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Opinnäytetyö käsittelee peliympäristöjen toteutukseen liittyviä työskentelymenetelmiä, miten te-

hokkaita ne ovat ja ovatko aikaansaadut tuotokset tarpeeksi optimaalisia pelin, pelialustan ja mui-

den huomionarvoisten osien kannalta. Lisäksi työ käsittelee peligrafiikan perusteita ja kenttäsuun-

nittelua, syventyen niihin kumpaakin sekä yleisellä että tekniikan tasolla.  

Pääsääntöisesti kappaleissa olevat esimerkit on havainnollistettu joko Autodesk Maya -mallinnus-

ohjelmalla, Photoshopilla tai Unreal Engine 4 -pelimoottorilla. Opinnäytetyö painottuu kuitenkin 

yleisiin käsitteisiin, joita voidaan tavata eri nimikkeillä useissa samantapaisissa ohjelmistoissa. 

Peliympäristöjen kehittämisessä, sekä 2D ja 3D grafiikassa, on omat haasteensa. 2D -peliympä-

ristöt näyttävät litteiltä ja elottomilta, kun taas 3D peliympäristöt tarvitsevat enemmän optimointia 

suurien tiedostomäärien lataamisen ja prosessoimisen vuoksi. 

  



 

ABSTRACT 
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Title of the Publication: Game Environment Creation: Efficient and Optimized Working Methods 
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Keywords: game, graphics, 3D, environment, 2D, background, level, design, optimal 

This thesis deals with the working methods related to the creation of the game environments, how 

effective they are and whether or not the created assets are optimal enough for the game, the 

gaming platform or other aspects that seek attention. Additionally this work presents the basics of 

game graphics as well as level design, while focusing on them both at the general and technical 

level. 

The examples in the paragraphs are generally presented with either modelling software Autodesk 

Maya, Photoshop or the game engine Unreal Engine 4. However, this thesis focuses on general 

concepts and information, which can be found as different terms in similar software. 

The development of game environments, both in 2D and 3D graphics, has its own challenges. 2D 

game environments tend to easily look flat and lifeless, while 3D game environments require more 

optimization because of the downloading and processing of the large amounts of assets. 
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LIST OF SYMBOLS 

Albedo    Other name for diffuse or base colour. 

Ambient occlusion Value of non-directional light accessibility for 

surfaces, which darkens the enclosed areas of 

an object with no clear shadows. 

Foreshortening The illusion of an object appearing shorter when 

it is angled towards the viewer. 

Negative space The visible space of a silhouette filled with other 

than the object itself. 

Node system A system that uses individual units of scripts, 

math and other inputs to create visual algo-

rithms. 

Physically based rendering (PBR). Technology that tries to mimic the light 

and surface properties as presented in real life. 

Placeholder graphics Graphics composed of usually rough looking 

assets that will be replaced with more polished 

assets. 

Procedural generation A technique that uses algorithms instead of 

manual work to create new data, assets, etc. 

Extremely useful for generating enormous 

amounts of randomized content. 

Rendering Creation of an image or frame to the screen. 

Texel   A texture region of a 3D object. 

Texel resolution   The size of texture pixels in the 3D world. 

Triple A title A term for successful games that have high 

commercial and development budgets as well 

as rating.
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1  INTRODUCTION 

Psychologists call the lasting effects of first impression as the “halo effect”, which 

is determined by the brain’s fast judgement of the milliseconds of visible infor-

mation (Hopkin, 2006). First experiences that a player will get from a game will be 

from its art, regardless of whether it is from a video, screenshot or the game itself. 

With every next game published, players are demanding more content and better 

looking graphics than the previous games had, which causes a lot of pressure to 

the game developers. And because of the demand, the game environments are 

becoming one of the most expensive entities when making game graphics. 

This thesis focuses on the aspects of level and asset design, asset production, 

optimization and overall construction of both the 2D and 3D game environments. 

It is aimed to be a collection of essential information about the general game en-

vironment development, ranging in details from small independent game studios 

to big, self-publishers of triple A titles. However, software and tools generally have 

the same principles between each other, so there is only a tiny amount of infor-

mation how to use which software. Additionally, some terms under the basics of 

3D or 2D graphics can usually be applied to each other. 
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2  GAME ENVIRONMENTS 

Game developers try to seek the all main elements of the real life that contain 

beautiful and interesting details, and compress them to the much smaller worlds 

of games. And by correctly exaggerating these elements of interest the entertain-

ment value can increase tremendously. A developer wants the player to experi-

ence something new every time he is going to a new area. (FZDSCHOOL, 2011, 

2012) 

2.1  Different environments 

There are basically two types of player exploration in games: linear and non-linear. 

Non-linear environments give the player more freedom to choose where to go, 

whereas linear environments can be simply explained as a straight path from point 

A to point B, sometimes giving players a choice to select a path. Both of them have 

their benefits and disadvantages. Linear environments are easier to combine with 

a narrative and minimize the problems of navigation, from which the player can 

get easily frustrated. However, linearity does not offer much re-playability. Non-

linear games have problems with storytelling, but offer a lot of different activities. 

(Williams, 2014) 

Sandbox games are not the same as open world games. They are about the player 

creating his own experience in the game world, like finding a new way to play it. 

There are basically two types of open world environments, which have been seen 

in games through history. First are the seamless worlds or areas which smoothly 

transition to each other with no clearly seen theme, onto which some smaller parts 

like cities, dungeons, buildings, etc. are then scattered (See figure 1). This can be 

done fairly easily and fast when designers do not have to communicate about 

every single decision they might make. They are basically making the same area, 

so it is easier to check each other’s work. (Extra Credits, 2015c) 
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Figure 1. Seamless worlds. 

The second type of open world environment is the world made of different play-

grounds that have borders with each other and might have a theme like an icy 

tundra or a hot, lava spewing volcano (See figure 2)(Edge Staff, 2015). This is 

great for story-telling and player experience. The problem with the playgrounds, 

shortly modules, is that they are more specific than one huge world, and require 

more attention and communication in the design apartment. This is because not 

everyone can make the same quality work, or to make an area or a zone complete 

in a time limit which is acceptable for the rest of the team. Also the feeling of having 

completely differently themed zones does not usually feel natural. (Extra Credits, 

2015c) For example typical MMO roleplaying games have several different areas 

with different scenarios like the desert, swamp, mountains, etc. which the players 

can explore. (FZDSCHOOL, 2012) 
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Figure 2. World made of modules. 

2.2  What affects the environments? 

There are several limits that game developers come across when making environ-

ments for games, be it because of performance or gameplay. (Cheng, 2014a) The 

balance between the quality graphics and the time required to make them is the 

key to recreating a believable world. (Maxinow, 2009) Generally a larger environ-

ment such as open landscape is harder to make because of their huge field of view 

and requirement of skillful level designers and artists. Even though small environ-

ments are easier to control and they are not so memory and performance restric-

tive, they can too become a huge task if the amount of desired visuals is large. 

(Burkart, 2015) 

2.2.1  Desired frame rate 

Frame rate means how quickly images are rendered on screen, and higher the 

frame rate, the smoother and crispier the movement or the illusion of it. How many 

times a second the computer updates the game’s image on screen is usually set 
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to 30 frames per second, shortly FPS, or 60 FPS, which purely depends on the 

game the developer wants to make. Frame rate under 30 FPS feels bad to control 

and can put off the player’s experience of the game. However, the 60 FPS can too 

seem odd at games which has a lot of movement. This is because of the 24 FPS 

frame rate which has been used in the film industry for a long time. Shooting a film 

in 24 FPS creates a lot of different artefacts in the illusion of movement like motion 

blur. The audience, players and movie watchers alike, have already accustomed 

to this so much, that the game developers try to add these artefacts to their games 

manually, even though the frame rate is at 60 FPS. (Extra Credits, 2015a) 

When the game seems laggy, meaning the screen is stuttering on certain frames, 

it means that the computer is having a hard time processing all the data and ren-

dering it on the screen. This can be caused by multiple factors, and the solution to 

fix those without reducing the frame rate is usually making the graphics, lighting 

etc. less complex. This is not always the best solution as better graphics can get 

better results in sales than better frame rates. (Extra Credits, 2015a) 

2.2.2  Platform 

The choice of the platform defines how much detail the developer can put to his 

game. Each of the platforms have their own limitations and capabilities over the 

other, like mobile phones’ ability to go anywhere with the player due to their small 

size. In a matter of hardware which the console, PC or a mobile phone has, con-

soles are relatively easy to handle because of the same minimum technology what 

they have in every console. PCs can be huge powerhouses or small laptops, which 

do not have the same internal memory capacity, graphics cards and so on. But 

PCs are still pretty standardized as there are only a handful of hardware manufac-

turers and suppliers, at least when compared to mobile phones. But with each new 

generation of hardware, there will be less limits than before (See figure 3). (Lecky-

Thompson, 2008, pp.79-86) 
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Figure 3. Comparison of Playstation and Playstation 3 models. Adapted by author 

from (Masters, 2014). 

2.2.3  Genre and camera view 

Choosing a certain game genre will dictate the platform choice to a certain point, 

just like the platform choice dictates the game’s graphics. (Lecky-Thompson, 

2008, pp. 77-78) And choosing a certain camera view can define a certain genre, 

because of the earlier games that have already used the same view. For example 

horror games have been historically divided into two sections: puzzle games and 

action oriented games, which both of them need the most out of the horror atmos-

phere. (Reed, 2015) There are several camera types regardless of how many di-

mensions the game has: Side-view, top-down view, third-person view, first-person 

view and everything between like pre-set locations for the camera, which could 

over-the-shoulder aiming, lock-on targeting, etc. Shifting from one camera angle 

to another can affect the immersion of the game greatly. For example Batman: 

Arkham Asylum uses this in cases where the player goes in to an air duct and 

changes the camera view from third person to first person to give that claustro-

phobic feeling. (Anhut, 2011) 
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In 2D games like side-scrollers, it is easy to see the environment and the relevant 

information for the player to progress, because the player can see the levels only 

from one direction. However, because of this the two dimensional games are gen-

erally more reliable to control, and cause less frustration and confusion (Totilo, 

2010). 2D-games unfortunately fail at providing long distance information, at least 

when the camera view is from the side. (Anhut, 2011) This is not always the case 

for 3D-games where the camera is floating around the player and usually, but not 

always, could be controlled so that the player can adjust the view to his liking. 

(Gamesradar_US, 2010)  

Having the view from a certain view also defines some aspects of the production 

of the environment. For example when making a 3D side-scroller game, there is 

no need to have back-facing polygons in the 3D-objects. (Malmqvist, 2001) In 3D 

multiplayer games the constraints of making an immersive environment increases 

greatly. This is because if the polygonal budget in a game is for example one mil-

lion polygons in view at a time, and one player character is about 50 000 polygons, 

there will not be much polygons left for the environment if the maximum player 

count is designed at ten. (Masters, 2014d) 

The player needs to be able to measure the distances in the environment and the 

hazards there might be so that he could navigate through them easily. (Anhut, 

2011) But generally speaking, the closer the camera is to the surface of the envi-

ronment, more there should be details. And in cases where the player can look at 

objects like in first-person, the objects should be polished so that the immersion of 

the game is more accurate. (HD Admin, 2012) 

With the recent growth of interest in virtual reality and especially Oculus Rift, the 

needed amount of polish to the game environments can, and will increase into 

enormous amounts. Virtual reality means that a virtual world is filling the player’s 

vision, which can give a better immersion of the world, at least when compared to 

a limited, ordinary monitor screen that takes only a portion of the total field of vi-

sion. Because of this, the players have a greater view of the environment, and can 

easily get closer to objects and structural elements. (Oculus VR, 2015) 
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3  BASICS OF 2D GAME GRAPHICS 

Two dimensional presentation of the game can solve issues both in the gameplay 

aspect as well as in the budget, but only if it is decided early. 2D game develop-

ment generally requires a smaller skillset than 3D game development, and thus is 

widely used in the independent game studios that do not have large teams. Artists 

have a lot of control over the graphics in 2D games, as environments are more 

predictable because of the fact that they convey information more easily than 3D 

environments. As an example, the stealth game Mark of the Ninja’s environments 

convey information excellently in regards to its two dimensional gameplay (See 

figure 4) (Extra Credits, 2014). Graphics of certain styles, such as pixel, vector or 

anything else the development team desires, are also easier to develop for 2D 

games because of the locked camera placement. (Ohlew, 2014) However, it does 

not mean that simple, clean graphics would not be less attractive than fully detailed 

drawings. (Lovato, 2015) 

 

Figure 4.  Mark of The Ninja screenshot. (Kei Entertainment, 2015) 



9 

3.1  2D-graphics 

Monitors are composed of pixels, small square shaped dots that contain colour 

information. (Curtin, 2011) There are basically two ways to create digital images, 

either by using raster or vector graphics. Raster graphics, for example photo-

graphs, are based on pixel grids, and offer a lot more editability in details. Vector 

graphics are based on mathematical shapes, curves and lines that define areas 

for colour to come in, which offers infinite scalability without losing any details (See 

figure 5). (PsPrint, n.d.) 

 

Figure 5. Comparison of identical balls both in raster and vector graphics, which 

are then scaled six times bigger. 

