

Bachelor's thesis

Bachelor of Engineering

Information Technology

2014

 Amrit Regmi

DESIGN AND
IMPLEMENTATION OF A
REMOTELY MANAGED DIGITAL
SIGNAGE SOLUTION

BACHELOR´S THESIS | ABSTRACT
TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology | Networking

2014 | 48

Instructor: Patric Granholm

Amrit Regmi

DESIGN AND IMPLEMENTATION OF A
REMOTELY MANAGED DIGITAL SIGNAGE
SOLUTION

Industries and businesses are moving to digital signage from the traditional

printed signage as a tool for advertisement and broadcasting information to

clients, potential customers, and the public. The availability of affordable flat

screen digital displays has enabled the businesses to replace printed signage

with digital signage. As a result, digital signage is expected play an important

role in delivering information to the public as it can be customized to display

timely information to a targeted audience while reducing the financial and

environmental cost related with traditional printed signage. The focus of this

thesis is the design and implementation of a digital signage solution based on

Raspberry Pi for digital displays located on one or more locations.

The digital signage system displays the information on the full screen web

browser running on Raspberry Pi. Each display is connected to a central server

and is remotely accessible by the authorized administrator via the Internet or

the local network. Contents can be dynamically added or removed from one or

more displays based on their location on the content management system.

This thesis also discusses how various technologies are used together to

develop a digital signage system that is remotely accessible and manageable.

KEYWORDS:

PHP, Yii, WebSocket, Raspberry Pi, digital signage.

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS 7

1 INTRODUCTION 6

1.1 Project Scope 6

2 DEVELOPMENT TOOLS 8

2.1 Debian 8

2.2 PHP 8

2.3 MySQL 8

2.4 Apache HTTP server 9

2.5 Raspbian 9

2.6 JavaScript 9

2.7 Yii-booster 10

2.8 NetBeans 10

3 RASPBERRY PI 11

3.1 Hardware and technical specification 11

3.2 Performance 12

4 SYSTEM DESIGN 14

5 DEVELOPMENT OF DIGITAL SIGNAGE SYSTEM 15

5.1 Raspberry Pi development 15

5.1.2.1 Systeminfo.py 16

5.1.2.2 SSH.py 17

5.1.2.3 WebSocketClient.py 17

5.1.3.1 X Window system 19

5.1.3.2 Rc.local 19

5.1.3.3 Automatic resolution detection 19

5.1.3.4 Boot to web browser 21

5.2 WebSocket 22

2.2.1 Yii 8

2.6.1 JQuery 9

5.1.1 Raspberry Pi as display device 15

5.1.2 System services development 16

5.1.3 Start-up configuration 18

5.2.4.1 SocketController.Php 28

5.3 Remote management 31

5.4 Backend development 35

5.5 Frontend development 37

6 SECURITY 39

6.1 Communication security 39

6.2 Authentication 40

7 CHALLENGES 42

7.1 Data corruption 42

7.2 Physical security 42

7.3 Reliability of internet connection 42

8 CONCLUSION 43

REFERENCES 44

FIGURES

Figure 1. Raspberry Pi model B (Raspberry Pi Model B revision 2.0 Board - 512MB

RAM, 2014) 11

Figure 2. Digital signage system integration 14

Figure 3. Excerpt of method from systeminfo.py that returns the system data 17

Figure 4. Excerpt of code from SSH.py 17

Figure 5. Excerpt of method from WebSocketClient.py that handles the massage

received from server. 18

5.2.1 Raspberry Pi Client 25

5.2.2 Php Client 26

5.2.3 JavaScript Client 26

5.2.4 Php WebSocket server 27

5.2.5 Communication 29

5.3.1 Secure Shell and reverse tunneling 31

5.3.2 Managing contents 33

5.4.1 Display management 35

5.4.2 Subscriber management 36

6.2.1 Administrator authentication 40

6.2.2 Raspberry Pi client authentication (WebSocket) 40

6.2.3 JavaScript client authentication (WebSocket) 41

Figure 6. Additional settings added to config.txt file 20

Figure 7. BASH script added to rc.local file 20

Figure 8. Shell script to start X server. 21

Figure 9. Xinitric file 22

Figure 10. WebSocket Implementation architecture 23

Figure 11. Upgrade header sent by client 23

Figure 12. Creating WebSocket instance in JavaScript 24

Figure 13. Upgrade header sent by server 24

Figure 14. Excerpt from WebSocketClient.py demonstrating WebSocket connection

initiation 25

Figure 15. Excerpt from WebSocketClient.py demonstrating actions on error and close

events. 26

Figure 16. Php function using Php WebSocket client 26

Figure 17. Implementation of JavaScript WebSocket client on frontend 27

Figure 18. Shell script that starts WebSocket server listening to port 8080 and

implements application logic class SocketController. 28

Figure 19. Starting WebSocket server from command line. 28

Figure 20. JSON data structure for digital signage system 29

Figure 21. Network structure and reverse tunnel implementation. 32

Figure 22. Excerpt from WebSocketClient.py demonstrating SSH request handling 33

Figure 23. Flowchart for establishing reverse tunnel 33

Figure 24. Flowchart for managing content 34

Figure 25. Excerpt from SocketController.Php 34

Figure 26. Dashboard for route management 35

Figure 27. Dashboard for managing individual display 36

Figure 28. Dashboard for managing subscriber 37

Figure 29. Screen-shot of the frontend. 38

Figure 30. . Excerpt from stunnel.conf file 39

Figure 31. Flowchart for user authentication 41

TABLES

Table 1. Hardware comparison between Model B+ B and A 12

Table 2. Raspberry Pi web page loading performance comparison (Raspberry model B

and other computer systems) 13

LIST OF ABBREVIATIONS (OR) SYMBOLS

LAN Local Area Network

NAT Network Address Translation

MVC MVC, which stands for Model-View-Controller, is the
software architectural pattern for implementing user
interfaces.

