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1 Introduction 

 

The purpose of this thesis is to design an automatic recommendation system for a web 

based social e-learning application. In the first part of the thesis, a short overview about 

community based e-learning from the viewpoint of companies is given. A training 

consultancy company, Bitville’s social e-learning application is introduced and the 

points where and how an automatic recommender system could help improving the 

application is revealed. Then the theory of computer generated recommendations is 

presented and a short comparison of the different techniques that are used on various 

commercial and non-commercial sites is made. Also, the theoretical background of 

recommendation systems and what are the main considerations are briefly introduced. 

Furthermore, a plan how the recommendation system could be improved, once the 

need arises, is proposed. 

 

After the evaluation of the existing systems, the results are analysed from Bitville's web 

based social learning application point of view. A solution, based on the introduced 

methods that suits best the application’s need at the current state of development is 

finally proposed. 
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2 Social e-learning applications 

2.1 Community based learning within companies 

 

In most of the companies, one of the big challenges is to train employees continuously, 

to make them more competent in their fields. Usually, a great deal of knowledge has 

accumulated within the company but in many cases there is no elaborated way to 

share that knowledge. There are rarely workshops, personal trainings or coaching, 

besides the higher management. Most of the employees get some induction for their 

work but as time passes trainings may get less frequent. [1,1] 

 

Usually, there are experts within the organizations, employees who have worked for 

the company for many years and have improved their professional skills in their field. 

The first step for organizations is to get their experts share that knowledge, to make it 

available for all those who could benefit from it because the experts of the company are 

the best candidates to provide learning material for training. 

 

It is very important to create time and possibility to share the knowledge, because 

many (and hopefully most) of the employees have a natural tendency to excel in their 

professional field and they are ready to learn. The learning sessions can be class room 

trainings, peer support, personal coaching, but the main aim is to convey the 

knowledge and raise the competence of the employees. There should be a way that 

experts can share their knowledge, either by creating documentation: wikis, 

PowerPoint presentations, screencasts or similar. In addition, everyone, within the 

company, who has some level of competence, should be given the chance to 

contribute. [1,1] 

 

Some of the company experts might raise the following questions: Why would it be 

good for them? Why should they get involved, spend their time with creating learning 

material if they do not get anything in exchange? The big task here is to get the 

commitment of the authors and the experts of the company. They have to be kept 

reminded that their work in providing material for e-learning is valuable. However, 

personal commitment also raises the question of authorship. 

 

Who should own the created material? Sometimes the authors do not wish to transfer 

their copyrights. The original author might feel that any alteration or reuse of his or her 

work is one way of stealing, or that work does not belong to him or her anymore. They 
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might not feel like sharing any learning material because of that. On the other hand, 

other content creators might even see strengths in the collaborative content creation. 

They might feel that more eyes see more and more viewpoints might help also to 

improve the quality of the study material. Some other employee might appreciate their 

own content and think it worth continuing their work, even if they leave the company. 

[1,2] 

 

Once the e-learning content is in place, the next challenge is to activate the users, to 

get people to learn, to share ideas, and in the meanwhile raise their competence level. 

A good e-learning application attracts the users; it creates a need for knowledge and 

fulfils it. Besides supporting the creation and sharing of learning material, the 

application should also reward the work that users did in the system. When they finish 

some longer study material, the students should get some kind of reward that would 

provide positive feedback for them. Prizes could be given out not just for finishing some 

course, but also uploading content, commenting material, or in any other way being 

active in the system. Rewards could be as simple as diplomas or entering the hall of 

fame. If the rewarding system works well, it can help the students to refine their 

knowledge and indirectly raise the value of the company. 

 

Besides rewarding the participation, another pulling factor is how easy and fun it is to 

use the system. People like to use an application that does not require training or 

reading of user manuals, in other words they do not have to learn how to interact with 

the system. Today’s most popular applications such as YouTube, Facebook or Google 

mail do not need instruction manuals. However, this does not apply in many cases of e-

learning applications. “One of the fundamental bottlenecks considering traditional 

eLearnings is the poor usability.” [1,3] It might be due to the complexity of the material 

or the outdated pedagogical concept that many e-learning systems are neither intuitive 

nor easy to use. Therefore, those who want to be successful in the e-learning field 

have to tackle this issue. 

 

Community based learning is not just about the content. Applications do not only 

provide the learning material but also raise interest and awareness in students. If the 

user of the system likes something, he or she has to be given the possibility to share it 

with others. If one found a video or an article particularly useful, there should be a 

chance to share that interest with the community. Users should be able to express their 

feelings while using the system, exchange opinions and discuss topics. This does not 
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only help to improve the feeling of community but could also enhance the learning 

process. 

 

Once the system is in use and employees start to visit it and study courses regularly, 

as well as comment on items, create content and discuss with their peers, another 

possibility opens up. With a good e-learning application in place, it becomes easier to 

find expertise and find experts for certain fields. Users of the system can recognize 

new experts, draw attention to those who are experts, in other words employees who 

have a good deal of knowledge about some theme. The community can help to find 

these but there can be also automatic solutions that search and find users who seem to 

excel in their field. These users can be then drawn into the creation of new study 

material. At the end more expertise and more competence can lead to innovation. 

 

Bitville’s intention is to create an application that can provide all these features. It wants 

to create a tool which main aim is to raise the competence level of the employees and 

to be an effective platform for sharing and creating e-learning material. 

 

2.2 Bitville’s social e-learning application, Soclet 

 

Soclet is community based e-learning application for companies. Its main aim is to 

create a virtual space where employees can study and raise their competence level on 

their field of work. The content can originate from the employees of the company. They 

can upload different types of content such as PowerPoint presentations, screencasts or 

text documents. It can be used also to share e-learning material from outside vendors 

for example short videos and Adobe Flash animations. 

 

As a result the content can be watched online. There is an inbuilt player for Flash 

animations (SWF), Flash videos (FLV) and screencasts. This way users can leave 

comments for every item, initiate discussion, and exchange ideas. They can also give 

out “likes”, thus raising the chance that other users would bump into the “liked” item. 

 

The content elements can be organized into playlists, which can be created by anyone. 

They can be used as part of a course, preparation for some kind of exams, or simply to 

group items that can be connected into a logical chain. They have a description so the 

user can find what they want to see. A playlist can also be “liked”, thus making it 

possible to reach a wider audience. 
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Playlists can be also remixed which means that if some other user wants to add or 

remove items from the playlist, they can do that. 

 

Picture 1 illustrates the landing page that greets the user. It is the Explore page which 

shows the items that got the most “likes”. Under the other tabs, the user can see the 

most viewed items, items that are recommended for the user and the items that have 

been recently uploaded. 

 

 

Picture 1: Landing page of Soclet 

 

Picture 1 shows the first line of navigation: after the Explore, you can find the Playlist, 

Add content and Dashboard menu items. Under the Playlists menu you can browse or 

create new playlists and under the Add content menu item you can upload content. 

You have to select the type of the content, give it a title, write a short description and 
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provide a couple of keywords for it. Under the Dashboard menu, you can find your 

profile: what content you have added and what playlists you have created. 

 

Picture 2 illustrates the content view. This is the main view of a content item. Naturally, 

the biggest part of the page is occupied by the actual content item. Under it there are 

two buttons: one is to download the content item and the other one is to “like”. Under 

them follows the description of the items and some statistics of the item: how many 

time it was viewed or liked. There is also a placeholder for comments. 

 

 

Picture 2: The content page 

 

Next to the main content, on the left side, you can see different lists in connection with 

the current item. If you are watching an item from a playlist, you can see the full playlist 

on the sidebar. Under that comes a list that is named Related Content. The relation is 
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based on the keywords that the content items have. The third list is called Related 

Playlists. The connection here is also based on the keywords that the playlist have. 

 

The current of implementation of the “Recommended for you” feature is rather simple, it 

has room to improve the quality of the recommendations. A decision to design a 

recommendation engine which can produce more appropriate results and can be 

further developed was made. The aim is that the user would get immediately useful 

recommendations what to check out when he or she logs into the system. In the 

following chapters the theory behind the recommendation systems will be introduced. 
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3 Introduction to recommendation systems 

“Show me your friends and I’ll tell you who you are.” 