Unfortunately, both the vector and raster graphics have their downsides. Vector 

graphics do not display small, natural nuances without requiring extreme detailing, 

and are generally used with printable media like logos. (PsPrint, n.d.) The raster 

graphics create generally larger files and tend to get blurry when re-sized, because 

the computer tries to guess the missing pixels. (PhotoBiz, 2013) 

Still, most of the 2D games use raster graphics, in short bitmap images. This is 

because vector graphics need to be processed in real-time, which can get really 

heavy for the processor when there are several shapes and lines to calculate. 
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Bitmap images are processed ahead of time, thus they are faster to render on 

screen. (GameBuilder Inc, 2013) Vector graphics can also be seen as a style def-

inition with its crisp and clean look (Li, 2015). And to create that look, graphics 

software like Adobe Illustrator and Photoshop allows the rasterization of a vector 

file, meaning that the created file is in form of bitmap. (PhotoBiz, 2013) 

Regular 2D games use the technology of texture atlases called spritesheets, which 

are a collection of several individual images, sprites, in one file. By duplicating 

these repeatable sprites of all sizes, the environment can be created fast, easy, 

and require less memory space than for example a fully painted environment 

would require (See figure 6). (Joel Burgess & Purkeypile, 2013) Individual sprites 

are also easier to edit and manipulate in the game engine, which means for exam-

ple bending or rotating a sprite of leaves to create interesting animations. (Lam-

bert, 2013) 

 

Figure 6. A regular usage of a spritesheet of different assets. 

But why not use separated images in place of spritesheets? This is because the 

amount of individual images can grow easily from tens to hundreds, and rendering 

them individually eats up a lot of processing power. It is generally faster to display 

sprites from a single file. (Lambert, 2013) 
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3.2  Perspective 

Actual cameras and eye rely on the perspective projection, which has a focal point 

and the objects in the scene recede to that point in the distance. This is not a 

problem with general 3D games, but with 2D games, which require shifting the 

camera, it presents certain problems. Perspective in 2D games is about making 

an illusion of depth, because the player is usually locked to 2 dimensions and the 

background is rarely done as an actual, realistic projection of three dimensions. 

(Koncewicz, 2009) For example traditional 2D side-scrollers are depended on the 

differences between background and foreground. (Lux, 2012) 

3.2.1  Linear perspective and single screen games 

Linear perspective can be seen as the real-life presentation of the view, in which 

it relies upon the horizon line, in short the viewer’s eye level, and the objects in the 

view converge along the z-axis to a single vanishing point on the horizon line. This 

can also be called as a one-point perspective. Placing that one vanishing point in 

the dead centre of the view causes the environment’s walls, roof and floor to be 

visible, like it is seen as a room (See figure 7). This creates the illusion of expan-

siveness, and can be used to creating single screen games. (Lux, 2012) 

 

Figure 7. Linear perspective used for a room. 
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However, linear perspective is only useful for single screen games. This is be-

cause in reality, when the viewer changes place, so does the vanishing point of 

the view and thus the appearance of the objects. Because of this, the problem of 

making every possible appearance of an object in 2D games as an individual im-

age is almost impossible. Single screen games’ view shows only a segment of the 

entire space, and thus the objects in the view can made only once. The transition 

between the different segments is usually made with loading screens so that the 

change between different segments perspective would not be so obvious. (Lux, 

2012) However, breaking the flow of the game by a loading screen can create a 

break in immersion, so it should be thought carefully. (Courrèges, 2015) 

3.2.2  Axonometric projection 

Axonometric projection is a technique for creating all three dimensional 2D im-

ages, meaning that it tries to show all the sides of an object. This can seem unnat-

ural, as the eye does not function like that, and it can also present issues like 

elevation blending together unrealistically. There are several types of axonometric 

projections, which rotate an object’s axes differently, and can be differentiated 

from values of the angles between axes and their symmetry. (Koncewicz, 2009) 

One of the axonometric projection’s good perks is the non-existent vanishing point 

(Lux, 2012). 

Isometric projection 

In isometric projection, all the angles between axis is at 120 degrees, meaning that 

the axes scale is identical and for example a cube’s surface areas have the same 

amount of used space in an image (See figure 8). This projection however is not 

useful for pixel style graphics. This is because of the 30 degree angled lines that 

are drawn for isometric projection. A line of 30 degrees has a width and height 

ratio of 2:1, but using this calculation to draw a pixel line does not result in a 30 

degree angle. To overcome this result, pixel style graphics can use dimetric pro-

jection. (Koncewicz, 2009) For example Supergiant Game’s role-playing game 

Bastion is in isometric view (See figure 9). 
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Figure 8. Isometric projection. 

 

Figure 9. Screenshot of Bastion. (Supergiant Games, n.d.) 
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Dimetric projection 

In dimetric projection, only two of the axes’ angles are identical, meaning that this 

projection can be done in multiple ways, because the values of the angles do not 

really matter. However, one of the most useful perks in this projection is the ability 

to make 2:1 height and width ratio, which is needed for the pixel style graphics, 

and the angle used for this is 26,6 degrees from the horizontal plane (See figure 

10). (Koncewicz, 2009) 

 

Figure 10. Dimetric projection and dimetric projection with 2:1 ratio. 

Trimetric projection 

Trimetric projection retains some symmetry in an object’s surfaces, even though 

all the three axes are completely differently angled, resulting different foreshorten-

ing of the axes (See figure 11). Even though its roots are in the isometric and 

dimetric projections, it offers quite a different look. As an example, a city building 

game SimCity 4 uses trimetric projection (See figure 12). (Koncewicz, 2009) 
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Figure 11. Trimetric projection. 

 

Figure 12. SimCity 4 Deluxe screenshot. (Electronic Arts Inc. 2011) 
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Oblique projection 

In oblique projection, the surface area to which the camera is mainly projected 

creates an image to the screen of that surface with 90 degrees corners (See figure 

14). This however creates awkward looking scale and angle proportions, and the 

object usually seems distorted, for example a sphere will look oval. Because of 

this, the oblique projection is not generally used for games. (Koncewicz, 2009) 

 

Figure 13. Oblique projection. 

Cabinet projection is a more used sub-type of oblique projection that uses a fairly 

easy ruleset. One side of a cube is drawn as it would be seen straight from the 

front, and the other sides are extended from it, usually at an angle of 45 degrees 

(See figure 15). For a better sense of depth, the length of the other sides are also 

decreased to half. (Koncewicz, 2009) 

 

Figure 14. Cabinet projection. 
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3.2.3  Orthographic projection 

In orthographic projection, the camera can be locked to three views: side view, 

top-down view and third person view that can also be called as a bird’s eye view, 

and it does not have a vanishing point. For platforming side-scrolling games like 

Super Mario Bros, the orthographic projection is widely used because of their cer-

tain set of rules that are easy to follow. However, due to visual reasons, most of 

the 2D games do not display the orthographic projection correctly. This is because 

in orthographic projection all the axes have a consistent relationship between each 

other, so no receding of objects happen because there is not basically any horizon 

line where to recede (See figure 13). In practise, for example in Super Mario Bros, 

this would be seen as extremely large clouds in the view because there is basically 

no distance between foreground and background. Also the axes are foreshortened 

equally, meaning that in top-down view pyramid-shapes can look a little awkward. 

So to add more depth, the objects are scaled smaller as their imagined distance 

increases. (Koncewicz, 2009) 

 

Figure 15. Orthographic projection with identical boxes. (Author’s note: numbers 

do not identify the orientation of the boxes, just their placement.) 
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3.2.4  2.5D: The experience of two dimensionality 

The term of 2.5D is usually associated with games, which have 3D graphics, but 

the gameplay itself is restricted to two dimensions or otherwise fixed-perspective 

view (See figure 16). By limiting the player’s field of view and play area, the de-

signers have a greater set of controls when creating visually good looking environ-

ments. 2.5D also reduces the needed amount of processing power when com-

pared to regular 3D games that have a free view. (Galamoth, 2015) 

 

Figure 16. 2.5D in Trine 2 screenshot. (Frozenbyte Inc. 2011) 

3.3  Creating the illusion of depth 

In 2D games, it is important to have contrast between the foreground and back-

ground to give a better illusion of depth. In order to compensate the limits of two 

dimensional assets and locked camera, there are more tricks for creating depth 

than just varying the size and placement of the assets related to the distance of 

the player’s character. (Lux, 2012) Some of the most general techniques are used 

on the layers of the foreground and background, such as overlapping and parallax 

scrolling. Parallax scrolling illustrates depth nicely in 2D-games with different 

speeds of motion between the layers of foreground and background. (Gamesra-
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dar_US, 2010) In practise, the foreground scrolls faster than the background, cre-

ating different levels of focus. (Forman, 2001) Overlapping basically means that 

the graphical elements, such as sprites, are overlapped on top of each other, cre-

ating an illusion that the overlapping part is closer to the viewer (See figure 17). 

(Lovato, 2015) 

 

Figure 17. A simple example of overlapping elements. 

3.3.1  Focus and detail 

Details are affected by an object’s importance to the gameplay, which means that 

the non-interactive background is the last in line to get the details (Lux, 2014c). An 

object’s details can also be seen as a noise that draws the viewer’s eye to it. When 

the whole 2D background has an equal amount of details everywhere in the view, 

it will be hard to read, which means focusing on the elements that matter the most 

gets harder. (Hawkins, 2014, p.50) By removing unnecessary details, and focusing 

on the biggest factors such as composition, silhouette, etc. the background is eas-

ier to read and does not distract the viewer anymore. (Masters, 2014j) 

The viewer is only able to focus his eye on one object or an element at a time, 

meaning that the surrounding objects get blurred. The capabilities of viewer’s eyes 

are also limited at perceiving details that are further in the distance. Great amount 

of light and shadow also decreases the visibility of details of an object. By replicat-

ing these natural effects of the eye, the 2D backgrounds can easily get more depth. 

The visual phenomena of focus can also be applied to 2D graphics that has out-

lines. When an object is further away in the distance, the width of the outlines also 

gets smaller. Also the object’s importance to the gameplay can be signified by a 

thicker outline (See figure 18).  (Lux, 2014c) 
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Figure 18. Differences in line width. 

3.3.2  Atmospheric perspective 

Objects in the distance are hazy in details and shifted in colour not only by the 

limitations of the eye, but also because the air and colour of the sky affects them. 

(Jansson, 2012) The air surrounding the objects is filled with small particles such 

as dust, water, smoke, pollution, etc. which affects the light’s scattering in the air 

(Riverman Media, n.d.). The more distance there is between the viewer and the 

object, more there are particles obscuring the light’s path and affecting the view. 

In the figure 19, the background seems really blue in contrast to foreground’s more 

vibrant colour. (Lovato, 2015) 
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Figure 19. Atmospheric perspective. 

3.3.3  Colour theory and contrast 

Traditional colour theory focuses on the colour wheel and the colour relationships 

to one another. Both of them are useful when choosing the colour composition, 

but also the colour proportions and distributions are as important when making 2D 

backgrounds or 3D environments (See figure 20). (Lux, 2014a) The use of limited 

colour palettes that have a small set of strong saturated colours and a larger set 

of weaker colours, will make unified, harmonious looking environments. Wide 

range of different colours tends to only confuse the viewer, taking away the im-

mersion of space. (Gurney, 2010, pp.104-105) 
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Figure 20. Comparison of two sets of colour palettes: Upper screenshot is from 

Dark Souls 2 role-playing game, and the bottom one is from Castle Crashers side-

scrolling game. The colour palettes were calculated with Joost van Dongen’s Col-

our Wheel Visualizer. (Dark Souls 2 by From Software, 2015; Castle Crashers by 

Behemoth, 2003; Colour Wheel Visualizer by Van Dongen, 2015) 

Understanding the colour theory well is extremely important when making 2D 

backgrounds, because the properties of colour: hue, saturation and value affect 

each other in very different ways. There should also be a large contrast in colour 

properties between the player’s character and the environment, so that the char-

acter would stand out. To test the contrast, it usually means placing the character 

in different environments that have varied lighting and colour. (Lux, 2014a, 2014c) 

Value, how bright or dark an element is, can be seen as the most important of the 

colour properties, because it affects the perceived depth the most with lighting. A 

good example of a 2D game which used only values for depth would be Limbo, 

which uses black and white values and blurring of the objects extremely well (See 

figure 21). (Lux, 2014a) 
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Figure 21. Screenshot of Limbo. (Playdead, 2014) 

Hue means an object’s differences in colours. An object’s colour can be affected 

by internal or external sources, such as blood in the cheeks making them red. Two 

differently coloured objects reflect colours to each other, such as sky reflecting 

blue on the surfaces that point up. Using only the same hue with objects makes 

them look dull (See figure 22). (Jansson, 2012) 

 

Figure 22. Comparison of the same object that have different hues: Left object 

uses only green hue, whereas the right object uses also blue and yellow with the 

original green. 

Saturation calculates how much colour an object has. For example greys are de-

saturated, meaning that there is no colour. (Jansson, 2012) Viewer’s eyes are nat-

urally drawn to bright, saturated colours, which is why the less important back-

grounds should be more desaturated, even in games that are generally colourful 

(See figure 23). (Riverman Media, n.d.) 
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Figure 23. Desaturated and extremely saturated object. 