HTTP Hyper Text Transfer Protocol

HTTPS HTTP Secure

HTTPd A server program based on Hyper Text Transfer

Protocol

NCSA National Center for Super Computing Application

CRUD Create Remove Update Delete, CRUD refers to all of

the major functions that are implemented on relational

database based application

JSON JavaScript Object Notation

SOC System on Chip

GPU Graphical processing unit

API Application Programming Interface

1 INTRODUCTION

Digital signage is display of text, images or multimedia contents shown in digital

formats over the internet or on television (BusinessDictionary.com, 2014). It is

based on various methods of using the display devices in ways that are efficient

to provide advertisements and information to people in public spaces. The

popular approach to digital signage today is that the logical or playback device

stores all the content in the storage device and feed it to the displays connected

to it (Rouse, 2014; Anon, 2014). The contents are manually uploaded to the

storage device or downloaded by the logical device via LAN or internet and

saved on the storage device. However, this approach lacks flexibility, as the

user has to be physically present at the display locations if any changes are to

be made on the logical device. Additionally, if the logical device is behind a NAT

router, the contents on the display cannot be managed from a remote location.

The implementation of such system is quite difficult if the displays are scattered

in a distributed network across different locations. This project aims to solve

these problems by creating a digital signage solution based on Raspberry Pi

that is accessible and manageable via internet.

1.1 Project Scope

Digital signage technologies can be deployed in many business sectors.

However, each business sector has specific needs for the management system

of the service. For example from the prospect of management system

requirement, the solution used in restaurants to display the menus will be

entirely different from the system used in airports to display transit information.

The final output of project will be a digital signage solution for the public

transport industry that can be used to display advertisements and other

information inside the public vehicles and is remotely manageable from the web

interface. The content providers (hereinafter referred as subscribers) should

subscribe on the system based on amount of content and the number of

displays before using the system. The administrator can upload, manage and

distribute the contents based on the subscription via the web interface. The

management system will be capable of distributing the contents to single or

group of displays across different locations based on the data provided by the

subscribers or any other designated user. The system administrator has full

access over the system and can view status, add, update and delete contents

from display/displays. The system administrator will also be able to remotely

shutdown, reboot and remotely login to the displays and make configuration

changes whenever necessary.

2 DEVELOPMENT TOOLS

This chapter introduces and describes different tools and technology used to

develop and implement a remotely manageable digital signage solution. Only

open source tools and technology are used to reduce the overall cost of the

system.

2.1 Debian

Debian is an open source operating system maintained by a group of

developers under the Debain project. Most of the work done in debain is under

the GNU public license. The minimal version of Debian is used as the operating

system for this project server environment. Stable release of Apache

(Httpd.apache.org, 2014) with MySQL and PHP is installed on this operating

system so that it performs optimally as a web server.

2.2 PHP

PHP is an open source server side scripting language intended for web

development. It can be used with numerous web frameworks. It can also be

used as general-purpose programming language (Php.net, 2014). PHP version

5.5.9 which was the latest stable version at that time of writing this statement,

with the Yii framework is used in this project and is run on Apache web server.

2.2.1 Yii

Yii (acronym for "Yes It Is!") is an open source, object-oriented, component-

based MVC PHP application framework. It comes with the automatic code

generation tool called gii for CRUD applications (Yiiframework.com, 2014). Yii

version 1.1 is used in this project.

2.3 MySQL

MySQL is an open source relational database management system that runs on

web servers. It is the second most widely used database system (Db-

engines.com, 2014). MySQL is the ideal choice for applications using PHP and

Apache web server as it can run stable on these systems. MySQL version

5.5.38 is used in this project.

2.4 Apache HTTP server

The Apache HTTP server, which is often referred as the Apache server, is an

open-source web server application originally based on the NCSA HTTPd

server. An open community of developers is involved in developing and

maintaining the application under the auspice of the Apache Server Foundation

(Wikipedia, 2014). Apache version 2.2.22 has been used in the project.

2.5 Raspbian

Raspbian is an operating system based on the Linux distro Debian. It is a free

operating system optimized to run on Raspberry Pi hardware. It is distributed

with a set of basic programs and utilities that are required for the Raspberry Pi

to run efficiently. The usage of Raspbian operating system has many

advantages over its predecessors. It is much faster and stable, is under active

development and is considered the preferred operating system for optimal

usage of Raspberry Pi by majority of developers system (Raspbian.org, 2014).

2.6 JavaScript

JavaScript is a dynamic programming language, which allows the client side

scripts to interact with users. It is commonly used as part of web browsers. All

the modern browsers support JavaScript. JavaScript alongside the jQuery

framework is used in this system to add interactivity between clients, displays

and the management system.

2.6.1 JQuery

JQuery is an open source cross-platform JavaScript library. It was designed to

simplify the client side scripting of HTML. Most modern web-browsers support

jQuery. In this project, jQuery has been used alongside the JavaScript and Yii-

booster inherently makes extensive use of this library.

2.7 Yii-booster

Yii-booster is an extension developed for the Yii framework based on Twitter-

bootstrap framework and JQuery. Twitter-bootstrap is a development tool

published by Twitter, which provides templates combining HTML and CSS for

the development of the user interface of its web application. Yii-booster is used

in this project in order to reduce the time to design the user interface of the

system.

2.8 NetBeans

NetBeans is an integrated development environment for developing applications

based on JAVA, PHP, C++ and HTML5. NetBeans is written in the JAVA

programming language and it supports multiple platforms. In this project,

NetBeans is installed on the Windows 8 operating system that is used as a

development environment.