Ancient Greek proverb 

 

Recommendations have been long with us. Humans make big part of their decisions 

based on others’ opinions: what they think about certain things, if they think it is useful, 

or should they not bother. When we are young, we probably ask our parents’ opinion 

whether we should go to a school camp or should we start to take music lessons. Later 

on we tend to ask our friends or colleagues if we should buy a certain T-shirt or phone, 

what they think about those products. 

 

Concurrently with the blooming of the internet era, the number of the services and 

consumer products started to grow. At the same time they started to diverge and get 

more specialised. The wider the variety of the available products, the harder it is to 

decide what to choose. For example, if someone wants to buy a good book for reading 

during his or her holiday. One can naturally ask his or her friends or relatives to 

recommend something but that can take a long time. This has the advantage that the 

friends and the relatives know the person and probably have an idea about his or her 

taste, so they can probably give a good recommendation. Or one can just simply go to 

the local bookshop and ask the shopkeepers to recommend some good book. The 

shopkeeper likely does not know the person but using his intuition he can still give a 

rather good recommendation based on the mood, the way of talking, or even on the 

clothes of the customer. Still, in the local bookshop the variety might not be wide 

enough. 

 

Commercial applications such as Amazon realized this fact and started to incorporate 

automatic recommender systems into their website. Usually, these systems are 

collecting huge amount of the data about the user: about their behaviour on the site, 

what the user has rated or bought, if the user has wrote any comment on a certain 

item, etc. Based on the collected data, the system can offer items that the user might 

like and hopefully buy. 

 

The main challenge in giving recommendations is to give personalized ones. Personal 

recommendations can be based on many different factors. Commonly, they require 

some kind of initial user profile, so that the system could start to work reasonably well. 

It requires an initial profile of the user to be created containing the information about 
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the preferences of the user. This initial profile can be set up and then exploited in many 

ways. Table 1 demonstrates the categorization of the different recommendation 

methods. 

 

This thesis focuses on the collaborative filtering and content based methods which 

were found to be the most useful ones for Soclet. Knowledge based method is also 

introduced shortly because it could be an interesting way of development for the future. 

 

Table 1: Recommendation categories 

Main category Sub category 

Collaborative filtering 
Memory based (user based technique) 

Model based (item based technique) 

Content based recommendation 
Tag based 

Description based 

Knowledge based recommendation  

 

Collaborative filtering is based on the explicit preference of the users. Usually the users 

express their likings on a scale: either some kind of numeric scale, or some binary 

ones (like, dislike). When the users gave out enough ratings, when his or her rating 

base is big enough, the recommender system can start to work. The recommender 

system can find close neighbours who have liked the same items approximately as 

much as the user in question. Then it can recommend items from the list of the close 

neighbour that the user has not yet seen. 

 

One great advantage of this approach is that it is content-agnostic; the pure 

collaborative filtering recommendation system does not have to know anything about 

the content. Recommendations are solely based on filtering the ratings of the user 

base. It does not require that there would be any information uploaded to the system: 

what is the content about, what its genre is, who is the author or other features. This 

makes it less error prone and the data less noisy. 

 

Two approaches can be identified in collaborative filtering: user based or item based. 

The user based tries to identify which users are more similar and recommend items 

from the users’ list. Item based systems have the focus on the item. It tries to find 

content which has been similarly rated by other users. [2,13-21] Typically, the user 
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based approach is classified as memory based technique, while the item based 

approach as model based technique [2,26]. 

 

As the collaborative filtering recommendation is content-agnostic, it does not know 

anything about the content itself, and this can lead to surprising result. For example, 

the purely collaborative system might start to recommend items that the user feels 

have nothing in common because “with a pure collaborative filtering approach, a very 

intuitive way of selecting recommendable products based on their characteristics and 

the specific preferences of user is not possible” [2,51]. 

 

To overcome the obstacle, information retrieval methods were taken into use, to exploit 

the content and use the data for recommendation. Content-based recommenders 

analyse the textual content and the information is used to build up the initial profile of 

the user. Once the user indicates his or her preference regarding a few items, the 

recommender can start to work. In general, content based recommenders need much 

less user ratings then collaborative filtering. [2,77] 

 

Analysing content is a rather resource intensive task but it can be done offline. 

Depending on the exact method, the analysing can happen in many ways. For 

example, the recommender filters through the content to find keywords, or to find the 

most used terms. When the user marks an item “liked”, the keywords of that item 

become a part of his or her profile. Then the recommender can recommend items that 

contain the same keywords. 

 

The third main category is the knowledge based recommendation systems. These are 

usually rather sophisticated applications: their main task is to find items that the user 

might be interested from a vast number of possibilities. Knowledge based 

recommenders are based on interactivity: the user has to express his or her 

preferences and the recommender presents him or her with possibly interesting or 

useful objects. Knowledge based recommender systems are used when the intention is 

to find one particular item or product and the decision is affected by many factors. 

  

One example of knowledge based recommender could be an application that 

recommends bicycles. The recommender has to offer bicycles that fulfil the needs of 

the user, match his or her preference and his or her body. The user’s requirements can 

be for example, that “the price of the bike should be not more than 500€”, or “the bike 
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should be suitable for downhill cycling”. The recommender system then translates the 

requirements of the user to product features. It offers than a selection of bicycles that 

match the requirements. If there are no suitable products then it tries to adjust the 

requirements so, that there would be some suitable items: like suggesting a higher 

price range. 

 

This kind of system requires a lot of structured data. In case of the bicycles, the 

recommender system has to know the price, the size of the wheels, the type of the 

tyres, the colour of the bike and so on. 

 

3.1 Collaborative filtering 

 

Collaborative filtering uses the assumption that users who have similar tastes like 

similar items [3,135]. It also presumes that those, whose preference matched in the 

past, tend to be similar in the future [4,624]. 

 

As online information continues to grow at an exponential rate our ability 
to access this information effectively does not, and users are often 
frustrated by how difficult it is to locate the right information quickly and 
easily. So-called personalization technology is a potential solution to this 
information overload problem: by automatically learning about the needs 
and preferences of users, personalized information access solutions have 
the potential to offer users a more proactive and intelligent form of 
information access that is sensitive to their long-term preferences and 
current needs. [5,3] 

 

Giving good recommendation requires a good deal of knowledge about the users. If we 

still stick to the book buying example: the shopkeeper might remember to his or her 

customer, what he or she bought earlier. Maybe, the shopkeeper has even a full record 

of history what the customer has bought so far. Once the seller has to recommend 

something for that particular user, the seller could just look up the history of the 

customer and offer a new book based on the previous choices of the customer. Friends 

would probably use a different method, they would just recall their friend’s character 

and figure out what book he or she would probably like not knowing anything about his 

or her reading history. 

 

Similar approaches could be identified in the collaborative recommendations methods. 

The memory based method can be compared to a very studious, accurate shopkeeper, 

who keeps the purchase history of his customers. Once a customer returns to his shop, 
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he uses his customer’s purchase history to recommend new book. He looks up in the 

list what the customer has bought so far and then compares it to the purchase history 

of other customers. If our shopkeeper wants to get even more info about his customers 

he might even ask them about how much they liked some books. Once he has enough 

information about his customers, he can set up a user-ratings matrix, and compare 

different customers based on their purchase history and on their ratings. So, when the 

next time the customer enters the shop, the shopkeeper could say: "Others who liked 

books that you had bought before, liked also this book, so probably you would like it 

too." 

 

The friends' method is most similar to the model based method. One's friend usually 

has some picture in their mind, what he or she likes. Friends form their opinion on all 

sort of things, not just what he or she has read but also other information that are not 

closely related to buying books: friends might know his or her musical taste, if he or she 

likes to travel and they might even share some common memories. In a way the friend 

creates the “model” of the buyer and he or she tries to find items that would be in line 

with that model. In the following chapters, the memory based and model based 

approach of collaborative filtering will be discussed. 

