lisatieto.pdf

Tapio Hellman. 2014. CAVE visualisointiluola. (PDF-file). Seindjoki University of
Applied Sciences. (Ref. 17.9.2014). Available:
http://www.mad.fi/mad/tilapaiset/ArchiMAD_3 2014 cave.pdf

Tuhola, E. & Viitanen, K. 2008 Logiikat 3D-mallintaminen suunnittelun

apuvalineena. Jyvaskyla: Gummerus Kirjapaino Oy 16.9

Unity Technologies. 2014. EFFORTLESSLY UNLEASH YOUR GAME ON THE
WORLD’S HOTTEST PLATFORMS. (Web Page). Unity Technologies. (Ref
16.9.2014). Available: http://unity3d.com/unity/multiplatform/

Unity Technologies. 2014. FREQUENTLY ASKED QUESTIONS. (Web Page).
Unity Technologies. (Ref. 16.9.2014). Available: http://unity3d.com/unity/faq

41(42)

Unity Technologies. 2014. Whats new. (Web Page). Unity technologies. (Ref
16.9.2014). Available: http://unity3d.com/unity/whats-new

Unity Technologies. Unity 5. (Web Page). Unity Technologies. (Ref. 16.9.2014).
Available: http://unity3d.com/5

APPENDICES

APPENDIX 1. Unity client 1/4.
APPENDIX 2. Unity client 2/4.

APPENDIX 3. Unity client 3/4.

APPENDIX 4. Unity client 4/4.

APPENDIX 5. Socket Server reader 1/2.

APPENDIX 6. Socket server reader 2/2.

APPENDIX 7. Socket Server program 1/5.

APPENDIX 8. Socket Server program 2/5.

APPENDIX 9. Socket Server program 3/5.

APPENDIX 10. Socket Server program 4/5.

APPENDIX 11. Socket Server program 5/5.

42(42)

APPENDIX 1. Unity client 1/4.

-lusing UnityEngine;
using System.IO;
using System.Net.Sockets;
using System.Collections.Generic;

—-lpublic static class Client

1

private static List<Sensori> sensorit

1(11)

= new List<Sensori»();

public static string[][] inputs = new string[][] {
string[] {"DigitalOutputeaa”,
string[] {"DigitalOutputeal™,
string[] {"DigitalOutputea2™,
string[] {"DigitalOutputeas”,

new
new
new
new
new
new

I

private
private
private
private
private
private

string[] {"DigitalInputea4”,
string[] {"DigitalInputeas™,

static
static
static
static
static
static

bool
bool
bool
bool
bool
bool

DigitalInputeea
DigitalInput@al
DigitalInputea2
DigitalInputees
DigitalInput@ad
DigitalInput@as

"False™},
"False"},
"False™},
"False™},
"False"},
"False™},

false;
false;
false;
false;
false;
false;

public static void KytkeSensori(Sensori sensori)

1

sensorit.Add(sensori);

¥

public static void Paivita()

d

TepClient client

= new TcpClient("localhost™, 8221);

2(11)

APPENDIX 2. Unity client 2/4.

TepClient client = new TepClient("localhost™, 8221);

{/ avataan streamit

NetworkStream ns = client.GetStream();
Streambriter sw = new Streambriter(ns);
StreamReader sr = new StreamReader(ns);
sw.AutoFlush = true;

//paivitetdan outputit
foreach (Sensori sensori in sensorit)

{

switch (sensori.Anturinkytkenta)

{

case Sensori.InputNumber.Input_&:
if (sensori.Tila != DigitalInput@ee)

1
DigitalInput@@e = sensori.Tila;
sw.WriteLline("write DigitalInput@ea " + DigitalInputees.ToString());
sr.Readline();

¥

break;

case Sensori.Inputlumber.Input 1:
if (sensori.Tila != DigitalInput@el)

1
DigitalInput®dl = sensori.Tila;
sw.Writeline("write DigitalInput@@l " + DigitalInput@@l.ToString());
sr.Readline();

b

bhreak;

case Sensori.InputNumber.Input_2:
if (sensori.Tila != DigitalInput@@l)
1
DigitalInput®@2 = sensori.Tila;
sw.WriteLine("write DigitalInput@e2 " + DigitalInputee2.ToString());

3(11)

APPENDIX 3. Unity client 3/4.

if (sensori.Tila !'= DigitalInpute@e2)

1
DigitalInput@82 = sensori.Tila;
sw.Writeline("write DigitalInput®82 ™ + DigitalInput@B2.ToString());
sr.ReadlLine();

b

break;

case Sensori.InputNumber.Input 3:
if (sensori.Tila != DigitalInput@e3)

1
DigitalInput®@3 = sensori.Tila;
sw.WriteLine("write DigitalInput@@3 " + DigitalInput@@3.ToString());
sr.Readline();

h

break;

case Sensori.InputNumber.Input_4:
if (sensori.Tila !'= DigitalInput@ed)