3 RASPBERRY PI

Raspberry Pi is a single-board credit card size microcomputer developed by

Raspberry Pi foundation, UK. It was developed as an effort to encourage the

young people to learn about programming and computer science and use it as

educational tool for teaching schoolchildren on these topics (Raspberrypi.org,

2014). The second version of Raspberry Pi also known as Raspberry Pi model

B has been used in this project. It is the latest model that was easily available at

the time of writing this statement, although model B+ has been released it was

not easily available at that time due to the high demand for this model. Model B

was chosen as the logical device over model B+ because model B+ did not

have significant improvements that would enhance the performance of our

system and model B was the only easily available model at that time.

Figure 1. Raspberry Pi model B (Raspberry Pi Model B revision 2.0 Board -
512MB RAM, 2014)

3.1 Hardware and technical specification

The SoC of the Raspberry Pi Model B is Broadcom BCM2835. The SoC

contains an ARM11 processor that uses ARMv6 architecture core with floating

point running at 700 MHz and Videocore 4 GPU along with 512 MB SDRAM.

Raspberry Pi model B has a composite and HDMI outport on the board, so it

can be connected to an old analogue TV through the composite port or to any

media that supports HDMI connections (Verry, 2014). It has a 10/100 Mbps

RJ45 ethernet port alongside two USB 2.0 ports which can also be used for

network connectivity by connecting Wi-Fi dongle or USB internet stick to this

port. It has a SD card slot for data storage and operating system. An external

SD card with operating system configured on FAT32 partition is required that is

plugged in on Raspberry Pi as it does not have onboard storage facility like on

modern computers. It is powered through micro-usb port or GPIO pins with 5V

dc, 700-1500 mA power supply.

Table 1. Hardware comparison between Model B+ B and A

3.2 Performance

The GPU provides Open GL ES 2.0, hardware-accelerated OpenVG and
1080p30 H.264 high profile decoding, is capable of 1.0 Gpixel/s, 1.5 Gtesrl/s or
24 GFLOPS of general-purpose computing, and features texture filtering and
DMA infrastructure (Verry, 2014). With a class 10 SD card and Raspbian
operating system, the boot time of the Raspberry Pi is 10-15 seconds. Web
performance is outstanding considering the hardware specifications and power
consumption data. In a real world scenario, the performance of Raspberry Pi
could be compared to 300 MHz Pentium 2 computer. Table 2 shows the web

page loading performance comparison of Raspberry Pi model B with other
computer systems.

Table 2. Raspberry Pi web page loading performance comparison (Raspberry
model B and other computer systems)

Raspberry

Pi

1.2GHz

Marvell

Kirkwood

6281

1GHz

Allwinner

A10

1.6GHz

Intel

Atom

330

 2.6GHz.

G620

Pentium

processor

Pages/Sec 17 25 12 39 174

Mb/Sec 1.1 1.64 0.77 2.5 11.2

Power (W) 3 13 3-4 4 35

Pages/Sec/W 5 2 3 10 5

4 SYSTEM DESIGN

The centralized server provides control over multiple display systems from the

web interface. The server comprises of the web server for HTTP connections

and a WebSocket server for handling WebSocket connections. A database is

used to store the system data and is accessible to both the web server and the

WebSocket server. The display system comprises of the Raspberry Pi and a

display. Raspberry Pi is the logical device of the display system. The display is

connected to the HDMI port of Raspberry Pi. The Raspberry Pi system is

divided into system services and front end. System services comprises of the

WebSocket client and other dependent systems. The frontend and backend of

the system run on the web browser and are responsible for managing and

displaying contents on the display. The JavaScript WebSocket client on both

frontend and backend runs interactively with web browser. The end user can

remotely access the display system via central server. The end–to–end digital

signage system integration structure is given in Figure 2.

Figure 2. Digital signage system integration

5 DEVELOPMENT OF DIGITAL SIGNAGE SYSTEM

The backend and frontend of the system are developed using the Yii

framework, Yii booster, JavaScript and jQuery. System services on Raspberry

Pi are developed using the Python programming language. WebSocket is used

to enable the real-time monitoring and control of Raspberry Pi and real-time

communication between all the modules.

5.1 Raspberry Pi development

5.1.1 Raspberry Pi as display device

Since most of our system heavily depends upon web, the chosen display

hardware should be at least capable of the following tasks:

 Connect to internet via a 3G-Dongle connected on USB port

 Run a browser that supports CSS3, HTML 5 and jQuery library

 Render the contents on web browser without significant lag.

Additionally, for optimal performance the chosen hardware should also fulfill the

requirements listed below:

 Consume low power and run continuously for more than a day without

requiring any human interference.

 Run programs written in the Python programming language.

Although there are many other alternatives that fulfill the requirements,

Raspberry Pi is chosen as the suitable hardware for this project as it is the

cheapest hardware available on the market and meets the minimum system

requirements (Atwell, 2014).

Raspberry Pi feeds the contents to the display connected to it via an HDMI out

port. The Raspbian operating system also known as Raspbian Wheezy is

installed on the Raspberry Pi. Raspberry Pi will be connected to the internet

using USB 3G Dongle. It uses the Chromium web browser to connect to the

content management system running on remote Apache server and load the

content on browser window in full screen mode. Interactive content could be

displayed on the screens using the HTML5 and JavaScript library.

5.1.2 System services development

The information and contents uploaded by the subscriber are displayed using

the web browser running on Raspberry Pi on full screen mode. As a security

feature, web browsers are designed to run on Sandbox so that no system level

commands could be executed from within web browser. In order to have remote

access over Raspberry Pi, the system level services for Raspbian operating

system are developed. The Python programming language is used to develop

these services.

The system services are mainly responsible for bidirectional communication

with the Apache server, receive and execute commands sent by user and send

information about the status of Raspberry Pi. Most of the services start when

the Raspberry Pi boots up and runs continuously unless manually stopped.