 

3.1.1 Memory based 

 

The main idea of the collaborative filtering is to track the users’ opinions, preference 

and based on collected data, predict how the customer would feel about an unknown 

item. [2,13] Depending on the actual solutions, the stored data can be only ratings, or 

other things like, number of views, comments. The rating, in this context, is just a 

simple number that incorporates various human attitudes: it shows how much someone 

likes something, what is his or her feelings towards the rated item, many things that we 

consider while deciding what rate to give to an item. For the sake of clarity and 

simplicity, a pure user and item ratings matrix will be used in the examples. 

 

The matrix is a 2 dimensional matrix, where columns represent the items with ratings 

and the rows represent the users. When the user gives a rating for an item, it appears 

in the user’s row, in the column of item as demonstrated in Table 2. The question 

marks denote the unknown ratings. Usually, when an application with a collaborative 

recommender is set up, there are just very few user ratings available. The user, item-
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rating matrix is empty or at least really sparse. This makes the prediction of ratings for 

the unknown items very unreliable. It is hard to find similar users (users with similar 

ratings) or similar items (items with similar ratings) that are significantly similar. This 

problem is called the “cold start” problem. See chapter 3.3. 

 

Table 2: Users and their ratings matrix 

Users \ Items Episode 1 Episode 2 Episode 3 Episode 4 Episode 5 

John 5 ? 4 2 3 

Eric ? 1 3 2 4 

Mary 4 ? 1 5 ? 

Paul 5 4 4 5 3 

Peter 4 5 3 ? 5 

 

In its simplest form, the user-ratings matrix serves as a base for the calculations. There 

are various mathematical tools to be used to predict ratings for a user who has not yet 

rated that particular item. 

 

Why is it important to predict the user’s ratings for an item? Knowing the ratings of the 

user, we can build up a preference list, what the user would presumably like or dislike. 

When we have an idea about items that the user has not rated yet, we can create a list 

of recommendations with items that the user might like, based on the prediction of the 

ratings. 

 

To predict ratings mathematical algorithms have been developed. Historically, the first 

recommenders were memory based. The algorithms processed the whole user-ratings 

matrix and based on the results gave predictions to ratings for items that user had not 

rated yet. 

 

Because the data has to be available in the memory, the memory based methods are 

rather resource intensive and they scale rather badly. As the user base grows, so does 

the user-ratings matrix, in direct correlation. Bigger matrices require more memory, 

thus the computation time grows. In commercial applications, like Amazon, where 

recommendations have to be given in a fraction of a second, the strictly memory based 

approach is not feasible. Hundreds of thousand users with millions of ratings put an 

enormous strain on computing machinery. 
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However, these memory based algorithms are still in use: either as part of a more 

complex solution, or if the application does not have massive amount of users and 

items. Since the data structure is less complex, the memory based algorithms are less 

complicated, therefore, they are easier to maintain.  Memory based algorithms can 

produce results that are on a par with other, more complicated algorithms but they 

require a lot of explicit or implicit ratings from the users and  the required computational 

capacity grows with size of the users-items matrix. [3,136] 

 

3.1.2 Model based 

 

The scalability issues urged developers to find new ways to be able to recommend 

items. Simple memory based applications soon ran out of breath when they had to 

process couple millions of users and their ratings. 

 

The solutions came from data mining and machine learning. Instead of using the 

calculation capacity to handle the whole user-ratings matrix, model based methods 

employs only some pre-processed data. Model based methods utilize the whole or part 

of the database to create a model that can be used to predict the rating of a user for an 

item. The initial data, a training set is used to create a model using data mining and 

machine learning methods. These identify the different users’ preferences and other 

attributes that can be used to compare the users and their ratings to each other. [4,625] 

 

Theoretically, the process of recommendations consists of three main steps: 

1. Create an initial profile for the user: a training set of data is used to model the 

user and place him or her in an imaginary space, where his or her position can 

be calculated based on his or her preferences and that how it relates to the 

other users. If their preferences are similar, they are closer, if their preferences 

differ a lot, then they are further away from each other. 

2. Select the nearest neighbours who are most similar to the user: when the user 

is placed in the virtual space, it can be defined which other users are the closest 

to him or her. 

3. Recommend items based on the nearest neighbour:  the recommendations can 

be given out using the items that the neighbours have already rated but the 

user has not. Naturally, the highest rated items should appear on the list. 

[6,243] 
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Creating a model and initializing the learning data usually takes a lot of time, so it has 

to be done offline. Calculations can be run outside the rush hours of the application or 

on an isolated server. After the profile has been created and the initial data has been 

processed, it can be handed over to the online application that can start to give out 

recommendations. This time, not the whole database is used to create a list of 

recommendations but only part of the available data, that are most relevant, is 

initialized by the intelligent algorithms. Therefore the processing time is decreased to 

an acceptable level. 

 

Although, the model based approach requires more time investment in the beginning, it 

usually pays off in terms of scalability, and the speed of the recommender system. The 

models used are usually more complex, more elaborated, that makes the fine tuning 

possible, but at the same time, it is harder to maintain such application. The big 

advantage over the simple memory based method is that the model based method 

scales better; the required computational capacity does not grow linearly with the 

number of users and items. The computation intensive, complex models can be 

prepared offline, so then later the model can be used to give recommendation for the 

user at run time. [2,26] 

 

3.2 Content based filtering 

 

Another way to recommend items to users is based on content analysis. “Content-

based recommendation systems analyse item descriptions to identify items that are of 

particular interest to the user.” [7,325] When the user sees or watches a certain item, 

the system can recommend other items based on the relative similarity to the actual 

content. The basis of the comparison is the actual item that the user sees. 

 

Most of the items in Bitville’s application are linear active content: i.e. videos, 

presentations. These kinds of content cannot be easily analysed. Instead of analysing 

the actual physical data, some textual attributes needs to be attached to the item, and 

the recommendations can be made based on those. 
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3.2.1 Tag based 

 

Tags are keywords that characterize the items. It gives some information to the user 

what the item is about, what is the main topic, what other topics occur in the item. Items 

can have multiple tags. They usually represent the content in a rather inordinate, non-

hierarchical manner. Usually there are no restrictions what kind of tags can be used to 

describe the content: some may describe the content, some of them the genres, some 

of them the location (e.g. in case of a photo shot), etc. 

 

Yet, well-chosen tags can describe the content and they can be used in the 

recommendation process. Tags can be used to build an item-tags matrix, where every 

tag represents a column, and every item represents a row. If the item has that tag, then 

it is marked in the appropriate cell with 1, otherwise the cell contains 0. With the help of 

the tags, vectors can be built for each item and the similarity can be counted between 

them using cosine similarity. The similarity value can be counted for every item pair 

and they can be saved to the database. When a new item is added to the system, the 

similarity would be counted against each of the other items and then the values are 

saved to the database. 

 

Then the recommendation would work the following way. When the user sees a 

content item, the recommendation system would suggest items that are most similar to 

the current item. All is needed to query the database for rows where one of the items is 

the actual one and the similarity measurement is bigger than an arbitrary threshold. 

 

3.2.2 Description based 

 

A different approach is to use the description metadata that is available for the items. In 

many applications, items have a description. Usually, description is a shorter, coherent 

text that explains what the item is about, what is its content. Though, it is more useful 

for the users, analysing longer texts requires more complicated algorithms and more 

computational capacity. 

 

Analysing coherent text is one of the big tasks of the data mining. The text is filtered 

through to find the terms that appear the most. The number of how many times a term 

can be found in a text is called term frequency (TF). Naturally, if the text is longer, then 
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the TF of the words will be bigger, which makes the comparing of different documents 

biased. The comparison should not depend on the lengths of the documents. To 

eliminate the effect, the number of other terms in the document is counted which is 

called inverse document frequency (IDF). The product of TF and IDF gives then the 

number that can be used as the base of the comparison in relation of a certain term. 

The TF-IDF products of the different terms are counted and these products become the 

items of a document vector. The documents vectors then can be used to compare 

different documents. [2,54-56] 

 

Naturally, there are a lot of extra words that do not provide additional information for 

the comparison. These can be articles and different prepositions, like “a”, “the” or “to”. 