1
DigitalInput@®dd = sensori.Tila;
sw.WriteLine("write DigitalInpute@e4 " + DigitalInpute@d4.ToString());
sr.ReadlLine();

b

break;

case Sensori.InputNumber.Input 5:
if (sensori.Tila != DigitalInput@es)

1
DigitalInput@d5 = sensori.Tila;
sw.Writeline("write DigitalInput®85 ™ + DigitalInput@®5.ToString());
sr.Readline();

b

break;

4(11)

APPENDIX 4. Unity client 4/4.

break;

¥

[/pdivitetdan inputit

for (int 1 = @; 1 < inputs.Length; i++)

i
sw.WriteLine("read " + inputs[i][®@]);
inputs[1i][1] = sr.Readline();

¥

// katkaistaan yhteys
sw.WriteLine("quit"™};
sr.ReadlLine();

/{ suljetaan streamit
sr.Close();
sw.Close();
ns.Close();
client.Close();

5(11)

APPENDIX 5. Socket Server reader 1/2.

—lusing System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Threading;

-Inamespace ConsoleApplicationl

1

= public class Reader

= public Reader()
1

Thread thread = new Thread(new Threadstart(Paivita));
thread.Start();

}

] private void Paivita()
1
OpclLabs.EasyOpc.DataAccess.EasyDACLient easyDAClientl = new Opclabs.EasyOpc.DataAccess.EasyDAClient();
easyDAClientl.ClientMode . AllowAsynchronousMethod = false; // these three lines might be unesessary.
easyDAClientl.ClientMode. AllowAsynchronousMethod = truej
easyDAClientl.ClientMode.DesiredMethod = Opclabs.EasyOpc.DataAccess.DAReadliriteliethod. Synchronous;

f/Wake up OPC client
easyDAClientl.ReadItemValue("", "FernhillSoftware.PLCDataGateway”, "localhost.Main.OmronExample.DigitalOutputese™);

while (true)

{

6(11)

APPENDIX 6. Socket server reader 2/2.

public class Reader

public Reader()

{

}

Thread thread = new Thread(new ThreadStart(Paivita));
thread.Start();

private void Paivita()

{

Opclabs.EasyOpc.DataAccess.EasyDACLient easyDAClientl =
easyDAClientl.ClientMode.AllowAsynchronousMethod = false; // these three lines might be unesessary.
easyDAClientl.ClientMode.AllowAsynchreonousMethod = true;

EanDA(liEntl.(liEntMndE,DESir‘EdMEthod = Opclabs.EasyOpc.DatafAccess.DAReadirit

new Opclabs.EasyOpc.DataAccess.EasyDACLient();

Method. Synchronous;

//Wake up OPC client
easyDAClientl.ReadItemValue("", "FernhillSoftware.PL{DataGateway", "localhost.Main.OmronExample.DigitalOutput@aa™);

while (true)

{
Program.inputs[®][1] = easyDAClientl.ReadItemValue("", "FernhillSoftware.PLCDataGateway”, "localhost.M .OmronExample.DigitalOutput®@a™).ToString();
Program.inputs[1][1] = easyDAClientl.ReadItemValue("Fernhillsoftware.PLCDataGateway”, "localhost. .OmronExample.DigitalOutput@@l™).Tostring();
Program.inputs[2][1] = easyDAClientl.ReadItemValue("FernhillSoftware.PL(DataGateway"”, "localhost. .OmronExample.DigitalOoutput@a2™).ToString();
Program.inputs[3][1] = easyDAClientl.ReadItemValue("FernhillSoftware.PLCDataGateway”, "localhost. .OmronExample.DigitalOutputees™).Tostring();
Program.inputs[4][1] = easyDAClientl.ReadItemValue("", "FernhillSoftware.PL{DataGateway”, "localhost. .OmronExample.DigitalInput@@4”™).ToString();
Program.inputs[5][1] = easyDAClientl.ReadItemValue("", "FernhillSoftware.PLCDataGateway”, "localhost. .OmronExample.DigitalInput@es™).Tostring();

}

7(11)

APPENDIX 7. Socket Server program 1/5.

—lusing System;
using System.Collections.Generic;
using System.Data;
using System.IO;
using System.Ling;
using System.Net;
using System.Net.Sockets;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

—Inamespace ConsoleApplicationl

1
= static class Program
{

public static string[][] inputs = new string[][] {
new string[] {"DigitalOutput@ea”, "False"},
new string[] {"Digitaloutputael™, "False"},
new string[] {"DigitalOutput@e2”, "False"},
new string[] {"DigitalOutput@e3™, "False"},
new string[] {"DigitalInput®e4”, "False"},
new string[] {"DigitalInput@as”, "False"},

i

= static void Main(string[] args)

1

Reader reader = new Reader();

IPAddress ipAddress = IPAddress.Parse("127.8.8.1");
TcpListener tcplListener = new Tcplistener(ipAddress, 8221);

Opclabs.EasyOpc.Datalccess.EasyDACLient easyDACLientl = new Opclabs.EasyOpc.DataAccess.EasyDACLient();

8(11)

APPENDIX 8. Socket Server program 2/5.