5.1.2.1 Systeminfo.py

Systeminfo.py is a Python class file responsible for generating the system

information. It has methods for getting bandwidth usage, temperature, CPU-

load, memory and storage information, MAC address and the serial number of

Raspberry Pi. This class file is used by other files to get the relevant information

about the system. The „getData()‟ method which returns all the data generated

by Systeminfo class is shown in Figure 3.

Figure 3. Excerpt of method from systeminfo.py that returns the system data

5.1.2.2 SSH.py

SSH.py is a class file responsible for handling SSH connection commands. It

has methods for closing and initiating the SSH tunnel. This class is initiated by

the WebSocketClient class whenever the relevant command is sent by the

administrator. The excerpt from the class is given in Figure 4.

Figure 4. Excerpt of code from SSH.py

5.1.2.3 WebSocketClient.py

WebSocketclient.py is a Python class file that is responsible for initiating

WebSocket connections and other services. It is run as the daemon process

when the Raspberry Pi boots up. Daemon (acronym for Disk and Execution

Monitor) is a computer program that runs as the background process rather

than being under the direct control of interactive users and answers the request

for services (Kb.iu.edu, 2014). This class makes extensive use of the Python

WebSocket library (Pypi.Python.org, 2014). It is discussed in detail in the

section WebSockets. An excerpt of the code that handles the messages sent

from server is shown in Figure 5.

Figure 5. Excerpt of method from WebSocketClient.py that handles the
massage received from server.

5.1.3 Start-up configuration

As the displays will be displayed in remote locations, there is no possibility for

Raspberry Pi to get user input while it boots up. Thus, it is configured to initiate

all the necessary services automatically, start a web-browser and load the

specified webpage in full screen mode. The specified web page is the front end

of our system where the contents are displayed interactively.

5.1.3.1 X Window system

X window system commonly referred as X is an open source client-server

system for managing windowed graphical user interface used on UNIX like

system such as Linux. Versions of X have also been developed for other

operating systems (Siever, 2014). An X session is started by entering the

command "startx". “startx” typically runs without command line arguments, but

the command line arguments will override its normal behavior. In this project, it

gets client arguments from the „.xinitrc‟ file located on the home directory of root

user. „.xinitrc‟ is a Shell Script file read by xinit and by its frontend startx. The

xinit program starts the X server and works as first client program on systems

that are not using a display manager.

5.1.3.2 Rc.local

The rc.local file is common to major Linux distributions. It is located on the

directory „/etc‟. It contains the shell commands that should be executed after all

the normal system services are started, at the end of the process of switching to

a multiuser runlevel. A runlevel is a state of the system, indicating whether it is

in the process of booting or rebooting or shutting down, or in single-user mode,

or running normally. Shell scripts will be added to this file to ensure that the

scripts will run during the startup process.

5.1.3.3 Automatic resolution detection

Raspberry Pi does not detect the correct screen resolution for some displays.

Therefore, for such displays the screen resolution has to be set manually. Since

the digital signage system will be used with different screens with varying

resolutions, some changes have to made on the config.txt file and boot process

so that the screen resolution is correctly detected for all the displays without

user input. Config.txt is the file where the various system configuration

parameters are stored and is read by GPU before the ARM core is initialized. In

the config.txt file, the internal framebuffer is set to the largest possible value.

Then monitor capabilities are detected by the system and adjusted accordingly.

The corresponding changes made to config.txt file is given in Figure 6.

Figure 6. Additional settings added to config.txt file

After making the changes on the config.txt file, the shell script is appended to

the rc.local file. The script waits for the display to be attached to the HDMI port,

probes for its preferred mode and finally resets the frame buffer ready for X to

take over. An excerpt of the script is given in Figure 7.

Figure 7. BASH script added to rc.local file

5.1.3.4 Boot to web browser

The X Window system is used in order to enable Raspberry Pi to boot to web-

browser. Although there are multiple web browsers available for Raspberry Pi,

the chromium web browser is used on our system due to its high level of

stability compared to other browsers. In order to start a browser while

Raspberry Pi boots, the shell script is added to the rc.local file. The script will

start the X server using the tailored „.xintric‟ file. The „.xinitric‟ contains the

scripts that will start the chromium web browser in full screen mode with url

pointing to frontend of our system along with additional parameters for

authentication and identification. The script to start the X server is given in

Figure 8.

Figure 8. Shell script to start X server.

The Bash scripts are saved on /boot/xinitric so that it is easier to modify on non-

Linux machines. The contents of the xinitric file, displayed in Figure 9, will be

copied at startup to the .xinitric file.

Figure 9. Xinitric file

5.2 WebSocket

WebSocket is a bidirectional communication protocol between client and server

making use of persistent TCP connection. The WebSocket protocol was

standardized by the IETF as RFC 6455 in 2011, and the WebSocket API in

Web IDL is being standardized by the W3C. WebSocket was originally designed

to be implemented in web browsers and web servers but it can be used with

any client and server that use TCP connection to communicate

(WebSocket.org, 2014).

The HTML5 WebSocket specification (W3.org, 2014) defines API that enables

web pages to use WebSocket to enable communication with the remote host.

The API accounts for proxies and firewalls on the connection path, this makes

bidirectional communication possible over any connection (WebSocket.org,

2014).

Figure 10. WebSocket Implementation architecture

The WebSocket protocol was designed to be implemented with existing web

technologies. As a part of this design principle, the connection is initiated as

HTTP connection, which later switches to WebSocket protocol. This guarantees

the backward compatibility with the applications that do not use WebSockets.

The switch from HTTP to the WebSocket protocol is referred as WebSocket

handshake. The client application sends the request through the HTTP upgrade

header indicating that the connection should be switched to WebSocket.

Figure 11. Upgrade header sent by client

To connect to an WebSocket server, a new WebSocket instance is created

providing the new object with a URL that represents the WebSocket server to

be connected, ws:// and wss:// prefix are used to indicate a websockocket and a

secure WebSocket connection, respectively(WebSocket.org, 2014).