They are the so called stop words that can be removed from the documents during the 

analysis because they can be found in most of the texts in approximately the same 

prevalence.  The analysis can be further refined if only the stem of the keywords are 

used. [2,56] 

 

Advanced matrix factorization methods can be used then, not only for collaborative 

filtering but in the further analysis as well. The singular value decomposition (SVD) 

(see chapter 3.5.3) can help to find hidden, latent features items using only the ratings 

as input. For example, in case of movies, it can point out factors that can be easily 

associated with the genre of the movie, but there can be other factors that are not 

explicable [4,634-636]. 

 

The idea to find hidden factors has been successfully applied in the information 

retrieval domain. The main purpose of the information retrieval is to find relevant 

documents that the user is searching for. Documents can be analysed using TF-IDF 

and then depending what terms the user is searching for, the system can return those 

which have the biggest overlap in terms and in frequency. Unfortunately, in this way the 

similarity is based only on the exact word. The system cannot find something that is 

semantically similar, it cannot handle synonyms. If the user is using a search term like 

computer, the system returns only such documents that contain that exact word and it 

does not offer any that talks about laptops. SVD can help here, because it can identify 

the relationship between synonyms, so it can return also documents that contain only 

one of the terms. The technique is called latent semantic indexing or analysis (LSA). 
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The LSA filters through a document to find the most frequent words, phrases and it 

also analyse their relationships. It can find synonyms, homonyms. In a similar fashion, 

LSA can also be used to measure similarities among full texts, paragraphs or just 

sentences, words. The documents and the search queries are both encoded as term 

vectors. SVD is used to collapse the big matrix of the document vectors into smaller 

vectors that still preserve the main features of the original term vectors. Then the result 

document vectors are compared to the search query vector. [2,26-27] 

 

Descriptions could be utilized to calculate the term vectors of the items. Then these 

term vectors can be used to check against the users’ profile: if they liked a particular 

item earlier or not. Using LSA can also bring some novelty in the content based 

recommendation because it can bring up “latent” connection between items. [2,27] For 

example if the user is checking items that are about cars, it can also offer items that are 

about motorcycles or other motorized vehicles. 

 

3.3 The cold start problem 

 

Usually, recommender systems rely heavily on user provided data to provide 

recommendations. The data might come from surveys, asking the user about his or her 

preferences (explicit data) or by examining the behaviour of the user, what he or she is 

doing within the system (implicit data). Asking the user about his or her preferences 

might not be very successful because users, in general, do not like to fill in surveys or 

even being asked questions too much. Tracking the actions of the user usually 

provides more data but to give recommendation it requires that the user already have 

had some interaction with the system. This leads us to the “cold start” problem. 

 

“The ‘cold-start’ problem describes situations in which a recommender is unable to 

make meaningful recommendations due to an initial lack of ratings.” [8,311]. The main 

reasons of the cold start problem can be: 

 New item: when new item is added to the system and it has no ratings yet. 

 New user: users without ratings or any initial data causes that the system 

cannot give reliable prediction if the user would like a given item or not. 

 New community: this is the most challenging one. In this case a whole new 

community is introduced to the system with new items and new users. [8,311-

312] 
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When a new user is added to the system, very little, possibly nothing, is known about 

the user’s preferences. On many commercial sites, therefore during the registration 

process the user is asked for demographic information. This can be then used to place 

the user into a demographic group that can be used to give out some initial 

recommendations. Another technique that sites may use is to ask the user to rate a set 

of predefined items, and in this way provide information about his or her preferences. A 

new user might be also asked about his or her taste: what kind of content he or she is 

interested in. 

 

The cold start problem does not occur only when the user is new but also when a new 

item is added to the system. As none of the user has seen the new item, there are no 

“likes”, comments and statistics available about it. The system cannot know how the 

users feel about the new content; it cannot define the characteristic of the content 

based on the opinions of the users. 

 

3.3.1 Possible solutions 

 

The cold start problem applies also to Bitville’s application, for Soclet. Before the 

automatic recommendation system could start to work and propose valid 

recommendations, the possibilities have to be examined. To eliminate, or at least 

minimize the cold start problem, the following solutions could be considered: 

 

1. Creating playlist beforehand for the new users. This can be a manually set up 

list that editors or the administrators of the system found useful. Still another 

way to provide the user with other, dynamically created lists, simple aggregates: 

e.g. most popular item, most watched etc. 

2. If someone invites another person who has not yet registered in the system 

(future feature) then it can be presumed that the inviter’s preference is 

somewhat similar to the one who he or she invited. Then the system can offer 

items that the inviter has rated the highest. 

 

After the user has made the first interaction with the system, like searched for an item, 

or watched an item, the system can provide the user with similar items based on the 

similarity of the content, or some other features of the item. The important features can 



20 

 

be tags or the description, but the similarity filter also can take into account genres, 

author or other attributes. 

 

As the user has more interaction with the system there could be a shift from content 

based methods to collaborative filtering. The system can collect more explicit and 

implicit ratings of the user, it can find more easily users who are similar to each other. 

Thus, the application could provide some novelty in the recommendations, instead of 

the apparent content similarity. 

 

3.4 Hybrid method 

 

Both the collaborative filtering and the content based filtering have their shortcomings. 

Collaborative filtering requires relatively big amount of input data from the users’ side 

before it could provide sensible recommendation. The input data can be the given 

ratings to some of the items, the written comments to some items or simply the time 

spent on particular content page. Users have to interact with the system for a while 

before an appropriate profile can be set up for the user. 

 

There are problems also with content based recommendations: the user has to express 

their preference at least for a couple of items that the system could build up an initial 

profile him or her. Before this profile is set up, the system cannot provide personalized 

recommendations. This is the so called cold start problem that has been described 

earlier (see chapter 3.3). 

 

Content based filtering requires less initial data from the user-item relation but it needs 

a lot of metadata and/or content analysis. If the recommendations are based solely on 

the similarity of the items, it can lead to overspecialization [9,737] and the list of 

recommendations would lack novelty: only very similar items would appear on it. To 

provide more quality recommendations and to overcome the weaknesses of the 

different methods, the different techniques can be combined. 

 

Combining the different methods is called hybridization. There are many ways to create 

a hybrid recommender system: for example a collaborative filtering recommender and 

content based recommender can be run within the same system, each of them produce 

their own lit of recommendation. The final recommendation list would then be created 

from the combination of the different recommenders. Another approach is to put the 
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different recommender engines in a chain, so that the output of one would be the input 

of the second, and so on and then the final recommendation list would be produced at 

the end of the chain. 

 

Table 3: Hybridization designs 

Main categories Sub categories 

Monolithic design 
Feature combination 

Feature augmentation 

Parallelized design 

Mixed 

Weighted 

Switching 

Pipelined 
Cascade 

Meta-level 

 

In the followings the three main hybridization designs (see Table 3) that can be 

identified in recent systems will be introduced. [2,124-142] 

 

3.4.1 Monolithic design 

 

Unlike in the following designs, where two or more recommender components are 

combined, in the monolithic design, there is one which incorporates multiple different 

techniques. Different methods and algorithms are used to process the data and give 

recommendation list. Usually, the data is pre-processed to prepare it for the 

recommendations component. 

 

Figure 1 presents the schema of the monolithic design. The different algorithms and 

sources are combined to produce a final recommendation list. One way can be to 

combine the information that comes from the collaborative filtering with content 

features. For example, we know about our user what items he or she likes or dislikes. 

Then we can also check the feature set of the items: in case of films, if it were horror 

movies, comedies or art movies. Then the system concludes that if the user liked The 

Shining form Stanley Kubrick then he or she probably likes horror movies. 
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In this way, also those users who are regarded rather similar based on the 

collaborative filtering results can be differentiated. The similar users have many items 

in common that both of them like, but because of the content-agnostic nature of the 

collaborative filtering we cannot know what kind of items they liked. After further 

examination of the preferred content we might find out that actually some of the similar 

users like totally different genres, so it would be a mistake to recommend them items 

from their not so liked groups. This approach is called feature combination hybrids. 

[2,130-132] 

 

In the book, Recommender systems: an introduction, a more sophisticated method is 

mentioned, which “does not simply combine and pre-process several types of input, but 

rather applies more complex transformation steps” [2,132]. It is called feature 

augmentation. Let us use an example to present the idea. The technique applies 

several different variables to provide more punctual prediction of rating for a certain 

item for User A. It uses two users (User 1 and User 2) to predict the rating for User A. 