//Wake up OPC client
easyDAClientl.ReadItemValue("", "FernhillSoftware.PLCDataGateway™, "localhost.Main.OmronExample.DigitalOutputeea™);

teplistener.Start();

while (true)
1

TcpClient tepClient = tcplistener.AcceptTepClient();
NetworkStream ns = tcpClient.GetStream();
Streamliriter sw = new StreamWriter(ns);

StreamReader sr = new StreamReader(ns);

sw.AutoFlush

true;
bocl stopped = false;

while (!stopped)
{

if (ns.DataAvailable)

{

string command = sr.ReadlLine();
string answer;

switch (command)

APPENDIX 9. Socket Server program 3/5.

switch (command)
{

case "read DigitalOutput@ea”:
answer = inputs[@][1];
break;

case "read DigitalOutput@al":
answer = inputs[1][1];
break;

case "read DigitalOutput@ez”:
answer = inputs[2][1];
break;

case "read DigitalOutput@e3™:
answer = inputs[3][1];
break;

case "read DigitalInput@e4”:
answer = inputs[4][1];
break;

case "read DigitalInput@@s”:
answer = inputs[5][1];
break;

case "write DigitalInput@ee True™:
easyDAClientl.WriteItemvalue("", "FernhillSoftware.PLCDataGateway",
answer = "}
break;

case "write DigitalInput@ae False™:
easyDAClientl.WriteItemvalue(
answer = "}
break;

case "write DigitalInput@al True™:
easyDAClientl.WriteItemvalue("", "FernhillSoftware.PLCDataGateway",

"Fernhillsoftware.PLCDataGateway”,

9(11)

"localhost.Main.OmronExample.DigitalInputeaa™,

"localhost.Main.OmronExample.DigitalInputeaa™,

"localhost.Main.OmronExample.DigitalInputeal”,

"True");

"False")

"True");

3

APPENDIX 10. Socket Server program 4/5.

case "write DigitalInput@@l True™:
easyDAClientl.WriteItemValue(™",
answer = ""
break;
case "write DigitalInput®@l False":
easyDAClientl.WriteItemValue(™"",
answer = "";
break;
case "write DigitalInput®®2 True™:
easyDAClientl.WriteItemValue(™",
answer = "";
break;
case "write DigitalInput®®2 False":
easyDAClientl.WriteItemValue(™",
answer = "";
break;
case "write DigitalInput@@3 True™:
easyDAClientl.WriteItemValue(™",
answer = ""
break;
case "write DigitalInput@e3 False™:
easyDAClientl.WriteItemValue(™",
answer = "";
break;
case "write DigitalInput@e4 True™:
easyDAClientl.WriteItemvValue(™",
answer = "";
break;
case "write DigitalInput@84 False":
easyDAClientl.WriteItemValue("",

answer =
break;

"FernhillSoftware

"FernhillSoftware

"FernhillSoftware

"FernhillSoftware

"FernhillSoftware

"Fernhillsoftware

"Fernhillscftware

"FernhillSoftware

.PLCDataGateway”, "localhost

.PLCDataGateway”, "localhost

.PLCDataGateway”, "localhost

.PLCDataGateway”, "localhost

.PLCDataGateway”, "localhost

.PLCDataGateway”, "localhost

.PLCDataGateway”, "localhost

.PLCDataGateway™, "localhost

.Main.

.Main.

.Main.

.Main.

.Main.

.Main.

.Main.

Main.

OmronExample.

OmronExample.

OmronExample.

OmronExample.

OmronExample.

OmronExample.

OmronExample.

OmronExample.

10(11)

DigitalInputeal”,

DigitalInput@al™,

DigitalInput@az”,

DigitalInput@az”,

DigitalInput@a3™,

DigitalInput@as™,

DigitalInput@es4”,

DigitalInputeas”,

"True™);

"False™);

"True");

"False™);

"True");

"False™);

"True");

"False™);

11(11)

APPENDIX 11. Socket Server program 5/5.

answer = "";

break;
case "write DigitalInput®85 True":

easyDAClientl.WriteItemvalue("”, "FernhillSoftware.PLCDataGateway”, "localhost.Main.OmronExample.DigitalInputees”, “"True");

answer = "";
break;

case "write DigitalInput®es False™:
easyDAClientl.WriteItemValue(

H

,» "FernhillSoftware.PLCDataGateway”, “localhost.Main.OmronExample.DigitalInput@as™, "False™);
answer =
break;

case "quit":

answer = "quit";
stopped = true;
break;

default:
answer = "default";
break;

sw.Writeline(answer);

¥
Thread.Sleep(l);
}

sr.Close();
sw.Close();
ns.Close();
tepClient.Close();