Shadow and light affect the saturation a lot, because for example in very light or 

dark areas the colours can appear almost white or black. However, the shadows’ 

or lights’ colour should not be just added black or white, because it will make the 

object look lifeless (See figure 24). (Lux, 2014b) Thin objects that have certain 

materials, such as cloth and leaves, are subject to light penetrating them, which 

creates an effect called sub-surface scattering. The light bounces in the material, 

and exits from it, which will affect the saturation of the object making it look more 

saturated and illuminated from the exit side. (Jansson, 2012) 

 

Figure 24. Comparison of light and shadow colours. 
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4  BASICS OF 3D GAME GRAPHICS 

3D Game models vary from cinematic models both in polygon count and texture 

resolution. In cinema, rendering a single frame for a movie can take from several 

minutes to several hours because of the millions of polygons and other details. In 

games rendering needs to be done in real-time, meaning there is only a fraction 

of a second for the computer to render a single frame. (Cheng, 2014a) Because 

of this, game models and their associated textures are much smaller, so it is best 

to make and keep details where the player will notice them first. (Masters, 2014d) 

4.1  Modelling and sculpting 

Modelling is the action of creating model in a virtual three dimensional space with 

a 3D-modelling software. Models are created from polygons, multi-sided planes 

that are connected to each other to create a form. (Kennedy, 2013, p.14, p.28)   A 

simple 3D-object, for example a cube, is comprised of several planes, edges and 

vertices (See figure 25). Planes are the polygonal surfaces, edges are simply 

edges of the planes, and vertices are the ends of the edges. (Mayden, 2015) 

 

Figure 25. Properties of a 3D-cube. 

Polygons should usually be made of four sided planes, which can also be called 

as quads. This is because quads ensure clean topology with looping geometry, to 

which animation can be applied easily (See figure 26). Quad loops are also gen-

erally easier to modify when modelling and are more predictable when sculpting. 
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Triangles are the simplest polygons that can be created, but should be generally 

avoided as they create issues in for example animations and while sub-dividing 

polygons for sculpting. An artist can not avoid triangles in organic shapes, so it is 

important to hide them or put them to places where there are a minimal amount of 

deformation because of animations. (Mayden, 2015) 

 

Figure 26. A simple quad loop. 

N-gons, which are polygons with five or more sides, should be avoided at all costs. 

When importing a ready 3D-mesh in to a game engine, the engine will automati-

cally triangulate the polygons, which can cause unwanted looking shading and 

animations. This is because the n-gon has so many options for triangulation (See 

figure 27). (Mayden, 2015) 

 

Figure 27. Possible triangulations of a 5-sided n-gon. 
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A 3D-model starts usually as a primitive shape and goes through several stages 

of refinement (Solarski, 2012). There are many different modelling techniques, for 

example box modelling, image-based modelling, edge modelling (See figure 28), 

digital sculpting, etc. Even a classical art technique called silhouette paper cutting 

can be used to model an object by cutting a 3D-plane based by a good side view 

image (See figure 29). (Cheng, 2015b) Geometry’s silhouette, meaning outer 

edges of an object, should also have most of the object’s polygons, because it will 

give an impression of a highly detailed object (McGrath, 2008). 

 

Figure 28. Edge modelling: Extruding polygon’s edges in the side view (phases 2 

and 3.) to create shapes in a short period of time. 
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Figure 29. Silhouette cutting. 

The specifications of a model describe its use in the game, and allow the artist to 

better see on what details he should spend more time and what not. This way the 

artist does not waste time on modelling unwanted details. (Hawkins, 2012, p.106) 

Not every aspect of the object has to be fully detailed, because textures can do a 

lot of faking (Cheng, 2014a). Some smallest polygonal details might even cause 

visual artefacts when viewed from far (McGrath, 2008). Things that will be in the 

dark or really far away can have less geometry, and surfaces that the player will 

not see in the game at all can be deleted (See figure 30) (Masters, 2014d). 

 

Figure 30. A 3D-model of a pillar which bottom, top and back sides are supposed 

to be touching floor, roof and wall. 
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In probable need of lower resolution models, it is also best to model objects’ quad 

loops using multiples of four, because this way every second edge loop can be 

easily deleted without further thinking or reworking the model from scratch (See 

figure 31) (Kuzminova, 2009). This rule of multiples also applies to symmetrical 

and cylindrical objects that need to be easily combined together in the game editor. 

For example a seven-sided pipe will not combine seamlessly with another identical 

pipe, if the original pipe is rotated 90 degrees (See figure 32). (Perry, 2002) 
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Figure 31. Geometry with multiples of four. 

 

 

Figure 32. A seven sided cylinder and eight sided cylinder rotated 90 degrees: the 

seven sided cylinder does not snap to the bottom cylinder correctly. 

Sculpting is creating and manipulating a 3D-object the way an artist would with 

clay or other real world sculpting materials. A regular 3D-modelling software can 

support about hundreds of thousands of polygons, whereas a sculpting software 

can support millions of them. (Sam. R. Kennedy, 2013, p.29) Sculpting is espe-

cially useful for making small and organic details, because modelling them in a 

traditional way simply takes too much time (Masters, 2014b).  

Sculpting building blocks like beams, planks, tiles, etc. which have unique sides, 

will create a tool kit that can be used to assemble all kinds of structural pieces like 

walls, pillars, etc. It is pretty familiar to going to a hardware store and assembling 

the objects by hand. Creating the building blocks sides unique gives more variety 

in the final asset’s surface and saves production time. It can also create better 

results than fully sculpting the object from scratch, for example a wall that has a 

large visible surface. (Almost Human Ltd, 2014a) 
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To create a lower resolution model of the sculpted object, which could be put in to 

the game, it goes through a process called retopology. Retopology can be auto-

matic, which means a software calculates all the new polygons’ placements, but 

can present issues like bad topology and wasted polygons. It can also be manual, 

which means placing vertices on top of the sculpted model’s surface, which then 

create the new polygons. Even though manual retopology requires more time to 

do, it gives more control for the artist as he can decide how optimized the new 

model will be. (Marshall, 2014b) 

4.2  Normal direction and smooth shaded foliage 

There is a vector called normal for every vertex in the model, which can be visual-

ized as a ray that uses the same orientation as the surface of an object (See figure 

33). The normal’s direction can be manipulated in a 3D-modelling program, which 

then affects the shading, in short how the light is applied on the surface of an object 

in the game engine. (Light, 2015) 3D-modelling programs group these vertex nor-

mals under the name of hard or smooth edges and smoothing groups to separate 

polygons’ shades from each other or uniformly shade them together (See figure 

34). (Backus, 2013) 

 

Figure 33. Normals’ directions in identical 3D-objects. 
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Figure 34. Hard edge shading versus smooth edge shading. 

Trees’ leaves and other foliage are usually composed of several individual planes. 

If the planes are not greatly edited, the normals’ orientation of these planes faces 

are at the default 90 degree from the surface (See figure 35). This will make the 

whole object look unnaturally shaded, as shown in the first screenshot in the Fig-

ure 36. By editing the normals’ orientation to the object’s centre, it will create a 

better transition in the shading of the planes. The smoother transition can be 

achieved in many ways, which can differ between 3D-modelling programs. For 

trees and bushes it is best to use a sphere as a source for the normal direction, 

and for grass and shrubs a half sphere (See figure 36). Because of the source, 

normals’ directions are now pointing outward of the object. (Light, 2015) 

 

Figure 35. Not edited bush and normal manipulated bush: The left bush’s normals 

are coloured green and the right bush’s normals are coloured yellow. 
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Figure 36. Using a primitive shape as source for transitioning the source’s normal 

directions to a shrub. 
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4.3  UV-mapping 

UV-mapping, also named as unwrapping, helps the computer to understand to 

which parts of an object the texture is applied to. The idea of it is to flat out the 3D-

object’s polygons to a two dimensional surface, so that the placing or painting a 

2D texture would be easier. Each polygon of the object are represented as faces 

in a UV-map, which then can be taken as a simple screenshot, or in another name 

as a snapshot, and moved to a painting software, after which the texture is applied 

to the model to check how the texture works. (Kennedy, 2013, p.77) 

The faces which are collected together in the UV-coordinates to create a larger, 

seamless shape, have several names between different software: UV shell, island 

or cluster. Most of the 3D-softwares have an automatic solution to create UV 

shells, which is really useful to start unwrapping complex 3D-objects. However, 

manual editing is usually needed later to get the best results. (Masters, 2014m) 

However, UV-maps can not be fully seamless, and need proper adjusting for ex-

ample by moving the seams to places where the player will not see them in the 

game. (Masters, 2014d) Stretching certain parts of UVs bigger is also possible, as 

it creates a visually more detailed object. Still, it should be avoided at places which 

have text or regular forms, as they will easily look distorted. It should also be 

avoided at places that have already been resized, as the hard differences in tex-

ture resolution can look too obvious. Non-uniform stretching can also cause issues 

with rendering, so it should be planned carefully at times when it is really necessary 

(Provost, 2003a). Cylindrical texture details are generally hard to make, because 

unwrapping an object with a curvy surface is hard to unwrap to look like the origi-

nal, thus the cylindrical details can look pixelated when texture is applied to a 3D-

object. (Kuzminova, 2009) 

Saving UV space is important to make the most details visible. Texture atlases, 

where several objects’ UV shells are located, are useful at maximizing the usage 

of a UV-space (Klafke, n.d.). Even though it is possible to mirror symmetrical UV 

shells together to save UV-space, not every game engine supports correct lighting 

of mirrored UV shells. (Kuzminova, 2009) Especially in development teams that 

have several artists, the UV shells should also be grouped together in an orderly 
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manner as well as placed upright, because then the other artists can easily see 

how the UV-mapping is formed (See figure 37). It is generally a good rule to have 

as few UV shells as possible (Hawkins, 2012, p.120). 

 

Figure 37. Comparison of two different UV-maps of the same box: There is not a 

large difference how much UV surface both the boxes use, but the right box’s UV-

map can be combined with additional UV-maps of other objects. The right box also 

has less UV-seams, which is also lightweight for the processor, which is further 

discussed in chapter 6. Optimization of assets. 

If the game uses LODs, meaning level of detail assets, it probably also uses mip-

maps, which are lower resolution textures that are changed in the model when the 

distance between the player and an object increases (Provost, 2003b). However 

there is a problem with mip-mapping that can be called as the “bleeding” effect. 

When an asset’s texture is changed to lower resolution, the UV-map does not 

change and the pixels next to the UV-seams bleed to the UV shells, creating visible 

seams on the asset. This can be prevented by the use of edge padding, which 
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spreads the colours outward from the UV seams (See figure 38). (Unity Technol-

ogies, n.d.a) To spread the colours nicely, the UV shells should have at least 4 to 

10 pixels worth of space between each other and have similarly coloured UV shells 

placed together. (Kuzminova, 2009) 

 

Figure 38. A close up of a texture without and with edge padding. 

4.4  Baking 

Baking is a process of taking the details of a high resolution asset and generating 

a texture map of those details for the low resolution asset’s UV-map, so that the 

low-resolution model could appear more detailed than it really is (See figure 39) 

(Kennedy, 2013, p.29). Modelling and then sculpting a high resolution mesh is not 

always the best choice if there is a certain vertex budget for the game, but at least 

making one will ease the generation of nice looking textures and materials. 

(McGrath, 2008) 

 

Figure 39. The same object without and with a baked normal map. (Epic Games 

Inc. 2015) 
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One of the most important maps for high detailed assets are normal maps that are 

used to create an illusion of depth without increasing the processing time (Masters, 

2014m). They are usually baked, because they use a certain colour palette that is 

not easy to draw by hand (Trümpler, 2013). Normal maps are heavily used in 

physically based rendering systems, because they need a good normal map to 

simulate the lighting correctly. (Van Spronsen, 2014) 

4.5  Texturing 

Texturing is using a painting software to create a 2D picture based on the 3D-

object’s UV-map, which is then applied to the surface of a 3D-model. It can also 

mean creating more depth and details to a surface through a normal map, which 

fakes the lighting of bumps and dents on surfaces by remembering depth infor-

mation from a similar but a higher polygon model (Kennedy, 2013, p.14). 

Textures are also referred as texture maps, and can be used to tell the game en-

gine a lot more than the surface’s colour like reflectivity, roughness, transparency 

and so on. They can add a lot of detail to the surface of the model. (Kennedy, 

2013, p.61) Textures must be able to hide low resolution geometry, and if done 

right, the low polygon model can only be seen when viewing it up close. (Masters, 

2014g) 

Transparency maps, also called as opacity maps, are used to give the illusion of 

separation in leaves and other foliage, nets, fences, water, etc. and they use gray-

scale values to determine which areas are transparent and which are not. Ambient 

occlusion, or shortly put AO, map simulates details caused by a fake, indirect light-

ing. Those details are soft shadows that enhance the separation between objects 

and add an extra level of realism, because the eye can easily detect otherwise 

unnoticeable surface details. (Masters, 2014i) 

Other grayscale textures are roughness, metallic and cavity maps. Roughness de-

fines how blurry or sharp the reflection will be and metallic map also affects the 

reflections by literally controlling how “metal-like” the material of the surface is. 
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They both can also be calculated in the Unreal Engine 4 –game engine as num-

bers scaling from 1 to 0, which is especially useful for uniform objects that do not 

have complex structure or UV-maps. Cavity map can be seen as an AO map that 

has all the smallest details which the normal map might not present well enough. 