The calculation is based on the Pearson correlation of the different users (shows how 

similar two users based on their ratings to User A), the number of mutually rated items 

(in relation with User A), the number of the ratings the users gave and the known 

ratings for the item from User 1 and User 2. 

 

An initial predicted rating is counted for the User A using a content based method. 

Then this initial rating is used to predict a more probable rating for the user. The 

method takes into account that how many ratings the user has, how many items User A 

and the other user rated mutually, giving a higher weight for those who have more 

ratings and more common items. After applying the factors the result is a more 

accurate prediction for User A’s rating for the item. 

 

Hybrid Recommender 

 

 

 

 

Input Output 
Recommender 1 

Recommender n 

…

Figure 1: Monolithic design. Modified from Jannach, D., et al [2,128] 
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3.4.2 Parallelized design 

 

The parallelized design uses two or more recommender components concurrently. 

Each of them makes builds their own recommendation list, which is then modified in 

the hybridization step. The schema of the parallelized design can be seen in Figure 2. 

 

One approach to parallelized design is called mixed hybridization. This is a rather 

straightforward method: the different recommender components all make their list of 

recommendations and then those lists are merged and presented to the user. For 

example in case of large web store there might be different recommenders for the 

different product domains: one for movies, one for books, one for sport equipment, etc. 

Each of these components can make their own recommendation and only the final list 

is presented to the user, where he or she can see movies, books and sport equipment. 

[2,134-135] 

 

The second approach within the parallelized hybridization design is called weighted 

hybrids. In this case the each of the calculated ranking score of the different 

recommender components are taken into account with different weights. Typically, the 

sum of the weight across the components should be 1. 

 

Let us assume that we have two recommendations, two ranking score from two 

recommender components for one single item: r1=0,6 and r2=0,8.  The weight for 

recommenders are ω1=0,3 and ω2=0,7. Then we can calculate the final rating, like so: 

r1 ω1 + r2 ω2 = 0,18 + 0,56 =0,74. 

 

The weighting method can be used to adjust the accuracy of the recommender system, 

to give recommendation that the user feels more accurate. For example if we have a 

Hybridization step Input Output 

Recommender 1 

Recommender n 

…

Figure 2: Parallelized design. Copied from Jannach, D., et al [2,129] 
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Input Output Recommender 1 Recommender n …

system with a collaborative filter recommender component and with a content-based 

recommender, the weights can be adjusted so that the community data based rankings 

or the content similarity would be taken more into account. 

 

The weights can be also adjusted dynamically based on the known ratings of the 

system. Some of the known rating values can be recalculated with the recommender 

system and check what is the difference between the real and the calculated values. 

Then the system can be adjusted so, that the predicted rating would be more close to 

the real value. In extreme situations, the weights can be 1. Then we speak about 

switching design. [2,134-137] 

 

In switching design the results of the recommender components are taken into account 

based on the confidence of their results. For example, if the new user has just a few 

ratings available, the collaborative filtering will not give good results for 

recommendations. Thus, recommendation from the content-based recommender or 

some other knowledge based recommender can provide more accurate 

recommendations. [2,137-138] 

 

3.4.3 Pipelined design 

 

The third big family of the hybridization designs is the pipelined. Here the different 

recommender components are put after each other in a chain, so that the output of one 

of the recommender system is the input of the following one. The main difference 

among pipelined hybrids is the output of the recommender components: if they produce 

a recommendation list that the consecutive components refine, or the output is a pre-

processed data model which then, in the final stage, becomes a list of recommended 

items. Figure 3 demonstrate the schema of the pipelined hybridization design. 

 

Figure 3: Pipelined design. Copied from Jannach, D., et al [2,129] 
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In cascade hybrids each consecutive recommender component refines the 

recommendations of the previous one. The first recommender component creates a list 

of recommended items which is then further refined by the following components. Each 

of the components, except the first one, works with a list of recommended items. It 

recalculates the ranking of the items according to its logic and takes away those that 

are found not to be valid any more, then it passes on the results to the next 

recommender component. Therefore, the list in the sequential processing can only get 

shorter. This might be undesirable in some systems, because many times the 

recommendation list is just not long enough. In this case, the applications usually use 

some fall-back technique to keep number of recommended items big enough: for 

example, switching back to some weighting method, when the number of the items 

does not reach a certain threshold. 

 

When the output of the recommender component is a not a list of recommended items, 

but a data model which then utilized by a consecutive recommender, we talk about 

meta-level hybrids. Dietmar Jannach et al. describes an application which works on the 

online news domain. The content-based recommender component is used to create an 

initial user profile, which is then further processed with a collaborative filtering engine. 

Items are recommended not based on the user profile but from the preference list of 

those peers who are most similar to the user. [2,138-141] 

 

3.5 The mathematics of automatic recommendations 

 

This subsection discusses some of the most used mathematic techniques and logics. 

Some of the names cover just pure mathematical, statistical tools; while others 

describe a set of tools or methods. 

 

These tools were chosen because all of them appear at certain stages of the 

recommendation process. Some of them are used mainly in collaborative filtering and 

some of them employed characteristically in content based filtering. 

 

3.5.1 Cosine similarity 

 

Cosine similarity is one of the most basic and most used mathematical tool in 

automatic recommendation system. It is used to give a numerical value what is the 
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similarity between two items. Usually, it is done so, that the items are represented by 

vectors in some virtual space, and their similarity is counted from the angle of the 

vectors. It gives a numeric representation that how much two vectors point to the same 

direction. 

 

      ‖ ‖ ‖ ‖      

 

The similarity ranges from -1 to 1, where 1 means the perfect similarity and 0 the least 

similarity and -1 that the vector the exact opposite. 

 

                  
    

‖ ‖ ‖ ‖
 

 

It is used in many applications because its implementation is rather straightforward and 

the result is easily interpretable. In information retrieval the similarity cannot be -1 

because every item of a vector is 0 or bigger. 

 

3.5.2 Pearson correlation 

 

Pearson correlation is mainly used in statistics to define how big the correlation 

between two or more variables. The values of the Pearson correlation is between -1, 

denotes strong negative correlation, and +1 that denotes strong positive correlation.  If 

the correlation between any given two variables is positive, then we can argue that they 

are similar to each other. In its simplest form, it can be used in collaborative filtering. 

 

To introduce the concept, I would refer back to the Table 2: Users and their ratings 

matrix. In this case the task of the recommender system is simply to find out how would 

Peter rate Episode 4, based on other users rating. To find this out the system should 

calculate which user’s rating is the most similar to Peter’s and presume that he would 

give the same rating. Based on the rating then the system can decide whether it should 

recommend that item. 

 

Paul’s ratings for the different episodes are in order: 5,4,4,5,3 and Peter’s: 4,5,3,?,5. 

The equation to be used to count the similarity is the following: 
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Where “e” represents one of the episodes from all (“E”).      means the rating of user 

“a” for the given episode, and  ̅  means the average rating of user “a”. To count the 

Pearson correlation, only those items are taken into accounts that have been rated by 

both users. Thus we get that, Paul’s average rating is  ̅  
       

 
  , and Peter’s is 

 ̅  
       

 
     . Thus we get: 
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Thus, it can be said that the 2 user is not very similar to each other. After counting the 

similarity measure in relation with other users, we can have a list with users who are 

most similar to Peter and presume with a big probability that the Peter would give the 

same rating to an unrated item, which the similar user gave. [2,14-15] 

 

3.5.3 Singular value decomposition 

 

Singular value decomposition (SVD) is a matrix factorization method. It has not been 

developed primarily for recommendation engines but it can be used as an effective part 

of it. Its biggest advantage is that it can reduce the multidimensionality of a given 

dataset and helps to choose the most relevant values that can be used to predict the 

unknown ratings for users. 