Figure 12. Creating WebSocket instance in JavaScript

If the server supports the WebSocket protocol, it agrees to the request and

switches to the WebSocket through the upgrade header. At this point, the HTTP

connection is replaced by the WebSocket over the same TCP/IP connection.

Once the connection is established, the client and server can send the data

frames in full duplex mode. The WebSocket connection uses the same port as

HTTP by default.

Figure 13. Upgrade header sent by server

The applications based on WebSocket implements the event driven functions

for connection open, close, message and error on both client and server side.

The corresponding syntax for these events differs according to the

programming language and library used.

In order to enable communication between Raspberry Pi and the server at

system level, a WebSocket client is developed for Raspberry Pi. The HTML 5

WebSocket API is utilized across the system using JavaScript to add

interactivity between user and display system. The WebSocket server is

developed using PHP that runs on the Apache server alongside the content

management system. The server listens to port 8080 for incoming WebSocket

connections. The WebSocket server runs independent of Yii framework, so the

WebSocket client that runs on the server side is developed for integrating the

Yii framework with WebSocket server.

5.2.1 Raspberry Pi Client

The WebSocket client referred as Raspberry Pi client is developed for

Raspberry Pi making use of the Python WebSocket library. It is implemented on

the class WebSocketClient.py. It is responsible for handling the request,

commands sent by the server and replying with requested information or

acknowledgement of the message received. It is started as a daemon service at

startup by modifying rc.local file. When the connection request is initiated

additional header parameter specifying the mac-address and serial number of

Raspberry Pi is added which is used for security verification.

Figure 14. Excerpt from WebSocketClient.py demonstrating WebSocket
connection initiation

On the Python WebSocket library „on_open‟, „on_close‟, „on_message‟ and

„on_error‟ corresponds to open, close, message and error event functions,

which should be overridden as per the application requirement. A connection

attempt is automatically made after waiting 30 seconds if there is error in

connection or the connection is closed by the server. This ensures that the

Raspberry Pi is always accessible even after the connection is reset or closed

due to connection errors.

Figure 15. Excerpt from WebSocketClient.py demonstrating actions on error
and close events.

5.2.2 Php Client

Php client is the WebSocket client implementation with PHP using the Php

WebSocket library. The Yii framework does not have implementation of

WebSocket on its API, so the Php client is developed as an intermediate

application between the WebSocket server and the Yii framework. On the

events where the application based on the Yii framework needs to pass

arguments to the WebSocket server running on the same machine, the Php

client initiates the connection and sends the arguments as message to the

WebSocket server. After the connection is initiated, it runs continuously which

forces the remaining script to wait until the client is closed. Therefore, to ensure

the remaining script continues to run after the event, the Php client immediately

closes the connection after the message has been sent.

Figure 16. Php function using Php WebSocket client

5.2.3 JavaScript Client

The JavaScript Client is a JavaScript implementation of the HTML5 WebSocket.

It is used on the front end of the digital signage system to update the contents

on real time and on backend to get the real-time information of the Raspberry

Pi. JavaScript clients on both frontend and backend communicate with the

server that does the task of relaying the information between frontend and

backend. Similar to the Raspberry Pi client, reconnection attempts are made at

certain intervals in the event of error or connection closed by either side, this

ensures the persistent connection between Websocket server and JavaScript

client.

Figure 17. Implementation of JavaScript WebSocket client on frontend

5.2.4 Php WebSocket server

The Php WebSocket server is a standalone WebSocket server developed using

ratchet. Ratchet is a PHP library which provides tools to create a bidirectional

communication between client and server using WebSocket and is compatible

with all the modern browsers that support WebSocket (Boden, 2014). The

WebSocket server is implemented using a shell script that starts the WebSocket

server listening to a specified port and a PHP class that handles all the

application logic. The shell script is stored on the file wsserver.Php. The shell

script is launched from the command line which starts the WebSocket server

listening to the given port and implements the application logic class.

Figure 18. Shell script that starts WebSocket server listening to port 8080 and
implements application logic class SocketController.

Figure 19. Starting WebSocket server from command line.

5.2.4.1 SocketController.Php

SocketController.Php is the application logic class file that is implemented by

the WebSocket server. It is responsible for all the application logic related to

WebSocket. It implements the MessageComponentInterface class from the

ratchet library and overrides „onOpen‟, „onMessge‟, „onError‟ and „onClose‟

event-driven functions as per the application logic. It tracks all the incoming

connection and stores it in an array variable in order to send data on those

connections whenever required. For each incoming connection, it verifies the

source client and stores the connection for Raspberry Pi client, frontend

JavaScript client and backend JavaScript client on three separate array

variables. The Raspberry Pi client sends the mac-address value as header

during connection initiation process. Each connection has a unique resource Id.

The resource id is mapped to mac-address of the Raspberry Pi for Raspberry Pi

Client and to screenId for the frontend JavaScript client. The ScreenId is a

unique id stored in the database generated while the Raspberry Pi is registered

in the system. Therefore, each connection can be uniquely identified and the

data is sent to the related device only instead of broadcasting to all the devices.

However, the backend JavaScript client is not uniquely identified, thus the

message is broadcasted to all the backend JavaScript clients if any event

occurs on Raspberry Pi.

5.2.5 Communication

For the efficient handling of data between server and multiple clients on

different platforms, a common data type and structure has to be adopted. The

digital signage system uses the JSON data format tailored into specific structure

for this purpose. Each client encodes the data into JSON format before sending

it to the server. The server receives and decodes the data and adds additional

parameters if required depending upon the data type. It encodes the data to

JSON format and forwards it to the appropriate client. Each client decodes and

analyses the data and performs the specific set of actions depending upon data

type. The common structure for data is shown in Figure 20.