(Epic Games Inc, n.d.e) 

Bump maps and normal maps are pretty similar to each other when creating de-

tailed surfaces. Bump maps use greyscale textures to create fake depth to a sur-

face, and are generally lighter for the renderer than normal maps. Normal maps 

use certain RGB values to designate the Y, X and Z coordinates of the surface, 

and typically create more detailed surfaces than bump maps. (Masters, 2014h, 

2014m) However, a displacement map can also be used to create more surface 

detail, which affects the geometry’s placement of an object. Even though it uses a 

greyscale map to create detail, which is generally easier to make than a full RGB 

valued texture like normal map, it is still pretty heavyweight for the renderer as it 

needs additional geometry to be moved in real time. (Russel, 2014) 

Creating some simple light variance in surfaces can be done more easily than 

editing the high polygon model and then baking a new normal map from it. By 

taking a normal map of a sphere, it can be used as a colour palette to be colour 

picked and dropped (See figure 40). This is extremely useful trick to make several 

different variations of for example stone floors that have slightly tilted tiles that 

already has a normal map. The normal map works as a base for the colour drop-

ping, to which the new gradients of colours are combined by the use of area se-

lection tool and the overlay blending (See figure 41). (Hawkins, 2014, pp.63-64) 

 

Figure 40. Colour palette from a sphere’s normal map. 
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Figure 41. Using the normal map’s colour palette for tilting tiles in textures and 

comparison of regular and generated normal maps. 1: A regular normal map. 2: 

Selection of tiles. 3: Colour dropping. 4: Lowered opacity of selected areas. 
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To get the most details of an environment is to plan the texture library and the 

layers’ naming convention, as well as making the textures a bit larger than first 

intended, because it prevents recreating them when they are needed bigger than 

before. (Hawkins, 2014, p.51) For large areas like floor, walls and roof, it is im-

portant to use tiling textures to lessen the required production time and memory 

space. (Masters, 2014g) Designing and then creating a base set of textures which 

work together at the start of the game development makes sure that the environ-

ment looks good without any added details like set dressing. This also prevents 

the possibility of starting over because of a badly composed environment. (Haw-

kins, 2014, pp.50-51) 

Painting textures should be done in a manner of using the already painted materi-

als for previous assets, like wood grain, cloth, etc. by copying them and then ad-

justing them a little paint over. This saves time from the overall asset production 

and is also helpful with consistency between different assets. (Hawkins, 2012, 

p.59) Creating a realistic texture by hand can be a bit time consuming. However, 

making a diffuse map based on the baked AO map, or any other baked map, is 

great for making materials that have a lot of noise. (McGrath, 2008) The baked 

map reminds of the forms that the high resolution mesh has, so it is easier to add 

more details on top of the AO layer in the painting software. (Hawkins, 2012, p.123) 

It is worth noting of a texturing technique called diffuse painting. It was born as a 

solution to technical limitations, in which all the details such as reflections, depth, 

etc. was painted onto the diffuse map to save processing power. Usually it has 

been used as a stylistic choice of art style, because it gives more responsibility for 

the artist to make assets that need look good from all angles. Diffuse only models 

also give the opportunity to mirror and stack a lot of UV shells together, because 

the shading relies very little on the renderer (See figure 42). It is also useful for 

reusing the textures between different assets, making quick variants, editing both 

the existing assets’ model and UV-maps and also moving the texture around gen-

erally. (Hawkins, 2012, pp.118-123) 
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Figure 42. A comparison of a general model and an UV stacked, diffuse painted 

model. In this case, the pink colour on right indicates of overlapping UV-shells. 

Textures can also be of use when modelling 3D-objects. Rather than starting with 

modelling a surface and then making the texture, a texture can be first applied to 

a simple plane and then modelled by following the details of the texture (See figure 

43). To get more visual variety, it is important to make some trim textures for ex-

ample for buildings. Reutilizing textures and trims in several different buildings cre-

ates a consistency in the whole environment. (Klafke, n.d.) Various props of indi-

vidual buildings like doors, windows, etc. should be combined in to a single texture 

atlas. (Hawkins, 2012, p.59) 
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Figure 43. Using a texture for modelling tiling assets. 

4.5.1  Diffuse brightness 

For photo-realistic games, making of a regular colour texture also has some typical 

problems with how bright or dark the texture can be created. This is because the 

diffuse map does not have any light data, for example shadows or light reflections, 

as that data will be rendered in the game. If the original texture is too dark or has 
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too much contrast, the shadows and lights in the game will not look realistic, es-

pecially with indoor environments that will only look extremely dark. The solution 

to this is not to increase the intensity of lights in the game engine as that will only 

increase the overall contrast in the environment, but to adjust the textures brighter 

(See figure 44). But what texture brightness is the right one? The idea of a correct 

texture brightness is when a surface is lit by a 100 % bright white light from any 

angle. (Epic Games Inc, n.d.b) 

 

Figure 44. Comparison of same diffuse map that have different brightness. (Epic 

Games Inc, n.d.b) 

Regular monitors’ light intensities are close a certain mathematical curve called 

gamma space. Textures are normally created using sRGB colour profile, which 

stores data in gamma space. But when importing the texture to a game engine, 

the texture will be converted to a different curve called linear space, with which the 
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renderer calculates the lighting. Because of the different curves between the ren-

derer and the monitor, texture can look okay in the artists monitor, but in a 3D-

game and in different monitors it may appear different. (Gritz & d’Eon, 2007) 

In gamma space the values are generally darker than in linear space. The mid-

grey in gamma space as RGB value is at 127, 127, 127, whereas the mid-grey in 

linear space is at 187, 187, 187. (Epic Games Inc, n.d.b) The quick way to check 

accurate values is by comparing the accurate real-life values with Photoshop’s 

histogram panel. If the values are off from the correct ones, the histogram’s sliders 

can be adjusted to change the values correctly. Several material libraries have 

collected a lot of RGB value data, which can be used for making realistic textures. 

(Viscorbel, 2015) 

4.5.2  Gradient mapping 

Textures require a lot of memory and processing time, and to get the most details 

as possible, it is beneficial to optimize textures too at a certain level. (Provost, 

2003a) Material’s diffuse texture can be made by gradient mapping them with a 

texture called gradient mask, if the other details like wear and tear are presented 

correctly and the material does not generally have a lot of need for colour (See 

figure 45). (Maxinow, 2012) 
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Figure 45. Multiplying the grayscale mask with gradient mapping. 

The gradient mask can be created individually by hand or by combining three to 

four grayscale maps together by the simple use of RGBA, in short for red, blue, 

green and alpha channels (See figure 46). The textures that use grayscaling can 

be dynamically used in the game engine to create an enormous amount of different 

materials, especially with tiling textures (See figure 47). This saves a lot of memory 

space and also gives the design team a great tool set to work with, because they 

can tweak a simple slider of gradient values. And because the normal map’s blue 

channel rarely stores any information, the normal map can also be combined with 

another grayscale map. (Maxinow, 2012) 
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Figure 46. Combination of grayscale maps into one file and using the generated 

file with a normal map for a material in Unreal Engine. 
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Figure 47. The generated tiling material from figure 45. 

4.5.3  Using matte painting with environments 

Matte painting is a regular technique of making compelling environment concept 

art and backgrounds for movies, which are usually so well made that there is no 

way to tell the difference (Masters, 2014j). It can also be used in games, because 

the player can not see the difference between a 3D-asset and a 2D image after a 

certain distance (See figure 48). However, to use this technique, the player’s ability 

to move around has to be calculated and tested, as well as how expensive the 

matte painting will be because they tend to be quite large in the view. For example 

a 2D-image of a small city can be less expensive to process than a really wide 

mountain range. Matte paintings should be done in the last phases of the game 

development and are relatively easy to make as they are just simple 2D images. 

(Hawkins, 2012, p.67) 
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Figure 48. Matte painting used in an environment. 
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5  ANIMATIONS FOR ENVIRONMENTS 

To start with the basics of animation, 2D spritesheet animation is basically just 

changing images in quick succession to create a continuous movement (Lambert, 

2013). Good 3D animations require a lot more technical prowess than 2D anima-

tions. In 3D games the objects are expected to act as they would be in real life, 

and to create that effect, the objects are usually rigged, especially the more com-

plex characters. Rigging means creating an object’s skeleton that the animator 

can manipulate to bend said object. (Masters, 2015b) Animation for both 2D and 

3D can also be done with puppet animation. This means that the animated object 

is split into clear, separate elements that are moved, rotated, scaled, etc. to create 

and edit motions easily. But as the term implies, the puppet animation does not 

look natural in all cases. (Fessler, 2014) 

Animation for foliage is usually done with procedural vertex animation, meaning 

the foliage’s swaying and bending is calculated by the computer in real-time. For 

example the development team behind Crysis took this further, and generated an-

imations for the individual leaves to give a better illusion of realism. They divided 

the animation into main bending and detail bending, and blended those two ani-

mations together. (Sousa, 2007)  

For materials and effects like water, smoke, clouds and fire, the animation can be 

done with changing the UV-maps coordinates, which also means UV panning. This 

is basically moving the coordinates horizontally and/or vertically, which works best 

with tiling textures. UV panning can also be combined with objects that are not just 

straight planes, but have curves. (Epic Games Inc, n.d.d) 
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Animating, for example a river or a stream, starts first with modelling a straight 

plane, UV-mapping it as a square with no curving, then continuing the modelling 

of that plane in to a curved stream leaving the UV-mapping intact. After that it is 

textured as a tiling texture and then UV panned in the game engine (See figure 

49). This way the animation looks more fluid and does not require much work. 

(Epic Games Inc, n.d.d) 2D games can also be filled with animated planes like this 

to save texture memory and time instead of painting the sprites as individual im-

ages. Putting several layers of planes together also makes the animation look 

more organic. (AssemblyTV seminars, 2015) 

 

Figure 49. Creation of a water stream: creating a plane, modifying it without touch-

ing the UV-map and then applying a tiling texture with UV-panning. 
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6  OPTIMIZATION OF ASSETS: WHEN IS IT NECESSARY? 

To avoid worst-case scenarios it is best to know what to optimize in an environ-

ment. It is easier to make mistakes on performance with level design than with 

graphics. The objects that are in view most of the time are generally the most 

detailed, so distributing them across the level evenly is a better solution than taking 

away the details. But in situations where correct level design does not help, ob-

jects’ optimization needs are calculated. (Provost, 2003b) 

6.1  Transform-bound objects 

If an object’s transform time, in short for how fast the renderer processes the ver-

tices, is large, then the object is said to be “transform-bound.” This usually hap-

pens with surfaces that have a lot of vertices or characters with complex anima-

tions combined with a large amount of vertices. Transform complexity is affected 

also by lighting, displacement maps and the distance between the object and the 

player. Distance affects the screen vertex density a lot, and the further away the 

object is, the vertex density rises as well. (Provost, 2003b) 

6.2  Vertex knowledge 

The amount of vertices changes a lot in the same object when travelling down the 

pipeline from a 3d-modelling software to a game engine and then finally to the 

game itself. In practice vertices get split at UV-seams, smoothing group bounda-

ries and material boundaries, and can double or triple the vertex count, which then 

affect the transform time of the renderer (See figure 50). (Provost, 2003a) This is 

why it is not useful to measure the cost of a 3D-object by its polygon or triangle 

count, because the renderer only processes vertex count, which can vary in very 

many ways (Goldberg, 2013). 
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Figure 50. Examples of vertex splitting by smoothing groups from left to right: two 

polygon model with a hard edge, same model with a smooth edge and a three 

polygon model with a smooth edge. 

To avoid vertex splitting, the amount of boundaries between smoothing groups 

should be reduced manually, UV-areas should be stitched together so that a single 

vertex is not shared by several triangles, and an object’s textures should be com-

bined together to minimize material based splits. Optimizing the UV-shells to cover 

the UV space smartly will also simplify the rendering process. In some cases nor-

mal maps are more useful than smoothing groups because the normal maps are 

usually mapped to the same UV coordinate set as the diffuse map so they do not 

cause any vertex splits. (Provost, 2003a) 

UV-space boundaries, smoothing group boundaries and material boundaries can 

occupy the same set of faces to reduce vertex splits. This is because the renderer 

allows one smoothing group and material for each vertex, so it will only get split 

once. The same goes with the UV-space boundaries that occur at boundaries of 

smoothing groups. (Provost, 2003a) 
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6.3  Fill-bound objects 

When the renderer takes a lot of time to render a surface on screen, it is said to 

be “fill-bound.” Big surfaces like walls, floors, etc. tend to become fill bound, which 

is caused by the large texture size, complex material properties and texture density 

on screen. The renderer is also usually fill-bound in low-density vertex areas. Un-

fortunately the surfaces can not get any smaller on a polygonal level, but at least 

the complexity of a material can be calculated by the amount of textures it needs 

to blend together before sending the compiled data to a renderer (See figure 51). 

In contrast to vertex density which rises with the distance, the rendering time of 

the surfaces decreases. (Provost, 2003b) 

 

Figure 51. A screenshot of a cobblestone material node system in Unreal Engine 

4.7. 
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6.4  Techniques to optimizing assets 

3D assets can shift from being fill-bound to being transform bound, when the dis-

tance increases, and from transform bound to fill bound when the distance de-

creases, if the vertex density of an object is non-uniform. If both of them are low in 

an object, it is save to skip that object and start checking the next object for any 

optimization needs. (Provost, 2003b) 

There are several techniques to optimize an object. Two of the mostly used are 

mips-maps and level of detail meshes, shortly LODs, which both use distance to 

calculate when to switch the original texture and mesh to a smaller or higher res-

olution file. These two techniques are especially useful in outdoor environments 

where the field of view is large. (Provost, 2003b) 

There is also a reason why objects, especially large ones, should not be merged 

into a single object. This is because when a small surface area comes into the 

view, be it how tiny as possible, the renderer still needs to process all the vertices 

and the texture files that are assigned to that object. Splitting the object in roughly 

equally same sized pieces, while thinking about both of the texture and mesh size, 

balances the rendering a lot (See figure 52). (Provost, 2003b) As an example, 

when making a racing game, the size of the pieces can be as big as city blocks. 