 

The singular value decomposition theorem states that “a given matrix M can be 

decomposed into a product of three matrices as follows, where U and V are called left 

and right singular vectors and the values of the diagonal of ∑ are called singular 

values.” (Golub and Kahan, 1965, ref. in [2,28]) 

 

       

 

To show how SVD can be applied, I use again a user-rating matrix. When we have two 

items, we can present the preference of the user on a straight line: if the user prefers 

one of the items over the other, then we can show that by placing the point of the user 
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closer to the preferred item. With three items we have to use two dimensional space to 

show the same kind of preference. With four items we would need a three dimensional 

representation and so on. If there are a lot of items and a lot of users, the 

representation of the items and users might be really cumbersome. 

 

 

Figure 4: User-item relation in one and two dimensional space 

 

Figure 4 presents how the relationship can be presented in low dimensional spaces. 

The one dimensional representation shows that the user prefers Item 2 over Item 1. 

The distance from the items can be counted for example from the ratings that the user 

gave for the items. In the two dimensional space, the relationships are a bit more 

complex, but the results can be still easily presented. In this case, the user prefers Item 

1 over Item 2 but dislikes Item 3. 

 

Table 4: Users and ratings for SVD 

Users\ Items Episode 1 Episode 2 Episode 3 Episode 4 

John 5 4 4 2 

Eric 2 1 3 2 

Mary 4 3 1 5 

Paul 5 4 4 5 

 

The aim of the decomposition is to break down the original matrix (see Table 4) into its 

component and find out which are the most relevant elements in ratings and user 

relation. SVD makes it possible to identify and separate the most relevant values. 

Values with what we can still approximate the original matrix within certain margins of 

error. 

 

Item 2 

Item 1 
User 

Item 1 

Item 3 Item 2 

User  

User-item relation in 
one dimensional space 

User-item relation in 
two dimensional space 
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The outcome of the decomposition are three matrices that contains the most relevant 

elements in the beginning of the matrix (left side) and less relevant elements on the 

other end. Thus even if we start to reduce the number of columns in the resulted 

matrices, we can still get a good approximation of the original matrix. Therefore, if we 

take only the first two columns of the matrices, we can still preserve some of the 

characteristic of the original matrix, but the result can be presented on a two 

dimensional space. [2,28-29] 

 

3.5.4 OpenSlopeOne 

 

Daniel Lemire and Anna Maclachlan published a set of algorithms that they named 

Slope One. Many implementations of the algorithm can be found on the internet. This 

chapter presents the idea published in Lemiere’s and Maclachlan’s paper [10]. The 

basic idea, to give predictions for a user for a previously unrated item based on the 

already rated items and the ratings of other users. 

 

Daniel Lemire and Sean McGarth have designed a solution based on PHP and MySQL 

as well. They claim that even though the algorithm is simple to implement, it works 

almost as well as other more elaborate algorithms. [11] 

 

They had a set of aims they wanted to reach with their algorithms. It should be so 

maintainable and easy to implement that a common engineer would be able work with 

the code. The application should react to changes right away: when a user rates an 

item, its effect should be immediately visible in the relationship with the other items. 

Usually, the latter one is rather hard to achieve, especially if there is the third constraint 

namely that the system should provide recommendations in a reasonably short time. 

And finally, a good recommendations system should be able to give recommendations 

even to users with few rating, for example for new users. 

 

The core of the idea is to store the average differences of ratings of users for different 

items, that the authors called “popularity differential”. The basic idea is rather simple. 

Let us say, there are two users, John and Mary. John rated the movie, Matrix to 2,5 

points and Existenz to 3,5. Mary rated the Matrix to 3 and we would like to know how 

she would rate Existent. Table 5 shows this: 
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Table 5: Rating matrix 

 John Mary 

Matrix 2,5 3 

Existenz 3,5 ? 

 

Let us presume that John’s and Mary’s tastes are rather similar and then we can give 

an estimation how Mary would rate Existenz. John’s ratings difference is 3,5 – 2,5 = 1, 

so if Mary rather gave Matrix 3, we can predict that she would give Existenz 4. Of 

course, with this small amount of user and items, our prediction is rather unreliable but 

as the available data is growing, the difference in the predictions evens out. The 

different slope one algorithms take the average of the differentials. 

 

Their proposals for different set of algorithms also reveal some major concerns users 

rate certain items. As their solution based solely on the ratings of the users, it is very 

important to get an idea how the users think, what are the basic patterns that they use 

in their ratings, etc. 

 

In the most simple solution for prediction is the “per user average”. The average ratings 

of the user are counted and we predict that the user would rate the unrated items with 

the average. A more sophisticated variation takes into account the deviation from the 

averages, thus giving an idea how much the different ratings depend on each other. In 

other words, how reliable the connection between the ratings of the items or the ratings 

that the user gave out. 

 

The Slope One solutions “take into account both information from other users who 

rated the same item … and from the other items rated by the same user” [10,3]. The 

scheme uses ratings only from users who have common items with the user for whom 

the prediction is counted, and only those ratings of items that the actual user has rated 

themselves. Their “implementation of slope one doesn’t depend on how the user rated 

individual items, but only on the user’s average rating and crucially on which items the 

user has rated” [10]. 

 

A further developed solution takes into account the size of these arrays. The scheme 

gives more weight to the difference among arrays if the arrays are bigger. It represents 

practically that if there are users who have very similar taste, meaning that their ratings 
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for different items are very similar, then their arrays of ratings will weigh more in the 

calculation. From the weighing factor, the scheme is called weighted Slope One. 

 

The authors also came up with a third solution where they take into account how a user 

generally rates items. Defining the characteristic of the person who gives ratings can 

affect the accuracy of the prediction. They counted that in their training sets “more than 

70% of all ratings … are above the middle of the scale” [10,4]. The bi-polar scheme 

takes into account also how users generally rates, to define what a certain ratings 

means in the case of a user. For example, if a really optimistic person gives out only 

10s and 9s (on a 10 points scale) for items that he or she really loves, while 7 and 6 

already shows that he or she dislikes the item, because almost never give lower ratings 

than those. While our pessimistic user easily gives out 3 and 4 items that he or she 

dislikes and never wants to give more than 6 or 7 to something that is close to his or 

her heart. So, the average of the ratings is counted: if something falls below the 

average, then it can be considered as disliked. Thus the attitude of the users also can 

be taken into account when predicting a rating for a previously unrated item. They 

claim that a possible improvement could be “splitting ratings into dislike and like 

subsets can be an effective technique for improving accuracy” [10,5]. 

 

3.6 Amazon 

 

Amazon is one of the best known and most used e-commerce site that uses automatic 

recommendation system to offer its users items that they might be interested in. The 

main purpose naturally is to increase the sales, to provide some novelty in the variety 

of the products and also to push items that might be new or not very known yet [12,77]. 

 

At such large companies, like Amazon, the biggest challenge is to provide real-time 

recommendations on huge datasets (possibly tens of millions of users with millions of 

different items) [12,79]. New customers usually have very little data that can be used 

for recommendations: purchased products or rated items, while regular customers 

probably have much more. Because of the relative sparseness of the input data, every 

interaction has to be tracked because it might provide valuable information concerning 

the preferences of the user. Amazon refers their recommendation system as item-to-

item collaborative filtering. 

 



32 

 

Amazon’s recommendation system consists of both offline and online elements. To 

provide good recommendations the system computes the most resource intensive 

similar items table offline. The algorithm browses through all items in the product 

catalogue and check if a given item, A, was bought by a customer, C. Then it checks if 

customer C bought also item B, and if so, records it. Thus, it can be counted that how 

many persons who bought item A bought also item B, and based on those numbers, 

the similarity between items can be counted. Cosine vector similarity is used to 

measure the similarity, where the items are represented by vectors and the dimensions 

of the vectors corresponds to the number of the customers who bought the items. 

[12,78-79] 

 

The items are grouped into clusters based on their similarity. The online component of 

the recommendation system looks up that into which cluster the purchased, or the 

currently checked product belongs to and gives recommendations from those clusters. 

 

The engineers of Amazon claim that their solution scales much better than other 

existing algorithms because it creates the resource intensive items similarity table 

offline. The online component, which looks up for similar items based on the customers 

previous purchases and ratings, scales independently from the similarity table. The 

speed of the online component depends only on the number of the items the customer 

purchased or rated. The number of the items and ratings do affect the speed of the 

application but they scale well because of the clustering. The new items are connected 

to clusters, thus they can be also recommended. Using item-to-item collaborative 

filtering, the application can give personalized recommendations in under a second. 