Figure 20. JSON data structure for digital signage system

When the Raspberry Pi client is connected to server, the server broadcasts the

message to backend JavaScript Clients with „type‟ attribute set to „togglestatus‟

and „data‟ attribute set to „2‟.Similarly, when the Raspberry Pi client is

disconnected from the server, it broadcasts the message to all backend

JavaScript Clients with data set to „0‟ for connection closed due to shut down,

„1‟ for network error and „3‟ for restart. The „MacAdd‟ attribute is always set to

mac address of the Raspberry Pi from which the message was received. When

the backend JavaScript client receives the message, it notifies the user about

the change in status accordingly depending upon the received data.

The backend JavaScript client requests the information when the user

navigates to the management panel of the Raspberry Pi or sends the control

commands to that device. The data is sent to server with „type‟ set to „Request‟

or „cmd‟. If „type‟ attribute is set to „cmd‟, the „cmd‟ attribute is set to „shutdown‟,

„reboot‟ or „opentunnel‟. if the „type‟ attribute is set to „Request‟, the „cmd‟

attribute is set to „getsysteminfo‟. The „MacAdd‟ attribute is set to mac-address

of the target Raspberry Pi in both cases. When the server receives the data, it

forwards the data to the specified Raspberry Pi by resolving the mac-address

specified in the „MacAdd‟ attribute with the connected mac-addresses. The

server then sends the acknowledgment data to the client. The structure of

acknowledgement data is shown in Figure 20. If the mac-address is found and

the command is sent, the „ack‟ attribute is set to „1‟, otherwise the „ack‟ attribute

is set to „0‟. If the „type‟ attribute is „Request‟, the corresponding Raspberry Pi

responds with „type‟ attribute set to „Response‟ and the „data‟ attribute is set to

JSON data, otherwise if the „type‟ attribute was set to „cmd‟, the corresponding

Raspberry Pi responds with acknowledgement data with the „ack‟ attribute set to

respond to the command received. The server will set the „MacAdd‟ attribute to

the mac-address of that device and broadcast it to the backend JavaScript

Client. The backend client will receive the data and notify the user of the

received information.

5.3 Remote management

5.3.1 Secure Shell and reverse tunneling

Secure shell (SSH) is a cryptographic network protocol that allows data to be

exchanged between two networked devices over a secure channel

(Wiki.archlinux.org, 2014). SSH is commonly used for remote command-line

login, remote command execution and other secure network services. SSH

uses public key cryptography to encrypt and decrypt the transmitted

information. An SSH server listens on the standard TCP port 22 by default. An

SSH client application is used for establishing connections to an SSHd daemon

accepting remote connections.

While using the 3G service to connect to a network, in most cases the

connection is behind the NAT router and provides the private IP address. As a

result, it is impossible to establish a SSH connection to that device unless the

NAT router is configured to allow such connection attempt. Reverse SSH

tunneling is a technique to connect to a remote machine behind a firewall or a

NAT router via SSH . In a normal SSH connection, a SSH client connects to a

SSH server through the server's open port, but in the case of a reverse

connection, the client opens the port that the server connects to (Chamith,

2012). The network structure and the reverse tunnel implementation for the

digital signage system is given in Figure 21.

Figure 21. Network structure and reverse tunnel implementation.

Reverse SSH tunneling is used with the WebSocket service in order to establish

the SSH connection on demand to Raspberry Pi. The backend JavaScript client

sends the data to Php WebSocket server with the „type‟ attribute set to „cmd‟

and the „cmd‟ attribute set to „opentunnel‟. The Php server, after decoding the

received data, finds the open port on Apache and appends the „params‟

attribute set to the open port before encoding and forwarding it to the

Raspberry Pi. If the data is successfully sent, the Php server sends the

acknowledgement data to the backend JavaScript client with the „ack‟ attribute

set to „1‟, the „MacAdd‟ attribute set to the mac-address of Raspberry Pi and the

„params‟ attribute set to the open port. When the Raspberry Pi receives the

data, the SSH.py class is initiated which establishes the reverse tunnel on the

port specified by „params‟ attribute. After initiating the reverse SSH connection,

the Raspberry Pi sends the acknowledgement data to the server, which is then

forwarded to the backend JavaScript client. The SSH.py class is given in Figure

5 and the corresponding code for the process is given in Fgure 22. The

flowchart for the process is given in Figure 23.

Figure 22. Excerpt from WebSocketClient.py demonstrating SSH request
handling

Figure 23. Flowchart for establishing reverse tunnel

The backend JavaScript client notifies the user of the port to be used to connect

to the Raspberry Pi. Then the authenticated user can SSH to the Apache server

and further SSH to the Raspberry Pi at the given port to access the terminal of

Raspberry Pi.

5.3.2 Managing contents

When the content needs to be changed, the Php client sends data to server

with the „type‟ attribute set to „Push‟. The „Screens‟ is set to JSON data with the

„Add‟ and „Remove‟ attributes with values set to list of screenId. The „data‟

attribute is set to the url of the content. The server decodes the received data

and sends the data to the corresponding frontend JavaScript client by resolving

the connection with the list of screenIds set on the received data. If the screenId

is the value inside the „Add‟ attribute, the „type‟ attribute is set to „Add‟, else if

the screenId id is thevalue inside the „Remove‟ attribute, the type is set to

„Remove‟. The „data‟ attribute is set as it is without any changes in both cases.

Based on the „type‟ attribute of the received data, the frontend JavaScript client

adds or removes the content from the display. The flowchart for the content

management is given in Figure 24. Figure 25 shows the excerpt of the code

from WebSocket server, responsible for content management.

Figure 24. Flowchart for managing content

Figure 25. Excerpt from SocketController.Php

5.4 Backend development

The backend of the digital signage system comprises of the interrelated

systems for management of the displays, subscribers and contents.