In a horror game that has only small corridors and rooms, the size of the pieces 

could be really small. (Perry, 2002) 

 

Figure 52. Field of view and processing of the objects. 
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Like with distributing vertex density equally across the mesh to avoid large trans-

form time, UV-maps of meshes should also be tweaked to distribute the texture 

density uniformly across an object’s surface. Materials that have for example 

transparency should not be used on large surfaces, because they create several 

layers of geometry which needs to be rendered. Same goes with the double sided 

materials, because they can easily cause fill time related problems. (Provost, 

2003b) 

6.4.1  Texture knowledge 

Texels are needed to be retrieved from an object’s associated texture every time 

the renderer is drawing the object’s surface. Processor does this through a texel 

cache on which the texture regions are pasted. Texel cache can also be called as 

a scratchpad. Before the processor can start drawing the pixels on screen, it 

checks the texels from the texel cache. If the texels are already in the cache, the 

processor proceeds with the drawing. But if they are not in the texel cache, the 

processor first needs to load the new texture regions, put them in the texel cache 

and then start drawing the pixels. This can be simply called as a texture cache 

miss. The more there are texture cache misses the more time it takes to draw a 

surface. (Provost, 2003a) 

As an example, non-uniform texel density will cause texture cache misses. This 

can be avoided by tweaking an object’s UV-space roughly to the same proportions 

as they are in the 3D-model. (Provost, 2003a) 

Many hardware processes data in limited “chunks” to be more efficient and works 

with the power of two numbers: 8, 16, 32, 64, etc. Because of this, it resizes tex-

tures that does not have the dimensions in that scale. The problem in this might 

not be that large with individual objects, but in large game environments where the 

assets amount is much larger, it causes longer rendering times on useless cor-

recting. It is important to use power of two dimensions for textures for quick load-

ing, and it also minimizes the effects of automatic resizing of a texture, for example 

blurring, fuzziness and corruption. (KatsBits, n.d.) 
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6.4.2  Cubemaps and selective reflection rendering  

To help the rendering process of reflections, a cubemap is created in the game 

engine. In practise, it can be seen as a camera pointing to every direction of 90 

degrees; right, left, top, bottom, front and back, and then creating a panoramic 

picture from them. That picture is then rendered in the reflections, and is usually 

very low resolution. It can also be converted to a spheremap to get better perfor-

mance. The difference between a cubemap and spheremap is that the cubemap 

has six texels, whereas the spheremap only has two texels. (Courrèges, 2015) 

Large areas like puddles, lakes and sea reflect an enormous amount of surround-

ing lights and objects, which can cause the frame rate to drop as there can be a 

lot of objects to render. But not every reflection has to be rendered, for example 

things that are really far away from the reflective surface. Almost Human Ltd 

(2014b), the team behind Grimrock 2, has made the rendering objects’ reflections 

automatic by choosing a certain rendering mode for each of the objects by marking 

them as “never”, “always” or “cell”. “Never” and “always” should be quite obvious, 

and the “cell” mode is for the level designer to paint in the level editor which cells 

have their reflections enabled. (Almost Human Ltd, 2014b) 
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7  GAME ENGINES 

There are several different game engines released to the public ranging in price, 

power and complexity. Some of them can suit better for making 2D games, 3D 

games, photorealistic or stylized graphics, etc. so it is important for the developer 

to carefully calculate his needs before choosing one. (Masters, 2015a) 

7.1  Instancing 

Instancing is a basic system of referencing several duplicates of assets from a 

single file into the game, which helps with the memory management of the hard-

ware. (Epic Games Inc, n.d.c) It is also useful in general asset management and 

replacing old assets with a new one, because the game engine automatically 

changes the instances based on the file change. This saves time from manually 

placing all the assets again to their original places. (Marshall, 2014a) Developer 

can also use the original file, for example a material, as a master instance, creating 

several visually different materials that use the original material’s parameters as a 

base. Whenever a change is made for the original material, for example optimiza-

tion, all the “child” materials are also optimized in that change. (Van Spronsen, 

2014) In many situations, an entire file can be replaced with something else as 

long as the new data is functionally compatible with the old one (Perry, 2002). 

7.2  Level of Detail 

Level of detail (LOD) system retains visual details using a hierarchical distance 

relative change of assets, without increasing the workload for the hardware. In 

practise, the game engine changes the asset, 3D-model, textures, etc. with a lower 

quality asset when the distance between of an object and player increases. The 

amount of different LOD assets is depended of the game, and the percentage 
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amount of detail, for example vertex count and texture resolution, can be calcu-

lated to be 100% in a high quality asset, medium quality at 50% and low quality at 

25% (See figure 53). (Cheng, 2015a) 

 

Figure 53. Three LOD levels of a barrel. Adapted by author from (Masters, 2014). 

An ugly popping effect between assets can be seen in a regular LOD system, 

which is usually minimized with a crossfade or dissolve effect between the LOD 

assets. (Almost Human Ltd, 2014b) Unfortunately terrain needs another solution 

for this, which can be called as a continuous method of LOD (Cheng, 2015a). In 

this method the hardware procedurally decreases and increases the amount of 

detail in real time and blends the details of a high and low quality terrain assets 

that are next to each other (Hoppe, 2004). Even though the method provides a 

steady frame rate, memory efficiency and a better looking terrain, it is still hard to 

implement (Cheng, 2015a). As an example of different techniques in one game, in 

Just Cause 2 there are twelve LOD assets for the different sized terrain areas, it 

uses “geomorphing” to align the vertices of a high quality mesh with the low quality 

mesh and has procedurally generated data for the inaccessible, distant game 

world, as the visible distance can change because of the various player locations 

in the world (Blomberg, 2013). 
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7.3  Materials and shaders 

The idea behind materials is that they literally define the surface’s properties like 

roughness, transparency, etc. in addition to its colour, and how the surface reacts 

to light. Materials use input such as images, math and other various settings as 

their base to create the calculations for a surface’s light reaction. (Epic Games Inc, 

n.d.e) One of the good perks of materials is that they also can be instanced for 

several variations. For example a master material of wood could be instanced for 

new, old and mossy wood, which uses only few more calculations or textures for 

the new surface details. This saves a lot from memory space and is also light-

weight for the processor. (Van Spronsen, 2014) 

Shaders are algorithms that work in a close relationship with materials. The mate-

rial contains all the data that a surface needs, but the shaders actually combine 

the material’s data with the object and lighting to create the final shading. Shaders 

also affect how many options materials can have, and can be especially made for 

foliage, liquids, etc. (Unity Technologies, n.d.c) 

In need of realistic environments, more and more game engines and developers 

are slowly shifting to a rendering system called physically based rendering 

(Orsvärn, 2015). This rendering system needs physically based materials and 

lighting to work accurately. The great thing about physically based rendering is 

that the values used in the materials are taken from real-life values, so they work 

equally in all lighting types and environments and look more natural (See table 1). 

(Epic Games Inc, n.d.e) Using the real-life values increases consistency in the 

whole environment and the system is generally easier to use between several dif-

ferent game projects. Artists no longer have to guess which values work best with 

which material and lighting, and creating textures is easier as the same rules apply 

for all of the textures. (Wilson, n.d.) 
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Table 1. A screenshot of a colour set of RGB values for certain materials in the 

game engine. Adjusted by author from (Epic Games Inc, 2015). 

 

However, the materials can still become a problem if they are not organised. This 

is because of games that require a lot of artwork, the materials list can become 

enormous. Designers might not find materials fast enough and end up making their 

own for example. This is why there should be only a certain set of materials which 

to work with. Even the calculation count in the material can become a bottleneck 

for performance. To prevent this, for example the multiplied or overlaid textures 

with math could be added to the texture in the painting software. (Hawkins, 2014, 

pp.154-156) 

7.4  Decals 

Decals are 2D images projected on to 3D-objects’ surfaces in a game engine to 

for example break tiling textures on large surfaces with an image of for example 

moss, ivy, posters, the list can be endless (See figure 54). They do not add any 

extra geometry, so they are pretty lightweight to use. (Masters, 2014g) 
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Figure 54. Example of a decal, which in this case creates a green tile pattern on 

two objects. 

7.5  Particles 

Things like smoke, explosions, snow, fire, etc. can make the map look more alive 

with motion (Becerra, 2015). They can be created with particles, or in another 

name, particle systems. Usually a single particle is a small polygon plane that has 

a texture map with partial transparency. So when for example simulating a snow-

fall, there could be thousands of planes in the view at a time. A single snow flake 

can also trigger another particle system when it hits the ground, creating the effect 

of snow breaking up into new snow flakes. Because of this, the particle system 

should be as lightweight as possible for the renderer. (Van der Burg, 2000) Also 

the transparency in particles creates a lot of layers for the renderer to process, 

which can also be called as overdraw. To decrease the processing time of particle 

systems like fire, the textures should have more detail in them to decrease the 
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amount of needed particles, and with particles like shrapnel and pebbles, the par-

ticles can be solid, lightweight geometry. (Ericson, 2009) 

7.6  Lighting 

There are several editable types of lighting tools in regular game engines, which 

can be used to create the exact mood for the environment. Lighting between the 

levels should be different, so that it provides the player with new experiences. 

However, the lights need to be calculated with each frame in the game, and if done 

wrong they can cause the rendering time to increase enormously. (Masters, 2014f, 

2014m) The lighting effects like a dynamic day and night cycle, accurate refrac-

tions and interactive lights need a lot of hardware processing power to work 

properly. (Stuart, 2015) 

There is a method called lightmapping a scene, which basically saves all the light 

and shadow data directly on the texture of objects, which is also called as baking 

(See figure 55). The created textures can also be called as lightmaps, and after 

which the actual lights can be deleted from the scene, saving processing power. 

(Unity Technologies, n.d.b) 

 

Figure 55. An example of a lightmapped asset. (Epic Games Inc, 2015) 
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The lightmapping technique has to be carefully thought of, because not always the 

light bake looks good on an environment (Georgio, 2012). This is because the 

lightmaps’ are generally so small that the UV shells colours bleed easily to each 

other and cause other artefacts like pixelated shadows, so they also need extra 

care with edge padding. (McGrath, 2008) Lightmaps also do not make any dy-

namic effects to moving objects, for example to a character walking under a street-

lamp. This is why it is important to know what lights to bake and not to bake. (Mas-

ters, 2014f) As an example, no dynamic lights but a single 1024x1024 lightmap 

was used for the War Games maps in Halo 4 because of the performance budget 

(HD Admin, 2012). 

Different lighting tools work differently from another, for example a spot light can 

be self-explanatory, but there are also lights called point light, area light, directional 

light, volume light and ambient light. Additionally, the light hardness or softness is 

usually determined by the distance and size of the light source. (Masters, 2014k) 

Different lights create different scenes, for example point lights can be placed near 

wet areas, so that the light reflection bounces off from it (Van Spronsen, 2014) 

Spot and area light both have a form in them, where the spot light conveys the 

light in a cone shape and the area light has either a rectangle or a circle as its 

source shape. They are both great for creating directional, eye catching lighting, 

for example the area light can be used to light the scene through a window. Point 

light illuminates an area in the shape of a circle, and is useful at illuminating the 

scene softly if desired. It can be used to create light for candles and light bulbs. 

(Masters, 2014k) 

A directional light emit light in to a single direction to an infinite distance, which is 

used to create the illusion of a sun into large, open environments. Volume light is 

similar to the point light, but it can be changed in to primitive shapes for example 

like sphere or a cube, which are useful to illuminate objects in their volume. It is 

useful at creating beams of light in fog and other environmental light patterns. Am-

bient light does not create any shadows or shading, as it does not have any direc-

tionality, but is great for filling a scene that does not have enough light. (Masters, 

2014k) 
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Lighting 2D games can be tricky, because the sprites are originally just flat planes. 

To bring out more depth and mood to 2D games, normal maps can be used to 

create more dynamic lighting. This can be done in three ways. The first method is 

by modelling the objects and then baking the normal maps from them, which can 

be then combined with the diffuse maps. The second method uses photos as a 

source to generate normal maps automatically, for example by using a software 

called Crazy Bump. The third method uses hand-painted normal maps, which is 

generally much harder to do. However, a software called SpriteLamp offers a sim-

ple solution to this. It uses hand-painted grayscale maps called “lighting profiles” 

to generate not only a normal maps but also other maps without the need to model 

anything. However, it can be time consuming to draw all the lighting profiles for 

individual assets, but at least it offers another option to create texture maps. In 

game engines, it is also possible to add other texture maps like depth maps to add 

lighting variety to the environment. (Morgan, n.d.) 

7.7  Post-Processing 

Adding screen effects is called post-processing. The available effects are de-

pended on the game engine, but usually there are several effects to adjust a 

scene. They can make the scene look very unique and interesting if the artist 

spends enough time tweaking them. (80.lv, 2015) Some effects might work better 

for example in indoor environments than in outdoor environments and vice versa. 

(Becerra, 2015) As an example of post-processing effects, some of the most com-

mon are anti-aliasing, which smooths an object’s jagged edges on screen, motion 

blur which blurs the scene based on the viewer’s motions, and depth of field which 

blurs the objects based on their distance to the viewer. (Epic Games Inc, n.d.f) 

Using the post-processing effects correctly is basically a balancing act of visuals 

(HD Admin, 2012). 
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8  DESIGN PROCESS 

Every kind of environment has a huge amount of objects in it, and every one of 

them has a story to tell, be it large or small. Planning them is an enormous process, 

and should be one of the most refined production process so that precious time is 

not wasted on pointless iterations on details. (Masters, 2014e) Selecting, re-

searching, developing and then refining are the steps to make a successful design 

whether the design is for a single object or a vast environment. All of the successful 

artwork are based on the same visual grammar, which have evolved through the 

classical art techniques. It should be noted that presenting a person’s work to other 

members of the team is extremely crucial for feedback, because not everyone can 

think the same. (Solarski, 2012) The following sections will not focus on a specific 

design or story, but will discuss matters on a general level. Because of this they 

can be applied to other graphics development such as character creation. 