[12,79] 

 

3.7 Apache Mahout 

 

There are not so many commercial recommender applications available that could be 

easily tailored to an already existing application. Automatic recommenders require a lot 

of data that are gathered during the usage of the application or the user has to explicitly 

express his or her preferences. The recommender algorithms also have to “know” the 

content, have to have loads of information about it. If the infrastructure is not 

standardized, ready-made solutions usually does not suit the applications. There are 

commercial solutions available that are able to give automatic recommendations but in 
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most of the cases they only work with web stores, where the items have prices, 

purchase histories and the sole purpose is to sell more. 

 

As the tailoring of an already existing automatic recommender is a cumbersome task, 

usually it is developed together with the rest of the application. There are open source 

tools that are available for the developers who can then create their own recommender 

engines using those. In this subsection one of the biggest open source software library 

built for data mining and machine learning will be introduced. 

 

The biggest and probably the most developed from the open source recommender 

systems is Apache Mahout. It is developed by the Apache Software Foundation that 

develops the most successful web server of the internet. 

 

The Mahout project is a rather new initiative. They are not providing recommendation 

systems as such, instead a set of tools that can be used to build one. Implementations 

of the most known and researched algorithms are included in the project. One can 

download the framework and then the tools can be used to build a full blown 

recommendation system. The implementations include: 

 Collaborative Filtering 

 User and Item based recommenders 

 Singular value decomposition 

 

One can build really sophisticated recommender system using these tools, however the 

actual logic to be designed still stays the responsibilities of the system architect. They 

have to decide what kind of information they want to use to provide recommendations: 

recommendations based on users provided ratings, on their page views, etc. 

 

Apache Mahout is built on the Apache Hadoop software library that “is a framework 

that allows for the distributed processing of large data sets across clusters of 

computers using a simple programming model” [13]. The project includes also three 

subprojects, as they are listed on hadoop.apache.org [13]:  

 Hadoop Common: The common utilities that support the other Hadoop 

subprojects.  

 Hadoop Distributed File System (HDFS™): A distributed file system that 

provides high-throughput access to application data.  
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 Hadoop MapReduce: A software framework for distributed processing of large 

data sets on compute clusters. 

 

The Hadoop, thus also the Mahout projects are based on the Java programming 

languages. It can be run on Windows or on Linux operating system, but on production it 

has been tested only on Linux [14]. 
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4 Implementation of a prototype 

4.1 Why an automatic recommender is needed? 

 

In the case of Bitville’s social e-learning application the automatic recommender would 

be used to enhance the learning process, to provide the learners with similar content 

that they deal with and to aid them to find the right content for themselves. At the same 

time, it could also be useful for keeping up the interest of users by presenting ever new 

content. 

 

In the current setup there is not much that can be known about the users of the 

application, so creating an initial profile might be cumbersome. Practically, new users 

only have to provide email addresses and passwords. It helps to engage them faster 

but provides very little data for creating an initial profile for the automatic recommender. 

 

However, there is implicit data available once the user starts to use the application: we 

can track what items the user watched, how long he or she watched it. Users can 

express their preferences pressing the “Like” button when they see something that they 

liked. All this information could be exploited to enhance the quality of the 

recommendations. Even more precise information can be collected for example by 

analysing what the users commented on certain items. 

 

As first step in proving the validity of the concept, I created a prototype that uses a 

simple memory based method using collaborative filtering. I chose this approach 

because it brings in the personal element in the recommendation, it utilizes the “likes” 

(or ratings in case of the prototype) feature of Soclet, still the complexity of the solution 

enables multiple direction of development. It is rather intuitive but at the same time it 

provides novel results as well. 

 

The calculation is based on a linear algebra tool, singular value decomposition (see 

Chapter 3.5.3: Singular value decomposition). I chose this technique because the 

solution is quite intuitive, and the different steps of the calculations can be shown on 

graphs. Even if the original working method of the prototype would be deemed to be 

inefficient, the tools, the mathematics and the programming solutions can be used to 

redesign or further develop them into a more elaborated recommender engine. 
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4.2 Collaborative filtering with singular value decomposition 

 

Usually collaborative filtering can be used effectively only when there are enough 

ratings in the system. Because in the Soclet application there was not enough data that 

could be used for the prototype, I used a publicly available dataset: the MovieLens 

dataset from the GroupLens Research group (http://www.grouplens.org/node/73). Its 

initial data is dense enough that the recommender could start to work and that 

presenting graphs would show the results. 

 

I used the MovieLens 100k dataset that consists of 100 000 ratings on 1700 movies 

from 1000 users. The data was collected in 7 months in 1998. Apart from the ratings he 

dataset contains some information about the movies: e.g. title, genres, date of release; 

and some information about the users. 

 

For the prototype I used only part of the data to illustrate the approach how the 

recommendation engine could work: 21 movies and 20 users. The rating scale is a 5 

level scale: from 1 to 5. In the prototype, I also used 0. This means that an item is not 

rated, probably has not been seen by the user, so it can be recommended for the user. 

 

The prototype was built using Ruby on Rails which is an open source web framework. 

The framework applies the model, view and controller software architecture pattern. 

Typing one command into the console the framework is capable of creating the model, 

the controller for the model and the view for it. The framework is easily expandable by 

using plugins that are called “gems”. To have a unified look I installed the Bootstrap 

CSS using its gem. 

 

To make all the matrix calculations, I used a precompiled Java executable that was 

created from a Java package called JAMA. It takes a matrix as an input and outputs 3 

matrices, the singular value decomposition of the input matrix. The communication 

between the Ruby on Rails application and the Java executable happens with JSON. 

Figure 5 shows the high level structure of the application. 

 

Two models were created in the application: the movie and the rating models. Only 

these were needed because the prototype recommends only for one single user and 

the other users are just represented by numbers in the user-item matrix. Because I 

used datasets that were text files, parsers had to be programmed to import the data 

http://www.grouplens.org/node/73
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into the database. The data in the dataset defined that what properties the models 

have: for example a movie has title, release date, genres and link to the IMDB record. 

Using the parsers I imported into the database the movies and their ratings. 

 

In order to create recommendation I used Ilya Grigorik’s idea [15]. Grigorik used 

singular value decomposition to place the users and the rated movies into a virtual 

space. In this space the similarity can be defined with simple geometric tools. By using 

singular value decomposition I can also demonstrate how the calculation is done 

because the results of the different steps can be plotted on graphs. 

 

First a user-item matrix was created where columns represents the users and the rows 

the movies. The ratings are read out form the database and the values are put into the 

appropriate position. A mathematical technique, SVD (see Chapter 3.5.3) is applied to 

process the item-rating matrix. The precompiled Java executable calculates the 

singular value decomposition of the input matrix which results in three matrices U (21 x 

21), ∑ (21 x 20) and Vt (20 x 20). The U and Vt matrices represents the movies and the 

users. In the prototype this calculation is made only once and the resulting matrices are 

saved on disk in JSON format to be used in the following steps. In other words this 

calculation is not made at runtime. 

 

Picture 3 shows how the calculated matrices can be seen plotted on a graph. For 

plotting the results, I used the Google Charts API. Only the first two columns of the U 

and Vt matrices are used: the first column represents the x, the second columns the y 
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Figure 5: Structure of the application 
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coordinates. Thus, on a two-dimensional graph the relation among the movies and 

users can be shown. 

 

The calculations after this point are made runtime. First the U, ∑ and Vt matrices are 

read in the memory from the JSON files that were earlier created. For the calculations, 

only the first two columns of the matrices are used, in order to use the same results 

that are visible on the graphs. I indicated this with the number 2 in the index of the 

matrices. Then, the actual ratings of the user are read out from the database. From the 

ratings a column vector (User) is created and then the following calculation is done: 

 

               ∑ 
   

 

User2D is a row vector with two elements, these are the coordinates of the user for 

whom the recommendation is calculated. 

 

After the position of the user is calculated based on his or her ratings, the next step is 

to find the most similar neighbours of the user. There are many possible techniques to 

find those but I chose a rather simple one for presentational purpose: cosine similarity. 