5.4.1 Display management

For the ease of management of displays in different vehicles, each vehicle is

registered on the system based on the routes they operate. Each display is

assigned to a route and content can be added or modified to all the displays

belonging to that route with a single action. The information about the route can

be viewed and managed from the dashboard. The dashboard for the

management of route is displayed in Figure 26.

Figure 26. Dashboard for route management

Apart from the route, each display can also be managed through the display
dashboard as shown in Figure 27. If the display is connected to the server, the
real-time information of the Raspberry Pi is fetched when the display dashboard
is loaded. The Raspberry Pi can be shut down, restart or enabled to accept the
SSH connection with control buttons built into the dashboard. The content being
displayed on the display can also be modified from the same interface.

Figure 27. Dashboard for managing individual display

5.4.2 Subscriber management

The content providers for the digital signage system have to subscribe to the

system based on number of displays and content. The information about each

subscriber can be managed through the subscriber dashboard as shown in

Figure 28. The subscription data is used by other modules to restrict or allow

subscribers access to add contents on displays.

Figure 28. Dashboard for managing subscriber

5.5 Frontend development

The front end of the digital signage system is responsible for presentation of the

subscriber‟s uploaded contents on the display. The uploaded contents are

displayed in loop. The web browser on the Raspberry Pi is pointed to the url of

the front end. The JavaScript WebSocket client is implemented in frontend in

order to enable the remote management of the contents. Apart from the

contents uploaded by the subscribers, the frontend also displays the news and

weather information on real time.

The news service is loaded on the bottom of the display and is updated every

15 minutes via an ajax call. This is implemented using the RSS service from the

news provider. The weather service is loaded on the left of the display. The data

required for the weather service is fetched using the API provided by

openweathermap.org. The weather data is updated automatically at one-hour

interval. The screen-shot of the frontend service is given in figure 29.

Figure 29. Screen-shot of the frontend.

6 SECURITY

6.1 Communication security

It is crucial for the digital signage system that the communication between client

and server is secure and reliable. HTTPS is implemented on the system so that

the communication between frontend, backend and server is always encrypted.

The WebSocket communication is secured by using wss:// prefix on the URL

referring to WebSocket server. The use of wss:// ensures that the

communication between client and server is encrypted.

The Apache server listens to port 443 while using the HTTPS connection.

Connection attempts to any other port will be automatically rejected while using

HTTPS. The WebSocket will be running on the different port than 443, so

Apache is configured to allow WebSocket to connect to another port over the

same HTTPS connection after connection upgrade. The Stunnel library is used

to configure the Apache server for secure WebSocket communication. The

stunnel is a program that is designed to work as an SSL encryption wrapper

between remote client and local or remote server. Stunnel uses the OpenSSL

library for cryptography, so it supports the cryptographic algorithms that are

compiled into the library (Stunnel.org, 2014). Stunnel can be installed by using

the command “apt-get install stunnel4 -y”. Stunnel configures itself using the file

named stunnel.conf, which is by default located on “etc/stunnel” directory. The

configuration for stunnel is given in Figure 30.

Figure 30. . Excerpt from stunnel.conf file

As shown in Figure 30, the cert parameter is the path to the SSL certificate file

and the key parameter is the path to the SSL private key file. The accept

parameter is the port to which the WebSocket clients should connect to. The

connection is then forwarded to the port specified on the connect parameter.

6.2 Authentication

Any client trying to access the system or WebSocket server is authenticated

before giving access to the system. Different authentication algorithms are

implemented for different types of clients.

6.2.1 Administrator authentication

The administrator is responsible for managing the content and displays on the

system. When the administrator account is activated, the administrator can

choose a unique username and password. The username and password could

be used to authenticate the administrator. If the authentication of the

administrator succeeds, the session id of the session is stored in the database.

The session id is used for the JavaScript WebSocket client authentication.

6.2.2 Raspberry Pi client authentication (WebSocket)

The serial number and mac-address of the Raspberry Pi is added to the

database along with the corresponding screenId while the displays are

registered on the system. The Raspberry Pi client is configured to add the serial

number and mac address of the Raspberry Pi on HTTP upgrade header while

the connection is initiated. The serial number of Raspberry Pi is unique to each

Raspberry Pi. Additionally, the url pointing to the frontend of the system should

also contain the mac-address and serial number of Raspberry Pi. The

WebSocket server checks if the serial number and mac-address pair data exist

on the record in MySQL database. If the record with the serial number and mac-

address pair data exists on the database, the Raspberry Pi client is given

access to the system else the connection is dropped. This ensures only the

display registered on the system can connect to the server.

6.2.3 JavaScript client authentication (WebSocket)

When the Javascript client sends the connection request, by default, the cookie

information of the session is also transmitted. The cookie information consists of

the session id that was stored in database while the administrator logged in.

When the WebSocket server receives the request, it checks if the transmitted

session id on the cookie exists on the record in MySQL database. If the record

with the session id exists in the database, the JavaScript client is given access

to the WebSocket server else, the connection is terminated. The flowchart for

authentication is given in Figure 31.

Figure 31. Flowchart for user authentication

7 CHALLENGES

7.1 Data corruption

Raspberry Pi uses an SD card as a storage device. If the raspberry is

unplugged from the power source without a proper shutdown procedure or if the

SD card is removed from the Raspberry Pi while the Raspberry Pi is still

running, it is very likely that the data on the SD-card will be corrupted. The SD

card is prone to data corruption if not removed safely from the system. The

Raspberry Pi will be unable boot from the corrupted SD card. In order to reduce

the chances of data corruption, Raspberry Pi should always be connected to the

reliable power source with the backup source in case of power failure.

7.2 Physical security

As the digital signage system is designed to be implemented on remote

locations, there lies the risk of vandalism, theft, and other physical security risk

to Raspberry Pi and the display. The system should be installed on the places

where the constant supervision is possible or should be enclosed inside the

secured protective case to prevent the physical damage or theft of the system

and components.