8.1  Designing single objects and entities 

Several environment assets and other props should be designed in unison, rather 

than making them one at a time. This is because of the easier judgement whether 

or not the assets look good together and to save time from tedious reworks. (So-

larski, 2012) Even though every asset bears a certain visual strength in a compo-

sition, objects that are supposed to attract the eye should have high enough con-

trast from their surroundings, such as colour and shape. (Lovato, 2015) 

8.1.1  Brainstorming and high concept 

Developing a high concept, a short paragraph which defines the design goal 

clearly, is important for the development team as it provides a common reference 

point. It defines the desired emotional experience of an object in a short summary, 

from which the art and design teams can start their creative process. (Solarski, 

2012) 
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To start brainstorming a high concept, keywords are needed. They are small ad-

jectives, which define emotion, colour, shape, size, etc. The reason for they need-

ing to be adjectives rather than nouns is because they describe emotions better. 

There should also be a design opposing factor in the keywords, which will also 

result in a deeper meaning and emotion. These selected keywords are then for-

mulated into a high concept (See figure 56). (Solarski, 2012) 

 

Figure 56. A high concept of a village with adjectives highlighted. 

8.1.2  Research 

Based on the high concept created, art and design department should start gath-

ering reference images. By creating a mind-map of the keywords and then further 

diving into them uncovers an array of not before seen material. This can be rela-

tively easy, as the researchers can use the keywords described in the high con-

cept, rather than just randomly seeking with words that might conflict with the high 

concept. (Solarski, 2012) Because of this, the first idea, which every other game 

developer would also have thought of, is avoided, and other strong ideas will 

emerge. (Tudor, 2010). 

In the end, having a full arsenal of great reference images may take hours, days, 

even weeks to complete, which depends on the game development schedule. (So-

larski, 2012) Sometimes an idea of the high concept can lose its impact as it moves 

through the production phase, so it might be a good idea to pick the best or most 

extreme reference to prevent it from happening. (Hawkins, 2012, p.31) 
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After gathering of the reference images, it is time to start drawing some small 

sketches based on them. Sketches of the first seen key features can be really 

rough, as they are later used as their own reference images (See figure 57). (So-

larski, 2012) Keeping what is interesting and amplifying the sketches further with 

the keywords should help to convey the true form of an object that the artist or 

designer wants to replicate from their minds. (Cheng, 2014b) 

 

Figure 57. Example sketches of key features. 

8.1.3  Developing thumbnails 

It is relatively easy to seek new ideas that come up from the researched images 

and the key point sketches. Next up is to create an object’s design by the use of 

thumbnail sketching: starting very simply with the mix and match use of primitive 

shapes’ silhouettes and the previous research (Kennedy, 2013, p.36). The idea 

behind a thumbnail sketch is to keep the drawing really small, so that the primary 

elements of form and shape can be seen immediately and so that they could be 

quickly iterated (See figure 58) (Tudor, 2010). The primary shapes, circle, square 

and triangle each create certain emotions, so it is good to consider which shape 

works best with the high concept. Using the research too explicit in the design is 

not a good idea, as it will easily take away the emotions caused by the primitive 

shapes. (Solarski, 2012) 
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Figure 58. Thumbnail sketches. 

Some problems can occur with an object’s visual clarity. If there are angles in the 

silhouette that are too subtle and disappear with the rest of the objects’ from, es-

pecially when viewed far, it is best to exaggerate them a bit (See figure 59). For 

example, to define two elements separate, it is good to exaggerate contacting 

points in the silhouette. (Solarski, 2012) 

 

Figure 59. An example of exaggerating silhouette to clarify form. 

At this point it is also best to develop other objects’ and environment’s silhouettes 

to get a visually good overview of several objects together and to compare them 

with each other. (Solarski, 2012) Making of multiple pictures from which to choose 

from helps the visual process of the design, because usually the team or the client 

does not know what they want but rather know what they do not want. Having 

multiple choices helps to convey the best solution out of the rest. (FZDSCHOOL, 

2012) 
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8.1.4  Refining 

After successfully making of a silhouette that satisfies everybody in the team, it is 

time to make it as a full detailed drawing. In this phase, silhouette’s outline is traced 

again multiple times onto a new paper or layer, and the artist can start adding 

details into the design, and compare which detail works best with each other (See 

figure 60). The added details should not change the already approved silhouette. 

(Solarski, 2012) It is worth noting that randomly placed lines create random details 

that will only distract the player. (Jansson, 2012) Adding details can also be done 

with an easy value painting method, where black, white and various shades of 

grey are added onto the silhouette. When started simply, grayscale painting works 

great for creation of a pleasing design, and also creates a base onto which the 

colours are easy to put on. (Kennedy, 2013, p. 38) 

 

Figure 60. Adding details within the silhouette. 

The final design is then put to the game or a model sheet, which also has other 

references like materials’ textures and separately cut details, so that the obscured 

details are also shown. The model sheet works as a general reference document, 

and can be used for both 2D and 3D work. (Solarski, 2012) 



70 

8.2  Level design 

Planning out how and where the player goes in a level or a certain area of a map 

is essential to keep him satisfied, regardless of how unique or beautiful looking 

game’s graphics are. There are things to watch out for and playtest early, for ex-

ample player getting lost or confused, not enough action in a multiplayer game or 

simply the level design being too linear, where there are no different routes to take. 

However, good level design will not give all the answers for the player up front, 

thus keeping the player interested in his surroundings and figuring things on his 

own. (Mark Masters, 2014h) 

There is a possibility that the player wants to play a certain area or a level again, 

just to see if he missed something. (Masters, 2014h) Because of this, it is important 

to get as much as possible from an area, rather than just placing objects here and 

there randomly. A well-made level gently forces the player to keep attention for 

anything important, thus making him value and treat the level scenery more than 

just a mere background. (Harris, 2007) 

Keeping a good contrast between shapes, lighting and colours early is what makes 

the most of the level and thus guides the players eye where intended. (Hawkins, 

2014, p.50) This can be achieved by making a blockout of placeholder objects, 

textures and basic lighting, which will set the mood for the level. By testing the 

level for action, the level undergoes several iteration processes to get the best 

gameplay. (Hawkins, 2012, p.43) This saves time from the graphics team, and 

they can then focus on their tasks without making extra mistakes. (Masters, 2014a) 

8.2.1  Mood 

Mood is a basic concept of emotions that the player can experience from playing 

a game. Excitement and fear can be considered as moods, but for example love 

and anger are more about certain emotional events which will pass away more 

quickly. Calculating and then aligning the mood with certain parts of the level cre-
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ates a holistic experience for the player, and there is rarely only one mood to ex-

perience in the game. For example horror games mood changes between building 

up tension, horror and upright terror. (Gard, 2010a) 

To create a good mood flow from another is to generate a mood map for the level 

(See figure 61). It can be very simple or very detailed, but the main purpose of it 

is to see if there are any problems between how well the level content and the 

mood order goes with the emotional experience. (Gard, 2010a) It is worth noting 

that different people feel different emotions even though the mood might be gen-

erally familiar and understandable, so it is important to playtest the level with sev-

eral people. (Nutt, 2011) 

 

Figure 61. A simple example of a mood map. 

8.2.2  Silhouette 

A silhouette means that an object filled with only one colour, usually black so its 

interior details will not be seen, which is then projected against a white back-

ground. Making the silhouette first when designing objects or levels is a good way 

to see the general form, scale and proportions of the object. (Kennedy, 2013, p.36) 

Varying these three right creates an interesting, understandable silhouette even 

when seen far away (See figure 62). When making stylised graphics, it is also okay 

to exaggerate some features parts when needed. (Hawkins, 2012, p.119) Im-

portant elements, such as a tower in a large castle, should have some negative 

space around it, so that it looks clear and distinguishable from the rest of the ob-

ject, which is also shown in the figure 62. (Lovato, 2015) A good silhouette is mem-

orable, unique and give off more information than its size, for example a building 

can feel a lot more dangerous by just having a spiky silhouette. (McEntee, 2012) 



72 

 

Figure 62. Comparison of two different silhouettes: The right silhouette of a church 

seems more understandable than the left one, and the tower also has more neg-

ative space around it. 

But what silhouette, or basically a shape can be considered dangerous or welcom-

ing? As a classical standpoint on aesthetics, each of the three primitive shapes, 

circle, square and triangle, are associated with different psychological character-

istics (See figure 63). Circle shape is soft and welcoming, but it can also mean 

dynamic as a round shape tends to roll around on flat surfaces. Square shape is 

stable and strong, and strongly suggests of a sturdy, safe place if seen as a build-

ing. Lastly, triangle shape is aggressive and sharp, meaning it can hurt when 

touched. When making a silhouette, using these three shapes right will largely 

benefit for a game’s level design. (Solarski, 2013a) 

 

Figure 63. The most basic shapes. 
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8.2.3  Light 

Rather than giving instructions where to go, the player can be gently directed to-

wards the goal by the correct use of lighting. For example a spotlight can illuminate 

a doorway or an object, which will then catch the player’s eyes and he will hurry to 

see if there is anything important in the light. (Masters, 2014h) In all cases though, 

the light should have some sort of source, because lights without particular source 

will only confuse the player. (Masters, 2014f) 

Lighting affects the mood the most, because an environment with only little lighting 

feels menacing because of all the dark shadows, whereas the same environment 

with bright day light is not scary at all. It is easier to make a lighting for a movie to 

set the right mood, but for games lighting needs more planning because for exam-

ple of the multiple camera views and the surface reflections certain environments 

might have in 3D-games. (Masters, 2014f) 

It is recommended to place a basic lighting in an early stage of a level develop-

ment, because it helps greatly in asset production. Textures and shapes against 

light are seen correctly, which saves production time from the graphics team when 

they are polishing them. The lighting does not have to be final, but should at least 

convey the basic feeling of the mood. (Hawkins, 2014, p.48) 

8.2.4  Colour 

If used correctly, colours can be used to guide the player through a level, even if 

the colour scheme is realistically desaturated. Placing colourful items or details 

into the level attracts the eye, if the overall contrast is high enough between the 

environment’s colour and an object’s colour. (Lovato, 2015) The colours used in 

the level should be uniformly chosen with each other, as a bad colour scheme is 

disturbing to the eye. (Maxinow, 2012) 
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Colour palette is one of the first things that a game development team should make 

for a certain level and stick with it the whole production process. The palette only 

needs some adjustments when it does not feel authentic with the level. (Masters, 

2014c) It defines the right mood for the whole level, enhances the storytelling and 

evokes a desired emotional impact through visuals. (Hawkins, 2012, pp. 82-83) 

For example in the development of Uncharted 3 action-adventure game, which is 

heavily based on the desert environment, the development team was concerned 

about the final levels’ colour palette. Because the game already had so many en-

vironments with a warm palette, the team was given a note that they could not use 

any more warm colours. In the end, they went with blue, gold, warm white and 

some cooler red tones to add some dynamics to the textures. The correct use of 

colours that work harmoniously with the rest of the palette and a dash of unex-

pected colours gives the level a kick it needs. (Hawkins, 2012, pp. 82-83) 

8.2.5  Points of interest 

An environment is a hierarchy of details, where difference and contrast between 

shapes, colours, details, size, etc. to create a composition to attract the player to 

the focus point of it. The environment will look flat, if there are details all over place. 

(Jansson, 2012) Because of this, points of interest, in short for the locations that 

the developer wants the player to visit, should not be lumped together. The envi-

ronment designer should not also put them too far away from each other, as the 

player might feel bored when going huge distances. (Van Spronsen, 2015) 

8.2.6  Verticality versus horizontality 

One of the many problems which can be encountered when making a level is that 

it becomes too flat. Those kind of levels lack authenticity both in visuals and game-

play. This can be avoided by creating a bit more height difference into the level, 

so that for example the player has a possibility to see how many enemies there 

might be ahead or where he should go next. (Hawkins, 2014, p.101) This way the 
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player can plan which route to take, if there is any cover, etc. In multiplayer games 

adding height differences will keep the player in action because he has to keep 

looking up and down constantly in addition to horizontal vision (See figure 64). 

(Hawkins, 2012, p.19) Adding verticality can also pose some unexpected prob-

lems, like the player reaching to a place he is not supposed to. Because of this it 

is important to take care of the level’s locations from both design and artistic aspect 

so that they would make sense. (Van Spronsen, 2015) 

 

Figure 64. Player’s field of vision in different levels. 