The cosine similarity shows how much two vectors (representing the users) point to the 

same direction. 

 

Picture 3: Plotting the results 
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Once a list of the most similar users is created, the next step is to find what items to 

recommend. My algorithm browses through the similar users starting with the most 

similar one. It takes the items that are rated highest by the most similar user and then it 

iterates through his or her rated movies as long as it finds an item which has not been 

rated (presumably not seen) by the actual user and its rating is at least 3. 

 

Once a movie is found or the conditions are not met, the algorithm jumps to the second 

most similar user and repeats the process again. The algorithm runs as long as it can 

find three recommendable items or runs out of recommendable items. 

 

In the final step (see Picture 4), the prototype presents the user with a list of 

recommended items based on the ratings of the user and of all the other users. 

 

4.3 Outlook 

 

In this chapter I lay out a plan how the automatic recommender system could be further 

developed using some of the solution that I incorporated in the prototype. The aim of a 

successful recommendation engine is to present the user with more personal and more 

relevant items which would enhance the user experience. The recommendation list 

should contain materials that are based more on their personal history of interest and 

at the same time it should suggest items that are in same way similar to the actually 

watched item. To achieve this, I propose the following steps: 

Picture 4: Recommendation list 
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1. Content based recommendations using tags 

2. Collaborative filtering using rating, “likes” 

3. Collaborative filtering using rating AND implicit measures (comments, clicks, 

spent time, etc.) 

4. Content based recommendations using descriptions, LSA 

5. Hybrid methods 

Figure 6 shows the possible route of development. Each step raises the complexity of 

the system but produces more appropriate results. Step 1 is a really intuitive method to 

recommend items based on what the user is currently watching. It uses tags that are 

attached to the content items. This way of recommending item is already part of Soclet 

but it misses the personal element of the recommendation: it always recommends 

items that have similar tags. 

 

Step 2 exploits the personal element of the recommendation. It takes the ratings as the 

base of the calculations, profiles the users based on their ratings. It brings in the 

personal element but content-wise the recommendations might seem irrelevant. Step 3 

enhances the process by using more implicit data and not just relying on explicit user 

ratings. This should enhance the recommendation process and makes the 

recommendation relying less on ratings. 

 

The main idea is that instead of relying only on the explicit binary rating of the users 

(“likes” and “dislikes”, “thumb up” and “thumb down”) other implicit factors would be 

taken into account to calculate a “personal ranking”. For example: how many times the 

user has watched an item, how much time he or she spent on the page of an item, did 

he or she leave a comment. Figure 7 illustrates these factors. Each of these factors 

Tag based 
recommendation 

CF using only 
ratings  

Enhanced CF 
using ratings AND 
implicit data 

Content based 
recommendation 
using LSA 

A hybrid method 
using CF and 
content based 
recommendation 

Figure 6: Steps of development 
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could get some arbitrary multiplier and then the number could be summed up. The sum 

would show that how much some content item is appreciated by a certain user. This 

way also those users would rate the content “unintentionally” who otherwise do not like 

to give out ratings. 

 

Step 4 is where the content is analysed in order to build a more thorough user profile 

which would describe better the actual interest of the user. Ratings would be used also 

in this step but they would be used to find out what kind of items the user might like. 

For example, in case of a movie rental place the profile would contain information 

about the genres preferred by the user. This gives a better user model than that can be 

exploited for the better recommendations. The user exits in the system not just as an 

array of ratings but he or she would have a full profile: what items the person liked and 

why. 

 

Personal 
ranking 

Watched N 
times 

Amount of 
time spent 

Commented 

"Liked" 

Figure 7: Components of personal ranking 
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Collaborative filtering 

Content based 

recommendation 

List of 

personal 

recommendations 

Figure 8: Hybrid design 
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Step 5 could be the final stage of the development. It would use collaborative filtering 

and content based recommendation in a hybrid setup (see Figure 8). When a new user 

arrives to the system all the recommendation would be based solemnly on tags. As the 

user would start to give out ratings and interact with the system the collaborative 

filtering and content based recommendation engine would start working. They would 

both produce their list of recommendations for the user then the algorithm would pick 

up only those recommendations which have higher confidence, which the user is 

expected to rate higher. When nothing can be produced for some reason the system 

would fall back to tag based recommendation. It should then tackle problems like the 

cold start problem, but after a while it could produce more personal and more relevant 

recommendation for the user. 
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5 Discussion 

 

It is problematic to measure the accuracy and the relevancy of the recommendation 

given by an automatic recommender system. The efficiency of the algorithms can be 

measured with a test and a control dataset: the automatic recommender is run with the 

test dataset and the predicted ratings can be compared with the control dataset [2,166]. 

However, this is a topic that I am not able to cover in this thesis in more details. 

 

I will focus more on the findings that I have learned during the creation of the prototype 

and the questions that arose. 

 

 User-item matrix:  

There has to be enough ratings data in the system. Both the collaborative 

filtering and the content based filtering require that there would be sufficient 

amount of ratings. It is also important that the user-item matrix would not be 

very spare, so that there would not be users who have not rated any items and 

there would not be items that have not been rated. 

 The rating system:  

When I started to work on the prototype I was thinking if the rating scale should 

be more detailed or is it enough to have likes. Shiva Rajaraman, the product 

manager of YouTube in a blog post was questioning the usefulness of 1-5 star 

ratings of YouTube videos. He questions if a simple thumb up or down would be 

enough to show if we like or dislike an item. [16]  Also Lemire and Maclachlan 

argue in their paper [10,5] that dividing the ratings into “likes” and “dislikes” can 

improve the accuracy of the calculations. Currently in Soclet the user can only 

“like” an item. So all those items that a user did not like are in the same group 

with the unwatched items. In Soclet’s case and for successful recommendation 

engine it might prove useful that the user could show if she or he does not like 

an item. 

 Finding the nearest neighbour:  

In the prototype I used cosine similarity to find users who are similar to the 

actual user in a virtual space. Cosine similarity is an easy and computationally 

rather inexpensive way to identify similar users but there are other ways to find 

the neighbours of a certain user. 

 Algorithm how to build the recommendation list:  

I presented only one way how to create a list of recommended items once the 
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most similar users are known. With other algorithms better results could 

probably be produced. 

 

With the creation of the prototype I wanted to show how an automatic recommendation 

system could be implemented as a part of the Soclet application. It requires some 

changes from the current state of the application and it also requires that the Soclet 

users would actively use the content: leave comments, spend time watching the 

different items and most of all, rate the items positively or negatively. By users 

expressing their preference the automatic recommender is capable of recommending 

relevant items that can improve the effectiveness of the learning process.   
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6 Conclusions 

 

Building a prototype for a web based social e-learning application I examined the 

various phases of how a recommendation engine works and what are the possible 

pitfalls. At the same time I went through the theory and the taxonomy of different 

automatic recommender systems. Finally, I would like to sum up my findings and 

analyse what they mean in the case of Soclet. 

 

The main goal was to enhance the learning process of the learners so that they should 

not have to search for the content which interests them but instead it would be offered. 

“The focus of digital personalization has shifted from what I am interested in now to 

what I might be interested in next.” [17,82] At the same time an automatic 

recommendation system helps to find the most popular content, helps to find prominent 

quality without external administering. It offers content to the actual user that is highly 

rated by other users and whose interests are similar to actual user’s. 

 

A challenging task in case of Soclet is the versatility of the types of the content: they 

can be PowerPoint presentations, textual documents, videos or animations, but 

generally they provide little amount of metadata. There is a possibility in Soclet to 

attach description and tags to content items but it has to be done by administrators or 

the content creators. 

 

The other important part is that the users as well should contribute to the operation of 

the automatic recommender: by rating the content items, expressing their like or dislike, 

leaving comments or just spending time on a page with content. If the users do not 

express their preferences towards the items, the automatic recommender cannot 

create a profile for the user and cannot recommend items reliably. 

 

For a successful recommendation engine both the administrators, content creators and 

the user have to actively work with the contents. The former ones have to maintain and 

keep up to date the metadata of the content items, while the latter ones have to actively 

rate, comment and use the same items. 
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