7.3 Reliability of internet connection

As the system retrieves all the contents from the central server via internet, the

reliability of the internet service is extremely crucial for the operation of the

system. While using the 3G service for internet connectivity, there is always a

risk of losing the internet connectivity depending upon the location of the device

on the 3G service coverage area and the quality of the service provided. The

system cannot download the contents and the remote access of the system is

not possible if there is a drop in the 3G connection.

8 CONCLUSION

The aim of this thesis was to design and implement a digital signage system

that is remotely accessible and manageable. WebSocket technology with

Python, Php and JavaScript has been implemented together on Raspberry Pi

and webserver to achieve the desired result. The content management system

of the digital signage is designed with focus on managing the content

distribution on the public transport industry. Each display system can be

remotely managed and controlled via web interface. The approach of

controlling the display system via a web interface over the internet could be

useful for implementation of other similar applications that require remote

access and monitoring.

REFERENCES

Anon, (2014). [online] Available at: http://www.wirespring.com/pdf/intro_to_digital_signage.pdf
[Accessed 6 Nov. 2014].

Atwell, C. (2014). News: Raspberry Pi vs. The World: compare and compare and contrast the
competition | element14. [online] Element14.com. Available at:
http://www.element14.com/community/community/news/blog/2013/07/26/raspberry-pi-vs-the-
world-compare-and-contrast-the-competition [Accessed 7 Nov. 2014].

Boden, C. (2014). Ratchet - What is a WebSocket?. [online] Socketo.me. Available at:
http://socketo.me/docs/ [Accessed 21 Nov. 2014].

BusinessDictionary.com, (2014). What is digital signage? definition and meaning. [online]
Available at: http://www.businessdictionary.com/definition/digital-signage.html [Accessed 17
Nov. 2014].

Chamith, B. (2012). SSH Tunneling Explained. [online] Source Open. Available at:
http://chamibuddhika.wordpress.com/2012/03/21/SSH-tunnelling-explained/ [Accessed 7 Oct.
2014].

Db-engines.com, (2014). DB-Engines Ranking - popularity ranking of database management
systems. [online] Available at: http://db-engines.com/en/ranking [Accessed 17 Nov. 2014].

Hoeven, R. (2014). Raspberry Pi performance. [online] Freedomboxblog.nl. Available at:
http://freedomboxblog.nl/raspberry-pi-performance [Accessed 17 Nov. 2014].

Httpd.apache.org, (2014). Apache HTTP Server Version 2.2Documentation - Apache HTTP
Server Version 2.2. [online] Available at: http://httpd.apache.org/docs/2.2/ [Accessed 25 Oct.
2014].

Kb.iu.edu, (2014). In Unix, what is a daemon?. [online] Available at: https://kb.iu.edu/d/aiau
[Accessed 17 Nov. 2014].

Mysql.com, (2014). MySQL :: The world's most popular open source database. [online]
Available at: http://www.mysql.com/ [Accessed 17 Nov. 2014].

Php.net, (2014). PHP: What is PHP? - Manual. [online] Available at:
http://Php.net/manual/en/intro-whatis.Php [Accessed 17 Nov. 2014].

Pypi.Python.org, (2014). WebSocket-client 0.21.0 : Python Package Index. [online] Available at:
https://pypi.Python.org/pypi/WebSocket-client/ [Accessed 28 Aug. 2014].

Python.org, (2014). Welcome to Python.org. [online] Available at: https://www.Python.org/
[Accessed 16 Nov. 2014].

Raspberry Pi Model B revision 2.0 Board - 512MB RAM. (2014). [image] Available at:
http://www.arduiner.com/en/home/2333-raspberry-pi-model-b-revision-20-board-512mb-
ram.html [Accessed 7 Nov. 2014].

Raspberrypi.org, (2014). What is a Raspberry Pi? | Raspberry Pi. [online] Available at:
http://www.raspberrypi.org/help/what-is-a-raspberry-pi/ [Accessed 17 Nov. 2014].

Raspbian.org, (2014). FrontPage - Raspbian. [online] Available at: http://www.Raspbian.org/
[Accessed 7 Nov. 2014].

Rouse, M. (2014). What is Digital Signage (dynamic signage)? - Definition from WhatIs.com.
[online] whatis.techtarget.com. Available at: http://searchcrm.techtarget.com/definition/digital-
signage [Accessed 6 Nov. 2014].

Siever, E. (2014). What Is the X Window System - O'Reilly Media. [online] Linuxdevcenter.com.
Available at: http://www.linuxdevcenter.com/pub/a/linux/2005/08/25/whatisXwindow.html
[Accessed 8 Nov. 2014].

Stunnel.org, (2014). stunnel: Home. [online] Available at: https://www.stunnel.org/index.html
[Accessed 11 Nov. 2014].

Verry, T. (2014). What is the Raspberry Pi? | ExtremeTech. [online] ExtremeTech. Available at:
http://www.extremetech.com/computing/124317-what-is-raspberry-pi-2 [Accessed 20 Oct.
2014].

W3.org, (2014). The WebSocket API. [online] Available at: http://www.w3.org/TR/websockets/
[Accessed 24 Oct. 2014].

WebSocket.org, (2014). WebSocket.org | About WebSocket. [online] Available at:
https://www.WebSocket.org/aboutWebSocket.html [Accessed 12 Nov. 2014].

Wiki.archlinux.org, (2014). Secure Shell - ArchWiki. [online] Available at:
https://wiki.archlinux.org/index.Php/Secure_Shell [Accessed 19 Nov. 2014].

Wikipedia, (2014). Apache HTTP Server. [online] Available at:
http://en.wikipedia.org/wiki/Apache_HTTP_Server [Accessed 21 Nov. 2014].

Yiiframework.com, (2014). Yii PHP Framework: Best for Web 2.0 Development. [online]
Available at: http://www.Yiiframework.com/ [Accessed 10 Nov. 2014].