8.2.7  Composition 

A pleasing arrangement is created by a correct composition of shapes, colours 

and light, which relationships are disparate from each other. This gives the player 

a meaning to compare this imbalance, which requires the player to move their 

eyes. Controlling that eye movement, what will and will not attract the eye, is the 

goal of a good composition. (Santos, 2015) 

Optionally a composition could be made based on the Golden ratio or by the rule 

of thirds, because they offer an easy, mathematical grid which to follow (See figure 

65). Rule of thirds is loosely based the Golden ratio, and is one of the easiest to 



76 

use (Creative Bloq, 2014). The image is divided into thirds vertically and horizon-

tally, and placing details into the created lines or crossings of them in an unbal-

anced way creates an eye attractive arrangement. (Santos, 2015) Placing key 

points to the dead centre of the view creates a composition from which the player 

is hard to move their eyes from. (Solarski, 2013b) 

 

Figure 65. The golden ratio. (Gurney, 2010) 

Leaving some space around assets also makes them easy to read, look unique 

and somewhat important to check out. (Lovato, 2015) This uniqueness of a focal 

point can also be enhanced by the use of implied lines. Implied lines are not actual 

lines, but the contrast of different values and colours that the eye will naturally 

follow. For example an image could have several lines, which all end to a single 

focal point. These implied lines can be created for example by the use of sharp 

objects that point to the focal point (See figure 66). (Santos, 2015) 

 

Figure 66. Usage of implied lines. 
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Objects like huge rocks can look out of place it there are no supporting objects 

around them. A simple rule of placing huge, medium and small sized objects to-

gether creates good compositions of small areas into a level. An example of an 

areas’ objects, also called as props, debris could be seen as a small props, chairs 

and furniture as medium sized props and then the buildings and trees as large 

sized props. (Hawkins, 2014, p.105) 

8.2.8  In-level storytelling and schema 

Levels have a great potential to tell many background stories and to enhance 

mood, regardless of the main story of the game. (Gard, 2010b) In-level storytelling 

does not disrupt the player’s gameplay for example with a cut-scene, but com-

municates the story through a smart placement and design of the objects and en-

vironment. (Solarski, 2013b)  

Schema is an object’s most general concept or a representation of reality that is 

already presented in the mind. No-one has the same schema as the other. This 

concept has to be extremely clear and visible, when making environments for 

games. This is because of the cases where the player is already familiar with a 

real life place that is presented in a game, he has his own schema of that place. 

(Gard, 2010b) 

Inaccuracies like American dumpsters in European city really feel off to the Euro-

pean player, just because he does not recognise dumpster as something that still 

might have the same first level schema. The objects in an environment should be 

context-relevant, buildings architecturally correct like shown in the figure 67 and 

the level already lived by somebody if the game is supposed to be realistic. (Gard, 

2010b) 
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Figure 67. Comparison of a good and bad architectural levels’ layouts. Red colour 

indicates that the structure is solid. 

8.2.9  Level flow 

A player should have some kind of motivation through the whole game, or he will 

easily get bored. Additionally a game that is only about action and where there is 

no time to take a breath will only exhaust the player, so it is a matter of balancing 

the level flow. To calculate the level flow, the developer can make a flow chart that 

for example simply describes the places of the level how they are played linearly 

and the amount of events, such as action and puzzle (See figure 68). Even the 

mixture of gameplay should not be the same through the whole game, because it 

can get pretty dull quickly. For example changing the movement of the player from 

walking to driving is a good, new experience. (Gard, 2010a) 
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Figure 68. An example of a flow chart for a level. 

The flow chart can be as complex as the developer wants it to be and it can be for 

example combined with a mood map. But it should never be too long, which de-

pends totally of the game genre. The flow of the level and player’s actions can be 

manipulated by multiple actors. The level can show critical locations or other infor-

mation at the start of the level to show what the player needs to know or where to 

go. There could be problems for which the solution can be somewhere else, for 

example a locked door that needs several keys to open it so that the player can 

progress further. Limiting the player’s progress can also be called as player gating. 

(Gard, 2010c) 

The challenge in designing a good level flow is not making it 100% obvious to the 

player. (Gard, 2010c) For example putting an exit point of the level hidden from 

the sight will force the player to look around for it in the level. If the level is full of 

monsters, the player would not just run around aimlessly looking for the exit as it 

is too risky. Any area of the game should be fully utilized. There are situations 

where the player will not commit to a new area appropriately, but use the previous, 

already checked zone as their battleground when fighting new enemies. (Hawkins, 

2012, p. 19) 
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9  ASSET PRODUCTION 

Based by the planning, researching and sketching of the individual objects, making 

of the level layouts, colour palettes, etc. it is still best to start simply when devel-

oping the in-game assets and playtest them through the development process. 

Each detail the graphics artist adds has to be carefully added, and if the playtesting 

shows some problems whether they are about gameplay or graphics, it is best to 

take a step back and calculate what went wrong. (Hawkins, 2014, p.30) 

9.1  Rules and logic 

The idea of rules exist for a reason, and they should not be bent easily after they 

have been decided. In big game companies rules should be used mutually be-

tween all development teams, so that there will not be any problems when those 

teams shift with each other or the development process will not stop when starting 

a new project. (Burgess & Purkeypile, 2013) However, when making a new set of 

rules for a project, these newly set standards should be tested as early as possible 

of the game development, because it will be only harder to change the rules and 

the assets based on them later. (Hawkins, 2014, p.25) Having as many “doors” 

open as possible in the game development is not the way to get assets done. 

(Hawkins, 2012, p.31) However, the same thing goes for finding a one rule that 

would work with all the assets. (Van Spronsen, 2014) 

9.1.1  Naming convention 

A good naming convention is about making assets’ names readable to a complete 

outsider and then consistently using the system everywhere and anytime of game 

development, regardless if there is a new game to work on. This is because in 

game development studios the team sizes can suddenly change and the level de-
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signer must have an ability to look a certain asset in a timely manner from a col-

lection of hundreds, even thousands of assets. (Burgess & Purkeypile, 2013) Nam-

ing convention is also applicable to folder structures. (Klafke, n.d.) 

Planning and naming the pieces in a way, which will line them up nicely in an 

alphabetical list, can be a tedious task when the names start to have more than 

three different codes in them. Naming should not be based on generality like “build-

ing” or “house,” because they get easily duplicated and are hard to separate from 

each other (Kuzminova, 2009). Joel Burgess (2013) gave a good example in his 

blog about a not-so-obvious naming convention about naming hallways: “1way”, 

“2way”, “3way” and then “4way” line up in a list extremely well, and because of 

this, it is justified to do if understood completely. Adding a suffix to the end of the 

assets name such as “01”, “02”, “03”, etc. is wise when making pieces that have 

the same footprint and purpose, but are visually different. Because of this, they 

can be easily swapped in the game editor just by changing one number. (Burgess 

& Purkeypile, 2013) 

9.1.2  World dimensions 

Planning out the scale and dimension of the assets early ease the general game 

development. It is important to figure out like how far and high the player can jump, 

are there any covers in the game, from which height the player will die if he falls, 

etc. because they will determine the dimensions of assets. There are some gen-

eral points to know about sizes to prevent later problems (See figure 69). Doors 

should have the same uniform size through the game, because combining rooms 

together becomes much easier and the team behind animation and AI, meaning 

artificial intelligence, have a fixed size to work from. The narrowest space in the 

game should also be a minimum of two characters, so that the AI pathing works 

nicely. The maximum steep of an incline is basically determined by the look of the 

character’s animation. (Burgess & Purkeypile, 2013) Animations should be gener-

ally kept in mind when making environment assets, because of the multiple ways 

a character can interact with them. For example, the development team might sud-

denly decide to add the ability to sit on chairs. (Perry, 2002) 
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Figure 69. Dimension planning for a game. 

To prevent problems like intersecting assets and bad proportions, there is also a 

technique called whiteboxing or in other name, grayboxing. Whiteboxing is like 

sketching, but in 3D space, where the simple shapes are combined together like 

they would be seen in the game. The created combination is then then put to the 

game engine to see what kind of dimension it occupies and how it might intersect 

with other assets, after which the object goes through several polishing passes. 

(Almost Human Ltd, 2014a) 

9.1.3  Footprint 

Footprint is the space and full bounds of an object. It is widely used in measuring 

correct grid and asset snapping when making kits and other tileable pieces (See 

figure 70). Having the same footprint, or at least multiples of it between different 

pieces prevents issues like gaps, overlapping walls, etc. A tileable piece’s seams 

can be on the edge of the footprint, but otherwise it is not recommendable to build 

at the footprint’s edge to prevent overlapping issues. In short, pieces should be 
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structurally believable and have thickness both horizontally and vertically. (Bur-

gess & Purkeypile, 2013) Using the same footprint between pieces adds the pos-

sibility to mix and match different looking objects to get more variety in an environ-

ment, because an artist is basically free to do anything inside the footprint (Van 

Spronsen, 2014) 

 

Figure 70. An example of a footprint. 

9.1.4  Grid Snapping 

Grip snapping is a great way for the designers to quickly create new levels, be-

cause at 90 degree angles room pieces like walls, floors, etc. line up quickly and 

easily. Grid snapping settings should be as large as possible and at the power of 

two, because level designers might also need smaller sized grids to work with. 

This working method also shows obvious errors like gaps between assets. (Bur-

gess & Purkeypile, 2013) 
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Unfortunately grid snapping does not work well with organic looking environments. 

To make it a bit easier, there are things like snapping to a reference, in which the 

randomly rotated object will make a new grip which to work with (See figure 71). 

These two different grids unfortunately create gaps between each other, and cre-

ate an extra problem of capping them. (Burgess & Purkeypile, 2013) 

 

Figure 71. On the left a general grid, and on the right a new grid generated from 

the object’s orientation. 

9.1.5  Pivot point placement 

Pivot point of an object is the origin from which the software calculates how the 

object is rotated, scaled and moved. (Govil-Pai, 2006, p.105) For example a wind-

mills wings are rotated from the connecting point of the wings and the engine. 

Having a correct pivot point in an asset will decrease the level designer’s work, 

because he does not have to spend time on rotating and placing objects by hand.  

Objects throughout the game should also have a general rule for the pivot point 

placements. (Hawkins, 2014, pp.27-28) It prevents reworking the pivot points of 

the previously made assets, which can be a huge problem because in a heavily 

instanced project the already finished levels need manual editing after editing ex-

isting pivot points. (Burgess & Purkeypile, 2013)  
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Not all the objects have the same optimal pivot point placements. Things like pipes 

should have their pivots at the edge, walls at the bottom corner and individual 

assets like set dressing objects at the bottom centre. Walls’ pivot point at the bot-

tom corner is because they are generally easier to rotate and place on the grid. 

(Burgess & Purkeypile, 2013) Generally speaking a pivot point placement should 

be at one of the plane extremities. (Klafke, n.d.) 

9.2  Modularity 

Modularity is good for games that need tremendous amounts of details and need 

to be performance friendly at the same time. (Hawkins, 2012, p.65) However, mod-

ularity can also be seen as the opposite from uniqueness. Rather than making a 

whole custom level of geometry and textures, the level is built from several dupli-

cates of the same assets, which saves from time, need of reworking, performance 

and creates consistency through the whole level. The ability to edit the assets and 

to see the results almost immediately in the game is also one of the great perks in 

modularity, because the game development team usually has strict deadlines to 

follow. (Perry, 2002) Modularity is not the only working method available, and can 

and should be used with the unique assets to create a better illusion of realism 

(Klafke, n.d.). 

Modular pieces are the most seen objects and structures in the game, and thus 

should be planned, created first and spent the most time with when making itera-

tions and visual variations. Reusability is one keyword for modularity, for example 

in organic systems like caves, the floor assets could be used as a ceiling and a 

fence could be used as a strengthening structure for walls. (Perry, 2002) Modular 

pieces should be compared with other assets from time to time as they might look 

good as in individual pieces but not good as in groups with other assets (Klafke, 

n.d.). 



86 

9.2.1  Shell-based building system 

Shell-based building system relies heavily in the assets free placement, and 

breaks up the otherwise standard, similar looking environments. If for example a 

cave uses a modular kit system, the cave can easily get a rectangular shape which 

does not look natural. Using shell pieces like pillars and balconies to shave off the 

90 degree corners gives the cave a more organic feeling. This could also be done 

with fantasy-like buildings, where the proportions does not always have to be 

100% accurate. Visually it is hard to get a similar looking areas with a shell-based 

system, because of the infinite possibilities these kind of assets could be com-

bined. Also the amount of time and resources needed to make shell pieces is min-

imal, and with cases like bad looking intersections and seams, it is best to use 

some concealment pieces. (Joel Burgess & Purkeypile, 2013) 

9.2.2  Concealment pieces 

Creating some concealment pieces helps the overall production of the environ-

ment, especially with organic looking areas that need transitioning between each 

other. They are helpful at places like walls or ground assets that are usually placed 

at odd, natural angles, which can cause seams and gaps between the objects. 

Concealment pieces also work well with streams of water, which need a natural 

looking starting and ending points (See figure 72). Covering up various kinds of 

level work is generally done by using for example large stone slabs, foliage, fallen 

tree trunks and other generic objects. (Perry, 2002) 
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Figure 72. An example of a concealment piece for a water stream. 

9.2.3  Hero pieces 

Hero pieces are fancy looking accessories that the player might see only once or 

twice in a game. At first they might seem impressive and important for the player’s 

experience, but which will be forgotten later in the game. Artists should not be too 

focused on hero pieces when making environment assets at an early phase of the 

development, because for example a regular wall asset can be seen hundreds of 

times and thus should have more of the polishing time. (Joel Burgess & Purkeypile, 

2013) 

9.3  Kits 

Kit is a system which has multiple parts that can be used together to create vast 

amount of environments and also gives an opportunity for fast iteration (See figure 

73). An example kit could be a collection of pieces to create a cave or a house, 

and the parts can be of multiple sizes (See figure 74). It acts as a great toolkit, 

because everything is basically standardized. Unfortunately they are complicated 

to make, because artists are required to have a deep understanding of the tech-

nical properties behind kits. (Burgess & Purkeypile, 2013) 
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Figure 73. A dwarven kit for Elders’ Scrolls V: Skyrim. Adapted by author from 

(Joel Burgess & Purkeypile, 2013) 

 

Figure 74. Different kit sizes: half-open boxes, planes and rooms. Each of them 

have their own advantages and disadvantages in regards of footprints and grid 

snapping. 

The process of identifying problems and fixing them within a kit is also time con-

suming, as they usually present new problems in a heavily instantiated environ-

ment that uses kit pieces as its core. Because of this, and for getting the designers 

something to play with, it is important to get the kit into a functional state in an early 

process of development. Further updating of the kit is not rushed, is mainly artistic 

and does not interrupt the design process as the basic functions of the kit pieces 

stays the same. (Burgess & Purkeypile, 2013) 
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9.3.1  Overall creation of a kit 

There are basically five steps to create a working kit. First, the kit is planned and 

its functionality is calculated based on the environments’ and level design’s needs. 

No art assets are yet created, but rather questions related to the kit are answered 

by both the design and art team. For example visuals and re-usability are decided 

and reference content is gathered in this phase. (Burgess & Purkeypile, 2013) 

In the second phase, the decided functionality gets tested so that possible rework-

ing is avoided. First, very basic kit pieces are created for the level designers, who 

then play around with them to calculate rules like naming conventions, proportions, 

etc. Because of this, the kit pieces do not have any textures and the geometry is 

very simple, almost box-like (See figure 74). By quickly testing, solving problems 

and iterating the rules, this phase is completed relatively quickly. Testing the kit 

pieces has many methods. For example the kit pieces can be looped back on itself 

or stacked on top of another to see if the footprint of the kit pieces work correctly. 

Problems with the core kit should be solved without exceptions, because they will 

only increase the workload of the overall level design when for example a “patch-

up” piece is used for the gaps between certain wall pieces. (Burgess & Purkeypile, 

2013) 

 

Figure 75. A rudimentary kit piece. 
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The most common, primary kit pieces are figured out and edited in the geometry 

level in the third phase. This means by adding and iterating the most impactful, 

tiling visual elements, for example the wooden beams on walls, so that their new 

footprint seams could be tested (See figure 75). Their final pivot point placements 

should also be tested and accepted by the rest of the team. (Burgess & Purkeypile, 

2013) 

 

Figure 76. Adding the impactful details on a kit piece. 

Fourth phase is about the kit’s development visually. While avoiding to affect the 

functionality of the kit, less-critical pieces are added, visual variants are created 

and finally the textures for the assets are generated (See figure 76). Creating one 

final kit piece and to get that accepted early, prevents reworking the whole kit. This 

is because developing the visuals for the whole kit at the same time poses the 

possibility to waste time when the kit’s visuals do not get accepted. To put it shortly, 

this phase takes a lot of development time as actual graphics will be made, iterated 

and tested by the rest of the team. (Burgess & Purkeypile, 2013) 

 

Figure 77. Adding the textures and making of visual variants. 
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The last phase is the polishing phase, which lasts through the rest of the develop-

ment process. The visuals are polished, artists test the levels themselves, fix is-

sues and add additional kit pieces when needed. However, the additional kit 

pieces should be thought carefully, as there might be a solution in the kit already. 

(Burgess & Purkeypile, 2013) 

9.3.2  Kit Knowledge 

There are some terms about kits that need describing. Most of the artists do not 

like making kits at all because it can mean less time on making the assets and 

more time thinking about technical details. (Burgess & Purkeypile, 2013) 

Kit-bashing 

Kit-bashing can be called as a method in which the assets are combined in a yet 

unpresented way, to create something totally new. (Almost Human, 2011) It is a 

very organic process, as there are not many limitations other than common sense. 

(Sheffield, 2013) Kit-bashing can create a very specific, new identity to an area, 

which normally would be seen for example only as a military area that has rubble, 

tanks, medic tents and such. Mix and matching said military area kit with for ex-

ample an Asian kit can result in a totally different mood. (Burgess & Purkeypile, 

2013) 

A sub-kit 

Supporting sub-kits are needed to make a compelling kit. Their functionality and 

the amount of time spend on making a sub-kit is chosen by the designer and the 

artist, so that the overall kit would not get bloated with extra kit pieces. The scope 

of the sub-kit can vary greatly: some general and most used sub-kits can have as 

much as over 50 pieces where as a smaller, not so much used kits can have only 

a handful. As an example, a regular building kit could have sub-kits that are spe-

cifically for a small room, large hallway, etc. (Burgess & Purkeypile, 2013) 
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Small scope kits 

Small scope kits contain many pieces, usually small to medium size, to create 

visual variety, especially to organic environments. They are cheap to make and 

usually work well with any kind of surface that has the same visual theme. (Bur-

gess & Purkeypile, 2013) 

Glue kits are small-scope kits that answer to needs like transitioning different vis-

ual themed kits and sub-kits, covering up hallways that are not snapped together 

and other similar situations. To add more verticality in to an environment, another 

small scope kit called a platform kit is quite useful because it does not need any 

complex thinking or logic. The kit contains pieces for example of stone slabs of all 

sizes that can be placed on top of other surfaces to create interesting areas. (Bur-

gess & Purkeypile, 2013) 

Kit tiling, directionality and asymmetry 

When talking about 3D-assets, an all axis tiling kit is very challenging to make, 

even though it is beneficial to use not only horizontally but also vertically. Room 

kits usually tile on two axis and hallways on one. (Burgess & Purkeypile, 2013) A 

directionally restricted kits are especially useful with organic environments, but re-

quire a lot of extra work. To compare it to a traditional kit, which usually can be 

rotated to any direction, a directionally restricted kit needs some extra pieces to 

work properly. They can be used to make asymmetrical halls and hallways, an all-

around room of cardinal directions, etc. However, hallways that do not snap to-

gether due to having a different direction will need a kit piece that bridges the gap 

between them. This can be also called a “de-twist” piece, because it flips the sides 

of the meeting pieces. (Burgess & Purkeypile, 2013) 
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9.4  Procedural Generation 

In procedural generation, the game’s software calculates the placement of the as-

sets in the game. It can calculate infinite amount of environments randomly, so 

there is always something new for the player to look for. Game developer like Mo-

jang, which made Minecraft (See figure 77), has done this extremely well with its 

game environment. Procedural generation gives the environment team more time 

to work on something else and important, for example creating more assets. This 

kind of generation does not have to be, and should not be, fully random, as the 

designer can give the software a set of rules which to follow. There is also always 

the possibility to make a procedural environment with hand-crafted areas, be they 

large or small. (Extra Credits, 2015b) 

 

Figure 78. Minecraft screenshot. (SeargeDP, 2015) 

However, creating the code behind the procedural generation is very time con-

suming and can present more bugs and issues than in an environment created by 

a level designer or an artist. The general issues are about generating an environ-

ment where the player can not progress having for example no accessible exit 

points. There is also the issue about making an environment which is really unique 

and has a hand-crafted experience. Procedural generation tends to be repetitive 

in time, which is why game developers, who has a certain story or narrative in mind 

for the game, do not use it at all. Additionally, procedural environment generation 

is not efficient when making a small scale of levels. (Extra Credits, 2015b) 
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10  BUILDING THE ENVIRONMENT 

There are generally three steps in building a game environment: blockout, build 

and then polish. They can also be called as art passes, because each of them 

brings the development closer to the final result (Van Spronsen, 2015). Blockout 

and building passes can shift together a lot, as there are two types of scenarios 

on how to start working. In the first scenario the designers start making the level 

without any actual artwork but with primitive shapes that the game editor provides, 

after which it is passed to art team for building and polish. This is also called as 

grayboxing (Nutt, 2012). In the second scenario the designers work with the artists’ 

asset set, which is not that different from game editor assets set at first, but which 

then evolves throughout the game development. (Provost, 2003b) 

10.1  BBP: Blockout, build and polish 

Based on the design process before the asset production, the designers start 

blocking out the elements using primitive assets and shapes (Provost, 2003b). 

While starting large, it is important to add simple lighting to bring out a pleasing 

composition of shapes and silhouette, and to check out that the lighting is right for 

the desired mood. Rather than spending an enormous time on every detail, it is 

best to work quickly and focus the attention on the most visible elements. (Haw-

kins, 2014, p.48) While the designers are working on the blockout, the artists can 

and should spend time on making standalone assets, tiling textures and materials 

that the designers can use in their rough blockout (McGrath, 2008). 

Once the base blockout has been made, the level is then passed several times 

between designers and artists, in which they iterate the placements of in-game 

items, playtest the level and generally optimize everything from visuals to game-

play. (Provost, 2003b) Big elements like buildings and foliage are slowly built on 

top of the blockout by the mixed use of modular and unique assets. (Van Spron-

sen, 2014) 
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Polish is the last beautification and little tweaking that bring out the visuals to their 

whole glory. Polish is usually made in several iteration passes, which contain 

things like set dressing, post-processing and light adjustments, last small iterations 

of models and textures, tiny bits of optimizations, etc. (Christoph, 2015) 

10.2  Dividing areas and scene complexity 

Performance is not always about optimizing game’s individual assets. When there 

are several objects in the player’s view, performance tends to go down. The visi-

bility spectrum is all the visible space from the player’s location at all given time, 

and the larger the space in the view, harder it gets for the computer to render it. 

Rather than reducing the polygons of the models or the size of the textures, divid-

ing areas to a certain visibility spectrum to reduce the scene complexity is a good 

way to bring the performance back up (See figure 78). (Provost, 2003b) 

Dividing of areas can be done in several ways: doors to close off rooms, transition 

zones and tight curved-up spaces between larger areas to block out the view. 

There is also fog, depth-of-field and other post-processing effects to limit the view 

of the player, if the performance still tends to go down. (Provost, 2003b) Blocking 

the line of sight is also a method of designing levels, so that the player is for ex-

ample actively keeping track of the surrounding enemies (Hawkins, 2012, p.18). 

 

Figure 79. Dividing areas by the visibility spectrum. 
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Other matter about scene complexity is about vertex and texture density. It is per-

formance friendly to distribute high-resolution models evenly across the space 

and/or placing them in small visibility spectrum areas. Same matters with the tex-

ture density, where the developer has to calculate how much texture memory he 

can use in a given area, and also distribute it evenly. (Provost, 2003b) 

10.3  Asset placement 

Developer should avoid placing arbitrary architecture and objects that are only de-

signed for the player rather than the inhabitants of the game (Gard, 2010b). It is 

also important to start with the biggest elements, because players are going to see 

them first in an environment. After that it is just a balancing act of which smaller 

details to work on. (Nutt, 2012). 

10.3.1  Set dressing 

Set dressing is about decorating a certain set with objects so that it looks like it 

has been lived-in. All the large and small accessories like furniture or vegetation 

are what break the appearance of emptiness, and fills the set with a background 

story. Not all areas can look the same, as the purpose and the inhabitants vary 

from set to set: for example a child’s room is usually more messy and full of toys 

than an adult’s room and in a hospital a storage room could have medicine where 

the other storage room has only patients’ files. (Marshall, 2014a) 

Unless the set is about a clean, organised environment, objects are rarely aligned 

perfectly. Every object should be kilted off just a little to give a bit more realism to 

the set. (Marshall, 2014a) In some game engines, there is a function which lets 

the developer to “drop” an object from the air by the use of physics, which will then 

set and stay on that fallen position. This saves a lot of time from the general hand 

placing items randomly. (Hawkins, 2014, p.105) 
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Set dressing is also very useful for covering up tiling walls and floors, and two 

identical areas can be totally different with the accessories placed in them, if they 

have enough visual impact. Set dressing pieces also should be created in a man-

ner of modularity, so that they could be combined in multiple ways and thus giving 

more diversity to the environment. (Perry, 2002) 

The players do not usually look directly at set dressing, as the elements are not 

directly gameplay related. Some set dressing does not need collisions at all, for 

example the objects that are outside the playable area. But in cases where the 

player can bump into objects, it is best to give them at least a simple collision box, 

so that the physics or player collision can be simulated on them. Having a collision 

data to move certain small objects provide more visual interest than static, non-

movable objects. (DeLeon, 2012) 

10.3.2  Diversity 

A player does not generally accept repetitive looking environments, as it gets eas-

ily boring to look at. Other than in technological sci-fi environments, this can be a 

huge problem to conquer. (Sheffield, 2013) With assets that are going to be dupli-

cated in a level several times to get a better performance, especially buildings, this 

can be avoided by making all the sides different and then displaying the building 

from different angles to create some visual variety. (Masters, 2014h) 

Unfortunately in almost all cases, the player is bound to see the obvious repetition 

in the environment, which then decreases the authenticity of the world. This can 

also be called as art fatigue, which is hard to minimize because changing the vis-

uals and gameplay to keep things fresh does not always work. There is also a 

possibility that the experimentation in to something new will confuse the player. 

(Burgess & Purkeypile, 2013) 
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11  CONCLUSION 

Game environments are coming to an era, where everything can be physically 

constructed and destructed by the player, while still having a certain feel of au-

thenticity. The ability to simulate accurate environments is coming closer with 

every invention of technology and because of this, level designers and environ-

ment artists will also have their hands full of work. Doors and gates are no longer 

locked, creating worlds of limitless details and ability to explore where ever the 

player might want to. Challenges in modularity and diversity will probably stay for 

a long time, but they will get smaller and smaller as time passes further. 

This thesis could have dig deeper in already presented details to give a better 

sense of feeling how big and important the game environments creation can be 

from the artists’ and designers’ point of view. In addition to that statement, there 

are also a huge amount of other details about sound affecting the immersion of 

environments and programming that is required to make functional, processor 

lightweight environments. Saving time in the overall creation of games has be-

come the first priorities in this demanding world of players. But with enough prac-

tise, creating game environments efficiently will become a natural process of plan-

ning and production. 
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